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ABSTRACT

Computational genomics has proven its great potential to support
precise and customized health care. However, with the wide adop-
tion of the Next Generation Sequencing (NGS) technology, ‘DNA
Alignment’, as the crucial step in computational genomics, is be-
coming more and more challenging due to the booming bio-data.
Consequently, various hardware approaches have been explored to
accelerate DNA seeding - the core and most time consuming step
in DNA alignment.

Most previous hardware approaches leverage multi-core, GPU,
and FPGA to accelerate DNA seeding. However, DNA seeding is
bounded by memory and above hardware approaches focus on com-
putation. For this reason, Near Data Processing (NDP) is a better
solution for DNA seeding. Unfortunately, existing NDP accelerators
for DNA seeding face two grand challenges, i.e., fine-grained ran-
dom memory access and scalability demand for booming bio-data.
To address those challenges, we propose a practical, energy efficient,
Dual-Inline Memory Module (DIMM) based, NDP Accelerator for
DNA Seeding Algorithm (MEDAL), which is based on off-the-shelf
DRAM components. For small databases that can be fitted within
a single DRAM rank, we propose the intra-rank design, together
with an algorithm-specific address mapping, bandwidth-aware data
mapping, and Individual Chip Select (ICS) to address the challenge
of fine-grained random memory access, improving parallelism and
bandwidth utilization. Furthermore, to tackle the challenge of scal-
ability for large databases, we propose three inter-rank designs
(polling-based communication, interrupt-based communication,
and Non-Volatile DIMM (NVDIMM)-based solution). In addition,
we propose an algorithm-specific data compression technique to
reduce memory footprint, introduce more space for the data map-
ping, and reduce the communication overhead. Experimental re-
sults show that for three proposed designs, on average, MEDAL can
achieve 30.50x/8.37x/3.43x speedup and 289.91x/6.47x/2.89x energy
reduction when compared with a 16-thread CPU baseline and two
state-of-the-art NDP accelerators, respectively.
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1 INTRODUCTION

DNA seeding, as the bottleneck stage in computational genomics,
has drawn tremendous attention [3, 9]. Computational genomics is
developing rapidly and is well motivated by its potential adoption
to the precise and customized medical care, such as helping physi-
cians to select a particular drug or treatment suitable for a specific
pathology of a cancer [10]. With the higher throughput and cost ef-
ficiency of the Next Generation Sequencing (NGS) technology [26],
bio-data is booming, leading to severe stress on genomics analysis
due to more data but a shorter time budget. DNA alignment, which
aligns short reads, i.e., DNA subsequences, to reference genomes to
locate positions of the short reads, is commonly considered as the
core and one of the most time-consuming steps in genomics analy-
sis [9]. DNA alignment contains two major time-consuming steps,
i.e., DNA Seeding and Seed Extension. DNA Seeding generates ex-
act matches, i.e., seeds, between the short reads and the reference
genomes, and Seed Extension extends the seeds to longer matches
with gaps allowed. DNA seeding and seed extension equally domi-
nate the end-to-end computing of DNA alignment, thus they are
both worth being accelerated [3, 9, 20].

The importance of DNA seeding motivates plenty of researches
to accelerate it. Various compute-centric hardware approaches,
such as multi-core [56], GPU [38, 40], and FPGA [9, 14] have been
explored to accelerate DNA seeding. However, innovations that
only focus on the computation have limited space for improvement,
since DNA seeding is memory bound [3, 9]. DNA seeding intro-
duces huge amount of random data movement [56], resulting in
bottlenecks of both performance and energy [21, 28]. Near Data
Processing (NDP) architecture emerges as a better acceleration
solution for DNA seeding by addressing the issue of data move-
ment [37]. Such architecture integrates computation and memory
closely to embrace the larger internal memory bandwidth and re-
duce the overhead of data movement. For example, MPU-BWM [55]
accelerates DNA seeding with a RISC-V core in the logic die of a
HMC. Chameleon [6] and AIM [10] provide more practical solutions
by leveraging the Dual-Inline Memory Module (DIMM) to build
accelerators, with off-the-shelf commodity DRAM components.

However, existing NDP accelerators for DNA seeding face two
grand challenges. The first challenge is the fine-grained random
memory access. The randomness stresses memory bandwidth
due to the bank/channel conflict and the fine-granularity results
in low bandwidth utilization. For example, in BWA-MEM [34] -
the most widely used software tool for DNA alignment - only 32
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Bytes data is useful on average for each 64 Bytes cacheline from
one memory access [35]. In addition, the inter-task divergence in
memory access makes the application difficult to run efficiently on
a SIMD-based hardware. Previous work Chameleon [6] is a general
purpose SIMD NDP accelerator. As a result, it fails to tackle this
challenge of fine-grained random memory access and shows sub-
optimal performance on DNA seeding even if a communication
mechanism is added. The second challenge is the demand for scal-
ability due to the exploding DNA data. Biological data has been
growing exponentially [26]. For example, data in Whole Genome
Shotgun(WGS) project [17] of the National Center for Biotechnol-
ogy Information (NCBI) have doubled the size approximately every
18 months and now the WGS project contains more than 3.44 tril-
lion bases. The rapidly, ever-increasing data demand scalability.
Previous work AIM [10] proposes to accelerate DNA seeding with
DRAM by linking customized FPGA accelerators and dedicated data
buses to DIMMs. However, because there is no rank-level paral-
lelism within AIM and AIM accesses memory in coarse-granularity
(64 Bytes), potential memory bandwidth is not fully utilized. For
Chameleon [6], its bandwidth utilization ratio is very low (about
10% in our experiments), although leveraging rank-level parallelism
is one of its design purposes, simply due to the inter-task divergence
in DNA seeding and Chameleon’s SIMD-style processing.

The goal of this paper is to build a NDP accelerator for DNA
seeding with fine-grained memory accessibility, high bandwidth
utilization, and scalability. We propose an accelerator, i.e., MEDAL,
on DIMM between DRAM components and the standard data bus.
MEDAL highlights practicability by using off-the-shelf DRAM com-
ponents and the standard DDR protocol. MEDAL leverages both
the rank-level and the fine-grained, chip-level memory bandwidth.

Within a rank, we propose three techniques to address the chal-
lenge of fine-grained random memory access, improving parallelism
as well as bandwidth utilization. The proposed methods take advan-
tages of our in-depth characterization of the target DNA seeding
algorithm. The first technique is the algorithm-specific address
mapping, which maps the continuous data together in a single
DRAM chip to improve locality, provides potential for chip-level
parallelism and fine-grained memory access, and reduces commu-
nication, instead of interleaving data across multiple chips. The
second technique is the bandwidth-aware data mapping. It du-
plicates or remaps data across all available chips to fully utilizes
potential memory bandwidth. The third technique is the Individual
Chip Selection (ICS), which leverages the Chip Selection (CS) signal
to support chip-level parallelism and fine-grained memory access,
further improving the bandwidth efficiency.

Across ranks, when the index data cannot be fit into one rank, we
then propose three design options to address the multi-rank scaling
out issue caused by the exploding data challenge. The proposed
methods highlight the practicability for scaling out. The first, also
the basic, design leverages CPU polling for inter-rank communi-
cation. Compared with the first design option, our second design,
i.e., interrupt-based design, doesn’t need to occupy the host and
memory bus for polling operations. The Reserved for Future Use
(RFU) pin in DDR is used for triggering interupts. The third design
alternatively introduces the NVDIMM-P, in which we store the
large DNA index within the dense Non-Volatile Memory (NVM) to
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reduce/eliminate inter-rank communication. In addition, we pro-
pose an algorithm-specific data compression technique to reduce
memory footprint, introduce more space for data mapping to utilize,
and reduce communication overhead. Our specific contributions
are listed as follows.

e We propose a practical and energy-efficient NDP accelerator
architecture, i.e., MEDAL, for DNA seeding with off-the-shelf
DRAM components.

e For the intra-rank design, we propose three application-specific
techniques (algorithm-specific address mapping, bandwidth-aware
data mapping, and ICS) to address the challenge of fine-grained
random memory access and improve parallelism as well as band-
width utilization.

o For the inter-rank design, we propose three alternative approaches
(polling-based communication, interrupt-based communication,
and NVDIMM-based solution) to overcome the challenge of big
data and system scaling.

e In addition, we propose an algorithm-specific data compression
technique to reduce memory footprint, introduce more space for
data mapping to utilize, and reduce communication overhead,
leading to performance improvement.

e Our experimental evaluation shows that MEDAL can provide
30.50x/8.37x/3.43x better performance and 289.91x/6.47x/2.89x
better energy-efficiency than a 16-thread CPU baseline and two
state-of-the-art NDP accelerators, respectively.

2 BACKGROUND

This section introduces the basics of DNA seeding algorithm and

the buffered DIMM.
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Figure 1: An example of data structures in FM-index based
DNA seeding,.

DNA Seeding Algorithm: DNA seeding refers to the process of
matching seeds (small sequence fragments chopped from a given
read) back to the long reference genome. DNA seeding algorithms
usually pre-build an index of the reference genome to speedup the
locating. FM-index [32, 34] and Hash-index [2] are two mainstream
seeding indexes used by modern DNA aligners. Both of the algo-
rithms are preferable, depending on the combination of the seeding
and the extension approach [2]. For example, FM-index based algo-
rithm has good performance for local alignment and BLAST-like
seed extension [2]. Different from the Hash-index based algorithm,
FM-index based algorithm suffers from more irregular memory
access and longer data reuse distance, and hence is more challeng-
ing. Therefore, our main target is to accelerate FM-index based
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algorithm. For generality, we keep the design compatible for the
Hash-index based algorithm, and evaluate both of them.

The flow of the FM-index based seeding algorithm contains the
offline preprocessing (index building) and the online searching.
During the preprocessing, the following data for the reference
genome R are calculated and prepared.

e Bp|len]: the Burrows-Wheeler Transform [9] of R (BR);

o Sp|len]: the Suffix Array (Sa), i.e., record the original id of sorted
rotations before sorting;

e CRp[4]: the accumulative count array, i.e., the index of the first
appearance of A, T, C, G in sorted Bg;

e Ogllen + 1][4]: the occurrence array, i.e., the occurrences of each
nucleotide (A, T, C, G) before the ith symbol of Bg;

An example is shown in Fig. 1, the reference sequence is AGCTAC.
The algorithm first terminates the reference sequence with a unique
character $. Then, all rotations of above character string are gen-
erated. Next, those rotations are sorted in alphabet order. The last
characters of all entries in above sorted rotations form Bg[len].
Srllen] is also derived during this process. Finally, with Bg[len]
and sorted Bg[len], Or[len + 1][4] and Cg[4] can be generated.

Algorithm 1: FM-index based Seeding Algorithm

Input: Query sequence SD|[d], Reference genome R[len]
Output: Matching locations

Preprocess: Derive Br[len], Sr[len], Cr[4], and Og[len + 1][4];
2 while [/oWer <= Jupper go

3 x < SD.getchar();

4 if x = EoF then break;

-

5 Ilower — CT[X] + OT[X][IIDwer _ 1];
6 IUPPCT = Cr[x] + Or[x][I*PPT];
7 end

s for Ilower <= <= [uPPer do
Match location|i] = Sg|[i];
end

©
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11 return Match location;

oy

During the searching, the algorithm extends current match by
one nucleotide each iteration, reading Cr and Og to locate the
range of matches until no match can be found. Algorithm 1 shows
the searching flow. I'°%¢" and J“PP€" represent the first and the
last index of the suffix sequence with current prefix of SD in Sg.
This range contains all occurrences of current prefix of SD in R.
14(D) < 1*(D) if and only there is at least one match in R.

Buffered Dual-Inline Memory Module: Dual-Inline Memory
Module (DIMM) is a widely used memory package with 64 data
(DQ) pins. In a DIMM, multiple DRAM chips form a rank, and one or
more ranks are packaged together to form a DIMM. Load-Reduced
DIMM (LRDIMM), as shown in Fig. 5(b), is introduced to address the
signal integrity issue for high frequency memory interface. The key
component in LRDIMM is the Memory Buffer (MB) that enhances
the C/A and DQ signals. The MB is divided into two pieces:

e Registering Clock Driver (RCD): One per DIMM to buffer and
repeat C/A signals.

e Data Buffer (DB): One for a set of (e.g., 2/4/8) DRAM chips to
improve the signal integrity of DQ signals.
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3 MOTIVATIONS AND CHALLENGES

We first justify the selection of our target application, i.e., DNA seed-
ing, for two reasons. First, DNA seeding dominates the computation-
expensive DNA alignment in BWA-MEM [34] - the most widely
used tool for DNA alignment, which contains both DNA seeding
and seed extension. Previous work [9] has shown that DNA seed-
ing is the most time-consuming step in DNA alignment and takes
29.35% of the runtime, whereas the seed extension takes the second
most time at 27.89%. Furthermore, our evaluation shows that in
the scenario of metagenomics (aligning sequences from unknown
species to huge reference databases), DNA seeding takes up to 48%
of the runtime, because of the less presence of the extension part due
to the lower hit rate during the seeding. Second, seed extension is
computing-bound [3] and has been extensively studied [19, 36, 39].
ASIC/GPU/FPGA [19, 36, 39] has shown up to 652x speedup, com-
pared to the CPU baseline. With those advanced accelerators for
seed extension already developed, the memory-bound DNA seeding
becomes the outstanding bottleneck.
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Figure 2: Profiling the DNA seeding in BWA-MEM [34] with
Sniper [7] and configuration in Table 1: (a) CPI stack; (b) In-
struction statistics; (c) Energy breakdown.

Memory system is the bottleneck [3, 9, 20] of DNA seeding,
motivating our key idea of adopting the NDP architecture. Profiling
results in Fig. 2 quantitatively show the bottleneck. As Fig. 2 (a)
shows, the DRAM access accounts for 60% in the CPI stack analysis;
The Load/Store instructions take 43.4% among total instructions in
Fig. 2 (b); The energy breakdown in Fig. 2 (c) shows that 49.4% of
the total energy consumption is consumed by the DRAM.

While designing NDP architecture for the DNA seeding applica-

tion is well motivated, it faces two grand challenges.
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Figure 3: Execution time distribution of the seeding’s ele-
mental task (bwt_smemia [34], the atomic function for par-
allel DNA seeding).

Challenge-1Fine-Grained Randomness and Divergence: This
challenge leads to the memory bandwidth under-utilization and
workload imbalance with the SIMD architecture. The memory ac-
cess pattern of FM-index based DNA seeding is random and fine-
grained. We profile the Last-Level Cache (LLC) miss rate for the
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seeding’s elemental task, showing 32.5% on average and up to
93.24% peak miss rate. Fine-granularity of memory access is due
to the reason that the actual data needed in each iteration are
only 4 integers of Og, while 512 bits are fetched from the memory.
The challenge of this fine-grained random memory access pattern
results in two problems: First, the inevitable demands for larger
memory bandwidth; Second, the low bandwidth utilization. For
each 64B memory access to get Og(x, i), on average only 50% of
the cacheline is actually used [34, 35].

Furthermore, the behaviors of individual seeding tasks are di-
vergent. The profiling results in Fig. 3 show that the majority of
the elemental seeding task (90%) spreads from 2.5us to 42us (16X
difference) with a long tail effect that 3% of the tasks run longer
than 74ps (up to 7.6ms).
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(a) (b)
Figure 4: (a) Reduction of sequencing cost [22]. (b) Boom of
the bio-data [17].

Challenge-2 Big Data: The bio-data has shown even faster growth
than the Moore’s law. Fig. 4(a) shows that the cost of sequencing
genomes reduces much faster than Moore’s law, indicating that
larger databases for more species are becoming practical and afford-
able [22]. Fig. 4(b) shows that bio-data grows exponentially. The
speed of the data growth is also faster than the Moore’s law. Cur-
rently, it takes ~6.75 GPU hours [45] for seeding on human genome!.
For larger genome library (e.g., Ambystoma Mexicanum [42] is 10x
bigger than the human’s), the seeding time scales super linear. The
challenge of the big data demands scaling out, since the capacity of
DRAM in one node is limited. The communication overhead, e.g.,
Non-Uniform Memory Access (NUMA), Remote Direct Memory
Access (RDMA), further stresses the memory system. In addition,
our profiling results show that the searching performance degrades
3.4X, if the average memory latency doubles.

4 MEDAL ARCHITECTURE

In this section, we introduce the MEDAL architecture. After an
overview of the architecture, we describe the working flow and
techniques for intra and inter rank scenarios.

4.1 Architecture Overview

The goal of MEDAL is to leverage NDP architecture for exploiting
extra bandwidth for DNA seeding, while remaining practical by
using off-the-shelf host processors and DRAM components. To this
end, MEDAL exploits extra bandwidth and parallelism inside per
channel for DIMM-based memory systems, while it only conducts
modifications to the DIMM printed circuit board (PCB) design. Such
design simultaneously activates the DRAM in different ranks. As-
suming a typical memory system in Table 1, compared with the
conventional case where only ranks in different channels can be ac-
cessed in parallel, MEDAL exploits 12X more bandwidth. Compared

150x coverage, 76bp reads, with the reference library of human genome, on a Tesla
K80 GPU.

590

Huangfu, et al.

with NDP previous work [10] that only exploits DIMM-level paral-
lelism instead of rank-level parallelism, MEDAL exploits 4X more
bandwidth. Furthermore, MEDAL even leverages the chip-level
parallelism within the same rank via decoupling their CS signals.

Specifically, MEDAL is built by modifying the commercial LRDIMM,
as shown in Fig. 5(a) and (b). Five components below are added.

DB-Side Accelerator: We attach 4 DNA seeding specific hardware

accelerators to each DB in the LRDIMM, as shown in Fig. 5 (c)

and (d). The DB-side accelerator inputs/outputs data with the FIFO

connected to the inter-chip hierarchical data bus, and sends a pair of

current accelerator ID and its read/write request to the FIFO, which

connects to the inter-chip hierarchical ID/address bus. To perform

the task described in Algorithm 1, the accelerator contains

e registers to store the query sequence g,

o a 4x64-bit register file to store Cgr[4],

e a data reorganization engine to calculate Og[x] from its stored
data structure,

e two 64-bit unsigned adders to update [“PPPET and 1loWer,

e an address translation engine to convert the virtual address to
DRAM device address (see Section 4.2 for detail).

DB-Side Multiplexer: We add a multiplexer to the output of DB,
so that in addition to sending data to the DDR bus, DB can also send
data to the inter-chip hierarchical data bus through the DB-side
FIFO. The multiplexer is controlled by a dedicated enable signal
from RCD-side MC.

RCD-Side Memory Controller (MC): The DB-side accelerator

creates a new challenge. Since both the host and the accelerators

can access the DRAM and the host is not aware of the requests
issued by the accelerators. Requests from the two sides will conflict
if they are not well coordinated.

Our design philosophy is to enable the RCD to coordinate those
memory requests, since the RCD has the information of memory
requests from both the host and the accelerators. We modify the
RCD in the original LRDIMM, design the RCD-side MC, as shown in
Fig. 5 (c), and propose a host-prioritized request scheduling (details
in Section 4.3), to address this issue. The original RCD only serves
as an enhancement module for the C/A signals. In MEDAL, the
following modifications and new components are added.

e The C/A signal from the host is detoured to the RCD-side MC
before going to the DRAM components.

e A MC, which merges and schedules the requests from both the
host and the DB-side accelerators, is added with a request queue
and a scheduling engine. The scheduler will prioritize the host-
side requests. This is because host-side MC is not aware of the
accelerator-side requests, so the host memory accesses must
be served soon to meet the expectation of the host (details in
Section 4.3). For other accelerator requests, it applies the first-
ready first-come-first-serve scheme. The scheduler also makes
sure DRAM timing constraints are met, and helps the following
controllers to generate C/S and enable signal on right time.

o A controller to generate dedicated CS signals to each DB accord-
ing to timing information from the MC scheduler, instead of
one global CS bus. Details of the chip selection optimization is
introduced in Section 4.2.

e A controller to generate enable signal for the FIFO in the DB-side
multiplexer. Since data accessed by the accelerator is transferred
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(a) (
Figure 5: (a) High-level architecture of MEDAL.

to the data bus, the enable signal makes sure the FIFO catch and
buffer the data when the bus is not ready for data transfer.

Inter-Chip Hierarchical Bus: Another design challenge is that,
with proposed algorithm-specific data mapping discussed in Section
4.2, the Og|[x][i] is spread over all DRAM components across the
rank. The distributed data mean the DB-side accelerator may need
the data from other DRAM components in this rank. However, there
is no connection between different DRAM components within a
rank in the vanilla DIMM, forbidding inter-chip communication.

To address this challenge, we design the inter-chip hierarchi-
cal bus. Specifically, we have the ID/address bus and the data bus.
The ID/address bus transfers the pair of the accelerator ID and its
memory requests from the accelerator to the RCD-side MC. Ac-
celerators are masters writing the data (i.e., ID/addresses) to the
only slave (i.e., the RCD-side MC). The data bus transfers the data
from a DB belonging to a group of DRAM components to its des-
tination accelerator. The FIFOs in the DB-side multiplexer are the
masters writing the data (i.e., DRAM data) to the slaves (accelera-
tors). Both of the buses are multi-master single-channel buses. The
bus is simplified from standard bus like AMBA [5], and it contains
(1) a shared clock signal and reset signal for both buses, (2) 1-bit
dedicated master/slave selection signal for each master/slave, (3)
8-bit write data signals for the ID/address bus, 64-bit bi-direction
data signals for the data bus, (4) burst length 5 for the ID/address
bus to transfer 8-bit accelerator ID and 32-bit address, burst length
8 for the data bus. Bus address signals are eliminated since the RCD-
side arbitrator, which is introduced in detail below, has already
been aware of the source and destination module of every transfer
though the RCD-side MC, and can simply assign the bus using the
master/slave selection signals.

Note that we make the such a design choice under the consider-
ation of minimizing the wiring complexity on PCB. The simplified
single-channel buses conduct (4 - n + 75) extra wires, where n rep-
resents the number of DBs per DIMM.

RCD-Side Bus Arbitrator: The arbitrator assigns the bus to the
masters sharing the bus. For the C/A bus, the arbitrator applies
first-come-first-server scheme to grant the bus for each accelerator,
so that all of them can send their memory request to the RCD-side
MC. For the data bus, the arbitrator sets a pair of the master/slave
selection signal so that DRAM data can be transferred from a DB-
side multiplexer to an accelerator. The arbitrator works with the
aid of the RCD-side MC. Since accelerators send their ID and read
request to the MC, the MC can provide (1) when the data will be
ready from which DRAM and (2) which accelerator requests this
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data. With above information, the arbitrator then picks a pair of
master and slave for data transfer after the data is ready.

The rest of this section describes the detailed data flow on MEDAL.
First, we will show the simpler case when the memory footprint is
small enough to be fit in one rank, focusing on intra-rank optimiza-
tions to address the Fine-Grained Randomness and Divergence
challenge. Then, we describe the general case when the memory
footprint is large and inter-rank communication is required, focus-
ing on techniques to address the Big Data challenge.

4.2 Intra-Rank Workflow and Optimizations

In this subsection, after a detailed description of the architecture and
control flow, we address the Fine-Grained Randomness and Di-
vergence challenge by proposing algorithm-specific data mapping,
bandwidth-aware data mapping, and the Individual Chip Selection
(ICS). Note that we start with the simple case when the data can
be fitted in a single rank to provide a better focus on addressing
the challenge. However, these techniques are applicable for larger
databases as well.

Working Flow: We go through the working flow of MEDAL. Be-
fore execution, the genome data are stored in DRAM with the
address mapping and data mapping to be introduced later. To get
started, the host sends a DDR command of writing a reserved DRAM
mode register. The RCD-side MC catches this command and broad-
casts it to every DB-side accelerator by resetting the reset signal in
the inter-chip data bus. To reads O and Sg from the DRAM, each
DB-side accelerator first sends the read request to the RCD-side
MC through the inter-chip ID/address bus. After scheduling, the
MC sends the C/A signals to the DRAM component through the
original C/A bus, and informs the DB-side accelerator to get ready
via the selection signal in the inter-chip data bus. Finally the DB-
side accelerator receives the data through the inter-chip data bus.
The accelerators keep iterating till the end of search.

We propose an algorithm-specific address mapping to improve
data locality and provide potential for chip-level parallelism as well
as fine-grained memory access, a bandwidth-aware data mapping
to fully leverage memory bandwidth, and ICS to leverage chip-level
parallelism as well as support fine-grained memory access.

Algorithm-Specific Address Mapping: The key idea of proposed
address mapping is to aggregate previous interleaved data during
address mapping to reduce communication and provide potential
of chip-level parallelism as well as fine-grained memory access,
improving bandwidth utilization. Thus, we propose a logic-device
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address mapping scheme to address the challenge of fine-grained
random memory access. The scheme includes two optimizations.
The original address mapping is shown in Fig. 6 (a) with an
example of memory configuration in Table 1. Channel, rank, and
bank indexes are mapped to the lower significant bits of the logic
address, in order to improve memory-level parallelism and effec-
tive bandwidth. However, interleaving data across channels/ranks
destroys locality for NDP and always requires remote data access
to other DRAM components. Instead of interleaving data across
channels/ranks, the optimization-1 as shown in Fig. 6(b), maps the
lower significant bits to column and row addresses to aggregate
adjacent data within a rank locally. Still, another problem remains
that the data are still interleaved across 16 chips in each rank. This
chip-level interleaving means only 64B coarse-grained memory
access is supported within a rank, which cannot be fully utilized in
DNA seeding. Moreover, this prevents different chips from work-
ing in parallel. To solve above challenges, the optimization-2 is
Host Bandwidth - Aware

proposed as shown in Fig. 6(c).
64B Cache Line—
[ Col: Ch: [ Burst: i Width:

I Row: IBank:IRank:I
10 bits | 16 bits | 4 bits | 4 bits | 2 bits | 3 bits XY 2 bits
Coarse-Grained NDP Aware (a)

(Without Chip-Level Parallelism) 64B Burst
Ch: | Rank: [ Bank: | Row: Col: | Burst: el Width:
[2 bitsI4 bit514 bitsI16 bitsI 10 bits | 3 bits EYJIEP 2 bits
Fljne-Gr‘ained NDP Awqre (b)
(With Chip-Level Parallelism) 4B Burst——1
Ch: [ Rank: | Chip: [ Bank:| Row: Col: | Burst: | Width:
[2 bitsI4 bits 14 bitsI4 bitsI16 bits | 10 bits | 3 bits |_2 bits
. . . Fine- —
Potential Chip-Level Parallelism (€) Grained

Figure 6: Algorithm-specific address mapping,.

We consider CS signals as a part of the device address, which is
discussed in detail in ‘Enabling Individual Chip Select’. Originally,
such chip selection address space is embedded in the 9 least signifi-
cant bits of the logic address to access the 64B cacheline. We change
this and map the chip index to more significant bits in the address.
In this manner, adjacent data are stored in chips connected with the
same DB and will not be stored in chips connected with the second
DB until chips connected with the first DB are full. It improves the
task locality so that inter-chip communication is minimized, and
hence improves chip-level parallelism.

Bandwidth-Aware Data Mapping: The key idea of proposed data
mapping is to fully leverage the available memory bandwidth from
different chips through bandwidth-aware data placement. If there
are enough free chips to hold duplicated index data, bandwidth-
aware data mapping will duplicate the index and allow different
copies of the index to be accessed in parallel. If the free chips are not
enough to hold another copy of index data, bandwidth-aware data
mapping will evenly map the index into all chips to fully leverage
available memory bandwidth from those chips.

Enabling Individual Chip Select (ICS): As mentioned in Sec-
tion 3, inter-task divergence prevents different DB-side accelera-
tors working in SIMD style. Although the algorithm-specific ad-
dress mapping provides potential for chip-level parallelism and
fine-grained memory access, the lock-step working pattern in con-
ventional DIMM prevents this from happening. We propose to en-
able the individual CS signal for each DRAM chip to overcome this
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challenge. We first introduce the problem of conventional DIMM,
followed by the description of the proposed technique. Convention
DIMM uses a shared CS signal for all DRAM chips in the same
rank, causing the lock-step working pattern and making DIMM
suffer from divergence in DNA seeding. Fig. 7 (upper part) shows
the DB-side accelerators perform read operations on Chip-0 and
Chip-1 in a lock-step manner. Since the read address is random,
there is a whole tRC cycle between two reads. Even worse, only
50% of the output data (either from Chip-0 or Chip-1) is useful.
We propose the ICS technique, designing dedicated CS wires for
each DRAM chip [33], controlled by the RCD-side MC. A disabled
CS signal blocks the input command and the address, but the DRAM
chip still receives the System Clock (CLK) signal, the Clock Enable
(CKE) signal, and keeps working on previous memory commands.

Without Individual Chip Select (ICS)
cso( High X High ) High )_ High X High
Data 0 Burst (Burst

7
c/A{ACT——(RDJ (PRE]
cs1(_High X High ) High

Data 1 (Burst)

With Individual Chip Select (ICS) |
CSo0

Low T High (&0
Data 0 lMaSA;ask Burst
C/A (RD] (PRE]

Mask Mask
CcS1

Mask
Low Low Low
Data 1 Burst— —

Figure 7: With/Without Individual Chip Select (ICS).
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- : Useless data

l I.‘ Low CS to mask C/A

Fig. 7 (lower part) shows latency and energy saving with the ICS
technique. We first enable Chip-0 and disable Chip-1 with the CS
signals, and then strobe the first activation commend and address.
The first C/A are only taken by the enabled Chip-0. Right after that,
we switch the CS signal, enabling Chip-1 but disabling Chip-0. The
second C/A are then taken by the enabled Chip-1. The disabled
Chip-0 locks out the second activation command but keeps working
on the previous command it took. Similarly, we send read, precharge
command to Chip-0 and Chip-1, respectively, and get data from
them one after another. By adopting proposed ICS technique, the
latency is reduced due to pipelined commands. Furthermore, all
output data are fully useful, from where the energy is saved.

4.3 Inter-Rank Design for Scaling Out

In this subsection, we look at applications with larger memory
footprint, involving multiple ranks.

Besides adopting the intra-rank optimizations described above,
we further propose four methods to reduce the inter-rank commu-
nication overhead, overcoming the big data challenge. First, we will
describe two methods to support the inter-rank scaling out without
modification to the current hardware. Then, we describe how to use
the incoming NVDIMM hardware to address the issue of scalability.
Finally, we propose an algorithm-specific data compression scheme,
which can work with any of these three methods above, reducing
memory footprint and the communication overhead.
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Support Inter-Rank Comm. with CPU-polling: Our goal is to
support the inter-rank scaling out without modifications on either
the host or DIMM hardware. To this end, we leverage the host
CPU to poll all connected DIMMs periodically. If an inter-rank
data access is requested from a rank, the host will coordinate the
data transfer. Note that AIM [10] deals with the similar scaling out
problem by designing an additional bus across DIMMs. In addition
to the design simplicity, our method can achieve 3.43x speedup and
2.89x energy reduction, compared with AIM (details in Section 6).

The CPU-polling based inter-rank communication works in the
following steps, as shown in Fig. 8. @ The host issues a polling
request to a DIMM. @ Address router redirects this polling request
to the region of indicator bits in the Remote Data Buffer (RDB). € If
the bits fetched back to the host show remote data access is needed,
the host issues another request to bring back the information about
the remote data access. @ Address router redirects this request for
remote data access information to the region of remote data info
in the RDB. @ After receiving the information about remote data
access, the host issues memory access request to the destination
DIMM and fetches back the data. @ The host sends the target data
back to the DB that needs the data.

o

DN

(8 LX8

Data Buffer (DB)

Polling Flow
—

™
I
Interrupt Flow — ©':

Figure 8: Work flow of polling-based and interrupt-based
inter-rank communication.

Support Inter-Rank Comm. with Interruption: The polling-
based method suffers from occupying the host and the DDR bus
even without data transfer. Due to the occupancy of the memory
bus during polling, the effective bandwidth for the memory bus
to transfer data is reduced. In addition, since polling operation is
read operation in MEDAL and proposed host-prioritized request
scheduling will be applied, extra latency is needed, leading to perfor-
mance degradation. To solve above issues, we propose to leverage
the interrupt mechanism and the Reserved for Future Use (RFU)
pin in LRDIMM [49], so that requests from the DB-side accelerators
will notify CPU through the RFU pin which will be connected to
the Advanced Programmable Interrupt Controller (APIC).
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Specifically, the interrupt based inter-rank communication works
in following steps, as shown in Fig. 8, @ The DB that needs to
access remote data issues interrupt signal to the host via the RFU pin.
@ The host issues request to the DB to bring back the information
about remote data access. @ Address router redirects the request
for remote data access information to the region of remote data info
in the RDB. @) After receiving the information about remote data
access, the host issues memory access request to the destination
DIMM and fetches the data back. @) The host sends the target data
back to the DB that needs the data.

Host-prioritized Request Scheduling: As mentioned previously,
since both the host-side MC and RCD-side MC can send requests
to the DRAM and the host-side MC is not aware of requests from
the RCD-side MC, timing issue may arise. Request scheduling is
needed to satisfy the DDR timing constraint for the host-side MC.
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Data out of chip 0

: C/A from the host

Close Page Policy - Expected
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Figure 9: Host-prioritized request scheduling.

We choose to implement close-page policy in the host-side MC
and design a host-prioritized request scheduling for the RCD-side
MC. As shown in Fig. 9, with close-page policy, the host-side MC
will expect its memory requests to the DRAM to be back after
trReD + tcas. However, because the RCD-side MC also issues mem-
ory requests to the DRAM, without specific scheduling, the latency
for memory requests from the host-side MC is unpredictable and
there will be issues with the DDR timing constraint. To address this
issue, RCD-side MC follows host-prioritized request scheduling to
serve memory requests from the host as soon as the DRAM finishes
its current task. For the host-side MC, we modify its DDR timing
parameters, i.e., trcp and tc s, so the host-side MC has a longer
expectation of the data return time to allow the RCD-side MC to
be able to schedule those requests.

Reduce Inter-Rank Traffic with NVDIMM: Both the polling-
based and the interruption-based techniques serve the goal of sup-
porting the inter-rank communication. Further, we propose the
NVDIMM-P approach to eliminate the inter-rank communication.

Different from NVDIMM-F/N, which either requires pairing a
storage DIMM near the memory DIMM or only leverages Non-
Volatile Memory (NVM) on DIMM for backup purpose. NVDIMM-P
integrates both DRAM and NVM on the same DIMM and is close to
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release [44, 48]. Alongside DRAM, NVM on NVDIMM-P can also be
memory-mapped, e.g., Intel Optane Technology [24]. With much
higher capacity, NVM can act as a near-memory cache. Different
from NVDIMM-F/N, in NVDIMM-P, the host and the DB can have
byte accessibility to both the DRAM and the NVM.

We leverage NVMs, which can be up to 10x denser than DRAM [53],

on NVDIMM-P to eliminate the inter-rank traffic. Specifically, we
place index data used to be stored in remote ranks into the NVM
locally. The work flow is described below, as shown in Fig. 10 (a).
@ DRAM will be accessed if the target data is within DRAM. @
Otherwise, the memory request will go to the NVM. NVDIMM-P
based MEDAL converts remote memory accesses to remote ranks
into local memory accesses to on-DIMM NVM.

Reduce Memory Footprint and Comm. with Data Compres-
sion: To reduce the memory footprint and communication, we
propose an algorithm-specific data compression. Note that proposed
data compression can work together with all designs described
above and provide additional benefits.

(1) Counters as the key data structure: During DNA seeding, the
occurrence array Og(x, i) needs to be accessed frequently. The entry

Og(x, i) is the occurrence of a nucleotide x before the i’ h symbol
of Bg. An example is shown in Fig. 10 (b) and (c), there are 2 A, 1
T, 1C, and no G in the first 4 nucleotides in Bg (AATC). Ogr(4, 3),
ORr(T,3), Ogr(C,3), and Og(G, 3) are 2, 1, 1, and 0, respectively. To
summarize, the occurrence array Og(x, i) is an array of counters.

NVDIMM (BIAIATCGGLGAG. ITIGCAGAACGT )
(b) Bucket 0 Bucket 1
( TargetO, Orin BWA-MEM__\, ™\
(")ER';\ 5 g g 0(4,0):1| aT[ O(A, 16):5
TTATZI0r0T0]| Ofk0:0| [ o 16):4] " |-
g T i ; 3,2 q/[@O)OfA 0(C,16):3
| o v 2 ) £ O Al TR
[(Rank __==1" | 32bits  32bits 2 bits O(A,22)=0(A, 16)+3=8
(a) (c) (d)
( Fine-Grained Bucket in MEDAL 0
Row 0: | Row Head Bucket| Compressed Bucket | ...| Compressed Bucket
O(A,m):32 b| ACT | O(A,m,32):11 b] CTA| | O(A,m,n):11 b] GCT
Row 1:[O(T.m):32 b | GGT[O(T.m.32):11 b| *CT| ... [O(T.m.n):71 b TA
O(C.m):32 D] ..... [O(C.m,32):11Db] . O(C.m.n):71 b

\Row 2: | Row Head Bucket Compressed Bucket ...| Compressed Bucket
O(G,m)=m-O(A,m)-O(T,m)-O(C, m)(e)O(A ,m+36)= O(A m)+0O(A,m,32)+1
Figure 10: (a) Processing within NVDIMM. (b) Burrows-
Wheeler Transform of the reference sequence. (c) The target
O-table. (d) Bucket structure in BWA-MEM. (e) Fine-grained
bucket in MEDAL with two types of buckets, i.e., row head

bucket and compressed bucket.

(2) Bucket data structure in software: As shown in Fig. 10 (c), for
human genome, each entry in Og(x, i) is 32-bit, the size of Og(x, i)
is 4 X 32/2 = 64X larger than the size of Bg. To reduce the memory
footprint, the widely used software, i.e., BWA-MEM, leverages a
data structure called ‘Bucket’. A bucket consists of a bucket head
and a bucket body. The bucket head is a checkpoint, storing the
up-to-date values of Og(x, i). BR is stored within the bucket body.
In this manner, when an entry in Og(x, i) is needed, BWA-MEM
will first locate the target bucket. Then, the values of Ogr(x, i) in the
bucket head and nucleotides in Bg within the bucket body will be
read out. Finally, the values of target Or(x, i) can be reconstructed
with the up-to-date values in the checkpoint and Bg via counting.
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As shown in Fig. 10 (d), with this bucket structure, only values of
OR(x, i) in the bucket head are 32-bit, nucleotide in the bucket body
is only 2-bit.

(3) Compressed fine-grained bucket: Observing that the precision of
data within the bucket head is much higher than that of data in
the bucket body, the key idea of data compression is to reduce the
precision of data in the bucket head via fine-grained checkpoint.
Compared with BWA-MEM, instead of storing global checkpoints,
fine-grained checkpoints are used with proposed data compression.

There are two types of buckets with proposed data compression,
i.e., row head bucket and compressed bucket. As shown in Fig. 10
(), with data compression, each DRAM row begins with a row head
bucket, containing a global checkpoint with up-to-data values for
ORg(x, ). The row head bucket is followed by many compressed
buckets, which contains a fine-grained, local checkpoint for only
OR(x, i) in this row, meaning much lower precision is enough for
data in the bucket head of compressed bucket.

With proposed data compression, MEDAL first accesses the
bucket head in the row head bucket. Then, it retrieves the tar-
get compressed bucket. Next, the target Ogr(x, i) can be derived by
adding the local counters from the compressed bucket with the
global counters in the row head bucket. Further, in the bucket head,
we only store 3 values, the last value can be derived by subtraction.

5 DISCUSSION

Extension to Other Applications: MEDAL solve the problem of
fine-grained random memory access. Our future work will extend
MEDAL to other applications by replacing the logics in the DBs with
general purpose processors or FPGAs. We expect applications such
as graph processing [4], database searching [31], and sparse matrix
computing [41] will also benefit from the proposed techniques.

Interface Choice: Similary to [6, 50, 57], we choose DDR as the
interface for MEDAL due to two reasons: First, with DDR as the
interface, we can configure the DIMMs into regular memory when
no DNA seeding is performed, providing more flexibility; Second,
DIMM based approach can be easily scale out. Note that the op-
timizations/techniques proposed can be easily applied to build
PCle/IO based accelerator.

System Integration and User Interface: MEDAL does not re-
quire modification of either the DRAM components or the CPU
chip. MEDAL connects to the system with standard DDR bus, i.e,
with DIMM slots. As described in Section 4.2, the host controls
MEDAL with memory instructions.

To this end, the software stack needs modifications. Similar to
other NDP/PIM solutions [4, 54, 57], we will need the OS to re-
serve the memory space in DIMMs to MEDAL, and provide I/O
mapping for these space, so that the user can access the space with
the sense of their physical address. Memory channels performing
DNA seeding will be dedicated to this task. The host can work on
other tasks with data mapped to other memory channels. The pro-
gramming model of MEDAL is similar to CUDA. We will provide
an Application Programming Interface (API) for programmers to
control the application memory space allocation for MEDAL and
a memcpy function to copy data between the user memory space
and the application memory space of MEDAL. With the data ready
in the memory space of MEDAL, users can launch the accelerator
to perform DNA seeding.
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Figure 11: Performance improvement and energy reduction

Table 1: Configure of the Server and MEDAL

Configuration of the Server
CPU Model Intel Xeon E5-2680 v3
CPU Clock Frequency (GHz) 2.50
Memory Capacity (GB) 400
L1 (KB)/L2 (KB)/L3 (MB) Cache 64/ 256/ 32
Configuration of MEDAL
Memory Capacity (GB) 384
Memory Channels 4
DIMMs per Memory Channels 3
Ranks per DIMM 4
DRAM Chips per Rank 16
DRAM Chips per DB 2
Parameters of DDR4 DRAM
Capacity 4Gb x 4
Bank Groups 2
Banks per BankGroup 2
Clock Frequency (1/tCK) 1,200MHz
tRCD-tCAS-tRP (ns) 16-16-16

6 EXPERIMENTAL RESULTS

The experimental setup, results, and analysis of the experimental
results are presented in this section.

6.1 Experimental Setup

Configuration of the Baseline: The baseline for FM-index based
DNA seeding and Hash-index based DNA seeding are BWA-MEM
[34] and SMALT [46], respectively, running in a server with an
Intel Xeon E5-2680 v3 CPU. The detailed configuration information
of the server is shown in Table 1.

Configuration of MEDAL: Ramulator [30] is modified to build a
cycle-accurate simulator for MEDAL. The configuration of MEDAL
is shown in Table 1. The timing, energy, and area parameters of
the DB customized logics are estimated by pre-layout Design Com-
piler [51] with 28 nm technology[1]. We set timing constraint as
1.2GHz using tt design corner. Since it is a very simple circuit with
lots of design slacks, we expect similar post-layout results. Those
parameters of customized logics in DB are shown in Table 2. Since
the address router only involves a few comparators to decide which
components the read command should go to, it’s not included in

(d)

of MEDAL and different NDP accelerators for FM-index based
DNA seeding. Results are normalized to that of a 16-thread CPU. (a). Intra-rank performance improvement. (b). Intra-rank
energy reduction. (c). Inter-rank performance improvement. (d). Inter-rank energy reduction.
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Table 2: Design Parameters of Customized Logics in DB

Module Latency (Cycles) | Power (mW) | Leakage (uW) | Area (umz)
Addr Trans 20 4.05 18.39 4600.35
SMEM 1 6.00 13.46 3325.45
Suffix 5 0.52 4.31 1015.59

Table 2. The timing parameters of DRAM chip used in our experi-
ments are shown in Table 1. The energy consumption of DRAM is
derivated by feeding the command trace of DRAM from Ramulator
to DRAMPower [8]. We use the parameters of energy for datapath
from CACTI-IO [27]. The timing and energy parameters for NVM
in NVDIMM are estimated with Intel’s Optane memory [23, 25].
The correctness of our simulation is guaranteed, since the hardware
design follows the same (1) computing arithmetic, (2) execution or-
der, and (3) data access order as the software. Our simulator ensures
correctness by using traces from the software.

NDP Accelerators for Comparison: We modified Ramulator as
well to build cycle-accurate simulators for Chameleon and AIM. We
use the same memory configuration for those two accelerators. For
Chameleon, because it doesn’t support any kind of communication,
we add polling-based communication mechanism to it.
Databases: Ten different genomes with different sizes from 1.59
billion bases to 27.60 billion bases from NCBI [43] are used in our
experiments. The name of those ten databases are shown in Fig. 11.
We name them as DB1 to DB10 for short in other figures.

Query Sequences: Ten million query sequences with length of
101 were extracted exactly from corresponding genomes.

6.2 Intra-Rank Evaluation

For small databases which can be fitted in a single DRAM rank, the
performance and energy-efficiency comparisons between MEDAL
and other DIMM based NDP accelerators for DNA seeding are
shown in Fig. 11 (a) and Fig. 11 (b). All results are normalized to
the that of the 16-thread CPU.

For intra-rank tasks, with only proposed address and data map-
ping, MEDAL outperforms the 16-thread CPU, Chameleon, and AIM
by 19.62x, 3.91x, and 1.75x. Then, ICS improves the performance of
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Figure 12: (a). Energy breakdown of MEDAL. (b). Bandwidth
utilization of different platforms.

MEDAL by 1.92x via enabling efficient fine-grained memory access
and chip-level parallelism. Further, the algorithm-specific data com-
pression improves the performance of MEDAL by 1.85x, because it
effectively reduces the memory footprint and leaves more space for
data mapping to utilize. Putting all proposed techniques together,
MEDAL outperforms the 16-thread CPU, Chameleon, and AIM by
69.69x, 13.90x, and 6.23x, respectively.

As comparison, AIM performs coarse-grained memory access
without extra memory bandwidth. Chameleon performs fine-grained
memory access. However, most data fetched out of memory in
Chameleon is useless due to the inter-task divergence of DNA seed-
ing and the SIMD-style processing in Chameleon. Also, there is
no chip-level parallelism in Chameleon. The good performance
of MEDAL, compared with others, comes from its full parallelism,
i.e., both rank-level and chip-level parallelism, and its fine-grained
memory access with high bandwidth utilization.

Energy-wise, MEDAL reduces energy consumption of the 16-
thread CPU, Chameleon, and AIM by 426.27x, 8.54x, and 3.95x,
respectively. High bandwidth utilization and short processing time
contribute to its the high energy efficiency.

6.3 Inter-Rank Evaluation

For databases that cannot be fitted within a single rank and need
inter-rank communication, similarly, the comparisons are shown
in Fig. 11 (c) and Fig. 11 (d).

For inter-rank tasks, on average, polling-based design outper-
forms the 16-thread CPU, Chameleon, and AIM by 9.97x, 3.57x, and
1.35x, respectively. Interrupt-based design outperforms the above
platforms by 14.81x, 5.31x, and 2.01x, respectively. NVDIMM-based
design outperforms them by 16.09x, 5.76x, and 2.19x, respectively.

Compared with polling-based design, interrupt-based design has
better performance due to two reasons. First, interrupt-based design
doesn’t need to occupy the memory channel for polling operation,
meaning no negative effect on data transfer. Second, polling opera-
tion is read operation and due to proposed host-prioritized request
scheduling, extra latency is needed for read operation from the
host, which will degrade the performance. Polling-based design, on
the other hand, requires less modifications. For example, it doesn’t
require to connect RFU to APIC in the host and add hardware in-
terrupt vector. The superior strength of NVDIMM based approach

596

=20 Evaluation of Data Compression 180
8 == [ndex w/o Compression 175 S
<60 | E=mIndex w/ Compression £
3 =/v=Data w/o Compression 170 Sa
& 40 | ~C—Data w/ Compression lgg =5
%20 l e
) 155 &
k-]
£ 0 =L em me me W= . I 150 8
DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10
Databases
(@)
- 80 Sensitivity Study about Read Length
8 S —Intra-Rank: Homo sapiens (human)
S £ 60 | —O—Inter-Rank: Pseudotsuga menziesit
E 240 D—D—_—_’—D———_D_—’__D
o 2
£ 520 o- ~O— OO
SE o
= 25 50 100 200 400
Read Length

(b)
Figure 13: (a). Evaluation of data compression. (b).Sensitivity
study about read length.

is that we can use off-the-shelf NVDIMM to deal with the issue of
communication without occupation of the memory channel and it
provides very good performance.

Energy-wise, polling-based design reduces energy consumption
of the 16-thread CPU, Chameleon, and AIM by 185.95x, 4.54x, and
1.97x, respectively. Interrupt-based design reduces energy consump-
tion of above platforms by 251.08x, 6.13x, and 2.66x, respectively.
NVDIMM-based design reduces energy consumption of above plat-
forms by 164.18x, 4.01x, and 1.74x, respectively.

6.4 Energy Breakdown

The energy breakdown for MEDAL is in Fig. 12 (a). For all designs,
computation consumes less than 1.0% energy. Because DNA seeding
only involves simple integer operations, customized lightweight log-
ics will be much more efficient. As for communication, it consumes
10.0% energy at most, which means our communication mech-
anisms are energy-efficient. For polling-based design, interrupt-
based design, and NVDIMM-based design, DRAM consumes 95.4%,
89.9%, and 48.9% energy, respectively. DRAM’s domination on the
energy consumption is due to the energy-efficient lightweight log-
ics and communication mechanisms. For NVDIMM-based approach,
NVM consumes 48.2% energy on average. The portion of energy
consumed by NVM grows with the size of databases, because the
larger the database, the higher the possibility that memory requests
will go to NVM.

6.5 Bandwidth Utilization

We define bandwidth utilization as the ratio between useful data
and the actual amount of data fetched out the memory. As shown
in Fig. 12 (b), on average, MEDAL has the highest bandwidth uti-
lization ratio - 82.81%, while Chameleon has the lowest bandwidth
ratio - only 10.29%.

The high bandwidth utilization ratio of MEDAL comes from
its fine-grained memory accessibility. Proposed address mapping
provides potential for fine-grained memory access and ICS makes
it reality. As comparison, coarse-grained memory access lags the
bandwidth utilization ratio of AIM. For Chameleon, since there is
no optimization for non-SIMD processing, data from most DRAM
chips become useless, reducing its bandwidth utilization ratio.
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Figure 14: Performance improvement (a) and energy reduction (b) of MEDAL and different NDP accelerators for Hash-index
based DNA seeding. Results are normalized to that of a 16-thread CPU.

6.6 Performance of Data Compression

As shown in Fig. 13 (a), data compression reduces the sizes of
DNA indexes for 48.9% on average, leading to reduction in memory
footprint and providing more space for data mapping to utilize. In
addition, the amount of data needs to be fetched each iteration is
also reduced due to the smaller size of compressed bucket. Thus,
there is no extra memory accesses and performance degradation
after data compression.

6.7 Sensitivity Study about Read Length

Reads with length of 101 are typical with the next generation se-
quencing technology [12, 18], thus we choose 101 as the representa-
tive length. In fact, MEDAL can support reads with different lengths.
The experimental results on an intra-rank case and an inter-rank
case with reads with various length is in Fig. 13 (b). For the intra-
rank design, MEDAL with interrupt provides higher speedup (over
CPU) for longer reads due to benefits from more memory traffic.
For the inter-rank design, the performance is stable with respect to
the read length, because communication compensates the benefits
from more memory traffic. When the read length is even longer,
in which cases other algorithms are used, e.g., D-SOFT in Darwin
[52], we can change customized logics inside the DBs to match the
algorithms. We expect similar performance gain, since the seeding
of ultra-long read is still memory bound, which MEDAL is good at.

6.8 Hash-index based DNA Seeding Algorithm

For Hash-index based DNA seeding, the experimental rsults are
shown in Fig. 14 (a) and Fig. 14 (b). The experimental results show
that MEDAL outperforms the 16-thread CPU, Chameleon, and
AIM by 28.60x, 4.33x, and 2.90x, respectively. About the energy-
efficiency, MEDAL outperforms above platforms by 668.95x, 2.22x,
and 2.27x, respectively.

7 RELATED WORK

This section introduces related work of MEDAL.
Accelerator for DNA Seeding: Most previous work proposes
their designs with FPGA [9, 14-16] and GPU [38, 40] to deal with
DNA seeding. Darwin [52] and GenAx [18] are two accelerators
for DNA alignment based on ASIC design and automata. Both of
them majorly focus on DNA extension. For the seeding part, both of
them use hash-index, instead of FM-index, while MEDAL majorly
focuses on FM-index and can deal with hash-index as well.
Although above architectures have enough computation capa-
bility, data movement is a serious issue. Moreover, as mentioned
before, DNA seeding is bounded by memory, there is limited im-
provement space for approaches which only optimize computation.
In contrast, MEDAL focuses on memory and performs computation
near the data.
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NDP Solutions for DNA Seeding: MPU-BWM leverages HMC

to accelerate DNA seeding by placing a RISC-V core in the logic

die [55]. However, 3D-stacked memory is not cost-efficient, has lim-
ited capacity [47], and doesn’t provide extra internal bandwidth [11].
AIM [10] attaches FPGAs and dedicated buses to DIMMs to accel-
erate DNA seeding. However, AIM doesn’t leverage rank-level par-
allelism in DIMMs, leading to limited performance improvement.
Compared with AIM, MEDAL specifically optimizes fine-grained

memory access with address mapping, data mapping, and individ-
ual chip selection, providing more bandwidth and parallelism. Fur-
thermore, MEDAL explores four novel approaches to enhance the

scalability. Chameleon [6] provides a general-purpose, SIMD-style,
DIMM based NDP architectures. However, because Chameleon

focuses on SIMD-style processing, even after a communication

mechanism is added, it’s not good at DNA seeding. MEDAL out-
performs AIM and Chameleon by 3.43x and 8.37x on average. EMU

Technology also has the potential to accelerate DNA seeding by

coupling lightweight logics to memory and migrating threads [13].
PIM Solutions for DNA Seeding: UPMEM modifies the DRAM

die to accelerate DNA alignment [54, 57]. RADRA [21] and PRinS [29]
leverage Resistive Random Access Memory (ReRAM) to perform

DNA seeding and Seed Extension. Above platforms either require

modifications to the DRAM die or are long-term architecture. In

contrast, MEDAL leverages off-the-shelf DRAM components and is

a practical approach.

8 CONCLUSION

To accelerate DNA seeding cost and energy efficient, we propose
MEDAL, a practical and energy efficient NDP architecture. For
small databases, we propose the intra-rank design, together with an
algorithm-specific address mapping, bandwidth-aware data map-
ping, and Individual Chip Select (ICS) to address the challenge of
random memory access, improving parallelism and bandwidth uti-
lization. Furthermore, to address the challenge of scalability, we
propose three inter-rank designs (polling-based communication,
interrupt-based communication, and NVDIMM-based solution). In
addition, we propose an algorithm-specific data compression tech-
nique to reduce memory footprint, introduce more space for the
data mapping, and reduce the communication overhead. Experimen-
tal results show that for three proposed designs, on average, MEDAL
can achieve 30.50x/8.37x/3.43x speedup and 289.91x/6.47x/2.89x en-
ergy reduction when compared with a 16-thread CPU baseline and
two state-of-the-art NDP accelerators, respectively.
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