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Abstract
Current evidence from case/control studies indicates that genetic risk for psychiatric disorders derives primarily from
numerous common variants, each with a small phenotypic impact. The literature describing apparent segregation of
bipolar disorder (BP) in numerous multigenerational pedigrees suggests that, in such families, large-effect inherited
variants might play a greater role. To identify roles of rare and common variants on BP, we conducted genetic analyses
in 26 Colombia and Costa Rica pedigrees ascertained for bipolar disorder 1 (BP1), the most severe and heritable form of
BP. In these pedigrees, we performed microarray SNP genotyping of 838 individuals and high-coverage whole-genome
sequencing of 449 individuals. We compared polygenic risk scores (PRS), estimated using the latest BP1 genome-wide
association study (GWAS) summary statistics, between BP1 individuals and related controls. We also evaluated whether
BP1 individuals had a higher burden of rare deleterious single-nucleotide variants (SNVs) and rare copy number
variants (CNVs) in a set of genes related to BP1. We found that compared with unaffected relatives, BP1 individuals had
higher PRS estimated from BP1 GWAS statistics (P= 0.001 ~ 0.007) and displayed modest increase in burdens of rare
deleterious SNVs (P= 0.047) and rare CNVs (P= 0.002 ~ 0.033) in genes related to BP1. We did not observe rare variants
segregating in the pedigrees. These results suggest that small-to-moderate effect rare and common variants are more
likely to contribute to BP1 risk in these extended pedigrees than a few large-effect rare variants.

Introduction
Bipolar disorder (BP), consisting of episodes of mania

and depression, has a heritability from twin studies esti-
mated to be ~80%1. For BP, as for most other common

disorders, SNP-based genome-wide association studies
(GWAS) of large case/control samples have discovered
many loci that contribute unequivocally to disease risk
but that collectively explain only a small fraction of dis-
ease heritability. The most recent published BP GWAS,
incorporating >20,000 cases and 30,000 controls, has
reported 30 genome-wide significant SNP-associations
and SNP-based heritability (h2snp) of 25% for BP12. The
hypothesis that rare single-nucleotide variants (SNVs) and
rare copy number variants (CNVs) could explain a
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substantial proportion of the “missing heritability” of
complex traits3 has motivated the rapid growth of whole-
exome sequencing and whole-genome sequencing (WGS)
throughout biomedicine, including psychiatry. More than
for other psychiatric disorders, however, sequencing
efforts to identify variants with a high impact on BP risk
have continued to focus on pedigrees4–7. This focus
reflects published descriptions, over several decades, of
numerous extended families in which BP is observed
across multiple generations; as would be expected if these
pedigrees were segregating a relatively high-penetrance
susceptibility variant.
Because the evidence in the literature regarding the

apparent segregation of BP in extended pedigrees is
mostly anecdotal7–9, we aimed to systematically char-
acterize the genetic contribution to BP disease risk in a
series of such families through evaluation of variants
across the allele frequency spectrum. If rare variants
contribute to this risk it is expected that they would be
enriched in this sample, which is, to our knowledge, the
largest BP pedigree sample sequenced to date. In addition,
because a wide range of evidence indicates considerable
etiological heterogeneity between BP1 and milder forms
of BP2,10, this study focused exclusively on families
ascertained for multiple individuals with BP1, a strategy
that we reasoned would reduce the impact of such het-
erogeneity. In a further effort to reduce heterogeneity, we
limited the data set to pedigrees derived from two Latin
American populations that are considered closely related
genetic isolates; the province of Antioquia in CO and the
Central Valley of CR11.
We collected microarray SNP data for 838 family

members (as reported previously)12, and performed high-
coverage WGS on 449 individuals, selected because
identity by descent information provided by them would
enable imputation of rare variants in the family members
who were not sequenced. We analyzed these data to
obtain high-quality genotypes for SNVs and CNVs. With
this information, we sought to evaluate the impact of both
common and rare variants on BP1, focusing on two major
questions about its genetic etiology. First, we attempted to
evaluate the overall genetic architecture of BP1 in these
families by characterizing the genome-wide burden of
both common and rare genetic variation. For common
variants, we calculated the genome-wide burden with
polygenic risk scores (PRS), using the latest BP1 GWAS
summary statistics2 and compared the polygenic burden
of risk alleles in affected cases and related controls. For
rare variants, the genome-wide burden contrasted the
burden of rare variants predicted to be deleterious in a set
of genes related to BP1 between affected cases and related
controls. Second, we attempted to identify rare deleter-
ious variants segregating in the families, using a new
method that we developed for this purpose.

Materials and methods
Sample recruitment, microarray genotyping, and WGS
We recruited 26 pedigrees (15 from CR and 11 from

CO), each ascertained for multiple individuals diagnosed
with BP1 (Table 1). Some families were previously stu-
died using linkage analysis13–17. The ascertainment and
phenotyping strategy was previously reported18, and is
briefly reviewed in the Supplementary Text. Control
individuals were relatives of BP1 individuals in families,
and either they went through the complete psychiatric
evaluation and were found to have no mental illness, or
they answered negatively to all Mini International Neu-
ropsychiatric Interview19 questions related to mood or
psychotic symptoms and were > 60 years of age. Indivi-
duals who were not diagnosed as BP1 or who were not
considered as controls had unknown disease status.
Written informed consent was obtained from all parti-
cipants. Institutional Review Boards at participating
institutions approved all study procedures. Using DNA
extracted from whole blood we performed microarray
genotyping using Illumina Omni 2.5 chips; as reported
previously12 this procedure yielded data after QC for 838
individuals (206 BP1) with 2,026,257 SNPs (Supplemen-
tary Figure 1). For WGS, we used ExomePicks to identify
the subset of individuals to sequence that would enable
maximum opportunity to impute variants into the
remaining genotyped pedigree members. Owing to
budgetary constraints, 22 pedigrees out of the 26 pedi-
grees (449 individuals after QC) were sequenced
including 143 BP1 (Supplementary Figure 1). Illumina
performed WGS using HiSeq 2000 with 36× mean cov-
erage (100 bp read length).

Variant calling, QC, and imputation
We called SNVs using GATK best practices20,21. We

removed variants that failed variant quality score recali-
bration and set each genotype whose quality score was
≤ 20 to missing (see Supplementary Text for details on
QC). After QC, we had 449 individuals (143 BP1) and
20,396,290 SNVs (Supplementary Table 1). We then
performed genotype refinement using Polymutt22, which
corrected almost all Mendelian inheritance errors (Sup-
plementary Table 2). To increase the sample size, we
performed pedigree-aware genotype imputation using
GIGI23,24, which imputed 334 individuals with only
microarray data. After imputation, 782 individuals (190
BP1, 130 controls, and 462 unknown disease status) were
either sequenced or imputed with high quality (see Sup-
plementary Text and Supplementary Figure 2 for mea-
suring imputation accuracy).
We performed genome-wide detection of CNVs using

microarray and WGS data. For microarray data, we
adapted a previously established pipeline25 based on
PennCNV26, and QuantiSNP27. After removing individuals
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failing QC (Supplementary Figure 3), we detected 5,437
CNVs (3,317 deletions and 2,120 duplications) after fil-
tering for rare events > 5 kb in length and spanned by a
minimum of 10 probes among 782 individuals (189 BP1,
128 controls, and 465 unknown disease status). For WGS
data, we called 8,768 bi-allelic deletions using Genome-
STRiP software28,29 among the 449 sequenced individuals,
and used these calls to impute CNVs in the same set of
individuals imputed for SNVs. We found that CNVs from
GenomeSTRiP had low Mendelian error rate (Supple-
mentary Figure 4) and low false-discovery rate (Supple-
mentary Table 3 and Supplementary Text). A summary on
the number of variants and individuals after QC and on

which analysis is applied to each type of variant, is in
Supplementary Table 4.

Variant annotation
SNVs were mapped to UCSC knownGene30 and GEN-

CODE V.1931 transcripts. To identify rare variants, we
used both external and internal sources of allele fre-
quency. For SNVs we used allele frequencies in 1000
Genomes32 (1KG) Colombians (CLM) and ExAC33 Lati-
nos (AMR). For CNVs, we extracted frequency informa-
tion from the Database of Genomic Variants Gold
Standard Variants34 for microarray CNVs and from Phase
3 of 1KG35 (AMR) for WGS CNVs. If a variant in our data

Table 1 Description of families included in the current study.

FamID N NBP NControl NMissing NGeno NWGS NPheno NMale

CO10 38 6 6 26 24 13 24 13

CO13 24 5 2 17 20 0 19 10

CO14 29 8 1 20 23 12 22 16

CO15 27 5 1 21 21 10 21 12

CO18 37 6 8 23 26 18 25 18

CO23 48 9 6 33 32 20 31 20

CO25 15 4 3 8 13 5 12 7

CO27 58 9 10 39 35 25 35 31

CO4 73 10 8 55 42 31 43 37

CO7 149 29 16 104 111 60 112 72

CO8 16 5 0 11 7 6 8 6

CR001 46 8 3 35 20 15 7 25

CR004 187 23 12 152 77 44 45 91

CR006 37 4 0 33 13 7 8 22

CR007 12 2 0 10 9 6 6 7

CR008 30 7 2 21 17 10 13 15

CR009 44 9 4 31 32 13 34 17

CR010 30 4 1 25 17 11 12 15

CR011 16 3 4 9 13 0 12 6

CR012 35 5 4 26 26 12 22 16

CR013 39 4 1 34 10 0 8 15

CR014 26 5 0 21 8 5 3 14

CR015 19 2 1 16 10 0 10 7

CR016 24 4 3 17 18 8 19 14

CR201 355 44 41 270 201 111 177 176

CR277 25 4 1 20 13 7 10 11

Total 1439 224 138 1077 838 449 738 693

FamID Family ID, N number of individuals in the family, NBP number of BP1 individuals in the family, NControl number of controls in the family, NMissing number of
individuals with missing BP1 status in the family, NGeno number of genotyped family members after QC, NWGS number of sequenced family members after QC,
NPheno number of family members with endophenotype data, NMale number of males in the family.
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set is present in an external source, we considered it rare if
its MAF is < 1% in that source. For variants not present in
any external source, we considered them rare if their MAF
is < 10% in our data set where MAF is estimated from all
sequenced individuals. Deleterious SNVs are stop-gain/
loss, splice-site, and missense variants predicted damaging
by PolyPhen-236.

Estimation of global admixture proportions
We generated estimates of admixture proportions for

the 838 individuals with microarray data using ADMIX-
TURE37 with 57,180 LD-pruned SNPs. The reference
populations were CEU (n= 112) and YRI (n= 113) from
HapMap38,39, and 52 Native American samples from
Central or South America who have virtually no European
or African admixture40. We compared the proportion of
European ancestry between BP1 individuals and controls
using both a linear mixed model (LMM) based on lmekin
function in coxme R package41 and a generalized linear
mixed model (GLMM) based on GMMAT software42;
both took into account relatedness of individuals using a
kinship matrix calculated from theoretical kinship. In
LMM, the dependent variable was the proportion of
European ancestry, whereas the independent variable was
BP1 status, and it was vice versa in GLMM.

PRS analysis
We calculated PRS of our samples with WGS data using

PRSice43 and summary statistics from the Psychiatric
Genomics Consortium (PGC) GWAS of BP12 and schi-
zophrenia (SCZ)44 after excluding A/T and G/C SNVs
and SNVs in the MHC region. Our WGS data were LD
clumped, and we retained from the GWAS summary
statistics the most significant SNV for each clump. We
used LMM and GLMM to test association between
BP1 status and PRS at each of five GWAS p value
thresholds while considering relationships among indivi-
duals and global admixture proportions of European
ancestry. We used logistic regression without considering
relationships to estimate Nagelkerke R2 as it was not
straightforward to estimate R2 using GLMM. We also did
not include the admixture proportions when calculating
R2 because we were interested in variance of BP1
explained only by PRS.

Identifying genes relevant to BP1
To increase power to detect effects of rare variants on

BP1, we focused on genes for which a priori information
indicated their relevance to BP1. To identify such genes,
we utilized three sources of information. First, we per-
formed a stratified LD score regression45 using the latest
PGC BP1 GWAS summary statistics2 to identify cell-type
specific promotor or enhancer regions in which BP1
heritability is enriched. Among the 10 cell-types groups

tested, we observed enrichment of heritability for BP1
only in the central nervous system (CNS) group (Sup-
plementary Figure 5), which contained 8,714 genes. Sec-
ond, we used genes near 15 genome-wide significant
independent lead SNPs in the latest PGC GWAS that
analyzed only individuals with BP1, excluding individuals
with other types of BP. We identified 72 genes around
these SNPs using windows of 250 Kb. At last, we identi-
fied 99 genes within 1Mb of BP1 linkage peaks (Supple-
mentary Text, Supplementary Figure 6, Supplementary
Table 5). These three sources yielded a gene-set of 8,757
unique protein-coding genes with one or more deleterious
SNVs in at least one individual in our dataset (Supple-
mentary Text and Supplementary Table 6).

Rare variant burden analysis
We compared burden scores between BP1 individuals

and controls. For SNVs, this score was the mean burden
of rare deleterious SNVs in our gene-set, which corre-
sponds to the fraction of deleterious alternative minor
alleles at those SNVs that each individual has. For CNVs,
it was the number of genes in our gene-set affected by rare
CNVs. Individuals who carry an overall larger number of
rare SNVs may carry a larger number of rare deleterious
SNVs; we, therefore, also calculated mean burden of all
rare SNVs in the gene-set. For CNVs, we calculated the
total number of CNVs and the average size of all CNVs
that each individual carried. The mean burden of rare
deleterious SNVs was regressed on the mean burden of all
rare SNVs using LMM to account for relatedness. We
performed a similar correction for the CNV burden score
using the total number of CNVs and the average size of
CNVs, and for microarray CNVs we also corrected for
genotyping batch. The residuals after the LMM were then
quantile-normal (QN) transformed, and we compared the
QN transformed residuals between BP1 individuals and
controls using both LMM and GLMM while taking into
account relationships among individuals and admixture
proportions of European ancestry.

Rare variant segregation analysis
Given a rare variant in a family, we developed a statis-

tical approach that computes p values to estimate the
probability of having the observed segregation pattern or
more extreme segregation patterns under the null
hypothesis of random segregation. Our segregation sta-
tistic for a rare variant (Srare) is the sum of the number of
BP1 individuals with a rare allele and the number
of controls without the allele. To calculate the p value of
Srare, we assume that the rare allele was introduced by
certain founders in a family (denoted as Frv), enumerate
many random inheritance vectors (IVs), and find the
proportion of IVs that generate the same or larger Srare
values (Supplementary Figure 7). To obtain a “Family-
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level” p value we computed the p value for each rare
variant in each family. We also computed “Variant-level”
and “Gene-level” p values that meta-analyzed p values
using the Fisher’s method across different families and
across different rare variants and families in a gene,
respectively. The performance of our approach using
simulation data and an approach to detect Frv using
imputation results are discussed in the Supplementary
Text.

Multiple testing correction
We summarized the types of variants (common or rare),

the number of tests, and type of multiple testing correc-
tion applied to each analysis in Supplementary Table 7.
There are two main questions of interest in this study: (1)
identifying genetic architecture of BP1 and (2) identifying
specific loci segregating in the CO/CR pedigrees. As
expected, a majority of tests in this study were employed
in addressing the second question where we implemented
standard procedures to account for multiplicity. We did
not perform multiple testing correction to analyses related
to the first question, and while we can apply the study-
wide testing correction that considers all tests performed
in this study, it would inappropriately reduce our power
to learn about genetic architecture if we treat p values
from analyses related to genetic architecture as we would
treat p values from the rare variant segregation analysis.
As we perform 11 main analyses, we could use a sig-
nificance threshold of 0.5/11 and account for further
multiplicity within each main analysis. However, we opted
against this idea as this is not standard and it would make
it difficult to compare our results with those from other
studies. Instead, we presented the total number of
hypotheses tested and the multiplicity adjustment proce-
dure in Supplementary Table 7. Furthermore, we did not
use the term “significant” in describing our findings, we
report p values explicitly to show the strength of evidence.
At last, it is important to note that we report results of all
our analyses, even when they do not lead to the identifi-
cation of any promising hypothesis, thereby avoiding
selection bias.

Results
Characteristics of admixture in the CO/CR Pedigrees
We verified the ethnicity of founders in our pedigrees

using principal component analysis with 1KG32 (Supple-
mentary Figure 8). We then estimated genome-wide
ancestry proportions in members of these pedigrees using
ADMIXTURE37. As expected46, the majority of ancestry
was European, with a substantial Native American pro-
portion and a small African proportion (Fig. 1). The
admixture proportions in the pedigrees overall were
associated with BP1 status; risk of BP1 increased by Odds
ratio (OR) of 1.53 (GLMM p= 0.0008) with every increase

of 0.1 units of European ancestry, whereas we observed
the opposite trend for Native American ancestry with OR
of 0.67 (GLMM p= 0.0096), and African ancestry with
OR of 0.61 (GLMM p= 0.026) (Supplementary Figure 9).

PRS analysis of BP1 and SCZ GWAS summary statistics
To determine the effect of common SNPs on BP1 in the

CO/CR pedigrees, we calculated PRS for each individual
using the latest PGC GWAS summary statistics for BP1
(14,583 cases and 30,424 controls)2. We calculated PRS at
different GWAS p value thresholds, where higher p value
thresholds used more common variants in the PRS cal-
culation. Results show that the mean PRS is higher in 190
BP1 individuals compared with 130 controls, at GWAS
p value thresholds of 0.01 and 0.001 using LMM (p=
0.001 and 0.007, respectively) and at a GWAS p value
threshold of 0.01 using GLMM (p= 0.003, Table 2, Fig. 2).
We also calculated Nagelkerke’s R2 from logistic regres-
sion and found that these PRS explain 1.5% of the variance
(Table 2). This R2 is noticeably smaller than that explained
by PRS in the latest PGC BP GWAS data where the
weighted average Nagelkerke’s R2 is 8%. Although this
difference in the variance explained by the PRS could be
owing to the population-level differences between the
mostly European-descended PGC samples and the Latin
America pedigrees in our study, >90% of SNPs in the PGC
BP GWAS were present in our pedigrees (Table 2); it is
therefore unlikely that this explanation, alone, explains the
difference between the pedigree and population samples
although we cannot ignore the possibility that different
linkage equilibrium patterns or different frequencies of
causal variants may contribute to this R2 difference.

Fig. 1 A de Finetti diagram showing global estimates of
admixture proportions among African, European, and Native
American ancestries in the CO/CR pedigrees. The global estimates
were calculated using microarray data with ADMIXTURE software.
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Although evidence over several decades delineated the
distinctions between BP and SCZ, more recent studies
have highlighted genetic overlaps between these syn-
dromes2,47,48, which share symptoms in common.
Notably, in GWAS data from large BP case/control
samples, the PRS estimated from the PGC’s SCZ GWAS
results have explained up to 2.5% of BP variance47. We
contrasted the mean PRS from SCZ GWAS in BP1
individuals and related controls in our pedigrees; to
calculate PRS we used the GWAS summary statistics for
SCZ44 (36,989 cases and 113,075 controls). These SCZ
PRS are not statistically associated with an increased risk
of BP1, in the CO/CR pedigrees, at any of the GWAS
p value thresholds that we examined (Supplementary
Table 8). The association of SCZ PRS with BP1 in PGC
samples, but not in the CO/CR pedigrees may suggest
differences in the characteristics of BP1 between these
samples; in particular, this contrast between our results
and those of the PGC may reflect the fact that we
ascertained each of the pedigrees for multiple closely
related cases of BP1.

Burden of rare deleterious SNVs and rare CNVs in the
gene-set for BP1
We first identified 8,757 genes related to BP1 using the

three sources of information based on the CNS cell type
region where BP1 heritability is enriched, regions near
PGC BP1 GWAS signals, and regions near linkage peaks
from these pedigrees (see Methods). We then identified
rare SNVs in those genes using both an external source of
allele frequency and allele frequency observed in the CO/
CR families (see Methods). We identified 25,072 rare
predicted-deleterious SNVs in 8,237 of the 8,757 genes in
our gene-set. For each individual, we computed the mean
genome-wide burden of these SNVs, then compared these
means between BP1 individuals and related controls,
whereas taking into account the proportion of European
ancestry in each individual, and the mean genome-wide
burden of all rare SNVs in the gene-set. We observed that
the mean burden of the rare deleterious SNVs was higher
in BP1 individuals than in controls (p= 0.047 using
LMM, Fig. 2). The risk of BP1, as indicated by OR
increased by 1.26 for every one unit increase in quantile-
normal transformed residual mean burden (p= 0.048
using GLMM). We also tested the burden of rare dele-
terious SNVs in genes defined by each of the three sources
for the gene-set and observed a higher burden only in
genes from the CNS cell type region (p= 0.040), but not
in genes near PGC BP1 GWAS associations (p= 0.648) or
in genes near linkage peaks (p= 0.399). This is expected
as a majority of genes in our gene-set came from the CNS
cell type region.
We also performed an analysis of genome-wide burden

using rare CNVs detected from microarray and WGS.Ta
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Our CNV burden score was calculated as the number of
genes in our BP1 gene-set intersected by rare CNVs, and
similar to the burden analysis of rare deleterious SNVs,
we measured the enrichment of CNV burden score using
LMM and GLMM, accounting for factors known to
affect global measures of CNV burden (see Methods).
For CNVs from microarray (2,186 rare CNVs among 189
BP1 individuals and 128 controls), BP1 individuals had a
higher CNV burden score than controls (LMM p= 0.013
and GLMM p= 0.018 with OR of 1.34, Fig. 3, Supple-
mentary Table 9). Stratifying our analysis by CNV type,
we observed that this increased burden was attributable
exclusively to deletions (LMM p= 2.2e-3 and GLMM
p= 3.8e-3 with OR of 1.44). For CNVs from WGS (4,436
rare deletions among 190 BP1 individuals and 130 con-
trols), we also observed an increased burden of genes in
the BP1 gene-set affected by rare CNVs for BP1 indivi-
duals (LMM p= 0.022 and GLMM p= 0.033 with OR of
1.3, Fig. 3). This burden was greater (LMM p= 6.1e-3
and GLMM p= 8.7e-3 with OR of 1.39) when restricting
our analysis to the subset of CNVs covered by a mini-
mum of 10 SNPs on microarray (n= 1,511), thus
demonstrating a consistent increase in gene count bur-
den using different methods of detection. We did not,
however, observe a difference in the average number of
all rare CNVs between BP1 individuals and controls (p=
0.67 for microarray CNVs and p= 0.45 for WGS CNVs
using GLMM).

Segregation of rare deleterious SNVs and CNVs in the
gene-set for BP1
To detect the segregation of rare variants with BP1 in

the CO/CR pedigrees, we developed a statistical approach
that quantifies the significance of the observed segrega-
tion pattern. Intuitively, it estimates the probability that
we would observe the given segregation pattern of a rare
variant or more extreme patterns under the null
hypothesis of random segregation, we refer to this as the
segregation p value (see Methods and Supplementary
Text). Among the rare SNVs and CNVs analyzed in the
previous burden analysis, we filtered out variants not
shared between BP1 individuals (Supplementary Table 10)
and also variants for which we were not able to identify
founders who introduced rare variants into the family
with high confidence (Supplementary Figures 10 and 11).
In total, we analyzed segregation for 6,421 rare deleterious
SNVs in 4,050 genes and 314 rare CNVs in 251 genes.
No segregation p value for either SNVs or CNVs passed

the significance threshold after the Bonferroni correction
(Supplementary Tables 11 and 12). The top gene in the
SNV segregation analysis was ACTR1B (p= 5.18e–04),
which contained one rare missense variant (rs141238033,
chr2:98275876). This variant did not appear in the
Colombian samples within 1000 Genomes and was very
rare in the Latino samples of ExAC (MAF of 0.04%). It
was enriched in the CO/CR pedigrees as MAF in all
449 sequenced individuals was 0.44% accounting for

Fig. 2 Forest plot displaying the mean and confidence interval of regression coefficients of PRS analysis and rare variant burden analysis
for SNVs. We compared the quantile-normal transformed PRS estimated from PGC BP1 GWAS summary statistics between BP1 individuals and
controls and also compared the burden of rare deleterious SNVs between BP1 individuals and controls in the 8,237 genes relevant to BP. PRS is
computed at different GWAS p value thresholds of the PGC BP1 GWAS. The burden score was regressed on the burden of all rare variants in the 8,237
genes, and the residuals were quantile-normal transformed. The black lines indicate results of the PRS analysis while the red line indicates results of
the rare variant burden analysis. The association between PRS and BP1 status and between the rare variant burden and BP1 status was assessed using
a generalized linear mixed model (left) and a linear mixed model (right) that took into account relatedness.
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relatedness49 (11× over ExAC) and 1.89%, not accounting
for relatedness (47× over ExAC). GOLPH3 was the top
gene in the CNV segregation results (p= 7.89e-4), with a
single rare CNV (DEL_P0095_217, chr5:32161816-
32162478) appearing only in family CO27 (MAF of 0.22%
accounting for relatedness and 0.78% not accounting for
relatedness). Neither of the above two rare variants seg-
regated perfectly with BP1 status in the pedigrees in which
they were present (Supplementary Tables 13 and 14).

Discussion
We demonstrate that common variants in extended

pedigrees contribute to BP1 risk while observing modest
evidence of effect of rare variants on BP1 risk. Elevated
BP1 PRS scores, in BP1 individuals compared with con-
trols, indicate that as in case/control samples, some of
BP1 risk derives from the polygenic effect of common
SNPs, with Nagelkerke’s R2 of 1.5%. This result is in
accordance with observations in pedigree studies of non-
psychiatric common disorders50. It remains unclear,
however, why the magnitude of the polygenic contribu-
tion is so much smaller in our pedigrees compared with
cases from the PGC. The dissimilarity between these
study samples in size and ethnicity could explain this
divergence51, as could the close relationship between our
BP1 cases and their control relatives, who might carry
some polygenic burden of BP1. At last, it is possible that
BP1 in individuals from extended pedigrees is simply less
polygenic than in population samples.

In support of the idea that BP1 in pedigrees may be
etiologically distinct from BP1 in population samples, we
did not observe effect of common SCZ risk variants on
BP1 risk in our samples. This result contrasts with the
PGC finding that the SCZ PRS is a strong predictor of BP1
risk as the BP PRS. This discrepancy relates to an
important uncertainty regarding severe mental illness, the
genetic relationship between BP and SCZ. The separation
between BP and SCZ has been a bedrock principle of
psychiatric nosology, based on the distinct trajectories of
these syndromes and genetic epidemiology studies sug-
gesting that they do not co-segregate in families. Recent
studies, however, indicate a shared genetic architecture
between SCZ and BP12,47,48. Efforts now underway in
multiple datasets are examining the relationship between
BP and SCZ at a finer-grained level than that of syn-
dromic diagnosis52.
No convincing rare BP susceptibility variants, or even

loci, have yet been reported from either pedigree or case/
control sequencing studies. However, the comprehensive
genotype data that our study contains provide an oppor-
tunity for more complete evaluation than has previously
been possible of the contribution of rare variants to BP1
within pedigrees, and for the segregation of rare variants
with the disorder.
In assessing the contribution of rare variants to BP1, we

found, in a set of 8,757 genes selected based on hypothe-
sized relevance to this disorder, some evidence of collective
effect of rare variants (deleterious SNVs as well as CNVs) by

Fig. 3 Forest plot displaying the mean and confidence interval of regression coefficients of rare variant burden analysis for CNVs. We
compared the burden of genes affected by rare CNVs in the BP1-related gene set between BP1 individuals and controls, stratified by a detection
method (microarray or WGS) and a CNV type. The total number of CNVs detected and the number of CNVs affecting BP1-related genes are displayed
for each category. The black line indicates results of all microarray CNVs, the blue line indicates results of duplications from microarray, red lines
indicate results of deletions from microarray (DEL) and WGS (WGS and WGS+ 10SNP) data. WGS+ 10SNP is results of WGS deletions covered by at
least 10 SNPS on the microarray. To correct for individual relatedness and other potential confounders (see Methods), enrichment was assessed using
a generalized linear mixed model (left) and a linear mixed model (right).
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comparing the burden of those variants carried by affected
individuals and that by related controls. We chose this set of
genes because they corresponded to regions where BP1
heritability was enriched and where BP1 GWAS hits and
our linkage peaks resided. This approach assumes that
genes affected by rare variants overlap with those affected
by common variants, which was observed in other studies
such as human height53 and SCZ54. Ament et al.55, in a
gene-set related to neuronal excitability, observed a similar
enrichment of rare BP risk variants. Previous studies
reported no evidence for a global enrichment of rare CNVs
in BP individuals, but analyzed only CNVs > 100 kb56,57.
Our results suggest that the impact of CNVs on BP burden
derives mainly from CNVs of 5–100 kb, and may be
restricted to specific gene-sets.
We attempted to discover the specific loci and variants

responsible for increased rare variant burden for BP1 in
our data set. We used a new statistical approach that we
developed to calculate p values for rare variant segrega-
tion, because existing methods58–60 are not scalable to our
large pedigrees and also make the simplifying assumption
that only one founder has introduced a given rare variant
into the pedigree. Our method relies on accurate impu-
tation of rare variants, achieved using a family imputation
approach that achieves a higher call rate and accuracy for
rare alleles than population-based imputation approa-
ches23. Our method worked well, from a technical
standpoint but did not detect rare variants with strong
evidence of segregation in our pedigrees after correction
for multiple testing. One reason may be that there are 320
individuals who could be designated as either BP1 or
controls, in the total sample of individuals (782) who are
either sequenced or imputed well. If phenotypic status
was more definite in a higher proportion of these indivi-
duals it could have added substantially to the power to
detect such associations.
In conclusion, results of our study point to the poly-

genic genetic architecture of BP1 in a well-characterized
and large series of extended pedigrees, reflecting the
action of a combination of many common and possibly
rare variants (including both SNVs and CNVs) with small
or moderate effect sizes. Rare variants with relatively large
effect may contribute substantially to genetic risk of BP1
in the pedigrees although identifying associations to those
rare variants is likely to require larger samples than were
available in the current study. Identifying these variants
may also require advances in our ability to recognize
functionally important variation in non-coding parts of
the genome. In addition, unlike in BP case/control sam-
ples, common SCZ risk alleles appear to contribute less
than the weak effect of common variants we observed for
BP1 in these families. Finally, although our new method
makes it feasible to rigorously evaluate rare variant

segregation in large pedigrees, our inability to identify
BP1-associated coding variants suggests that non-coding
variants may play an important role in BP1 risk in these
pedigrees.
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