Future Generation Computer Systems 95 (2019) 392-403

Contents lists available at ScienceDirect x =
FIGICIS!

Future Generation Computer Systems =
journal homepage: www.elsevier.com/locate/fgcs e

LADRA: Log-based abnormal task detection and root-cause analysisin M)

Check for

big data processing with Spark™
Siyang Lu®*, Xiang Wei*P, Bingbing Rao?, Byungchul Tak¢, Long Wang ¢, Ligiang Wang **

4 Department of Computer Science, University of Central Florida, Orlando, FL, USA

® School of Software Engineering, Beijing Jiaotong University, China

¢ Department of Computer Science and Engineering, Kyungpook National University, Republic of Korea
4 IBM T.J. Watson Research Center, Yorktown Heights, NY, USA

HIGHLIGHTS

An abnormality detection tool is proposed for log analysis, named LADRA.

LADRA's detection approach can accurately locate where and when abnormal tasks happen.

Effective features and abnormal factors are extracted in exposing the degree of abnormality from log analysis.
Root causes of detected abnormal tasks are analyzed by GRNN based neural network model.

The results are reasonable and outperform existing methods in precision.

ARTICLE INFO ABSTRACT

Article history:

Received 1 April 2018

Received in revised form 8 November 2018
Accepted 6 December 2018

Available online 9 January 2019

As big data processing is being widely adopted by many domains, massive amount of generated data
become more reliant on the parallel computing platforms for analysis, wherein Spark is one of the most
widely used frameworks. Spark’s abnormal tasks may cause significant performance degradation, and it
is extremely challenging to detect and diagnose the root causes. To that end, we propose an innovative
tool, named LADRA, for log-based abnormal tasks detection and root-cause analysis using Spark logs. In
Keywords: LADRA, a log parser first converts raw log files into structured data and extracts features. Then, a detection
Spark method is proposed to detect where and when abnormal tasks happen. In order to analyze root causes

Log analysis we further extract pre-defined factors based on these features. Finally, we leverage General Regression
Abnormal task Neural Network (GRNN) to identify root causes for abnormal tasks. The likelihood of reported root causes
Root cause

are presented to users according to the weighted factors by GRNN. LADRA is an off-line tool that can
accurately analyze abnormality without extra monitoring overhead. Four potential root causes, i.e., CPU,
memory, network, and disk /0, are considered. We have tested LADRA atop of three Spark benchmarks
by injecting aforementioned root causes. Experimental results show that our proposed approach is more
accurate in the root cause analysis than other existing methods.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Parallel computing frameworks that follows the MapReduce [1]
paradigm are widely-used in real-world big data applications to
handle batch and streaming data. Among these, Spark [2] has
recently gained wide-adoption. Different from the Hadoop frame-
work [3], Spark supports a more general programming model,
in which an in-memory technique, called Resilient Distributed
Dataset (RDD) [4], is used to store the input and intermediate data
generated during computation stages.

¥ This work was supported in part by NSF-1836881.
* Corresponding authors.
E-mail addresses: siyang@knights.ucf.edu (S. Lu), lwang@cs.ucf.edu (L. Wang).

https://doi.org/10.1016/j.future.2018.12.002
0167-739X/© 2018 Elsevier B.V. All rights reserved.

While Spark is highly successful for data analytics, it could
suffer from significant performance degradation under the exis-
tence of abnormal tasks. A task is considered abnormal if it shows
significant delay in comparison with other tasks within the same
stage. A few causes of such performance degradation can be due
to ineffective coding, resource contention, and data locality prob-
lems [5-8].

To mitigate such performance problems, Spark employs a spec-
ulation mechanism [9] to detect stragglers during runtime, in
which slow tasks are re-scheduled after marked as stragglers.
Spark checks and performs speculative execution of tasks till a
specified fraction (defined by spark.speculation.quantile,
which is 75% by default) of tasks is completed. Spark identifies
stragglers by checking whether the running tasks are much slower

S. Lu, X. Wei, B. Rao et al. / Future Generation Computer Systems 95 (2019) 392-403 393

(e.g., 1.5 times, by default) than the median of all successfully com-
pleted tasks in the current stage. However, speculation mechanism
cannot detect all stragglers and does not provide the root causes
of degraded performance. In addition, monitoring tools are usually
heavy-weight and cause significant overhead, which may impact
the performance of Spark even for normal executions. Therefore,
abnormal task detection and root cause analysis still remain grand
challenges.

This paper proposes LADRA, an off-line tool for log-based
abnormal tasks detection and root-cause analysis for big data pro-
cessing with Spark. LADRA detects abnormal tasks by examining
features extracted from logs and analyzes them to find root causes
via a neural network model. Specifically, our proposed approach
adopts a statistical spatial-temporal analysis for Spark logs, which
consists of Spark execution logs and JVM garbage collection (GC)
logs related to resource usage. LADRA's abnormal task detection
method is more effective than Spark speculation, as all Spark stages
are considered and abnormal tasks happened in any life span could
be detected. Moreover, Spark’s report could be inaccurate because
Spark uses only fixed amount of finished task duration to speculate
the unfinished tasks. Our approach reports the likelihood of each
potential root cause, which can be leveraged by users to tune
resource allocations and reduce the impact of abnormal tasks. For
instance, in one of our experiments, LADRA reports that abnormal
tasks are caused 80% by network issues and 20% by CPU issues on
victim nodes, users may check the network condition first, then
tune CPU usage accordingly. There are four major root causes for
task abnormalities: CPU, memory, network, and disk I/0, all of
which are considered by this paper.

We make the following contributions in this work.

e An abnormality detection method is proposed that can ac-
curately locate where and when abnormal task executions
happen by analyzing Spark logs.

e 22 log features and 7 factors are identified to be critical in
exposing the degree of abnormality from the analysis of Spark
logs and GC logs.

e A neural network-based analysis method is proposed, which
is more accurate and provides the ranked likelihood for true
root causes in order to better understand the performance
problems and to tune the Spark settings.

The rest of the paper is organized as follows. Section 2 introduces
the background knowledge of Spark and surveys the related work.
Section 3 gives an overview of our approach. Section 4 illustrates
the feature extraction from Spark logs and abnormal task detection
based on these features. Section 5 presents factor synthesization
for root cause analysis. Section 6 describes the details of root cause
analysis using GRNN. Section 7 shows our experimental results
by evaluating our approach on several widely used benchmarks.
Section 8 summarizes our method and discusses its limitations and
future work.

2. Related work and background

In this section, we give brief background of Spark scheduling
mechanisms and its log structures. Then, we review related work
in the area of the root cause analysis for big data platforms.

This paper significantly extends our previous paper [10], a sta-
tistical method for detecting task abnormalities and analyzing
root causes. Compared with our prior work, the factor extraction
is extended and the weighted statistical method for detection is
improved, which are presented in Section 6.1. Our previous ap-
proach diagnoses root causes by applying weights to each factor.
Such rule-based weight calculation approaches may cause false
positives. Moreover, due to the complex relationships between
hardware and software and between input and output, we believe

that a non-linear model can do a better job. As we stated before,
the root cause detection is better to be treated as a regression
rather than a classification problem. Hence, in this paper, the most
significant extension is that we propose a new General Regression
Neural Network (GRNN) as a better choice, which can avoid the
ad-hoc factor selection and weight computing.

2.1. Spark architecture and its log structure

Spark architecture: Apache Spark is an in-memory parallel
computing framework for large-scale data processing. Moreover,
to achieve the scalability and fault tolerance, Spark introduces
resilient distributed dataset (RDD) [4], which represents a read-
only collection of objects partitioned across a set of machines
that can be rebuilt if a partition is lost. As shown in Fig. 1, Spark
cluster consists of one master node and several slave nodes, named
as workers, which may contain one or more executors. When a
Spark application is submitted, the master will request computing
resource from the resource manager based on the requirement
of the application. When the resource is ready, Spark scheduler
distributes tasks to all executors to run in parallel. During this
process, the master node will monitor the status of executors and
collect results from worker nodes.

Spark logs include execution logs and JVM GC logs. Spark driver
(master node) collects the information of all executors (i.e., driver
log), and each executor records the status of tasks, stages, and jobs
within the executor (i.e., execution log). Besides these logs, Spark
JVM Garbage Collection (GC) logs are also used by our analysis,
which are the output from two output channels, stderr and
stdout. When an application is finished, we collect all Spark logs
and aggregate them into two different categories: execution logs
and GC logs. An example is shown in Fig. 2.

Spark uses “log4j", a JAVA logging framework, as its logging
framework. Spark users can customize “log4j" by changing config-
uration parameters, such as log level, log pattern, and log direction.
In this paper, we use the default configurations in “log4j". As shown
in Fig. 2, each line of Spark execution log contains four types of
information: timestamp with ISO format, logging level (e.g., INFO,
WARNING, or ERROR), related class (which class prints out this
message) and message content. A message content contains two
main kinds of information: constant keywords (e.g., Finished
task in stage TID in ms on), and variables (e.g, 1.0 1.0
47 14075..).

During the execution of a spark application, [VM monitors
memory usage and outputs its status to GC logs when garbage
collection is invoked. GC logs report two kinds of memory usage:
heap space and young generation space, where young generation
space is a part of heap memory space to store new objects. Fig. 3
shows an example of Spark JVM GC log, where “Allocation Failure"
invokes this GC operation, and “PSYoungGen” shows the usage of
young generation memory space. In “95744K->9080K(111616K)",
the first numeric is the young space before this GC happens, the
second one is the young space after this GC, and the last one is the
total young memory space. Similarly, “95744K->9088K(367 104K))
illustrates heap memory instead of young generation space.

2.2. Related work

2.2.1. Root causes

There are several categories of the root causes for the abnormal
performances. Ananthanarayanan et al. [11] identify three cate-
gories of root causes for Map-Reduce outliers: the key role cause is
machine characteristics (resource problems), the other two causes
are network and data skew problem. Ibidunmoye et al. [12] depict
that four root causes may cause bottlenecks, which are system re-
source, workload size, platform problems, and application (buggy

394 S. Lu, X. Wei, B. Rao et al. / Future Generation Computer Systems 95 (2019) 392-403

Master Worker 1 Worker 2 Worker 3 Worker n
Driver Executor 1 Executor 2 Executor 3 Executor n
Execution log e |
Comsen ||| sen || dheete

Spark
Execution log

Spark
Execution log

Spark Spark
Execution loj | Execution log

Spark GC log ‘ Spark GC log

Spark GC log I Spark GC log

Spark Cluster
Spark Log

Aggregated
Spark Execution
log

Aggregated
Spark GC
log

Fig. 1. Spark framework and log files.

17/02/22 21:04:02.259 INFO

ANY, 5900 bytes)
17/02/22 21:04:02.259 INFO

hostname: 10.190.128.101.
17/02/22 21:04:02.276 INFO

(1/384)

TaskSetManager: Starting task 12.0 in stage 1.0 (TID 58, 10.190.128.101, partition 12,

CoarseGrainedScheduler Backend$DriverEndpoint: Launching task 58 on ezxecutor id: 1

TaskSetManager: Finished task 1.0 in stage 1.0 (TID 47) in 14075 ms on 10.190.128.101

Fig. 2. An example of Spark execution log.

[GC (Allocation Failure)

[PSYoungGen: 95744K->9080K(111616K)] 95744K->9088K(367104K), 0.0087250 sccs]
[Times: user=0.03, sys=0.01, real=0.01 secs]

Fig. 3. An example of Spark garbage collection (GC) log.

codes). Garbageman et al. [13] analyze around 20-day cloud center
data and summarize that most common root cause in cloud center
of abnormal occurrence is server resource utilization, and data
skew problems only take 3% of total root causes. According to the
above studies on real world experiment, the primary root causes
of abnormal tasks are machine resources, which includes CPU,
memory, network, and disk [/0. Moreover, the mentioned resource
root causes mainly impact the performance of CPS computation
layers. Therefore, in our paper, we consider the only the four main
root causes, and ignore data skew and ineffective code problems.

2.2.2. Existing approaches

Statistical and machine learning techniques are promising ap-
proaches in the root causes analysis, and their combination has
been widely used in the parallel computing area to solve per-
formance degradation problem caused by abnormal executions.
Abnormality detection and analysis using this approach can be
categorized largely into online, offline, and combination of online
and offline approaches.

Online detection: The online detection strategy is invoked dur-
ing the executions of applications. For example, both Spark and
Hadoop provide online “speculation” [9], which is a built-in com-
ponent for detecting stragglers statistically. Although it can detect

stragglers during runtime, it does not offer the root causes. In addi-
tion, the speculation is often inaccurate, i.e., it may raise too many
false alarms [14]. Chen et al. [15] propose a tool called Pinpoint
that monitors the execution and uses log traces to identify the fault
modules in J2EE applications via standard data mining approaches.
A stream-based mining algorithm for online anomalies prediction
is presented by Gu et al. [16]. Ananthanarayanan et al. [11] design
a task monitoring tool called Manrti, which can cut outliers and
restart tasks in real time according to its monitoring strategy.
Offline detection: Nevertheless, monitoring data may not be
always accessible from the user side, due to the fact that the moni-
toring tools are hard to install and tune. Hence, some studies focus
on the off-line strategy by analyzing logs instead of monitoring [17,
18]. For example, Tan et al. [19] introduce a pure off-line state
machine tool called SALSA, which simulates data flows and control
flows in big data systems with statistical method, and leverages
Hadoop's historical execution logs. Then, Tan et al. [20] build up a
performance tool to visualized MapReduce which based on SALSA.
However, those state machine based statistical approaches cannot
extract feature by itself. Chen et al. [21] propose a self-adaptive
tool called SAMR, which adds weights for calculating each task
duration according to historical data analysis. Xu et al. [22] use
an automatic log parser to parse source code and combine PCA
to detect anomaly, which is based on the abstract syntax tree

S. Lu, X. Wei, B. Rao et al. / Future Generation Computer Systems 95 (2019) 392-403 395

(AST) to analyze source code and uses machine learning to train
data. Qi et al. [23] leverage Classification and Regression Tree
(CART) to analyze straggler root causes by using Spark event logs
and monitoring data (hardware metrics such as CPU status, disk
read/write rate and network send/receive rate) which collected by
synchronous sampling tool. However, our approach is a pure off-
line method and only leverage Spark log to analyze abnormal tasks.
Furthermore, we prefer using probabilistic output to determine the
degree and category of abnormality, rather than considering the
problem of classifications of positive and negative samples that
CART did.

Combination of online and offline detection: In order to achieve
higher accuracy, the offline strategy can be combined with the
online one. Garraghan et al. [13] propose an empirical approach
to extract execution paths for straggler detection by leveraging an
integrated offline and online model. Some machine learning ap-
proaches are also leveraged in predicting system faults using logs
and monitoring data, which are similar to the root cause analysis
problem. Fulpet al. [24] leverage a sliding window to parse system
logs and predict failures using SVM. Yadwadkaret al. [25] propose
an offline approach that works with resource usage data collected
from the monitoring tool Ganglia [26]. It leverages Hidden Markov
Models (HMM), which is a liner machine learning approach. More-
over, there are some off-line approaches that analyze both log
files and monitoring data to identify abnormal events. Aguilera
et al. [27] propose two statistical methods to discover causal paths
in distributed system by analyzing historical log and monitoring
data from the traces of applications. The most closely related work
to our approach is BigRoots [28], which detects stragglers by Spark
speculation and analyzes the root causes by extracted features. It
leverages experience rule to extract features for each task from
application log and monitoring data. However, the threshold in
Spark speculation is not proper to detect abnormal tasks. In addi-
tion, BigRoots considers only the features for each individual task,
which cannot capture the status change of the cluster, thus such a
rule-based method is very limited. In our method, we choose the
combination of features to create the factors presenting the status
change of the whole cluster, and a GRNN technique is leveraged
instead of a rule-based statistical approach to avoid the limits.

3. Overview of LADRA’s approach

Although Spark logs are informative, they lack direct informa-
tion about the root cause of abnormal tasks. Thus, simple keyword-
based log search is ineffective for diagnosing the abnormal tasks,
which motivates us to design an automatic approach to help users
detect abnormal tasks and analyze their root causes. An overview
of our tool is depicted in Fig. 4, which contains five primary com-
ponents: log prepossessing, feature extraction, abnormal task de-
tection, factor extraction, and root cause analysis.

1. Log prepossessing: Spark log contains a large amount of infor-
mation. In order to extract useful information for analysis,
we first collect all Spark logs, including execution logs and
JVM GC logs, from the driver node and all worker nodes.
Then, we use a parser to eliminate noisy and trivial logs, and
convert them into structured data.

2. Feature extraction: Based on the Spark scheduling and abnor-
mal task occurring conditions, we quantify the data local-
ity feature with a binary number format. Then, we screen
structured logs and select three kinds of feature datasets:
execution-related, memory-related, and system-related. Fi-
nally, we store them into two numerical matrices: execution
log matrix and GC matrix.

Table 1
Extracted features for abnormal task detection.

Feature Name
JobID

Feature Category
Execution related Task ID

Task duration

Stage ID Job duration Data locality
Host ID Stage duration Timestamp
Executor ID Application execution time
GC time After young GC After Heap GC
Memory related Full GC time Before young GC Before Heap GC
Heap space GC category
System related Real time CPU time User time

3. Abnormal detection: We implement a statistical abnormal
detection algorithm to detect where and when the abnormal
tasks happen based on the analysis of execution-related fea-
ture sets. This detection method determines the threshold
by calculating the standard deviation of task duration and
use it to detect abnormal tasks in each stage from Spark logs,
which is introduced in Section 4.

4. Abnormal factor extraction: According to our empirical case
study, we combine special features to synthesize two kinds
of factors, the speed factor and the degree factor, which de-
scribe the status of each node in the whole cluster. Section 5
introduced these factors used by our root cause analysis
method.

5. Root cause analysis: We propose a General Regression Neural
Network (GRNN) based approach for our root-cause analy-
sis, in which probability result can be calculated more accu-
rately than our previous statistical work. Our experiments
show that the GRNN-based approach has more accurate
results than existing approaches, which are introduced in
details in Section 6.

4. Log feature extraction and abnormal task detection
4.1. Log feature extraction

When an abnormal task happen, it usually does not cast any
warnings or error messages. As Spark does not directly reveal any
information about abnormal tasks, it is a very challenging problem
to detect these problems. Our approach starts from understanding
the Spark scheduling strategy, then extracts features associated
with CPU, memory, network, and disk I/O to build a feature ma-
trix, which reflects the whole cluster's status. These features can
be classified into three categories: execution-related, memory-
related, and system-related, as shown in Table 1.

The execution-related features are extracted from Spark execu-
tion logs, including (1) the ID number of each task, stage, executor,
job, and host, (2) the duration of each task, stage, and job, (3)
the whole application execution time, (4) the timestamp for each
event, and (5) data locality. Spark GC logs represent JVM memory
usage of each executor in workers, from which we can extract
memory-related features such as heap usage, young space usage
before GC, young space usage after GC. In addition, system related
features can be also extracted from GC logs, such as real time,
system time, and user time.

4.2. Abnormal task detection

Our abnormal task detection is based on the extracted feature
sets. In order to eliminate the false negative problem in the Spark
speculation’s detection mentioned in Section 1, a more robust
approach is designed to locate where and when an abnormal case
happens, which includes the following two steps.

Step-1: Comparing task duration on inter-node:

396

1. Log Prepossessing

Abnormal
localization y
—

Raw

GC

log
L =

Raw
Execution

!
o

Log 2. Feature Extraction

3. Abnormal Detection I

S. Lu, X. Wei, B. Rao et al. / Future Generation Computer Systems 95 (2019) 392-403

5. Root Cause
Analysis

[GRNN Approach
e T

e Root Cause Probability

JL

f

00
00
-
-
00

o

Parsing

Precision Analysis

Structed Spark log
Data sets

Feature
Sets

CcPU
4. Abnormal Factor Memory |
Extraction | N

Disk I/0

Sets

Normal

Fig. 4. The workflow of LADRA.

One basic rule for abnormal task identification is that the dura-
tion of abnormal task is relatively much longer than the duration
of normal tasks (long tail). In the existing approaches for abnormal
detection, both Hadoop and Spark use speculation, and [13] uses
“mean” and “median” to decide the threshold. However, to seek
a more reasonable abnormal detection strategy, we consider not
only the mean and median of the task running times, but also the
distribution of the whole tasks’ duration including the standard
deviation. In this way, we can get a macro-awareness on the task
duration, and then based on the distribution of data, a more rea-
sonable threshold can be determined to differentiate the abnormal
from the normal ones.

We compare the duration of tasks in the same stage but across
different nodes (inter-node). Let T_task; denote the execution
duration of task kin stage i on node j. And let avg_stage; denote the
average execution time of all tasks, which run on different nodes
in the same stage i.

avg_stage; =

(1)

where | and K; are the total node numbers and total task numbers
in node j, respectively.

To determine a more appropriate threshold, we leverage the
standard deviation of tasks duration in stage j of all nodes, which is
denoted by std_stage;, and i is a threshold parameter used in Spark
speculation, which is 1.5 by default. Thus, abnormal tasks can be
determined by the following conditions:

abnormal
normal

T_tasky > avg_stage; + . = std_stage;

task, = i otherwise.

(2)

Step-2: Locating abnormal task happening: After the first
step, all tasks are classified into “normal” and “abnormal”, the
time line is labeled as a vector with binary number (ie., 0 or 1,
which denotes normal and abnormal, respectively). To smooth
the outliers (e.g., 1 appears after many continuous 0) inside each
vector, which could be an abrupt change but inconsistent abnormal
case, we empirically set a sliding window with the size of 5 to
scan this vector. If the sum of numbers inside the window is larger
than 2, the number in the center of the window will be set to 1,
otherwise 0.

The next step is to locate the start timestamp and end times-
tamp of the current abnormal task. Note that, since Spark logs
record the task finishing time but not the start time, we locate

the real abnormal task’s start time as the recorded task finishing
time minus its duration. Moreover, to detect abnormal tasks in
each stage, we classify tasks into two sets. One set includes the
initial tasks whose start timestamp are the beginning of each stage,
as these tasks often have more overhead (such as loading code
and Java jar packages), and they usually last much longer than
the following tasks. The other set consists of the remaining tasks.
Our experiments show that this classification inside each stage
can lead to a much accurate abnormal threshold. In this way, our
abnormal detection method can not only detect whether abnormal
tasks happen, but also locate where and when they happen.

Fig. 5 shows abnormal detection process in our experiment for
Spark WordCount under CPU interference. Fig. 5(a) and (b) are two
stages inside the whole application. Moreover, inside each of the
stage, purple dot-line is the abnormal threshold determined by
Eq. (1), and the black dot-line indicates the threshold calculated
by Spark speculation. For all tasks within a certain stage, the
duration longer than the threshold are determined as abnormal
tasks; otherwise, they are normal. Fig. 5(c) shows the execution-
related feature visualization in the whole execution time. 5 (d) uses
memory-related feature to display memory occupation along the
execution of its corresponding working stages.

As we mentioned before, the data skew problem is not within
our four considered root causes. Therefore, in the real analysis,
those abnormal tasks caused by data skew should be eliminated
as a noise. Data skew tasks can be easily detected by checking
data locality features (i.e., target data is not on the current node)
combined with task duration features from execution logs.

5. Factor extraction for root-cause analysis

To look for the root causes of abnormal tasks, we introduce
abnormal factors, which are the synthesis of features based on the
empirical study on the 22 features in Spark log matrix and GC
matrix. Those factors are normalized features that present status
change of the whole cluster, not only for assessing individual com-
ponents, such as task and stage, but also a series of abnormal tasks,
which may be generated by continuous interference affecting the
cluster.

In normal cases, each factor should be close to 1; otherwise, it
implies an abnormal case. In our factors’ definition, j denotes the
jth node,] presents a set of nodes; i indicates the index of stage,
I is a set of stages; k denotes a task, K is a task set; n stands for a
GCrecord, N is a GC record set. All factors used to determine root
causes are listed as below.

S. Lu, X. Wei, B. Rao et al. / Future Generation Computer Systems 95 (2019) 392-403

397
N === ® == LADRA === * === Speculation
o 25810 . — 3000
£ -nodel1| @ . -+ node1
— . node: é 2500 4 - node2)]
c 2F 1 - ol == node3|
o ! ~noded] G ono0l ANl ~ nodeA|
'ﬁ 1.5+ i nodeb| ﬁ \.'.. node5|
E l: = node6) 5 1509 i
© 1k H ©
a2 H ¢ 1000)
& o0s ! @ o
8 o0y ' 8 509 'ﬂi
149 % 151 752 763 T N £ 15405 7541 15415 [1542
3 3
e \ (a) . x10 ~ h N (b) . i x10
[stage duration (ms) ~ . stage duration(ms)
— o’ N
@ 5% T T T T T T
£ el
g 1] \ ,/” '\I
R \
[\ g \
S Lo 3
: 05 N '
@ Pl ind B T T
E 1.495 1.505 151 1515 152 1525 .
(c w10t
job duration (ms)
S o
- B T T T T T T T T
(] —nodel
o 5
@ rod
g 4 =—noded
2. -
g .
o 4
£
o I L L I L ' 1 L
1.495 15 1.508 151 1518 1.52 1528 1.53 1.835 1.54 1.645

application execution time (Ms)

Fig. 5. Abnormal detection under CPU interference in the experiment of WordCount: (a) Abnormal detection result in Stage-1. (b) Abnormal detection result in Stage-2.
(c) Execution-related feature visualization for abnormal detection in the whole execution. (d) Memory-related feature visualization for abnormal detection in the whole

execution.

5 | — . — LADRA — - — Speculation

T T T T

15

-
T

Task Duration (ms)

200 300
Stage Duration (s)

500

Fig.6. Taskduration variation in CPU interference injected after Sorting application
has been submitted for 60 s, and continuously impacts for 120 s.

Degree of Abnormal Ratio (DAR) describes the degree of im-
balanced scheduling of victim nodes, due to the fact that the victim
nodes will be scheduled with fewer tasks than other normal nodes.
For example, as shown in Fig. 6, CPU interference can cause fewer
tasks (red dots) to be scheduled at a victim node (nodel) than
normal nodes. Eq. (3) illustrates the degree of abnormal ratio in
a certain stage. Therefore, the factor DAR implies that the number

of tasks in intra-node on a certain stage can be used for abnormal
detection.

1 J
DAR — J,_—l((Zﬁ kj)_kj’) 3)
where k; denotes the number of tasks on node j, and J is the total
number of nodes in the cluster. Here, we assume that node j' is
abnormal.

Degree of Abnormal Duration (DAD) is used to measure the
average task duration, as the abnormal nodes often record longer

kj'

task duration.

avg_nodej
DAD =755 e (4)

(X5, avg_node;)—avg_nodey)
where avg_node; is defined as:
1 Kj

avg_nodej = — T_task;; 5
vg_ i KJ[; _ u\k) (5)

Degree of CPU Occupation (DCO) describes the degree of CPU
occupation by calculating the ratio between the wall-clock time
and the real CPU time. In the normal multiple-core environment,
“realTime" is often less than “sysTime+userTime", because GC is
usually invoked in a multi-threading way. However, if the “real-
Time" is bigger than “sysTime+userTime", it may indicate that the
system is quite busy due to CPU or disk /O contentions. We choose
a max value across nodes as the final factor.

realTime; j

DCO = max(avg(- -
jel sysTime; j + userTime;

(6)

Memory Change Speed (MCS) indicates the speed of memory
usage change according to GC curve. Due to the fact that under CPU,
memory, and disk I/O interference, the victim node’s GC curve will
vary slower than the normal nodes’ GC curve, as shown in Fig. 7.
start, and stable, are the points of the start position (the corre-
sponding memory usage at abnormal starting time) and the stable
memory usage position, respectively. start, and stable, are the start
and end positions of abnormal memory, respectively, which are
obtained by analyzing logs introduced before. The intuition is that
the interfered node gradually uses less memory than normal nodes
under interference, as shownin Fig. 7. Hence, we use the area under
GC curve a in the whole cluster (start, of normal node) to calculate
this factor, as shown in Eq. (7).

stable,
j;mrr ! (Xﬁ)dxﬂ

stablep,
j;mrr (Xp)dxy

MCS =

(7)

398 S. Lu, X. Wei, B. Rao et al. / Future Generation Computer Systems 95 (2019) 392-403

gx10

5F il
24 AUC of normalfnodes 1
o
& 3f | _
3 — node1
> ——node2
s 2 AUC of abnormal node 1 | —pode3 y
% —node4
= " —node5 |

—node6
0 1 1 1 1
0 50 100 150 200 250

Application Execution Time (s)

Fig. 7. Memory usage variation in CPU interference injected after WordCount
application has been submitted for 20 s, and continuously impacts for 120 s.

X 104 —-— LADRA —-— Speculation .-+ 75% |r T :Abnurma\ area
15 ————— ‘ - =

X P —-node1

] ’n }

! A 1“ ! —-node2

' Soa ! —node3
= 10 : / i g . --node4
wn = i i 3 1

] / [: nodeb5
£ s ' !: ' : node6
-] ¢ '1 l-= !
§ | 1, san
] 1 LBT 1
e O T i
a 5 i ‘k" f—Rliedy .
~ ! 1) / H |!| 1 :

'
N A)
= & 34 i :A_','
3 i TR L :
L= I-——-——-—-—-- L H Il 1
‘F 00 200 300 400 500 600

Stage Duration (s)

Fig. 8. Task duration variation in Network interference injected after WordCount
has been executed for 100 s, and continuously impacts for 160 s.

Abnormal Recovery Speed (ARS) measures the speed of ab-
normal task’s recovery. Since one Spark node often accesses data
from other nodes, it can leads to network interference propaga-
tion. It is both inter-node and intra-node problem. We can detect
network interference happening inside cluster, as shown in Fig. 8,
which is the location of our detected interference and shows that
task duration will be affected by delayed data transmission. We
leverage Eq. (8) to calculate this factor, where abn_prob; indicates
the ratio of the abnormals that we detect for each node j inside
that area. The reason that we use the product of abnormal ratio
other than the sum of them is that only when all nodes are with a
portion of abnormal, we identify them with a potential of network
interference; if their sum is used, we cannot detect this joint
probability. Meanwhile, the exponential is to make sure this factor
is no less than 1. Hence, the phenomenon of error propagation will
be detected and quantified by calculating this factor.

J
ARS = exp(J l_[abn_prob;) (8)
it

Degree of Memory Change (DMC) describes how much of
memory usage changed during the execution in each node. In
fact, when network bandwidth is limited, or the network speed
slows down, the victim node gets affected by that interference,
and tasks will wait for their data transformation from other nodes.

CPU idle time

—node1
—node2| |
—node3
—node4
—node5| |
—node6

0 100 200 300 400 500 600
Application Execution Time (s)

N W A

Memory Usage (kb))

Fig. 9. Memory usage variation in Network interference injected after WordCount
has been executed for 30 s, and continuously impacts for 160 s.

Hence, the tasks will pause or work very slowly, and data trans-
fer rate becomes low, as shown in Fig. 9. We leverage Eq. (9)
to find the longest horizontal line that presents the conditions
under which tasks’ progress become tardy (e.g., CPU is relatively
idle and memory remains the same). In Eq. (9), m;, indicates the
gradient of memory changing in the nth task on node j. First, the
max value of gradient is calculated for each GC point, denoted
as m. Second, we make a trade-off between its gradient and the
corresponding horizontal length to identify the longest horizontal
line in each node. Then, to determine a relative value that presents
the degree of abnormal out of normal, we finally compare the
max and min among nodes with their max “horizontal factor"
(e~ IMinl % (Xjn — Xj n—1)), where e is to ensure that the whole factor
of b not less than 1.

DMC — maxjey {maxnen[e”™n) s (X0 — Xjn 1)1}

(9)

minje; {maxnen[e™™in s (xjn — Xjn—1)1}

- Yin7Vin—
where mj, = pr—

n—Xjn—1"

Degree of Loadijilgbelay (DLD) measures how much difference
of loading duration on cluster nodes. Note that the initial task at the
beginning of each stage always has a higher overhead to load data
compared with the rest tasks. Similar to the factor DMC, instead of
taking all tasks inside the detected stage into consideration, here,
the first task of each node is used to replace the “avg_node;".

Instead of taking all the tasks inside the detected stage into
consideration, here, the first task of each node is used to replace
the “avg_node;” in Eq. (4). Formally, the equation is modified as
Eq. (10) shows.

T?fﬂsk]‘,jfgl

DD = —————
avgje,(T_taskij 1)

where, j ¢] (10)

6. Root cause analysis
6.1. Statistical rule based approach

We propose a statistical rule based approach for root cause
analysis extended from [10]. As shown in Table 2, each root cause
is determined by a combination of factors with specific weights.

The nodes with CPU interference often have a relatively lower
computation capacity, which leads to less tasks allocated and
longer execution time for tasks on it. Factors DAR and DAD are
used to test whether the interference is CPU or not, because
CPU interference can reduce the number of scheduled tasks and
increase the abnormal tasks’ execution time. Factor DCO indicates
the degree of CPU occupation, and CPU interference will slow down
of the performance compared to normal cases. Factor MCS is used

S. Lu, X. Wei, B. Rao et al. / Future Generation Computer Systems 95 (2019) 392-403 399

Table 2
Related factors for each root cause.

Factor CPU Mem

DAR v

DAD v J
DCO

MCS v
ARS

DMC

DLD i

Network Disk

RN
< <
<

to measure memory changing rate, because CPU interference may
lead memory change, thus the nodes become slow than other
regular nodes.

For the network-related interference, because of its propaga-
tion, the nodes interfered earlier will often recover earlier, too. So
our approach is to detect the first recovered node as the initial
network-interfered node, and the degree ARS quantitatively de-
scribes the interference. When network interference occurs, tasks
are usually waiting for data delivery (factor DMC).

For the memory-related interference, when memory interfer-
ence is injected into the cluster, we can even detect a relatively
lower CPU usage than other normal nodes. Considering this, the
task numbers (factor DAR) and task duration (factor DAD) are also
added to determine such root causes with certain weights. More-
over, the memory interference will impact memory usage, and the
factor MCS should be considered for this root cause detection.

To determine disk-related interference, we introduce the factor
DLD to measure the degree of disk interference. The task set sched-
uled at the beginning of each stage could be affected by disk I/O.
Therefore, these initial tasks on disk I/O interfered nodes behave
differently from other nodes’ initial tasks beginning tasks (factor
DLD), CPU will become busy, and memory usage is different from
other nodes’. Therefore, the memory changing rate (factor MCS)
and CPU Occupation (factor DCO) are also used to determine such
root causes.

After deciding the combination of factors for each root cause, we
give them weights to determine root causes accurately as Eq. (11)
shows. Here, all weights are between 0 and 1, and the sum of them
for each root cause is 1. To decide the values of weights, we use
classical linear regression on training sets that we obtained from
experiments. Eq. (12) is proposed to calculate the final probability
that the abnormal belongs to each of the root causes.

CPU = 0.3 % DAR + 0.3 % DAD 4 0.2 #« DCO + 0.2 % MCS
Memory = 0.25 * DAR + 0.25 % DAD + 0.5 * MCS

Network = 0.1 % DAD + 0.4 % ARS + 0.5 % DMC (1
Disk = 0.2 « DCO + 0.2 %« MCS + 0.6 % DLD
probability = 1 — (12)

factor

To sum up, the statistical rule based approach offers a rea-
sonable result to explain its root causes probabilities. However it
cannot give a satisfied result with higher precision for its classify-
ing. Since the relationship between factors is not simply linearly
correlated, and we also changed old factor MCR to a new factor
MCS with AUC calculation instead of gradients calculation and add
it to our factor sets. From this point, a GRNN-based approach is pro-
posed for root cause analysis to consider non-linearly correlated
relationship of new factor set, and avoid human ad-hoc choosing
and classification.

6.2. GRNN approach

In this paper, we propose a new neural network based model
to automatically calculate the probability of each root cause. We

use a one-pass training neural network, GRNN, to create a smooth
transition and more accurate results.

GRNN is a simple and efficient network with fast computing
speed, because GRNNs transfer function (pattern layer) is a kind of
Gaussian function, and it could achieve local approximation with
fast speed without any back propagation training operations. As
due to the fact that classical neural networks, especially deep neu-
ral networks, require much more efforts to tune hyper-parameters,
which has been proved to be not proper to fit small datasets,
just like our Spark log. Hence, we choose GRNN in our design.
Thanks to its flexible structure, which can automatically set the
number of nerve cells in the pattern layer. In brief, the BP (Back
Propagation) based deep learning algorithms may be vulnerable
to the over-fitting problem especially when the dataset is small,
which is just the characteristic of our dataset. Traditional data
fitting algorithms usually assumes that the data obey a certain
distribution in advance, which can drastically affect the final result.
As a non-parameter neural network model for data fitting, with its
high efficiency and accuracy, GRNN is fully capable of dealing with
our current problem. In addition, the experimental results demon-
strate the effectiveness of GRNN compared with other attempts we
have tried.

As a non-parameter neural network model for data fitting, with
its high efficiency and accuracy, GRNN is fully capable of dealing
with our current problem. In addition, the experimental results
demonstrate the effectiveness of GRNN compared with other at-
tempts we have tried. A representation of the GRNN architecture
for our implementation of root cause identification is shown in
Fig. 10. Our model consists of four layers: input layer, pattern
layer, summation layer, and output layer. According to our data
structure, the input layer consists of 7 neurons, which indicates
the dimension of our extracted input feature vector (Xq, Xp...xg). The
pattern layer is a fully connected layer, which consists of neurons
with the same size as input data, and followed by the summation
layer. At the end, the output layer of GRNN gives a prediction result
on the probability for each root cause. We use softmax function
to convert the output into a normalized one for more intuitive
comparison.

The transfer function F; in pattern layer is defined in (13), X
denotes the input data, o represents as a smooth parameter, which
is set to 0.5 according to our experimental attempts. The hyper-
parameter of o is used to control the smoothness of the model.
When the value is relatively large, it is equivalent to increasing
the variance in the Gaussian density distribution, which makes
the transition between different categories smoother. While the
problem is that the classification boundary will be blurred. Con-
versely, when a smaller value is assigned to this hyper-parameter,
the ability to fit real data of the model will be stronger but the
generalization turns out to be relatively weak. In the following,
summation layer is added, which contains two kinds of neurons:
S-summation neuron (S) and D-summation neuron (SD), as de-
fined in (14), respectively. SD neurons are used to calculate the
arithmetic summation of pattern layer’s output. The remaining S
neurons weight summation for the output of pattern layer. The
i denotes ith number of input data, j denotes the jth dimension
of output, and S; denotes the jth S neuron output. Then, the w
denotes weight in hidden layer. The label (output layer) hereis a 5-
dimension one-hot vector with one indicating normal log and the
rest four are injections. y indicates y; indicates the jth output item
the output as defined in (15). Due to probability representation of
root cause, after the output layer of GRNN, we add a softmax layer
to convert the sum of 5-dimensional output to be 1.

—(X=X)'(X—X;)
202

Fi=exp(), where X = [Xq, Xp...xg]" (13)

400 S. Lu, X. Wei, B. Rao et al. / Future Generation Computer Systems 95 (2019) 392-403

Summation Output Probability
Layer Layer Result
SD vl)—— PT(CPU)
“h Y2 J—— PT(memory)
& 2
y3 |~ PT(network)
S3
. - ¥ra
. >(" PT"(disk I0)
.
Ss Vs PT(normal)

Fig. 10. The architecture of our GRNN-based model for root-cause analysis.

Input Pattern
Fact
actors i Layer
Py
-
Xq — nl <
Py
Xp — n2
Xc n3 f Py
.
. . .
. . :
Xg — n7
g P,
Table 3
Benchmark resource intensity.
CPU Memory Disk I/O Network
WordCount 4 v N
Sorting i i v
K-Means 4 N
PageRank i Vv
SD=>5" (F), wherei=1:n
Summations { Zn'*l :) (14)
Sj = i_j(wsF;), wherej=1,2,3,4,5
where n is equal to input dataset size.
S .
yj:E.wherEJ:LZ,E,&l,S (15)

To sum up, GRNN can select a dominant weight for each of our
factors, and provide the root cause probability results with high
accuracy.

7. Experiments

We evaluate LADRA on four widely used benchmarks and fo-
cus on the following two questions: (1) Can the abnormal tasks
be detected? (2) What accuracy can LADRA's root cause analysis
achieve? In the experiment, we conduct a series of interference
injections to simulate various scenarios that lead to abnormal
tasks.

7.1. Setup

Clusters: We set up an Apache Spark standalone cluster with
one master node (labeled by m1) and six slave nodes (labeled
by n1, n2, n3, n4, n5, n6) based on Amazon EC2 cloud resource.
Each node is configured with type of “r3.xlarge" (24 virtual cores
and 30 GB of memory) and Ubuntu 16.04.9. We conduct a bunch
of experiments atop of Apache Spark 2.2.0 with JDK 1.8.0, Scala-
2.11.11, and Hadoop-2.7.4 packages. Given that an AWS instance
is configured with EBS by default, it is difficult for us to inject disk
[/O interference. Hence, we set up a 90G ephemeral disk for each
instance and deploy a HDFS to store data.

Workload: In fact, some Spark applications may consume re-
sources more intensively. According to previous studies on Spark
performance [29], we choose four benchmarks built on Hibench

[30] and one real-world CPS application in our experiments: Word-
Count, Sorting, PageRank, K-means, which cover the domain of
statistical batch application, machine learning program, and iter-
ative application. WordCount and Sorting are one-pass programs,
K-means and PageRank are iterative programs. We characterize
the benchmarks by resource intensive type and program type for
underpinning our approach’s scalability. The resource intensity of
each benchmark is shown in Table 3. The characteristics of four
benchmarks are listed as follows.

e WordCount is a one-pass program for counting how many
times a word appears. We leverage RandomTextWriter in
Hibench to generate 80G datasets as our workload and store
itin HDFS. It is CPU-bound and disk-bound during map stage,
then network-bound during reduce stage.

e Sorting is also a one-pass program that encounters heavy
shuffle. The input data is generated by RandomTextWriter in
Hibench. Sorting is disk-bound in sampling stage and CPU-
bound in map stage, and its reduce stage is network-bound.

e K-means is an iterative clustering machine learning algo-
rithm. The workload is generated by the k-means generator
in Hibench, and is composed of 80 million points and 12
columns (dimensions). It is CPU-bound and network-bound
during map stage.

e PageRankis aniterative ranking algorithm for graph comput-

ing. In order to analyze root causes of abnormal tasks with
PageRank, we use Hibench PageRank as the testing workload,
and generate eighty thousand vertices by Hibench's genera-
tor as input datasets. It is CPU-bound in each iteration's map
stage, and network bound in each reduce stage.
A CPS K-means is a real-world CPS application in civil engi-
neering that we developed before. The workload data size
is 18 GB and collected by sensors installed at a classroom
building. Those sensors measure real time temperature and
humidity from each classroom. The collected dataset is lever-
aged for detecting outlier temperature and humidity. To solve
this real-world problem with effective approaches, we im-
plemented a K-means algorithm on Spark for pre-clustering
and grouping sensor data into sub-clusters and decide the
outliers.

7.2. LADRA interference framework

In order to induce abnormal tasks in the real execution for
experiment, we design an interference framework that can inject

S. Lu, X. Wei, B. Rao et al. / Future Generation Computer Systems 95 (2019) 392-403 401

Table 4

LADRA's abnormal task detection compares with Spark speculation’s approach in
four intensive benchmarks, where TPR = True Positive Rate, FPR = False Positive
Rate.

Abnormal tasks detection LADRA Spark speculation
TPR FPR TPR FPR
WordCount 0.96 0.06 0.94 0.8
Sorting 0.96 0.16 0.96 0.7
K-Means 0.7 0.1 0.2 0.7
CPS K-Means 0.7 0.1 0.2 0.7
PageRank 0.6 0.517 0.9 0.48

four major resource (CPU, memory, disk 1/0, and network) inter-
ference to mimic various abnormal scenarios. In order to simplify
experiment, we apply all interference injection techniques only on
node n1 for all test cases. In addition, for each injection, it will be
launched during a time interval of 10 s and 60 s after the first spark
jobis initiated, and continue for 120 s to 300 s. Finally, when a test
case is over, we recover all involved computing nodes to normal
state by terminating all interference injections. Specifically, the
following interference injections are used in our experiments:

e CPU interference: CPU Hog is simulated via spawning a bunch
of processes at the same time to compete with Apache Spark
processes. This injection causes CPU resource contention in
consequence of limited CPU resource.

Memory interference: Memory resource scarcity is simulated

via running a program that requests a significant amount

of memory in a certain time to compete with Apache Spark

jobs, then we hold on this certain of memory space for a

while. Thus, Garbage Collection will be frequently invoked to

reclaim free space.

e Diskinterference: Disk Hog (contention)is simulated via lever-
aging “dd" command to continuously read data and write
them back to the ephemeral disk to compete with Apache
Spark jobs. It impacts both write and read speed. After the
interference is done, we clear the generated files and system
cache space.

e Network interference: Network scenario is simulated when
network latency has a great impact on Spark. Specifically, we
use “tc" command to limit bandwidth between two com-
puting nodes with specific duration. In this way, the data
transmission rate will be slowed down for a while.

7.3. Abnormal task detection

To evaluate LARDA, we compare LADRA's detection with the
Spark speculation. Each benchmark is executed 50 times without
any interference injection, and 50 times under the circumstances
of abnormal tasks. After that, we calculate the True Positive Rate
(TPR) and False Positive Rate (FPR) results by counting the correct
rate of each job classification as shown in Eqgs. (16) and (17). The
comparison result is shown in Table 4.

As a build-in straggler detector, Spark speculation brings False
Positive (FP) and True Negative (TN) problems in abnormal task
detection. We compare LADRA with Spark speculation in details.
For instance, Fig. 11 shows one stage in a normal K-means exe-
cution, x-axis and y-axis present stage duration and task duration,
respectively, and no abnormal tasks are detected by LADRA (purple
higher horizontal dash dotted line). However, Spark speculation
(black lower horizontal dash dotted line) detects stragglers (area
above the speculation line and beside red dotted vertical line)
after 75% tasks (red dotted vertical line) finish. In this way, Spark
speculation may delay the normal execution, as it will reschedule
the stragglers to other executors. Moreover, Spark speculation will
cause true negative problems as shown in Fig. 6, because it only

X 104 | — - — LADRA —— Speculation «:eeeee 75%
3.5 - T r T + -
—nodell- = =~ = -, R A P, ‘-
it A,
— 3 -.-InOdez - e ‘;\: T .-'-’l- -\ n
2 ~node3 I’-"’M' A ’f?ﬂ-’ Tree
e
— 2.5~ nodedy; ! A 1
5 node5 W /‘//
% llnode6 | A yr)
e LI 747
S W R
[a) ‘l: ‘\\, 1’('/
- L ! J.) i .
E 1o ““ “ = /‘J
|l||‘r' \._r_- b \
1 - 1] } ‘f } |‘. 4
1
0 I~ 1 1 1 1 1 L &
537 5372 5374 5376 5378 5.38 5382 5.384
Stage Duration { ms) x10*

Fig. 11. Abnormal task detection for K-means without interference injection.

checks the 25% slowest tasks. As shown in Table 4, LADRA has a
better accuracy in abnormal task detection than Spark speculation
for all benchmarks. However, LADRA has lower accuracy on K-
Means and PageRank than WordCount and Sorting. We find that
under normal execution, most tasks in the map stage or sampling
stage of K-Means and PageRank have an unexpected longer dura-
tion, because these benchmarks have many iteration stages, and
tasks in those stages have data skew and cross-rack traffic fetching
problems. LADRA cannot detect data skew problem within normal
detection results. Too many such kinds of tasks with unexpected
duration will cause LADRA to report false positives.

P
TPR = —— (16)
(TP + FN)
FP
FPR= — (17)
(TP +TN)

7.4. LADRA’s root cause analysis result

To test the accuracy of LADRA's GRNN approach for root cause
analysis, we use cross validation strategy with 1/3 for test data and
2/3 for train data each time. Data in normal cases is also used in our
training for improving the accuracy. In order to demonstrate the
effectiveness of our approach, we run the GRNN 100 times and get
the final accuracy result. We calculate the Precision (P) and True
Positive Rate (TPR) for each detected root cause type by Egs. (16)
and (18).

P= —TP (18)
(TP + FP)

We abandon memory root cause analysis in our experiments for
three reasons. First, injecting significant memory interference into
one node may cause the whole application to crash, as executors
of Spark will fail if without enough memory. For instance, injected
memory interference in PageRank benchmark not only causes
Out-of-Memory (OOM) failures, but also makes executor keep
quitting (executors are continuously restarted and fail). Secondly,
memory interference does not work for non memory-intensive
benchmarks. For instance, WordCount is not a memory-intensive
program, and it will not evoke abnormal tasks, even injecting sig-
nificant memory interference. Thirdly, memory interference could
also consume CPU resources, and may mislead GRNN's classifying.

Table 5 summarizes the total P and TPR results of LADRA’s root
cause analysis for four benchmarks. There are two issues to be
noted. (1) LADRA has the highest CPU analysis precision (1.000
in CPU root cause analysis for WordCount) and higher network
analysis precision (0.9545 in network root cause analysis for Word-
Count) results than disk I/O (0.4200 in disk I/O root cause anal-
ysis for WordCount) for three reasons. First, all four benchmarks

402 S. Lu, X. Wei, B. Rao et al. / Future Generation Computer Systems 95 (2019) 392-403

Table 5

Root cause analysis result of LADRA's GRNN approach, TPR = True Positive Rate, P = Precision.
GRNN WordCount Sorting K-Means CPS K-Means Pagerank

TPR P TPR P TPR P TPR P TPR P

CPU 1.000 1.000 1.000 0.940 0.857 0.835 0.866 0.837 0.951 0.826
Disk 1/0 0.450 0.420 0.679 0.894 0.423 0.692 0533 0.666 0.540 0.847
Network 1.000 0.955 1.000 0.853 0.679 0.730 0.700 0.750 0.688 0.564
Normal 0.919 0.837 0.965 0.924 0.733 0.686 0.732 0.632 0.602 0.640

are CPU-intensive, and require large CPU resource for computing References

(map and sampling stages), and network resource to transfer data

(reduce stages). Secondly, abnormal tasks have longer duration [1]]. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clus-

after CPU interference is injected, and the impact of network in-
jection is significant (CPU stays idle). Thus, the synthesized factors
demonstrate their effectiveness. Thirdly, as disk hog is injected by
leveraging a bunch of processes to read and write disk, it consumes
not only disk I/O but also a certain of CPU resources. Therefore, disk
[/O injections may be wrongly classified into other root causes (e.g.,
CPU, network, or normal). (2) As shown by Table 5, LADRA is more
precise on one-pass benchmarks than iterative benchmarks, such
as K-means and PageRank. The TPR of k-means and PageRank’s
disk I/0 is lower than the other two benchmarks. It is because that
PageRank and k-means are not disk I/O-intensive benchmarks, if
the intermediate data is small enough to be caught in memory,
it will not use disk space. Therefore, the disk interference does
not impact too much for these benchmarks that have small size
intermediate data. Moreover, wrong classification of other root
causes in k-means and PageRank also impacts LADRA's normal root
cause classification, it causes more FP problems, or less TP. So the
normal cases in k-means and PageRank also have lower precision
and TPR. To compare with the same approach with different data
size in different domains, two K-means experiments are performed
on our LADRA. One uses a generated dataset by Hibench [30], and
the other uses the dataset produced by a real-world CPS appli-
cation. We keep all the hyper-parameter setting to be identical.
Theoretically, due to the workload data distribution is different, the
Spark platform will give a weakly different but similar result since
data itself is not a critical role, as shown in our experiment.

To sum up, LADRA can analyze root causes via Spark log with
high precision and TPR for one-pass applications. However, there
may be a few of limitations for LADRA to analyze root causes by
only using Spark logs. Although Spark logs contain full information,
but not so rich as monitoring data.

It might be not possible to analyze all kinds of root causes by
only leveraging log files. Some root causes such as code failures,
resource usages, and network failures, may rely on monitoring
tools. LADRA's goal is to mine useful information and leverage
limited log information to analyze resource root causes without
extra overhead.

8. Conclusions and future work

This paper presents LADRA, an off-line log-based root cause
analysis tool to accurately detect abnormal tasks for big data plat-
forms. LADRA can identify abnormal tasks by analyzing extracted
features from Spark logs, which is more accurate than Spark’s
speculation-based straggler detection method. In addition, LADRA
is capable of analyzing the root causes precisely using a GRNN-
based method without additional monitoring. The experimental
results using realistic benchmarks demonstrate that the proposed
approach can accurately locate abnormalities and report their root
causes. According to our experiment results, we can effectively
detect the resource abnormal and analyze root causes in Spark
applications.

For the future work, we will consider more complex scenarios,
such as multiple interferences happening in parallel, to make our
framework more robust for root cause analysis.

2]
[3]
[4]

[5

[6]

[7]

8

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]

[21]

[22]

[23]

ters, Commun. ACM 51 (1) (2008) 107-113.

Apache Spark website, http://Spark.apache.org/.

Apache Hadoop website, http://hadoop.apache.org/.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.J. Franklin, S.
Shenker, 1. Stoica, Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing, in: NSDI, USENIX Association, 2012.

H. Zhang, H. Huang, L. Wang, Mrapid: An efficient short job optimizer on
hadoop, in: Parallel and Distributed Processing Symposium (IPDPS), 2017
IEEE International, IEEE, 2017, pp. 459-468.

L. Wang, S. Lu, X. Fei, A. Chebotko, H.V. Bryant,].L. Ram, Atomicity and prove-
nance support for pipelined scientific workflows, Future Gener. Comput. Syst.
25(5)(2009) 568-576.

V. Subramanian, L. Wang, E.-]. Lee, P. Chen, Rapid processing of synthetic
seismograms using windows azure cloud, in: The 2nd IEEE International
Conference on Cloud Computing Technology and Science (CloudCom 2010),
IEEE, 2010.

V. Subramanian, H. Ma, L. Wang, E.-]. Lee, P. Chen, Rapid 3d seismic source
inversion using windows azure and amazon ec2, in: Proceedings of the 2011
IEEE World Congress on Services, [EEE, 2011.

M. Zaharia, A. Konwinski, A.D. Joseph, R.H. Katz, I. Stoica, Improving mapre-
duce performance in heterogeneous environments, in: Osdi, vol. 8, 2008, p.
7.

S. Lu, B. Rao, X. Wei, B. Tak, L. Wang, L. Wang, Log-based abnormal task
detection and root cause analysis for spark, in: Web Services (ICWS), 2017
IEEE International Conference on, IEEE, 2017, pp. 389-396.

G. Ananthanarayanan, S. Kandula, A.G. Greenberg, I. Stoica, Y. Lu, B. Saha, E.
Harris, Reining in the outliers in map-reduce clusters using mantri, in: OSDI,
vol. 10, 2010, p. 24.

0. Ibidunmoye, F. Herndndez-Rodriguez, E. Elmroth, Performance anomaly
detection and bottleneck identification, ACM Comput. Surv. 48 (1) (2015) 4.
P. Garraghan, X. Ouyang, R. Yang, D. McKee,]. Xu, Straggler root-cause and
impact analysis for massive-scale virtualized cloud datacenters, IEEE Trans-
actions on Services Computing.

H. Jayathilaka, C. Krintz, R. Wolski, Performance monitoring and root cause
analysis for cloud-hosted web applications, in: Proceedings of the 26th In-
ternational Conference on World Wide Web, International World Wide Web
Conferences Steering Committee, 2017, pp. 469-478.

M.Y. Chen, E. Kiciman, E. Fratkin, A. Fox, E. Brewer, Pinpoint: Problem deter-
mination in large, dynamic internet services, in: Dependable Systems and
Networks, 2002 DSN 2002 Proceedings. International Conference on, IEEE,
2002, pp. 595-604.

X. Gu, H. Wang, Online anomaly prediction for robust cluster systems, in: Data
Engineering, 2009 ICDE'09 IEEE 25th International Conference on, IEEE, 2009,
pp. 1000-1011.

A. Oliner,]. Stearley, What supercomputers say: A study of five system logs,
in: DSN, IEEE, 2007.

S.Ryza, U. Laserson, S. Owen,]. Wills, Advanced Analytics with Spark: Patterns
for Learning from Data at Scale, O'Reilly Media, 2015.

J. Tan, X. Pan, S. Kavulya, R. Gandhi, P. Narasimhan, Salsa: Analyzing logs as
state machines, WASL 8 (2008) 6-6.

J. Tan, S. Kavulya, R. Gandhi, P. Narasimhan, Visual, log-based causal tracing
for performance debugging of mapreduce systems, in: Distributed Computing
Systems (ICDCS), 2010 IEEE 30th International Conference on, IEEE, 2010, pp.
795-806.

Q. Chen, D. Zhang, M. Guo, Q. Deng, S. Guo, Samr: A self-adaptive mapreduce
scheduling algorithm in heterogeneous environment, in: Computer and Infor-
mation Technology (CIT), 2010 IEEE 10th International Conference on, IEEE,
2010, pp. 2736-2743.

W. Xu, L. Huang, A. Fox, D. Patterson, M.1. Jordan, Detecting large-scale system
problems by mining console logs, in: SOSP, ACM, 2009.

W. Qi, Y. Li, H. Zhou, W. Li, H. Yang, Data mining based root-cause analy-
sis of performance bottleneck for big data workload, in: High Performance
Computing and Communications; [EEE 15th International Conference on
Smart City; [EEE 3rd International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), 2017 IEEE 19th International Conference on, IEEE,
2017, pp. 254-261.

[24]

[25]

[26]

[27]

[28]

S. Lu, X. Wei, B. Rao et al. / Future Generation Computer Systems 95 (2019) 392-403 403

E.W. Fulp, G.A. Fink, J.N. Haack, Predicting computer system failures using
support vector machines, WASL 8 (2008) 5-5.

N.J. Yadwadkar, G. Ananthanarayanan, R. Katz, Wrangler: Predictable and
faster jobs using fewer resources, in: Proceedings of the ACM Symposium on
Cloud Computing, ACM, 2014, pp. 1-14.

M.L. Massie, B.N. Chun, D.E. Culler, The ganglia distributed monitoring system:
design, implementation, and experience, Parallel Comput. 30 (7) (2004)817-
840.

M.K. Aguilera,].C. Mogul, J.L. Wiener, P. Reynolds, A. Muthitacharoen, Perfor-
mance debugging for distributed systems of black boxes, Oper. Syst. Rev. 37
(5)(2003) 74-89.

H. Zhou, Y. Li, H. Yang,]. Jia, W. Li, Bigroots: An effective approach for root-
cause analysis of stragglers in big data system, arXiv preprint arXiv:1801.
03314.

[29] J. Shi, Y. Qiu, U.F. Minhas, L. Jiao, C. Wang, B. Reinwald, F. Ozcan, Clash of the

[30]

titans: Mapreduce vs. spark for large scale data analytics, Proc. VLDB Endow.
8(13)(2015)2110-2121.

S. Huang, J. Huang,]. Dai, T. Xie, B. Huang, The hibench benchmark suite:
Characterization of the mapreduce-based data analysis, in: Data Engineering
Workshops (ICDEW), 2010 IEEE 26th International Conference on, IEEE, 2010,
pp. 41-51.

Siyang Lu is Ph.D. student in the Department of Computer
Science at University of Central Florida. He is working
in Big Data Computing Lab in area of parallel computing
framework optimization. Siyang received his Master of
- = Science in computer science from University of Wyoming
in 2015, and Master of Science in software engineering
from Tianjin University in 2015. His research interest is
the design and analysis of parallel systems for big-data
computing. For the aspect of design, he is working on
optimizing performance. For the aspect of analysis, he
is currently working on using log to detect abnormal,

analysis root causes and performance defects in large-scale parallel computing
systems.

Xiang Wei received his bachelor’s degree in computer
science from Tianjin Polytechnic University in 2012, and
has been taking successive postgraduate and doctoral
programs of study for doctoral degree since Sep. 2012
in Beijing Jiaotong University. He had been rewarded
the first-class scholarship for his good performance, and
participated in two search grants from National Science
Foundation of China (NSFC). His research interest focuses
on intelligent information processing.

Bingbing Rao is pursuing a Ph.D. degree in Computer
Science at the University of Central Florida. He received
a B.S. degree in Electrical and Information Engineering
from Wuhan University of Science and Technology, the
second B.S. from Huazhong University of Science and
Technology and a M.S. degree in Computer Science from
Computer Science at the University of Central Florida. He
had received the “22th R&D Honor Award” for indepen-
dently developing DMA module and for optimizing code
and improving system performance in MacroSAN, China.

Byungchul Tak is currently an assistant professor at
Kyungpook National University, Republic of Korea. He
was a research staff member at IBM TJ. Watson Re-
search Center, Yorktown Height, NY prior to joining the
university. He received his Ph.D. in computer science in
2012 from Pennsylvania State University. He received his
MS degree in computer science from Korea Advanced
Institute of Science and Technology (KAIST) in 2003, and
his BS from Yonsei University, Korea in 2000. Prior to
joining Pennsylvania State University, he worked as a
researcher in the Electronics and Telecommunications

Research Institute (ETRI), Daejeon, Republic of Korea. His research interest includes
virtualization, operating systems and cloud computing. He is a member of IEEE.

Long Wang is a Research Staff Member at the IBM T.J.
Watson Research Center, Yorktown Heights, NY, where
he leads the architecture of Disaster Recovery of IBM
Cloud Managed Services to IBM Resiliency Services. His
research interests include Fault-Tolerance and Reliabil-
ity of Systems and Applications, Dependable and Secure
Systems, as well as Measurement and Assessment. He
obtained his Ph.D. degree from Department of Electrical &
Computer Engineering in University of Illinois at Urbana-
Champaign (UIUC) in 2010. Dr. Wang is a member of the
IEEE.

Ligiang Wang received the Ph.D. degree in Computer
Science from Stony Brook University in 2006. He is an as-
sociate professor in the Department of Computer Science
at the University of Central Florida. His research interests
include big data systems and deep learning. He received a
US National Science Foundation CAREER Award in 2011.

