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Semilattice sums of algebras and Mal’tsev
products of varieties
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Abstract. The Mal’tsev product of two varieties of similar algebras is
always a quasivariety. We consider the question of when this quasivari-
ety is a variety. The main result asserts that if V is a strongly irregular
variety with no nullary operations and at least one non-unary operation,
and S is the variety, of the same type as V, equivalent to the variety
of semilattices, then the Mal’tsev product V ◦ S is a variety. It consists
precisely of semilattice sums of algebras in V. We derive an equational
base for the product from an equational base for V. However, if V is a
regular variety, then the Mal’tsev product may not be a variety. We dis-
cuss various applications of the main result, and examine some detailed
representations of algebras in V ◦ S.
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1. Introduction

Let K be a quasivariety of Ω-algebras, and Q and R, two of its subquasivari-
eties. Assume additionally that R-algebras are idempotent. Then the Mal’tsev
product, Q ◦K R, of Q and R relative to K, consists of K-algebras A, with a
congruence θ, such that A/θ is in R, and each θ-class a/θ is in Q. Note that
by the idempotency of R, each θ-class is always a subalgebra of A. If K is the
variety of all Ω-algebras, then the Mal’tsev product Q ◦K R is called simply
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the Mal’tsev product of Q and R, and is denoted by Q ◦ R. It follows from
results of Mal’tsev [15] that the Mal’tsev product Q ◦K R is a quasivariety.

In this paper we are interested in Mal’tsev products V ◦S in which V is a
variety of Ω-algebras and S is the variety, of the same type as V, equivalent to
the variety of semilattices. A member of V ◦S is a disjoint union of V-algebras
over a homomorphic image, which has the structure of a semilattice. Such
algebras are known as semilattice sums of V-algebras. The product V ◦ S is
always a quasivariety. However, until recently it was not known under what
conditions it is a variety. The main result of this paper (Theorem 6.3) asserts
that if V is a strongly irregular variety of a type with no nullary operations
and at least one non-unary operation, then the Mal’tsev product V ◦ S is a
variety. We also show how to build an equational base for this variety from an
equational base for V. In addition we provide an example showing that in the
case that V is regular, V ◦ S does not need to be a variety.

Next we present examples of (relative) Mal’tsev products which exhibit
different aspects of such products. In fact, two special examples inspired us to
investigate semilattice sums in general: one concerning certain semilattice sums
of lattices and one involving certain semilattice sums of Steiner quasigroups.
(See Section 7.)

As a converse process to the decomposition of an algebra A from V ◦ S
into a semilattice sum of V-algebras, some construction techniques are available
to recover an algebra A from its summands and a semilattice quotient. Such
techniques include, for example, P�lonka sums, and the more general Lallement
sums [24, Ch. 4]. We recall some of the basic constructions of this type, and
discuss their applicability for representing algebras in the Mal’tsev product
V ◦ S.

In [15], Mal’tsev proved that if K is a congruence permutable quasivari-
ety with a constant term whose value is always idempotent, then the relative
Mal’tsev product of any two subvarieties of K is a variety. This result was
extended by Iskander [13] to weakly congruence permutable varieties of alge-
bras.

We begin with introductory information on semilattice sums. In Sec-
tions 3 and 4 we provide some insight into the quasivariety of semilattice sums
of V-algebras. In particular we construct, for any variety V, a supervariety Vp,
called the prolongation of V, containing V ◦S. We prove (Proposition 4.2) that
free Vp-algebras lies in V ◦ S.

The main result, Theorem 6.3, asserts that if Vt is a variety satisfying
an identity of the form t(x, y) = x (i.e., a strongly irregular variety, see Def-
inition 2.1), then Vt ◦ S = Vt

p. As a consequence, Vt ◦ S is again a variety.
The proof is divided into two parts. In Section 5 we treat the special case of
the variety Tt of Ω-algebras defined by a single identity t(x, y) = x. Then in
Section 6 we leverage that observation to obtain the result for an arbitrary
strongly irregular variety. We also illustrate the necessity of strong irregularity
with an example showing that S ◦ S fails to be a variety.

Section 7 discusses a number of examples of Mal’tsev products and rela-
tive Mal’tsev products. Relative products are often more interesting, as they
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may be used to represent algebras in more familiar varieties. The paper fin-
ishes with a discussion concerning the detailed representation of algebras in
the Mal’tsev product Vt ◦S. Here a version of a construction of algebras called
the Lallement sum [23] is used. In particular, certain very special Lallement
sums provide a good detailed representation for algebras in Vt ◦ S, in the case
when Vt-algebras have units.

We use notation and conventions similar to those of [23,24]. For details
and further information concerning quasivarieties and Mal’tsev products of
quasivarieties we refer the reader to [15] and [16], and then also to [1] and
[24, Ch. 2]; for universal algebra, see [2] and [24]; in particular, for methods of
constructing algebras as semilattice sums see [21] and [24, Ch. 4]; for semigroup
theory, see [6,11,12]; for barycentric algebras and convex sets, we refer the
reader to the monographs [23,24].

2. Background

Let τ : Ω → N be a similarity type of Ω-algebras with no nullary operation
symbols and containing at least one non-unary operation symbol. Such a simi-
larity type is called plural [24]. For a positive integer n, let Tn be the set of all
n-ary Ω-terms containing precisely n different variables. They may be denoted
x1, x2, . . . xn or by some other letters like y or z.

Definition 2.1. An identity is called regular if precisely the same variables
appear on both sides. At the opposite extreme, an identity of the form t(x, y) =
x, for some t ∈ T2 is called strongly irregular. A variety is regular if it satisfies
only regular identities. It is strongly irregular if it satisfies at least one strongly
irregular identity.

Let t ∈ T2. We denote by Tt the variety defined by the single identity
t(x, y) = x. We use the notation Vt to indicate a typical subvariety of Tt, that
is, an arbitrary variety satisfying the strongly irregular identity t(x, y) = x.
We often find it convenient to write x · y (or x ·t y) in place of t(x, y).

Let us note that the variety of semilattices satisfies all the regular iden-
tities of the type with one binary operation.

Definition 2.2. The variety S of Ω-semilattices is defined to be the variety of
Ω-algebras satisfying all regular identities.

It is fundamental to the subject that in a plural similarity type, S is the
unique variety that is equivalent to semilattices. Fix any t ∈ T2 and write
x · y in place of t(x, y). Then for any S ∈ S, the algebra 〈S, ·〉 is a semilattice.
Conversely, for any basic n-ary operation symbol ω ∈ Ω we have that

x1 . . . xnω = x1 · . . . · xn (2.1)

holds in S.

Definition 2.3. Let V be a variety of Ω-algebras. An Ω-algebra A is a semilattice
sum of V-algebras if A has a congruence � such that the quotient S = A/�
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is an Ω-semilattice (or briefly a semilattice) and every congruence block is a
V-algebra.

Note that since the quotient A/� is a semilattice, it is idempotent. Hence
the congruence blocks of � are always subalgebras, and A is a disjoint sum
of these subalgebras. We will denote such a sum by

⊔
s∈S As, where the As’s

are the congruence blocks of � and S is (isomorphic to) A/�. The class of
semilattice sums of V-algebras forms the Mal’tsev product V◦S of the varieties
V and S, and is known to be a quasivariety. (See Mal’tsev [15,16] as well
as Bergman [1] and also Romanowska, Smith [24, Ch. 3].) Whenever A is a
semilattice sum of V-algebras, it suffices to take � to be the semilattice replica
congruence of A, i.e., the smallest congruence of A with the corresponding
quotient a semilattice. (See [1], Proposition 8.) Furthermore, in the case that
V is a strongly irregular variety, the semilattice replica congruence of A is the
unique congruence � providing a decomposition of A into a semilattice sum of
V-subalgebras (see [24, Sec. 3.3]).

In this paper we are especially interested in semilattice sums of Tt-
algebras. Since Tt is a strongly irregular variety, each algebra A in Tt ◦ S
decomposes into a semilattice sum

⊔
s∈S As of Tt-algebras As in a unique way

over the quotient S of A given by its semilattice replica congruence.
The variety Tt contains other irregular varieties. In particular, if Vt is a

subvariety of Tt, then it is known that Vt is defined by a set Σt consisting of a set
Γt of regular identities and the single identity t(x, y) = x. (See e.g. [21] and [24,
Ch. 4].) The Mal’tsev product Vt ◦S consists of algebras which are semilattice
sums of Vt-subalgebras. Moreover it contains Vt and S as subvarieties, and is
contained in the quasivariety Tt ◦ S. The smallest variety V(Vt,S) containing
both Vt and S is called the regularization of Vt and is denoted by Ṽt. (See
e.g. [24, Ch. 4].) The smallest quasivariety Q(Vt,S) containing both Vt and S
is called the quasi-regularization of Vt and is denoted by Ṽq

t . (See [4].) Note
that V(Vt,S) and Q(Vt,S) are not necessarily equal. For each t(x, y) ∈ T2, we
have the following chain of quasivarieties:

Vt,S ⊆ Ṽq
t ⊆ Ṽt ⊆ Vt ◦ S ⊆ Tt ◦ S.

In particular, if the set Γt of regular identities is empty, then Vt coincides with
Tt.

3. Some varieties related to the quasivariety Tt ◦ S
Recall that, for x·y = t(x, y) ∈ T2, the subvariety Vt of Tt is defined by a set Σt

consisting of the identity x · y = x and a set of regular identities Γt. The best
known subvariety of Vt◦S, different from V and S, is the regularization Ṽt of the
variety Vt. We will briefly recall the basic facts concerning the regularization.

The variety Vt can be viewed as a category in which the morphisms are
simply the homomorphisms between Vt-algebras. Any ordered set, S, can be
viewed as a category whose objects are the elements of the set. If r, s ∈ S
then there is a unique morphism from r to s if r ≥ s. Otherwise there are no
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morphisms from r to s. Of course, any semilattice can be ordered by considering
the basic operation to be the infimum.

Suppose that S is a semilattice and there is a covariant functor

F : S → Vt; (r ≥ s) 	→ (ϕr,s : Ar → As).

Then the disjoint sum
⊔

s∈S As may be viewed as the semilattice-ordered sys-
tem

(
{As | s ∈ S}; {ϕr,s | r, s ∈ S, r ≥ s}

)
, (3.1)

where the Ω-operations on the sum are defined by

ω : As1 × · · · × Asn
→ As; (as1 , . . . , asn

) 	→ as1ϕs1,s · · · asn
ϕsn,s ω

for each (n-ary) ω ∈ Ω, where each si ∈ S and s = s1 · . . . · sn. The resulting
semilattice sum is called the P�lonka sum of the algebras As, and is denoted
by

∑
s∈S As. (See [19,21], [24, Ch. 4].)
It is a remarkable fact that the class of P�lonka sums of Vt-algebras forms

the regularization Ṽt of the variety Vt. The class Ṽt is the join (in the lattice
of varieties) of Vt and S. Thus it satisfies precisely the regular identities true
in Vt. Its axiomatization follows from P�lonka’s theorem (see [21], [24, Ch. 4]).
The variety Ṽt is defined by the regular identities Γt of Σt and the following
identities (P1) – (P5):
(P1) x · x = x,
(P2) x · (y · z) = (x · y) · z,
(P3) x · (y · z) = x · (z · y),
(P4) y · x1 . . . xnω = y · x1 · . . . · xn,
(P5) x1 . . . xnω · y = (x1 · y) . . . (xn · y)ω,

where ω ranges through all symbols in Ω. Let us note that if Γt is empty,
then the regularization Ṽt becomes the regularization T̃t, and is defined by the
identities (P1) – (P5).

By results of [4] it is known that the quasi-regularization Ṽq
t of Vt consists

of P�lonka sums of Vt-algebras as in (3.1) in which the morphisms ϕr,s are all
injective. It coincides with the class ISP(Vt ∪ S) of (isomorphic copies of)
subalgebras of products of algebras in Vt ∪S, and is defined, relative to Ṽt, by
the quasi-identity

(x · y = x & y · x = y & x · z = z · x = z & y · z = z · y = z) → (x = y).

The congruence � of a Ṽt-algebra A providing its decomposition into the
P�lonka sum of its Vt-summands can be obtained explicitly as

� = {(a, b) | a · b = a and b · a = b}. (3.2)

Now, let Tt denote the variety defined by the identities (P1) – (P4) above.
It follows immediately that T̃t ⊆ Tt. For a subvariety Vt of Tt, let Vt be defined
by Γt together with (P1) – (P4). As observed by C. Bergman and D. Failing
[3], Vt ⊆ Vt ◦ S. That is to say, each algebra A in Vt is a semilattice sum
of Vt-subalgebras. Moreover, the decomposition is given by the same formula
(3.2) as is the case for the regularization. However, the Vt-algebras are not
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necessarily P�lonka sums of Vt-algebras, though the reduct (A, ·t) of each Vt-
algebra A =

⊔
s∈S As is a left-normal band and is the P�lonka sum

∑
s∈S As

of the left-zero band reducts (As, ·). We will call the variety Vt the pseudo-
regularization of the variety Vt. If the operation x · y of an Ω-algebra (A,Ω)
satisfies the conditions (P1)–(P4), then it is called a pseudopartition operation.
If it satisfies all of (P1)–(P5) it is called a partition operation.

The third variety we are interested in will play an essential role in our
main results.

Definition 3.1. Let σ be an identity of type τ of the form

y1 . . . ynu = y1 . . . ynv,

where not all the variables yi necessarily appear in u and v.
For each m > 0, define

σp
m =

{
xr1 . . .xrnu = xr1 . . .xrnv |
r1, . . . , rn ∈ Tm,xri = x1 . . . xmri

}
.

Let σp be the union of all σp
m for m > 0. For a set Σ of identities, define its

prolongation to be
Σp =

⋃

σ∈Σ

σp.

The intent of Definition 3.1 is that, for every positive integer m, each
variable yi in σ is replaced by a term of the form x1 . . . xmri. However, since
ri ∈ Tm, each term ri must contain precisely all of the variables x1, . . . , xm.
Thus even if the identity σ is irregular, every member of σp will be a regular
identity.

Definition 3.2. Let V be a variety of Ω-algebras, and let Id(V) be the set of all
equations that hold in V. We define the prolongation of V, denoted Vp, to be
the variety of all algebras satisfying Id(V)p. Put succinctly, Vp = Mod(Id(V)p).

In fact, in this definition, it suffices to replace Id(V) by any equational
base for V. This will follow from Corollary 4.3.

Lemma 3.3. Let σ be an identity that holds in a variety V. Then the quasiva-
riety V ◦ S satisfies the identities of σp.

Proof. Assume σ is as in Definition 3.1 and let A be in V ◦ S with semilattice
replica congruence �. Let m be a positive integer and r1, . . . , rn ∈ Tm. Choose
a1, . . . , am ∈ A and write ari as a shorthand for a1 . . . amri. We must show
that ar1 . . . arnu = ar1 . . . arnv holds in A.

For any i, j ≤ m, the identity x1 . . . xmri = x1 . . . xmrj is regular. Since
A/� is a semilattice, it must satisfy this identity. Hence

(a1 . . . amri, a1 . . . amrj) ∈ �.

Thus all of the elements ari, for i = 1, . . . , n, lie in the same congruence block.
By assumption, each congruence block is a member of V, so it satisfies the
identity σ. From this we obtain ar1 . . . arnu = ar1 . . . arnv as desired. �
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Proposition 3.4. For any variety V,

V ◦ S ⊆ Vp. (3.3)

4. Free algebras in varieties Vp

Basic properties of free algebras in sub(quasi)varieties of Vp follow from basic
properties of free algebras in prevarieties of Ω-algebras (i.e. classes of similar
algebras closed under subalgebras and direct products) as given for example
in [24, §3.3]. If Q and Q′ are two subquasivarieties with Q′ ≤ Q, then the free
Q′-algebra XQ′ over X is isomorphic to the Q′-replica of the algebra XQ. (See
also [2, Thm. 4.28].) In particular, if V is a regular variety, then the semilattice
replica XV/� of XV is isomorphic to the free semilattice XS:

XV/� ∼= XS. (4.1)

Recall also that the free semilattice XS over X is isomorphic to the semilattice
Pf (X) of all finite non-empty subsets of X under union.

For an Ω-term w, var(w) will denote the set of variables that actually
appear in w. Suppose that V is a regular variety and let a be an element of XV.
There is a term w with var(w) = {x1, . . . , xn} ⊆ X so that a = x1, . . . , xnw. If
a = y1, . . . , ymv for some other term v and y1, . . . , ym ∈ X, then by the freeness
of XV the identity x1, . . . , xnw = y1, . . . , ymv holds in V. By regularity we
must have var(w) = var(v), which we can take as a definition of var(a). As is
customary, we often blur the distinction between an element of the free algebra
and a representing term.

Lemma 4.1. Let V be a regular variety and let � be the semilattice replica
congruence of the free algebra XV over X. Then for w, v ∈ XV

(w, v) ∈ � ⇐⇒ var(w) = var(v).

Proof. Let θ be the binary relation on A = XV defined by

(w, v) ∈ θ ⇐⇒ var(w) = var(v).

It is easy to see that the relation θ is a congruence relation, and is the
kernel of the homomorphism

h : XV → Pf (X); x1 . . . xnu 	→ var(u)

onto the semilattice of all finite subsets of X under union. Now by univer-
sality of replication (see [24, Lemma 3.3.1]), it follows that there is a unique
homomorphism h : XV/� → Pf (X) such that the composition (nat�)h equals
h. In particular, under this composition u 	→ u/� 	→ var(u). By (4.1), h is an
isomorphism. Hence θ = �. �

In particular, for any variety V, the variety Vp is regular. Thus

XVp/� ∼= XS. (4.2)
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Proposition 4.2. Let V be a variety with equational base Σ. Let W be the variety
defined by the prolongation Σp (see Definition 3.1). Then the free W-algebra
A = XW is a semilattice of V-algebras. More precisely, A =

⊔
s∈S As, where

S = XS is the free semilattice over X and all As are members of V.
In particular, by taking Σ to be the set of all identities holding in V,

A = XVp ∈ V ◦ S.

Proof. By (4.2), we already know that A/� is isomorphic to S = XS. We
complete the proof by showing that each As satisfies the identities of Σ. Con-
sider any identity y1 . . . ynu = y1 . . . ynv of Σ. Let a1, . . . , an be elements of
As. Since As is a �-class, it follows that all a1, . . . , an are �-equivalent. Thus,
by Lemma 4.1, var(a1) = · · · = var(an) = {x1, . . . , xm} for some m > 0. This
means that each ai may be represented as a term x1 . . . xmri ∈ Tm. Thus

a1 . . . anu = (x1 . . . xmr1) · · · (x1 . . . xmrn)u

= (x1 . . . xmr1) · · · (x1 . . . xmrn)v = a1 . . . anv,

since the middle equality is an identity in Σp. �

Corollary 4.3. Let V be a variety with equational base Σ. Then Σp is an equa-
tional base for Vp.

Proof. Let W be the variety defined by Σp and let Δ be the set of all identities
holding in V. Applying Proposition 4.2 to both Σ and Δ we see that for any
set X, both XW and XVp are free algebras in the quasivariety V ◦S. But free
algebras are unique and furthermore determine the variety. So W = Vp. �

Corollary 4.4. The variety Vp is generated by the quasivariety V ◦ S.

In the next two sections we will show that if V is a strongly irregular
variety, then the variety Vp coincides with the Mal’tsev product V ◦ S.

5. The Mal’tsev product Tt ◦ S
In this section we clarify the relationship between the quasivariety Tt ◦ S and
the variety Tt

p.
Following Proposition 4.2, we assume that the free Tt

p-algebra A = XTt
p

over X is the semilattice sum A =
⊔

s∈S As, where S, the semilattice replica of
A, is the free semilattice over X, and the summands As are in Tt. The elements
of As will be denoted by small letters as, bs, ... with the same index as in As,
and we will write xy for t(x, y). Note that if ar ∈ Ar and bs ∈ As then the
semilattice structure dictates that arbs ∈ Ars.

Lemma 5.1. Let θ be a congruence of the free Tt
p-algebra A = XTt

p. Assume
that there is a pair (a′

r, b
′
s) of elements of A, where r, s ∈ S, such that (a′

r, b
′
s) ∈

θ. Then for any ar ∈ Ar and any bs ∈ As

(bs, bsar) ∈ θ.
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Proof. From our assumptions, bs, b
′
s ∈ As, ar, a

′
r ∈ Ar and (bsa

′
r), (arb

′
s) ∈

Ars. Each of Ar, As, and Ars lie in Tt, so they satisfy the identity xy = x.
Consequently

bs = bsb
′
s, ar = ara

′
r, (bsa

′
r)(arb

′
s) = bsa

′
r.

Combining these equalities with the assumption that b′
s θ a′

r we obtain

bsar = (bsb
′
s)(ara

′
r) θ (bsa

′
r)(arb

′
s) = (bsa

′
r) θ (bsb

′
s) = bs. �

Remark. Suppose r �= s in S. If (a′
r, b

′
s) ∈ θ, then each ar and each bs is

θ-related to some element of Ars. Moreover, if additionally q < rs < r and
also (c′

rs, d
′
q) ∈ θ for some c′

rs ∈ Ars and d′
q ∈ Aq, then each element of Ars

is θ-related to some element of Aq, and in particular, ar θ arcrs θ arcrs · dq for
any ar, crs, dq.

The next lemma follows from [17, Lemma 4.66].

Lemma 5.2. Let A be an Ω-algebra and let α and β be congruences of A. Then
the following conditions are equivalent.

(a) β ◦ α ◦ β ⊆ α ◦ β ◦ α,
(b) α ∨ β = α ◦ β ◦ α.

Lemma 5.3. Let θ be a congruence of the free Tt
p-algebra A = XTt

p, and let �
be the semilattice replica congruence of A. Then

θ ∨ � = θ ◦ � ◦ θ. (5.1)

Proof. Suppose that
ar � a′

r θ b′
s � bs.

Since Ar and As lie in Tt, and A/� is commutative

ar = ara
′
r θ arb

′
s � bsa

′
r θ bsb

′
s = bs.

Therefore
� ◦ θ ◦ � ⊆ θ ◦ � ◦ θ.

By Lemma 5.2, it follows that

θ ∨ � = θ ◦ � ◦ θ. �

Let θ be a congruence of a Tt
p-algebra A, and � the semilattice replica

congruence of A. Let ψ be the join of the congruences θ and �. It is well known
that (A/θ)/(ψ/θ) ∼= A/ψ, and since ψ ≥ �, it follows that A/ψ is a member
of the variety S of Ω-semilattices.

Lemma 5.4. Let θ be a congruence of a Tt
p-algebra A, and let ψ = θ ∨�. Then

a congruence class (ar/θ)/(ψ/θ) of A/θ satisfies the identity x · y = x if and
only if, for any bs ∈ A

(ar, bs) ∈ ψ =⇒ (arbs, ar) ∈ θ. (5.2)
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Proof. Let ar/θ and bs/θ be members of A/θ. Then

(ar/θ, bs/θ) ∈ ψ/θ ⇐⇒ (ar, bs) ∈ ψ.

On the other hand

(ar/θ) · (bs/θ) = ar/θ ⇐⇒ (arbs, ar) ∈ θ.

Hence the assertion that (ar/θ)/(ψ/θ) satisfies x · y = x is equivalent to the
implication (5.2). �

Proposition 5.5. Let θ be a congruence of the free Tt
p-algebra A = XTt

p

over X, and set ψ = θ ∨ �. Then the quotient B = A/θ of A is a semilattice
sum of Tt-subalgebras. In particular, ψ/θ is the semilattice replica congruence
of A/θ, and B is the semilattice sum of the ψ/θ-classes (ar/θ)/(ψ/θ) as ar

ranges over A.

Proof. Since ψ ≥ �, it follows that A/ψ ∈ S. Thus we only need to show that
for each ar/θ ∈ A/θ, the congruence class (ar/θ)/(ψ/θ) satisfies x · y = x. By
Lemma 5.4, this is equivalent to the condition (5.2).

So our aim now is to verify the implication (5.2). For ar ∈ Ar and bs ∈ As,
let (ar, bs) ∈ ψ. By Lemma 5.3, we know that

ψ = θ ∨ � = θ ◦ � ◦ θ.

Thus there are elements c and d in A such that ar θ c � d θ bs. But c � d
implies c = cd. Hence ar θ c = cd θ arbs. �

Let us note that A/θ is isomorphic to the semilattice sum of the ψ-classes
a/ψ of A over the semilattice A/ψ, where each a/ψ is the union of θ-classes
b/θ such that (a, b) ∈ ψ (or equivalently (a/θ, b/θ) ∈ (ψ/θ)).

As a direct corollary of Proposition 5.5 one obtains the following theorem.

Theorem 5.6. The quasivariety Tt ◦S and the variety Tt
p coincide. In particu-

lar, the Mal’tsev product Tt ◦S is a variety, and {t(x, y) = x}p is its equational
base.

Proof. We have already observed that Tt ◦S ⊆ Tt
p. Conversely, if an algebra B

is a member of Tt
p, then there is a set X so that B is a homomorphic image

of XTt
p. By Proposition 5.5, the algebra B belongs to Tt ◦ S. �

5.1. The most basic case of Tt

If we take G to be the variety of all groupoids (magmas, binars) (G, ·), and
set t(x, y) = x · y, then Gt is the variety LZ of left-zero semigroups and one
obtains the following corollary.

Corollary 5.7. The quasivariety LZ ◦ S is a variety. In particular LZ ◦ S =
LZp.

Note however that members of LZp are not necessarily semigroups. First
observe that the equational base of LZp contains the idempotent law x ·x = x.
The free LZp-algebra A = X(LZp) over the two element set X = {x, y} is the
semilattice sum of three subalgebras: two one-element subalgebras Ax = {x}
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and Ay = {y} and one subalgebra Ax,y consisting of all elements represented
by terms of T2. Obviously xy, yx ∈ Ax,y. To describe further elements, let us
introduce the following notation. For any element a of Ax,y and a variable z,
let aR(z) = a · z and aL(z) = z · a. Then let aE(z) be either aR(z) or aL(z).

Lemma 5.8. Each element of Ax,y different from xy and yx may be expressed
in the standard form

(xy)E(z1) . . . E(zk) or (yx)E(z1) . . . E(zk), (5.3)

where zi = x or zi = y, and k = 1, 2, . . .

Proof. The proof is by induction on the length of the element. The shortest
elements xy and yx are already in Ax,y. Since Ax,y is a left-zero band, it follows
that for any u, v ∈ Ax,y, we have u · v = u. So longer elements of Ax,y may
be obtained from elements of the form (5.3) only by multiplying them by a
variable x or a variable y from the left or from the right. �
Corollary 5.9. The free algebra A = XLZp is not a semigroup.

Proof. By Lemma 5.8, it is easy to see that the elements x · yx and xy · x are
different. �

On the other hand, the Mal’tsev product LZ ◦SG S of the varieties LZ
and S, but taken relative to the variety SG of semigroups, is a variety of
semigroups, and may be described in a simple way. Note that LZ ◦SG S is just
the intersection LZp ∩ SG, and that the members of this variety are bands
(idempotent semigroups).

Proposition 5.10. The Mal’tsev product LZ ◦SG S coincides with the variety
LR of left-regular bands defined by the identity xyx = xy.

Proof. (⇒) Let A be a member of LZ◦SGS. Then A is a band and a semilattice
of left-zero bands. For a, b ∈ A, we have

ab/� = a/� · b/� = b/� · a/� = ba/�.

Hence ab � ba, so ab · ba = ab. On the other hand ab · ba = abba = aba, which
implies aba = ab.

(⇐) Now assume that A ∈ LR. By McLean’s Theorem [18], each band is
a semilattice of rectangular bands. Hence A =

⊔
s∈S As, where S is the semi-

lattice replica of A and all As are rectangular bands, defined by the identity
xyx = x. This together with the identity xyx = xy gives xy = x. Hence all As

are left-zero bands. �
5.2. Mal’tsev products of some regular varieties

We now demonstrate that the assumption of strong irregularity of the variety
Tt in Theorem 5.6 is essential.

Consider again the type τ with one binary multiplication ·. Let CG be
the variety of commutative groupoids.

Proposition 5.11. The quasivariety CG ◦ S satisfies the quasi-identity

(zx = x & zy = y & xz = yz) → (xy = yx). (5.4)
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Proof. Let A ∈ CG ◦ S and let � be the semilattice replica congruence of A.
Assume that a, b, c ∈ A with ca = a, cb = b, and ac = bc. We will show that
ab = ba. Since A/� is a semilattice, it is commutative. Hence ac � ca and
bc � cb. Consequently

a = ca � ac = bc � cb = b.

This implies
ab = ba,

as desired. �
Example 5.12. Let A be the groupoid whose multiplication table is given below.

· 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
2 0 0 2 2 0 0 2
3 0 0 2 3 0 1 2
4 0 0 0 0 4 4 4
5 0 0 0 0 4 5 4
6 0 0 2 3 4 5 6

Let us note that the elements 0, 1, 2, 3, 4 form a subsemilattice of A (that
means a subgroupoid of A which is a semilattice). Similarly the elements
0, 1, 2, 4, 5 form a subsemilattice, and the elements 0, 1, 2, 4, 6 form a subsemi-
lattice. However 3 · 5 = 1 �= 0 = 5 · 3, whence A itself is not a semilattice. The
equivalence � of A with the 2-element classes {0, 1}, {2, 3}, {4, 5}, and one
element class {6}, is a congruence of A, each �-class is a semilattice and A/�
is a semilattice. Thus A ∈ S ◦ S, and hence A ∈ CG ◦ S. Moreover, � is the
semilattice replica congruence of A. Indeed, if A/σ is a semilattice for some
congruence σ of A, then for all a, b ∈ A we must have (a · b, b · a) ∈ σ. Hence

(0, 1) = (5 · 3, 3 · 5) ∈ σ,

(2, 3) = (3 · 6, 6 · 3) ∈ σ,

(4, 5) = (5 · 6, 6 · 5) ∈ σ.

Thus � is the semilattice replica congruence.
Now let θ be the congruence on A generated by 2 and 4. One easily

checks that the congruence θ has one 3-element class {0, 2, 4} and each of
the remaining classes consists of one element. Let B = A/θ. By taking x =
3/θ = {3}, y = 5/θ = {5} and z = 6/θ = {6} we see that B fails the
quasi-identity (5.4). By Proposition 5.11, B /∈ CG ◦ S, and hence B /∈ S ◦ S.
Consequently, neither S ◦ S nor CG ◦ S is a variety.

From Proposition 5.11, Example 5.12, and the fact that S is the smallest
regular variety, we have the following.

Corollary 5.13. For no regular subvariety V of CG is V ◦ S a variety.

By Corollary 4.3, the prolongation CGp is defined by the set of identities
Σp consisting of all identities of the form

(x1 . . . xmr1) · (x1 . . . xmr2) = (x1 . . . xmr2) · (x1 . . . xmr1), (5.5)
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in which m > 0 and r1, r2 are terms from Tm. Our discussion above suggests
the following problem.

Problem 5.14. Is the quasivariety CG ◦S axiomatized by the identities in (5.5)
together with the single quasi-identity (5.4) of Proposition 5.11?

Presumably, there is nothing special about commutativity here. Thus we
are motivated to pose the following problem.

Problem 5.15. Let V be a proper regular variety of groupoids. Is it true that
V ◦ S fails to be a variety?

With regard to this latter problem, let us note that, with G denoting the
variety of all groupoids, G ◦ S = G, which is obviously a variety. Thus the
requirement that V be a proper subvariety is necessary.

6. The Mal’tsev product Vt ◦ S
Now let Vt be a (strongly irregular) subvariety of the variety Tt of Ω-algebras
defined by the identity t(x, y) = x for some t ∈ T2 and a set Γt of regular
identities. Recall from Section 3 that the regularization Ṽt of Vt is defined by
Γt and the identities (P1) – (P5), with x · y = t(x, y), and consists of P�lonka
sums of Vt-algebras. Moreover

Tt ∧ Ṽt = Vt and Tt ∨ Ṽt = T̃t.

Since every P�lonka sum is a semilattice sum, Ṽt ⊆ Vt ◦ S. On the other hand,
Vt ◦ S is obviously contained in Tt ◦ S. And by Proposition 3.4, Vt ◦ S ⊆ Vt

p.
Finally, by Theorem 5.6, Tt ◦ S = Tt

p. Summarizing

Vt ⊆ Ṽt ⊆ Vt ◦ S ⊆ Vt
p ⊆ Tt ◦ S = Tt

p.

And by Corollary 4.4, the variety Vt
p is the smallest variety containing the

quasivariety Vt ◦ S.
Recall also that, by (4.2),

XVt
p/� ∼= XS,

and for any two Ω-terms w, v

(w, v) ∈ � ⇐⇒ var(w) = var(v).

As a direct consequence of Proposition 4.2 one obtains the following corol-
lary.

Corollary 6.1. For any subvariety Vt of Tt, the free Vt
p-algebra B = XVt

p is a
semilattice of Vt-algebras. In particular, B =

⊔
s∈S Bs, where S = XS is the

free semilattice over X and all Bs are members of Vt. Hence

B = XVt
p ∈ Vt ◦ S.

We intend to show that the classes Vt ◦ S and Vt
p coincide.

Proposition 6.2. Let δ be a congruence of the free Vt
p-algebra B = XVt

p

over X. Then the quotient C = B/δ is a semilattice sum of Vt-algebras.
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Proof. We first use the fact that C is the quotient B/δ of B to describe the
decomposition of C into a semilattice sum of Tt-algebras in terms of the algebra
B. Let �B be the semilattice replica congruence of the algebra B, and let
ψ = δ ∨ �B . Since ψ ≥ �B it follows that B/ψ is a semilattice. On the other
hand, the minimality of �B guarantees that ψ is the smallest congruence above
δ such that B/ψ ∈ S. It follows that ψ/δ is the semilattice replica congruence
of B/δ. Since each element of C is of the form b/δ for some b ∈ B, Theorem 5.6
implies that

C =
⊔

b/δ∈B/δ

(b/δ)/(ψ/δ)

in which each summand (b/δ)/(ψ/δ) ∈ Tt.
On the other hand, by Corollary 6.1, B =

⊔
s∈S Bs, in which S is a

semilattice and all Bs are members of Vt.
It remains to show that the (ψ/δ)-delta classes, (b/δ)/(ψ/δ), satisfy the

identities of Γt. Let
x1 . . . xku = x1 . . . xkv (6.1)

be a typical member of Γt. We want to show that (6.1) holds in each ψ/δ-class.
This means that for any c1 = b1/δ, . . . , ck = bk/δ ∈ (b/δ)/(ψ/δ), with bi ∈ Bsi

and b ∈ B, we have
c1 . . . cku = c1 . . . ckv, (6.2)

which is equivalent to

(b1 . . . bku, b1 . . . bkv) ∈ δ. (6.3)

Note that bi/δ, bj/δ ∈ (b/δ)/(ψ/δ) if and only if (bi, bj) ∈ ψ. Since each
(bi/δ)/(ψ/δ) satisfies the identity x · y = x, we may use Lemma 5.4 repeatedly
to obtain the following:

bi δ bi · b1 δ (bi · b1) · b2 δ ((bi · b1) · b2) · b3 δ . . .

δ (. . . ((bi · b1) · b2) · . . .) · bk =: di.

Thus bi δ di for each 1 ≤ i ≤ k, and the elements d1, d2, . . . , dk all belong to
the same congruence class Bs1···sk

of �B . Since �B-classes satisfy the identities
of Γt, it follows that

d1 . . . dku = d1 . . . dkv.

Finally note that

(b1 . . . bku, d1 . . . dku) ∈ δ and (b1 . . . bkv, d1 . . . dkv) ∈ δ,

which implies
(b1 . . . bku, b1 . . . bkv) ∈ δ.

This verifies (6.3). �

Let us note that in particular, ψ/δ is the semilattice replica congruence
of B/δ and the quotient B/δ is the semilattice sum of ψ/δ-classes (b/δ)/(ψ/δ).

Theorem 6.3. Let Vt be a variety satisfying the identity t(x, y) = x and with
equational base Σ. Then the Mal’tsev product Vt ◦ S is a variety, having Σp

t as
an equational base.
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Proof. We have already observed that Vt◦S ⊆ Vt
p. Conversely, if an algebra C

is a member of Vt
p, then there is a set X so that C is a homomorphic image

of XVt
p. Then by Proposition 6.2, the algebra C belongs to Vt ◦ S. Thus the

quasivariety Vt ◦ S and the variety Vt
p coincide. �

Corollary 6.4. Let W be any variety of Ω-algebras. Then the Mal’tsev product
Vt ◦W S of Vt and S relative to W is a variety.

Problem 6.5. Does Theorem 6.3 hold for an irregular variety which is not
strongly irregular?

7. Examples and counterexamples

First consider the type τ with one binary multiplication ·, as in Sections 5.1
and 5.2. We could observe that the Mal’tsev products LZ ◦ S and S ◦ S
considered in these examples do not satisfy the associative law. This is however
an instance of a more general phenomenon. Consider a variety of plural type τ ,
and assume that the equational base Σ of a variety V contains a (non-trivial)
linear identity σ. (An identity is linear if the multiplicities of each variable on
each side are at most 1. This is not to be confused with the notion of linear
identity as it appears in [10].) Then the identities of σp obtained from σ are
never linear, since each variable of σ was replaced in σp by a term ri ∈ Tm with
m ≥ 2, and all of these terms contain the same sets of variables. Moreover,
consequences of the identities Σp are never linear.

This can be summarised as follows.

Lemma 7.1. For any non-trivial variety V, the Mal’tsev product V ◦S does not
satisfy any (non-trivial) linear identity.

In particular, for no variety V of semigroups is the Mal’tsev product V ◦S
a class of semigroups. A similar observation can be made for many familiar
varieties, for example groups, rings, lattices, semilattices etc.

Frequently more interesting are proper subvarieties of V ◦ S.

Example 7.2 (Bands). As already mentioned in Section 5.1, each band is a
semilattice sum of rectangular bands. (See [18,11,12].) Let SG be the variety
of semigroups, B the variety of bands, and RB the variety of rectangular bands.
Then, by Corollary 6.4,

B = RB ◦SG S = SG ∩ (RB ◦ S) = SG ∩ RBp.

Note that RBp is a variety of groupoids, but is not a variety of semigroups.

In the following examples, the (pseudo-)partition operation x · y will be
denoted by t(x, y) to avoid conflict with the basic operation of multiplication
in the algebras considered.

Example 7.3 (Birkhoff systems). Lattices may be defined as algebras (A,+, ·)
with two semilattice reducts, the (join-)semilattice (A,+) and the (meet-)
semilattice (A, ·), satisfying the Birkhoff identity x + xy = x(x + y) and the
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absorption law t(x, y) = x + xy = x. They form the variety L of lattices. By
dropping the absorption law one obtains the definition of the more general
variety BS of Birkhoff systems. (See [8,9].) An essential role in this variety
is played by two 3-element bi-chains 3m and 3j built on the set {0, 1, 2} by
defining the meet-semilattice order as 0 <· 1 <· 2 and the join-semilattice
order as 0 <+ 2 <+ 1 in 3m and as 1 <+ 0 <+ 2 in 3j . Let BS−(3m,3j)
denote the class of Birkhoff systems which do not contain either 3m or 3j as
subalgebras. It was shown in [9] that the class BS−(3m,3j) is a variety, and is
characterized as precisely the class of Birkhoff systems which are semilattice
sums of lattices. It follows that

BS−(3m,3j) = L ◦BS S = BS ∩ (L ◦ S) = BS ∩ Lp.

Note that none of the basic operations of Lp-algebras are associative or com-
mutative.

As already mentioned, for a strongly irregular variety Vt, the best known
and understood subvariety of Vt

p (different from Vt and S) is the regulariza-
tion, Ṽt, of Vt. Much less is known about the pseudo-regularization. It is an
easy exercise to show that the regularization and the pseudo-regularization
of the variety LZ of left-zero bands coincide. However it is possible for the
regularization of a variety to be distinct from its pseudo-regularization. The
first example was discovered in [3], and investigated in connection with the
constraint satisfaction problem.

Example 7.4 (Steiner quasigroups). A Steiner quasigroup or squag is a com-
mutative idempotent groupoid satisfying the identity t(x, y) = xy · y = x.
The variety formed by these groupoids is denoted by SQ. As shown in [3],
the regularization S̃Q of SQ is the variety of commutative and idempotent
groupoids satisfying the identity x(x·yz) = (x·xy)z. The pseudo-regularization
SQ of SQ is defined to be the variety of commutative idempotent groupoids
satisfying the identities (P1) – (P4) from Section 2, where · is replaced by
t(x, y) = xy · y. Groupoids in the regularization are P�lonka sums of squags.
Groupoids in the pseudo-regularizations are semilattice sums of squags. As
was shown in [3], the variety of commutative idempotent groupoids satisfying
the identity x(y · yz) = (xy · y)z (called T2 in that paper) is contained in the
variety SQ, and is different from S̃Q. It follows that the three varieties SQ,
S̃Q and SQ are distinct:

SQ ⊂ S̃Q ⊂ SQ.

However we do not know if the varieties T2 and SQ coincide, though we think
it is not likely. The Mal’tsev product SQ ◦ S coincides with the variety SQp.
Since commutativity is a linear identity, members of the variety SQp are not
commutative. The pseudo-regularization SQ is obviously contained in but not
equal to SQp.

In fact, Examples 7.3 and 7.4 were the inspiration for undertaking inves-
tigations of the most general class of algebras representable as semilattice sums
of their subalgebras.
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Examples of other varieties of algebras with distinct regularization and
pseudo-regularization are provided by bisemilattices, algebras with two semi-
lattice operations (one interpreted as a join and one as a meet, similarly as in
the case of Birkhoff systems.)

Example 7.5 (Semilattice sums of lattices). First recall that members of the
class BS−(3m,3j) of Birkhoff systems considered above are all semilattice
sums of lattices. However, it is not difficult to check that this class is not
the pseudo-regularization of the variety L of lattices. The partition operation
t(x, y) = x + xy of the regularization L̃ is not a pseudo-partition operation
for BS−(3m,3j). Indeed, an easy exercise shows that the requirements for a
pseudo-partition operation are not satisfied. A witness is a certain 3-element
member of BS−(3m,3j). This is the bichain 3n built on the set {0, 1, 2} with
the meet-semilattice order defined as for 3m and 3j and the join-semilattice
order defined by 2 <+ 0 <+ 1. Note that 3n is the semilattice sum of the
2-element lattice {0, 1} and the 1-element lattice {2}, but it is not a P�lonka
sum of these lattices. (See [8,9].)

Now let A be a subdirectly irreducible lattice and set A1 = A. Let A0 be
a 1-element lattice {∞} disjoint from A1. Finally let A∞ be the P�lonka sum
of A1 and A0 over the 2-element meet semilattice {0, 1} with 0 < 1. Then the
bisemilattice A∞ generates the regularization of the variety V(A) generated
by A. (See e.g. [24, Ch. 4].)

There is another interesting family of semilattice sums obtained from the
lattice A in the case when A is a bounded lattice. Once again set A1 = A
and denote the bounds of A by 0A and 1A. We define the bisemilattice A∞ =
A ∪ {∞} as follows. For an a ∈ A, a · ∞ = 0A and a + ∞ = 1A. It is easy
to see that this yields a bisemilattice, and is a semilattice sum of the lattices
A1 and A0 over the meet semilattice {0, 1} with 1 < 0. A somewhat more
complicated exercise shows that the operation t(x, y) = x + xy is a pseudo-
partition operation on the algebra A∞, but it is not a partition operation. It
follows that each variety V(A∞) is contained in the pseudo-regularization of L
but is different from the regularization of the variety V(A). We do not know
if the varieties V(A∞) and V(A) coincide.

Example 7.6 (Groups). Groups may be defined as algebras (G, ·,−1 ) satisfying
the identities xy · z = x · yz, y−1y · x = x · yy−1, and x · yy−1 = x. They form
a strongly irregular variety with t(x, y) = x · yy−1, which will be denoted by
GP. The regularization G̃P of GP may be defined by the first two identities
defining GP and the identities (xy)−1 = y−1x−1, (x−1)−1 = x and xxx−1 = x.
(See e.g. [20,21].) The variety G̃P consists of P�lonka sums of groups. In semi-
group theory, P�lonka sums of groups are called strong semilattices of groups.
By results of Clifford [5], it is known that the class of P�lonka sums of groups
coincides with the class of semigroups which are semilattices of groups and
with the class of so-called Clifford semigroups, semigroups with a unary oper-
ation −1 satisfying the identities (x−1)−1 = x, xx−1x = x, xx−1 = x−1x and
(xx−1)(yy−1) = (yy−1)(xx−1). (See also [6,11,12].) The class G̃P is a sub-
variety of the variety IS of inverse semigroups, semigroups with one unary
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operation −1 satisfying the last three identities defining G̃P. Members of G̃P
are precisely inverse semigroups which are P�lonka sums of groups (or as semi-
group theorists would say, strong semilattices of groups). (See e.g. [21] and
references there.) In fact,

G̃P = IS ∩ (GP ◦ S).

Groups defined as algebras with two basic operations · and −1 as above do
not contain any nullary operations in the similarity type. Hence Theorem 6.3
applies, and the Mal’tsev product GP ◦ S is the variety GPp. Note that GPp

is a variety of groupoids with one unary operation, but it is not a variety of
semigroups. The pseudo-regularization of GP has not yet been investigated.

The assumption that the type of a variety V, in a Mal’tsev product V ◦S,
has no nullary operation symbols is due to the fact that semilattices have no
nullary operations. However, if V is a variety with constant (nullary) opera-
tions, then the latter assumption may easily be omitted, as it was done in the
example above. Instead of a constant operation one may take a unary oper-
ation defining this constant, and consider an equivalent variety V ′ with such
a unary operation replacing each constant operation. Then if V is strongly
irregular, Theorem 6.3 applies, and the Mal’tsev product V ′ ◦ S is a variety.

If V is an irregular, but not strongly irregular variety, then the class of
P�lonka sums of V-algebras does not necessarily coincide with the regularization
Ṽ of V. (See [24, Ch. 4] and [21] for more information and some references.)
The following example concerns the case of semigroups.

Example 7.7 (Semigroups). It was shown by Salǐı [25,26] that each semigroup
in the regularization Ṽ of an irregular variety V of semigroups embeds into a
P�lonka sum of V-algebras. (This however is not true for general algebras, see
[7,22].) Hence in the case of semigroups the regularization Ṽ is contained in
the Mal’tsev product V ◦ S. However not all of its members are P�lonka sums
of V-algebras.

Example 7.8. This example comes from the geometry of affine spaces and con-
vex sets. (See [24] and references there.) Affine spaces over a subfield F of the
field R of reals (affine F -spaces) may be defined as algebras (A,F ), where
F is the set of binary operations xyp = p(x, y) = x(1 − p) + yp, for all
p ∈ F . Affine F -spaces defined in this way form a variety. Convex subsets
of affine F -spaces (convex F -sets) may be defined as algebras (C, Io), where
Io =

{
p | p ∈ Io =]0, 1[

}
and ]0, 1[ is the open unit interval of F . Fix a subfield

F of R. Then the convex F -subsets of affine F -spaces generate the variety BA
of barycentric algebras. Convex F -sets form a subquasivariety C of BA. The
variety BA is defined by the following identities

xxp = x,

xy p = yx 1 − p,

xy p z q = x yz q/(p ◦ q) p ◦ q
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for all p, q in Io. Here p ◦ q = p + q − pq. (See [24, §5.8].) Its subquasivariety
C is defined by the cancellation laws

(xyp = xzp) → (y = z), (7.1)

which hold for all p ∈ Io. It is known [24, §7.5] that each barycentric algebra
is a semilattice sum of (open) convex sets. This shows that BA is contained in
the Mal’tsev product C ◦ S:

BA ⊂ C ◦ S ⊂ BAp.

Since the quasivariety C satisfies linear identities, the varieties BA and BAp

are distinct.
In fact, a stronger result was proved, which we provide here in a somewhat

reformulated way.

Theorem 7.9 [24, Sec. 7.5] Each barycentric algebra is a semilattice sum of
open convex sets over its semilattice replica, and is a subalgebra of a P�lonka
sum of convex sets over its semilattice replica.

The summands of the P�lonka sum are certain canonical extensions of the
summands of the semilattice sum.

8. Concluding remarks and the problem of representation
of algebras in Mal’tsev products

The fact that an algebra A is a semilattice sum of Vt-subalgebras says very
little about its detailed structure. An exception is of course given by alge-
bras represented as P�lonka sums. (The second best representation is given by
subalgebras of P�lonka sums.) So it is natural to ask how the summands of a
semilattice sum are put together or how to reconstruct the algebraic structure
of a semilattice sum A =

⊔
s∈S As from its Vt-summands As and the quo-

tient semilattice S. Such a construction exists and was introduced for general
algebras in [23, §6.2], under the name of a Lallement sum, as a generaliza-
tion of a P�lonka sum. (See also [14] for a basic construction introduced in the
case of semigroups, and [22,21] and [24, Ch. 4] for similar constructions in
the case of general algebras.) The primary idea was to relax the requirement
of functoriality in the definition of P�lonka sums. There are several types of
such constructions and the definition may be formulated for algebras of any
plural type. However, to avoid excessive notation we will consider here only
plural type with operations of arity two, and will limit ourself to the following
definition.

Definition 8.1. Let (S, ·) be a (meet) semilattice. (Here all operations of Ω
are equal to ·). For each s ∈ S, let a Vt-algebra As of a plural binary type
τ : Ω → {2} be given, and for each operation � ∈ Ω an extension (E �

s , �) of
(As, �). For each pair t ≤ s of S, let

ϕ �
s,t : (As, �) → (E �

t , �)

be a �-homomorphism such that the following three conditions are satisfied:
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(1) ϕ�
s,s is the embedding of As into E�

s ;
(2) ϕ�

s,s·t(As) � ϕ�
t,s·t(At) ⊆ As·t;

(3) for each u ≤ s · t in S and as ∈ As, bt ∈ At

ϕ�
s·t,u(ϕ�

s,s·t(as) � ϕ�
t,s·t(bt)) = ϕ�

s,u(as) � ϕ�
t,u(bt).

An Ω-algebra structure on the disjoint sum A of all As is given by defining the
operations � in Ω as follows:

as � bt = ϕ �
s,s·t(as) � ϕ �

t,s·t(bt).

Then all As are subalgebras of A, and S is a quotient of A. The semilattice
sum A of As is said to be the semilattice sum of As by the mappings ϕ�

s,t. If
additionally, for each t ∈ S, one has E�

t = {ϕ�
s,t(as) | s ≥ t, as ∈ As}, and all

E�
s are certain canonical extensions of As (see [23, § 6.1]), then this semilattice

sum is called a Lallement sum.

By [23, Th. 624] each semilattice sum of Vt-algebras can be reconstructed
as a Lallement sum of these algebras. The usefulness of Lallement sums
depends on properties of the available extensions E�

s . In particular, a nice
situation appears if for each s ∈ S, all extensions E�

s coincide with the sum-
mand As. Such Lallement sums are called strict.

We next consider a special case of strict Lallement sums of Vt-algebras,
which extends a construction described for Birkhoff systems in [9]. This con-
struction works nicely for Vt-algebras where each operation � ∈ Ω has a one-
sided unit. In what follows we assume that all one-sided units are right-sided
and call them simply units. We will call such algebras briefly Vt-algebras with
units.

Let A be a semilattice sum
⊔

s∈S As of Vt-algebras As with units, and
let e�

s be the (right-)unit element of � in As. Additionally assume that for all
s, t, u ∈ S with u ≤ s, t

(as � bt) � e�
u = (as � e�

u) � (bt � e�
u), (8.1)

and for t ≤ s in S define the maps

ϕ�
s,t : As → At; as 	→ as � e�

t .

Note that t ≤ s in S means s · t = t, so these maps are well defined. It is easily
seen that each ϕ�

s,t is a �-homomorphism from As into At. Moreover, by (8.1),

as � bt = (as � bt) � e�
st = (as � e�

t ) � (bs � e�
t ) = ϕ�

s,s·t(as) � ϕ�
t,s·t(bt).

Then for each u ≤ s · t in S

ϕ�
s·t,u(ϕ�

s,s·t(as) � ϕ�
t,s·t(bt)) = ϕ�

s·t,u(as � bt)

= (as � bt) � e�
u = (as � e�

u) � (bt � e�
u) = ϕ�

s,u(as) � ϕ�
t,u(bt).

It follows that the maps ϕ�
s,t satisfy the requirements of a strict Lallement

sum. One obtains the following theorem, a corollary of Theorem 624 of [23],
and an extension of Theorem 4.15 of [9].
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Theorem 8.2. Let A be a semilattice sum of Vt-algebras As with units of a
plural binary type. Then A =

⊔
s∈S As satisfies the condition (8.1) if and only

if it is a strict Lallement sum of the subalgebras As over the semilattice S given
by the homomorphisms ϕ�

s,t described above.

Examples are provided by Birkhoff systems which are semilattices of
bounded lattices, and more general bisemillatices which are semilattice sums
of bounded lattices. In particular, members of the pseudo-regularizations of
the variety L of lattices provided above are of this type.

Note also that the condition (8.1) holds for all algebras A of plural binary
type with self-entropic operations, i.e., satisfying (x�y)�(z�t) = (x�z)�(y�t),
for each � ∈ Ω.

One more final remark concerns the assumption about strong irregularity
of the summands As. In this paper, we were interested in semilattices sums
of algebras in a strongly irregular variety. However, both Definition 8.1 and
Theorem 8.2 may be extended easily to semilattice sums of algebras in any
variety.

Remark. The authors thank the referee for suggesting the term ‘prolongation’
as used in this paper.
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[25] Salǐı, V.N.: Equationally normal varieties of semigroups. Izv. Vyssh. Uchebn.
Zaved. Mat. 84, 61–68 (1969). (Russian)
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