
A Transfer Learning based Interpretable User
Experience Model on Small Samples

Qi Yu, Xiaoping Che, Yuxiang Yang
School of Software Engineering

Beijing Jiaotong University
Beijing, China

{16121736, xpche, 16112088}@bjtu.edu.cn

Liqiang Wang
Department of Computer Science

University of Central Florida
FL, USA

lwang@cs.ucf.edu

Abstract—User experience (UX) is a key factor that affects
software survival time. A rich line of research has studied the
relationships between UX and software factors to modify software
and improve user satisfaction. However, the existing machine
learning models for predicting UX on small data set is not
accurate enough, and research with traditional statistical methods
only obtained indistinct relations among UX, user characteristics
and software factors. With the goal of improving the accuracy of
UX model and obtaining sufficient UX relationships, we propose
Transfer in Cart (TrCart) algorithm and Transfer Adaboost
in Cart (TrAdaBoostCart) algorithm. To verify this approach,
we present the UX study on a desktop game and an android
game. According to the experimental results, we find that the
TrAdaBoostCart has better accuracy and interpretable results.
Hence, the proposed approach provides important guidelines for
the design process of mobile applications.

Index Terms—user experience, transfer learning, decision tree,
mobile application, user characteristics

I. INTRODUCTION

In recent years, mobile software such as especially mobile

games [1] have become increasingly popular. For example,

young people averagely spend 20% of their leisure times in

playing mobile games, and the average cost of each user

for mobile games rise to 40 dollars per device by the end

of 2016 [2]. As a result, with such a huge market, game

companies gain high benefits from the games with a large

number of users. However, for a popular game, many similar

games will appear soon and compete with the original one.

As a result, the service lives of games become critical.

The service life of a software depends on user experience

(UX). The accurate and sufficient relationships among UX,

user characteristics and game factors can not only find target-

ing users and related game factors, but also provide reason-

able suggestions for resetting corresponding game events [3].

Therefore, predicting UX accurately and obtaining the factors

related to UX become great needs for game designers [4].

Recently, most of existing researches study UX on small

data sets, since it takes much time and effort to label data in

the UX domain. Among them, there are a large number of

studies using machine learning algorithms [5]–[7]. However,

the accuracy of existing UX models trained on small data

sets is low because training supervised models always expect

sufficient labeled data [8].

Another problem is that existing studies using traditional

statistical methods analyze only partial relationships among

mobile game UX, user characteristics and game factors [9]–

[12]. However, the more sufficient relationships are analyzed,

the clearer instructions we can obtain to modify the software.

The transfer learning methods can solve the bottleneck of

low accuracy of models on small data sets [13]. Learning

performance can be improved by transferring knowledge from

different but related domains and applying it to target domains

(TD) [14], and previous study has shown that transfer learning

for cross-game is feasible [3]. In addition, cart algorithm

can explain the relationships between labels and features

sufficiently [15]. Our method is inspired by building an ac-

curate and explanatory UX model on small samples of games.

Specifically, when we start a new game, in which we have only

small samples, we hope to predict users’ UX on this game by

using labeled samples from other relevant games and obtain

sufficient UX relationships.

From the above discussion, two research problems need to

be solved in the current studies: (1) Current machine learning

models have low prediction accuracy on small samples and

can not explain the UX relationships sufficiently; (2) The

relationships among UX, user characteristics and game factors

obtained by traditional statistical methods are not sufficient.

In this paper, a phenomenal game “Temple Run” is chosen as

the Target Domain (TD), and the public data set “Super Mario

Bros” [16] is chosen as the source domain (SD). To solve the

first problem, TrAdaBoost algorithm [17] is introduced and its

prediction accuracy is higher than the original cart model in

the experiments. It is the first time that TrAdaBoost algorithm

has been introduced into the UX field.

In order to make the UX model interpretive as well as

improve the UX model’s accuracy, a new algorithm called

Transfer in Cart (TrCart) is proposed based on Cart and

Transfer in Decision Trees [18]. In addition, inspired by

TrAdaBoost (which greatly improves prediction accuracy) and

TrCart (which is more interpretive), we combine TrAdaBoost

with TrCart to obtain a more interpretive model TrAdaBoost

in Cart (TrAdaBoostCart) with higher accuracy than TrCart.

To solve the second problem, traditional statistical methods

and the proposed TrAdaBoostCart algorithm are both used to

obtain UX relationships. The results of the above methods

186

2019 IEEE 19th International Conference on Software Quality, Reliability and Security (QRS)

978-1-7281-3927-2/19/$31.00 ©2019 IEEE
DOI 10.1109/QRS.2019.00035

Authorized licensed use limited to: University of Central Florida. Downloaded on May 22,2020 at 01:48:28 UTC from IEEE Xplore. Restrictions apply.

are compared, which verify that the relationships obtained

by TrAdaBoostCart are more sufficient than the relationships

obtained by traditional statistical methods. In summary, we

make the following contributions in this paper:

• A TrAdaBoost algorithm is performed to improve the

accuracy of UX model on small samples.

• An interpretive TrCart algorithm and TrAdaBoostcart

algorithm is proposed to gain more accurate and sufficient

relationships among UX, user characteristics and game

factors.

• A compared result of the relationships among UX, user

characteristics and game factors between traditional sta-

tistical methods and proposed methods.

The rest of this paper is organized as follows. Section II

presents a review of related work including UX Analysis

through machine learning on small samples, transfer learning

methods and relationship between UX and software factors

through traditional statistical methods. Section III describes

the preliminaries of the transfer learning methods. Section

IV describes the methods of UX analysis including TrCart

algorithm, TrAdaBoostCart algorithm and traditional statistical

methods in details. Section V reports the experiment. Finally,

the paper is concluded in Section VI.

II. RELATED WORK

The aim of this paper is to train an accurate and interpretive

UX model on small samples to obtain precise and sufficient

UX relationships. Specifically, we introduce transfer learning

based methods to improve accuracy. In this following, we

review related work on UX analysis through machine learning

with small samples, transfer learning methods and UX analysis

through traditional statistical methods.

A. User Experience Analysis through Machine Learning on
Small Samples

Labeling data is time-consuming and laborious, thus lots

of researches predict UX on small samples. A large number

of existing studies use machine learning algorithms to analyze

UX on small samples. The maximum likelihood factor analysis

is used to analyze the relationships among the UX, beauty,

emotion, stimulation and recognition on 106 participants [5].

The results reveal that aesthetic, emotion and stimulation

are important to UX, but the impact of recognition on UX

has not been confirmed. N. Martin establishes an automatic

pressure recognition system based on supervised machine

learning. Respiratory, heartbeat and skin conductance data

were collected from 24 testers during the experiment. The

results show that the accuracy of the system is 70% [19]. [6]

applies hierarchical multiple regression to analyze whether the

adaptation of enterprise resources planning (ERP) users affects

UX on 253 ERP users. The results show that user adaptation

of ERP has a strong positive impact on users, but there are

no detailed relationships between user adaptability and UX.

[7] first tries to use the deep learning model to predict video

Quality of experience(QoE) based on information extracted

directly from network packets. It proposes a combined clas-

sifier based on convolution neural network, recursive neural

network and Gaussian process classifier to predict QoE based

on a small video data set and the accuracy of the model is

61.86%.

All of the above studies analyze UX on small samples

through machine learning algorithms. However, the above

models are not accurate enough. In order to obtain a highly

accurate model for analyzing small samples, we consider using

transfer learning method.

B. Transfer Learning Methods

Transfer learning can be used to improve the prediction

accuracy of the model learned on small samples. Among

transfer learning methods, this paper considers instance-based

and model-based transfer learning methods.

In the instance-based methods, Huang et al. [20] propose a

two-step transfer learning method called kernel mean match-

ing. Firstly, the co-variance distribution difference between

the SD and the TD is calculated in the regenerated Hilbert

space, and then quadratic programming is used to solve sample

weights. Sugiyama et al. [21] propose co-variance transfer by

kernel mean matching, where the natural estimation method

is used to estimate the density ratio of the SD and the TD,

and then the weights of samples are assigned according to the

density ratio. [17] proposes TrAdaBoost, which does not limit

the assumptions of “sample selection bias” and “co-variance

offset”, but corrects the data distribution according to the ac-

tual classification effect, and obtains better classification effect

while correcting the data distribution. Inspired by TrAdaBoost,

we use it in our small game samples to improve the prediction

accuracy on small data set.

In the model-based methods, the decision trees are interpre-

tive. There are some studies on the transfer of decision trees.

[18] proposes TDT, where the SD is modeled by cart, and then

the model is updated by training the TD data. However, this

method only considers the case where the SD data is a subset

of the TD data. [22] proposes an embedded transfer learning

technique (TransEMDT), which uses the model learned on the

labeled samples of person 1 to classify the unlabeled samples

of person 2. Then, the model is updated by k-means. Different

from them, we consider that labeled SD and labeled TD have

partially unrelated attributes, which is more usual in reality.

C. User Experience Analysis through Traditional Statistical
Methods

In order to improve the UX of software users, a large

number of research study the relationships between UX and

software factors through traditional statistical methods. Pert-

tula et al. [10] use flow questionnaire to analyze the factors

that affect the UX on 102 high school students. The results

show that the flow experience can be used to measure the

overall UX but cannot explain the weaknesses of games.

Additional methods are needed to determine the cause of the

game’s weaknesses. [11] analyzes the relationships between

UX and the factors of interactive TV on 35 persons. The

187

Authorized licensed use limited to: University of Central Florida. Downloaded on May 22,2020 at 01:48:28 UTC from IEEE Xplore. Restrictions apply.

results reveal that the UX is related to the measurement time,

frustration, TV-WEB content, and presentation style for the

majority of participants. However, the specific relationships

are not indicated and some users’ preferences are still not

shown. [12] has developed a software to promote interaction

based on the screen transform on 20 teachers. The results

show that physical interaction, perception, and visualization

can promote interaction, social activities, and UX. But it does

not clearly explain the relationships among them. [23] studies

the impact of home page layout and page settings on the

user’s browsing experience including (a) reading time, (b)

recall, (c) attitude toward the content, (d) perceived ease of

use, (e) perceived user-friendliness and (f) perceived ease of

learning of 79 people in list-view, thumbnail and Progressive

forms. The results show that the designs for mobile news

pages and the structures for website homepages can have a

significant impact on perceived ease of use, reading time,

and the overall reading experience. Arttu et al. [9] collect

24 users’ satisfaction with four translated versions on six

different apps. The misleading labels and long list of options

are statistically used to determine factors that affect user

satisfaction. The results reveal that the user’s satisfaction with

the machine translation version is lower than the manually

translated version, and the user’s main dissatisfaction is about

the input box label.

All of the above studies have acquired some factors related

to the UX, but do not obtain sufficient relationships between

factors and UX. For example, [9] does not explain which factor

in the machine translation leading to a negative UX, but only

explains the UX is low when using the machine version.

III. PRELIMINARIES

Transfer learning has specific concepts and methods. There-

fore, we describe preliminaries on problem formulation and

transfer learning. Specifically, we describe TrAdaboost algo-

rithm used in our experiment in details.

A. Problem Formulation

In this paper, the transfer learning methods are considered.

Specifically, the problem is described as follows.

Let DS = (xS
1 , y

S
1), ..., (x

S
NS

, ySNS
) be samples from a SD,

where xS
i ∈ Rb is a b-dimensional feature vector, and ks

classes Cs = Cs
1 , ..., C

s
ks

. Each sample of DS belongs to one

class in Cs. DT = (xT
1 , y

T
1), ..., (x

T
NT

, yTNT
) are samples from

a TD, where xT
i ∈ Rd is a d-dimensional feature vector, and

kt classes Ct = Ct
1, ..., C

t
kt

. Each sample of DT belongs to

one class in Ct.

B. Transfer Learning

The goal of transfer learning is to use the knowledge shared

by SD and TD to improve the performance of the TD. Transfer

learning methods are divided into three categories based

on different settings: inductive transfer learning, transductive

transfer learning, unsupervised transfer learning [13]. In this

paper, we focus on inductive instance-based transfer learning

and inductive model-based transfer learning algorithms, where

the labeled samples from TD and SD are available in both

algorithms.

The idea of instance-based transfer learning is that SD

contains data similar to TD, although the attributes of SD

data and TD data are different. Therefore, SD samples similar

to TD samples are selected and their weights are increased

to make the distribution of SD data and the distribution of

TD data same. Among algorithms of this category, kernel

mean matching, density ratio estimation and TrAdaBoost are

popular. In this paper, TrAdaBoost [17], the most popular

and the first boosting-based algorithm for transfer learning,

is chosen.

TrAdaBoost is extended based on AdaBoost [24], which

performs multiple rounds of training to obtain a strong clas-

sifier by combining multiple weak classifiers. In each round,

AdaBoost increases the weight of each sample misclassified

by the previous classifiers, and reduces the weight of each cor-

rectly classified sample. As a result, the misclassified samples

receive more attention in the later round of weak classifier.

However, TrAdaBoost requires differently distributed SD and

TD. Attributes and labels of SD and TD are required to be

the same. In our experiment, they are manually mapped, which

will be detailed in our experiment. After mapping, TD samples

DT is divided into training data TTR =
{
(xN

i , yNi)
}
, i =

1, 2, ...,m and test data TTE . SD samples DS are all used

as training data TS =
{
(xN

i , yNi)
}
, i = 1, 2, ..., n, where

N is the number of attributes of matched SD and TD, n
and m are the size of SD training data and TD training

data, respectively. The training data T = {(xi, yi)} is the

combination of TS and TTR, which is defined as follows:

xi =
{
xN
i , i = 1, ..., n+m

}
. This paper only considers the

two-category problem. Thus, yNi ∈ (0, 1).

The goal of TrAdaBoost is to train a classifier that minimize

the error rate of prediction on TTE . In TrAdaBoost, AdaBoost

is still used to train the model on the same distributed data TTR

to ensure the model accuracy on TD data. But for different

distributed data TS , we believe that the misclassified samples

are the most dissimilar to the same distributed data TTR.

Therefore, in each iteration round, the weights of misclassified

samples in TS are descreased to reduce their impact on TD.

The weight reduction is designed according to Hedge(β) [24].

IV. METHODS

TrAdaBoost model can improve prediction accuracy, but can

not explain relationships between UX and relevant factors. As

a result, an interpretive transfer of decision tree is considered.

This chapter describes TrCart algorithm and TrAdaBoostCart

algorithm and traditional statistical methods that we used

to analyze UX. TrCart and TrAdaBoostCart are proposed

to obtain higher prediction accuracy than the original Cart

algorithm. Furthermore, the results analyzed by traditional

statistical methods and TrAdaBoostCart are compared to verify

that TrAdaBoostCart can obtain more sufficient relationships

among UX, user characteristics and game factors.

188

Authorized licensed use limited to: University of Central Florida. Downloaded on May 22,2020 at 01:48:28 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: TrAdaBoost

Input: TTR, T, TTE , base learner L, maximum number

of iterations N

Output: Classifier hf (x)
Initialize: Initialization w1 = (w1

1, ..., w
1
n+m)

β = 1/(1 +
√
2 lnn/N)

1: for t = 1, ..., N do
2: Set pt = wt/(

∑n+m
i=1 wt

i)
3: Train a learner ht using L on T with pt

4: Calculate error rate of ht on TTR : ε
5: Set βt = εt/(1− εt)
6: Update:

wt+1
i =

{
wt

iβ
|ht1(xi)−yi|,1 ≤ i ≤ n

wt
iβ

−|ht1(xi)−yi|
t ,n+ 1 ≤ i ≤ n+m

7: end for
8: return hypothesis:

hf (x) =

⎧⎨
⎩1,

∏N
t=�N

2 � β
−ht(x)
t ≥ ∏N

t=�N
2 � β

− 1
2

t

0, otherwise

A. User Experience Model based on Transfer Learning

In this paper, we propose TrCart inspired by interpretable

TDT algorithm to explain the relationships among UX, user

characteristics and game factors more accurately. In addition,

we combine TrAdaboost with TrCart to get TrAdaBoostCart,

which is interpretive and has more preferable performance on

small samples than TrCart.

1) TrCart: There are different relationships between the

tasks of SD and TD. Let task1 be a learning task of the SD

and task 2 be a learning task of the TD. Task 1 and task 2

have four relationships, as shown in Fig.1. TrCart is inspired

by TDT [18], which considers the case of type 1, i.e., task 1

is a subset of task 2. That is, the SD attribute set is a subset

of the TD attribute set. TDT algorithm learns task 2 based

on a partial decision tree model of task 1. In other words,

knowledge of the SD data and parameters of the SD model

are applied to task 2. Initially, the SD model is trained on

the SD data. TDT algorithm includes two parts, the first part

includes identifying attributes An that are not shown in SD

tree model. The second part is to apply the SD tree model

to TD data set. The SD tree model is used to classify each

training samples of TD. If the prediction result is the same as

the sample’s label, do nothing. If not the same, then a new

attribute in An is chosen and inserted at the end of the branch

to which the sample belongs. A leaf node with the label of

the sample is created and inserted to the end of the branch.

In TrCart, we consider the case of type 2, where task 1 and

task 2 have a part of the same attribute. In this paper, “Temple

run” and “Super Mario Bros” have some common attributes.

Let AT be the attribute set of TD, AS is the attribute set of

SD and Ac is the common attribute set between SD and TD.

Fig. 1. Possible relationshipship between two tasks

In TDT, the SD tree model is trained on the SD data that is a

subset of TD data. Inspired by that, training task 1 on the SD

samples only with common attributes Ac is considered. First,

the different attributes between SD and TD are discarded in

the SD, and let all samples with Ac from SD are training

samples TSc =
{
(xB

1 , y
B
1), ..., (xB

NS
, yBNS

)
}

, where B is the

dimension of Ac. The TD samples DT are divided into the

following training samples TTR =
{
(xT

1 , y
T
1)

}
, i = 1, 2, ..., a,

validating samples TTV =
{
(xT

1 , y
T
1)

}
, i = 1, 2, ..., b and

testing samples TTE =
{
(xT

1 , y
T
1)

}
, i = 1, 2, ..., c, where a, b

and c are the size of TTR, TTV and TTE , respectively. Then,

we call Cart algorithm with TSc, and obtain a model Tsource

that only contains Ac. After getting Tsource, we do not classify

samples one by one through Tsource model, which is time-

consuming.

Algorithm 2: TrCart

Input: Tsource, TTR, TTV , AT

Output: Ttarget

1: Ttarget ← Tsource

2: for instance I in TTR do
3: Classify I using Ttarget

4: end for
5: L ← all leaf nodes in Tsource

6: for each leaf node l in L do
7: Tl ← TTR Samples in l

8: if l is not separable according to Tl then
9: Mark the label of l as the class with the largest

number of samples in Tl

10: else
11: Ar ← AT remove all attributes of the branch l

belonged to

12: Select a∗ from Ar

13: Node l is replaced by a new node a∗
14: for each value of a∗ do
15: Generate a branch node for the value

16: Repeat Steps 7-17

17: end for
18: end if
19: end for
20: Prune Ttarget on the TTV

189

Authorized licensed use limited to: University of Central Florida. Downloaded on May 22,2020 at 01:48:28 UTC from IEEE Xplore. Restrictions apply.

In Algorithm 2, training samples TTR from TD are classified

by the SD tree model Tsource and Tsource is modified based

on the classification results of all TTR. First, the TTR are

classified into leaf nodes of Tsource. Secondly, each leaf node

is determined whether it can be divided according to TD

training samples Tl of the leaf node. If it cannot be divided,

the label of the leaf node is updated to the label that the most

samples in Tl belong to. If it can be divided, the attribute a∗
is selected and the leaf node is replaced by the attribute node.

Candidate attributes are attributes in AT after removing the

branch attributes. The candidate attributes include two kinds

of attributes: (1) Filtered attributes: common attributes of the

SD and the TD but are not shown in this branch of the SD

tree model. (2) Specific attributes: attributes that are in TD but

not in SD. The selection method is the same as the selection

method in cart. After selecting the attribute for partitioning,

branch nodes for values of a∗ are generated. We repeating

this procedure to determine whether the generated node can

be divided until the end node of the branch cannot be divided.

Finally, we prune the model on the TTV and obtain the final

model Ttarget.

2) TrAdaBoostCart: In our experiment, TrAdaBoost im-

proves the prediction accuracy of task 2 by optimizing the

data distribution of the SD and applying to TD. However, it

can not explain the relationships among user characteristics,

game factors and UX.

Although TrCart model can explain UX relationships, it

has lower accuracy than TrAdabost since SD contains some

differently distributed samples and these samples can cause

negative transfer. Inspired by TrAdaBoost that can adjust the

SD distribution and make it the same as the TD distribution,

TrAdaBoost is considered to be combined with TrCart to

obtain a mixed model TrAdaBoostCart that can update weights

of SD samples and explain the relationships between UX and

related factors.

In TrAdaBoostCart, firstly, TrAdaBoost is used to adjust

the weights of SD samples DS . The weights of the SD

samples similar to the TD samples are increased, and the

weights of the dissimilar SD samples are reduced. When

adjusting the weights of the SD samples, due to that the

SD model is learned on SD samples with basic attributes

in TrCart, two cases are considered: 1) Same as TrAdaBoot

experiments, adjusting weights of SD samples according to

similarity between SD samples and TD samples that have the

attributes in TrAdaBoost; 2) Updating weights of SD samples

according to similarity between SD samples and TD samples

that contain only common attributes Ac.

In both cases, the training data sets are: 1) T1 =
{(xi, yi)} is the combination of TTR and TS , xi ={
xN
i , i = 1, ..., n+ a

}
; 2) T2 = {(xj , yj)} is the combina-

tion of TTRc and TSc, xj =
{
xB
j , j = 1, ..., n+ a

}
, TTRc

is TTR with only common attributes Ac. After training T1 and

T2 by TrAdaBoost, their weights Wn1 and Wn2 are obtained.

Secondly, the SD samples with common attributes and weights

are trained by Cart algorithm to obtain two source models.

We then calling Cart algorithm with TSc and Wn1/Wn2, and

Algorithm 3: TrAdaBoostCart

Input: TTR, TTRc, T1, T2, TSc, base learner L(cart),

N1, N2, TTV , TTE , AT

Output: Ttarget

Initialize: Initialization w1 = (w1
1, ..., w

1
n+a), where

w1
i =

⎧⎪⎨
⎪⎩

1

n
,i = 1, ..., n

1

a
,i = 1, ..., a

β = 1/(1 +
√
2 lnn/N)

1: for t = 1, ..., N1 do
2: Set new weight vector pt = wt/(

∑n+a
i=1 wt

i)
3: Call L, train a learner ht1 : X → Y on T1 with the

distribution pt

4: Error rate of ht1 on TTR:

εt =

n+a∑
i=n+1

wt
i |ht1(xi)− yi|∑n+a

i=n+1 w
t
i

5: Set βt = εt/(1− εt)
6: if et > 1/2 then
7: set et = 1/2
8: end if
9: Update:

wt+1
i =

{
wt

iβ
|ht1(xi)−yi|,1 ≤ i ≤ n

wt
iβ

−|ht1(xi)−yi|
t ,n+ 1 ≤ i ≤ n+m

10: end for
11: for t = 1, ..., N2 do
12: Repeat 2-9. Among them, T2 replaced T1, ht2

replaced ht1 and TTRc replaced TTR

13: end for
14: Obtaining the weight Wn1 of TS :Wn1 = wt+1

N1 and Wn2

of TSc:Wn2 = wt+1
N2

15: Call L to train the TSc with weight Wn1/Wn2, get back

a tree model Tsource1/Tsource2

16: Call TrCart model in Algorithm 2, providing it

Tsource1/Tsource2, TTR, TTV and AT , get back a model

Ttarget1/Ttarget1

17: Calculate the accuracy of Ttarget1 and Ttarget2 on TTE ,

return the model with the highest accuracy

get back a model Tsource1/Tsource2. Finally, Algorithm 2 is

used to establish a TrCart model Ttarget1/Ttarget2 based on

Tsource1/Tsource2 on the TTR and TTV mentioned in Algo-

rithm 2. The model with the highest accuracy is finally chosen

as the final model. The resulting model is TrAdaBoostCart,

which not only has almost the same accuracy as TrAdaBoost,

but also explains the relationships among UX, user charac-

teristics and game factors. The details of TrAdaBoostCart are

shown in Algorithm 3.

190

Authorized licensed use limited to: University of Central Florida. Downloaded on May 22,2020 at 01:48:28 UTC from IEEE Xplore. Restrictions apply.

B. User experience analysis through traditional statistical
methods

In our study, we try to answer the following two research

questions. Through answering these questions, we are able to

have better understanding of the relationships among UX, user

characteristics and game factors.

• RQ1: What kind of user characteristics do players with a

positive UX on the game have? And what game settings

are they sensitive to?

• RQ2: What kind of user characteristics do players with a

negative UX on the game have? And what game settings

are they sensitive to?

Selection of Participants. In our experiment, we recruited

54 participants with different user characteristics. Although

selection criterion may limit our findings to certain ages, the

participants in this age ranges are one of the most important

group of mobile game users.

Selection of Questionnaire. To analyze the relationships

among UX, user characteristics and game factors, we firstly

use a questionnaire to obtain user characteristics and UX since

the questionnaire contains a wealth of user characteristics

and UX. The questionnaire is shown in Table I. Among

these attributes, the answer of “willing to continue playing”

represents their final attitudes of the application. In other

words, “do not willing to continue playing” represents negative

UX and “willing to continue playing” represents positive UX.

The answer of “evaluation of the game” describes the user’s

evaluation about the advantages and disadvantages of the

game. Users are requested to answer these two questions after

they performed the game. The remaining attributes are basic

user characteristics values.

Selection of Game and Division of Game events. The

popular mobile games “Temple Run” is selected so that we

can study what kind of game settings can affect UX. In this

paper, we consider the difficulty level of game events since

[25] shows that the success and failure of a game event can

affect UX. Firstly, game events are divided into four categories

like [1], which are (1) moving events, (2) fixed events, (3) top

events and (4) bottom events. We then study the impact of

overall difficulty of the game and the difficulty of four events

on UX. For convenience, the above difficulty levels are divided

into high and low. Since top events and bottom events are

opposite, difficulty of top events is high when a player thinks

the difficulty of bottom events is low. Similarly, the difficulty

of moving events is high when a player thinks the difficulty

of fixed events is low. The overall difficulty and the difficulty

of four various events are shown in Table II.

Requirements for Users. In order to collect full game data

and analyze the impact of game difficulty on UX, we require

users to play the game for at least five minutes.

To answer the first research question RQ1, we need to

select the user characteristics and software factors associated

with the positive UX. First of all, all user characteristics and

all software factors make up feature set. Feature set includes

“gender”, “age”, “parkour game frequency”, “physical exercise

TABLE I
SUBJECTIVE QUESTIONNAIRE

Attributes Value Value
Gender female male

Age 16-20 21-25
Parkour game frequency poor rich

Physical exercise frequency occasional frequent
Character trait introverted extroverted

First experience of this game no yes
Willing to continue playing no yes

Evaluation of the game Questions

TABLE II
THE OVERALL DIFFICULTY AND THE DIFFICULTY OF FOUR EVENTS

Game difficulty Value value
Difficulty of moving game events high low

Difficulty of fixed game events high low
Difficulty of top game events high low

Difficulty of bottom game events high low

frequency”, “character trait”, “first experience of this game”,

“overall difficulty of the game, “difficulty of fixed events”,

“difficulty of moving events”, “difficulty of top events” and

“difficulty of bottom events”. Each feature has two values.

The users who are willing to continue playing this game are

marked with positive UX. We then select the value of features

related to these users one by one. We select the most feature

value in people who have positive UX and choose the next

feature in these people until there is no feature value that can

distinguish positive and negative people. Finally, relationships

between features and positive UX are obtained. To answer

the second research question RQ2, we repeat the above three

steps. But in the second step, users who are willing to continue

playing this game are replaced by the users who are not willing

to continue playing this game.

V. EXPERIMENT

In this section, we first describe our datasets in traditional

statistical methods and transfer learning methods. Then we

talk about the evaluation results of TrAdaboost model, TrCart

model and TrAdaBoostCart model. Finally we analyze UX

relationships through traditional statistical methods.

A. Datasets

Dataset for Traditional Statistical Methods. User data

(user characteristics and UX) of 54 individuals are collected

through the questionnaire described in Section IV-A, and

their game event data are recorded through recording screen.

Questionnaire results show that 22 players have positive UX

and 32 players have negative UX. We pre-process these data

into digital value, which are shown in Table III.

Data Set for Three Transfer Learning. In the three

transfer learning algorithms, we need to transfer the basic

knowledge of large data set to small data set. Therefore, in

addition to the above dataset used in TD, the public dataset

191

Authorized licensed use limited to: University of Central Florida. Downloaded on May 22,2020 at 01:48:28 UTC from IEEE Xplore. Restrictions apply.

TABLE III
DATA SET FOR TRADITIONAL STATISTICAL METHODS

Attributes value Digitized

Gender
male 0

female 1

Age
16-20 0
21-25 1

Parkour game frequency
poor 0
rich 1

Physical exercise frequency
occasional 0
frequent 1

Character trait
introverted 0
extroverted 1

First experience of this game
no 0
yes 1

Overall difficulty of the game
low 0
high 1

Difficulty of moving events
low 0
high 1

Difficulty of fixed events
low 0
high 1

Difficulty of top events
low 0
high 1

Difficulty of bottom events
low 0
high 1

“Super Mario Bros” [16] that includes the UX, user character-

istics and game actions(’jump’, ’left’, ’right’) is selected for

SD, as shown in Figure 2.

Fig. 2. Target Domain and Source Domain Datasets

The SD contains data of 55 players and each player includes

multiple data. We process this dataset into independent sam-

ples. The total number of SD samples is 379. Since TrAdaBoot

requires that the attributes and labels of SD and TD are the

same [26], we need to manually map them in TrAdaBoost

experiment. The different attributes between SD and TD are

mapped, and the same attributes are reserved. Firstly, since SD

lacks some user characteristics (Physical exercise frequency

and character trait), these attributes are not considered in this

algorithm. At the same time, we convert game events in TD

into actions (including “jump”, “go ahead” and “retreat”) due

to the fact that the game data recorded in SD is the action

data of users and the game data recorded in TD is the game

events users experienced. Secondly, we map TD actions and

SD actions. The action “jump” in TD corresponds to ’jump’

in SD; the action “go ahead” indicating the usual behavior

of the player in TD corresponds to the ’right’ in SD. The

“retreat” indicating the unusual behavior of the player in

TD corresponds to the ’left’ in SD. The label “Is there any

immersion?” in SD expresses “willing to continue playing” in

TD.

TrCart and TrAdaboostCart require same attributes (gender,

parkour game frequency and first experience of this game and

total death rate) between the original TD and the original SD to

train Tsource model, and require remaining attributes(difficulty

of fixed events, difficulty of moving events, difficulty of top

events and difficulty of bottom events) in the TD to modify

Tsource model and obtain Ttarget model. Table IV shows

the attributes and labels in SD and TD, where “is there any

immersion?” is the label of SD, “willing to continue playing”

is the label of TD.In these two algorithms, both TD and SD

contain training samples, validation samples and test samples,

which account for 60%, 20%, 20%, respectively.

TABLE IV
ATTRIBUTES AND LABELS IN SOURCE DOMAIN AND TARGET DOMAIN

SD TD Value Digitized
Attributes Attributes

Gender
same as male 0

SD female 1
parkour game same as poor 0

frequency SD rich 1
first experience same as no 0

of this game SD yes 1

Total death rate
overall Difficulty low 0

of the game high 1

Death rate of jump
Difficulty of low 0
fixed events high 1

Death rate of left
Difficulty of low 0

moving events high 1

Death rate of right
Difficulty of low 0
top events high 1

Difficulty of low 0
bottom events high 1

Is there any willing to no 0
immersion? continue playing yes 1

B. Experiments and Results

1) Transfer learning based methods: In order to evaluate

the effect of three transfer learning methods, we first train

through the Cart algorithm to obtain the original accuracy of

TD. Then transferred learning is conducted using the above

three algorithms. Firstly, the attributes and labels of the TD

dataset is processed to be same, and TrAdaBoost is applied.

Secondly, TrCart is used for further classifications. SD dataset

with common attributes is modeled by TrCart algorithm,

192

Authorized licensed use limited to: University of Central Florida. Downloaded on May 22,2020 at 01:48:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Interpretive TrAdaBoostTree model with improved accuracy on “Temple Run” data

and the model is retrained on the target training set. After

retraining, the model is pruned on the target validation set and

tested on the target test set. Finally, using TrAdaBoost model

to obtain the weights of SD with common attributes. The

training data set of the SD with common attributes and weights

are trained by TrCart to obtain weighted SD tree model. Then

the model is retrained on training data and validation data of

the TD. After that, TrAdaBoostTree model is obtained. The

accuracy of the three methods are compared as well as original

accuracy, and shown in TableV.

TABLE V
ORIGINAL ACCURACY AND ACCURACY OF THREE TRANSFER LEARNING

METHODS

Cart TrAdaBoost TrCart TrAdaBoostCart

63.6% 81.8% 79.5% 81.8%

From Table V, the accuracy of TrAdaBoost model and

TrCart model are both higher than the original cart model

learned. However, athough TrCart can represent relationships

among UX, user characteristics and game factors, the accu-

racy of TrAdaBoost is more improved, up to 81.8%. This

phenomenon may be caused by some samples in the SD that

are not similar to the TD samples, TrAdaBoost can change the

distribution of the SD data but TrCart cannot.
TrAdaBoostTree obtains an interpretive tree model while

satisfying almost the same accuracy as TrAdaBoost, and

the tree model is shown in Fig 3. This model shows the

relationships among user characteristics, game factors and

positive (negative) UX. In order to answer RQ1, the obtained

positive UX relationships are:

• (a) DT = 0 ∩ frequency = 0 ∩ play = 0 ∩ gender =
1 → 1

• (b) DT = 0 ∩ frequency = 0 ∩ play = 1 ∩ DB =
1 → 1

• (c) DT = 0 ∩ frequency = 1 ∩ play = 1 ∩ DM =
0 ∩ DB = 1 → 1

• (d) DT = 0 ∩ frequency = 1 ∩ play = 1 ∩ DM =
1 ∩Dt = 1 → 1

• (e) DT = 1 ∩ play = 0 ∩ gender = 1 → 1
• (f) DT = 1 ∩ play = 1 ∩ DF = 1 ∩ DB = 1 → 1

In order to answer RQ2, the obtained negative UX relation-

ships are:

• (a) DT = 0 ∩ frequency = 0 ∩ play = 0 ∩ gender =
0 → 0

• (b) DT = 0 ∩ frequency = 0 ∩ play = 1 ∩ DB =
0 → 0

• (c) DT = 0 ∩ frequency = 1 ∩ play = 0 → 0
• (d) DT = 0 ∩ frequency = 1 ∩ play = 1 ∩ DM =

0 ∩ DB = 0 → 0
• (e) DT = 0 ∩ frequency = 1 ∩ play = 1 ∩ DM =

1 ∩ Dt = 0 → 0
• (f) DT = 1 ∩ play = 0 ∩ gender = 0 → 0
• (g) DT = 1 ∩ play = 1 ∩ DF = 0 → 0
• (h) DT = 1 ∩ play = 1 ∩ DF = 1 ∩ DB = 0 → 0

Some branches are taken as examples to illustrate the

interpretablity: positive (c) and negative (d) show that users

who have played this game and have low frequency of video

games are sensitive to the configuration of difficulty of bottom

events when the overall difficulty and the difficulty of moving

events are low. According to these rule, we can suggest that

the game company set up a game with low overall difficulty,

low difficulty on the moving events and the bottom events for

these people. On the contrary, positive (f) and negative (h)

show that users are sensitive to the configuration of difficulty

of the bottom evens when the overall difficulty is high and

193

Authorized licensed use limited to: University of Central Florida. Downloaded on May 22,2020 at 01:48:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Feature values related to positive user experience including parkour game frequency (PGF), physical exercise frequency (PEF), character trait (CT),
first experience of this game (FE), total game difficulty (DR), difficulty of moving events (MDR), difficulty of fixed events (FDR), difficulty of top events
(TDR), and difficulty of bottom events (BDR)

the difficulty of top events is high. According to these rules,

we can suggest that the game company set up a game with

low overall difficulty, high difficulty on the top events and the

bottom events for these people.

2) Traditional statistical methods: We also use traditional

statistical methods to analyze UX relationships for compar-

ison. To answer the first research question RQ1, we select

the feature values related to positive UX recursively (always

choose the highest value of feature in the chosen data set)

for constructing the relationship formula. Figure 4 shows the

related positive feature values. Figure 4(a) indicates people

who have positive UX are more likely to have played this

game before. Figure 4(b) shows, in the previous chosen data

set, users who have low physical exercise frequency are more

likely to have positive UX. Figure 4(c) expresses users who

have low parkour game frequency have largest proportion

in positive users who have played this game and have low

physical exercise frequency. Figures 4(d), (e) and (f) indicate

introverted character trait, high difficulty of top events and

high total game difficulty associate with positive UX. In

addition, Figure 4(f) shows that age, difficulty of moving

events and difficulty of fixed events do not influence UX. As

a result, the relationships among user characteristics, game

factors and positive UX are:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

have played this game ∩ have low physical exercise
frequency ∩ have low parkour game frequency ∩ introverted
∩ play game with high difficulty of top events
∩ high total difficulty → positive UX

To answer the second research question RQ2, we choose

feature values related to negative UX the same as we per-

formed for positive UX. Figure 5 shows the related negative

feature values. Figures 5(a) and (b) show that people who

have the negative UX are more likely to have played this

game and have low physical exercise frequency. Among these

people, Figure 5(c) shows users who play game with high

difficulty of top events are more likely to have the negative

UX. Figure 5(d) shows that the male among above people

are associated with negative UX. Figure 5(e) expresses that

the above people are more likely to have negative UX when

they experience game with high difficulty of moving events.

Furthermore, Figure 5(f) shows extroverted and 21-25 years

old people among above users are more likely have negative

UX. As a result, the relationships among user characteristics,

game factors and negative UX are:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

have played this game ∩ have low physical exercise
∩ high difficulty of top events ∩ male ∩ high
difficulty of moving events ∩ 21-25 ∩ extroverted
→ negative UX

3) Discussion: According to the results obtained by TrAd-

aBoostCart algorithm and traditional statistical method, they

all expose the relationships among user characteristics, game

factors and positive (negative) UX. ‘Game Experience’, ‘Video

Game Frequency’, ‘Difficulty of top events’, ‘Difficulty of

bottom events’, are the most relevant attributes that would

affect UX.

However, the traditional statistical method would easily drop

into the overfitting situation on small samples. On the contrary,

with the help of SD data sets, the TrAdaBoostCart based

method can provide sufficient result. It ignores some particular

user characteristics (age and physical exercise frequency) since

194

Authorized licensed use limited to: University of Central Florida. Downloaded on May 22,2020 at 01:48:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Feature values related to negative user experience.

it just considers common user characteristics when construct-

ing the source model. Compared with the traditional statistical

method, TrAdaBoostCart can provide more sufficient sugges-

tions and thus is more suitable for the design process of mobile

applications.

VI. CONCLUSION

The purpose of this paper is to obtain an accurate and

interpretive UX model on small samples. This paper selects

the popular “Temple Run” game as the TD, and collects user

characteristic and game event data from 54 testers. The SD is

a public “Super Mario Bros” dataset including 379 samples. It

contains some user characteristics which are same as the TD

and extra game action data. Since the TD data is too small, in

order to obtain a model with high accuracy on the TD data, we

introduce TrAdaBoost into the UX of game and the accuracy

of TrAdaBoost is significantly higher than the original Cart

model. In order to explain the relationships between UX and

related factors, we propose a model-based TrCart algorithm,

and get a model with improved accuracy and explanatory.

However, its accuracy is less than TrAdaBoost model. We

then propose TrAdaBoostTree that combine TrAdaBoost with

TrCart. Finally, the mixed interpretive model with almost the

same accuracy as TrAdaBoost is obtained. And the obtained

results are more generalized than the traditional statistic model.

In our future work, we plan to transfer multiple SD data to the

TD data. In addition, we plan to expand related factors and

their values in order to obtain more detailed relationships.

ACKNOWLEDGEMENT

This work was supported in part by the Fundamental

Research Funds for the Central Universities under Grant

2018JBM073 and in part by the National Natural Science

Foundation of China under Grant 61502028.

REFERENCES

[1] Q. Yu, X. Che, S. Ma, S. Pan, Y. Yang, W. Xing, and X. Wang, “A hybrid
user experience evaluation method for mobile games,” IEEE Access,
vol. 6, pp. 49067–49079, 2018.

[2] Y. Wang and X. Che, “How to keep people playing mobile games:
An experience requirements testing approach,” in 2016 Intl IEEE
Conferences on Ubiquitous Intelligence & Computing, Advanced and
Trusted Computing, Scalable Computing and Communications, Cloud
and Big Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), Toulouse, France, July
18-21, 2016, pp. 815–822, 2016.

[3] N. Shaker and M. Abou-Zleikha, “Transfer learning for cross-game
prediction of player experience,” in Computational Intelligence and
Games, pp. 1–8, 2017.

[4] C. Fabricatore, “Gameplay and game mechanics design: a key to quality
in videogames,” in Oecd-Ceri Expert Meeting on Videogames and
Education, 2007.

[5] R. Bernhaupt and M. Pirker, Evaluating User Experience for Interac-
tive Television: Towards the Development of a Domain-Specific User
Experience Questionnaire. Springer Berlin Heidelberg, 2013.

[6] M. I. M. Eid and H. I. Abbas, “User adaptation and erp benefits:
moderation analysis of user experience with erp,” Kybernetes, vol. 46,
no. 3, 2017.

[7] J. L. S. E. Manuel Lopez-Martin, Belen Carro and A. Sanchez-
Esguevillas, “Deep learning model for multimedia quality of experience
prediction based on network flow packets,” IEEE Communications
Magazine, vol. 56, no. 9, pp. 110–117, 2018.

[8] Y. Guo, G. Ding, Y. Gao, and J. Han, “Active learning with cross-class
similarity transfer,” in Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, February 4-9, 2017, San Francisco, California,
USA., pp. 1338–1344, 2017.

[9] X. Qin, S. Holla, L. Huang, L. Montijo, D. Aguirre, and X. Wang,
“How does machine translated user interface affect user experience? A
study on android apps,” in 2017 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, ESEM 2017,
Toronto, ON, Canada, November 9-10, 2017, pp. 430–435, 2017.

[10] K. Kiili, A. Perttula, S. Arnab, and M. Suominen, “Flow experience
as a quality measure in evaluating physically activating serious games,”
International Journal of Serious Games, vol. 1, no. 3, pp. 200–212,
2013.

[11] J. Guna, E. Stojmenova-Duh, and Pogacnik, “Users’ viewpoint of
usability and user experience testing procedure - gaining methodological
insights in a case of an interactive hbbtv application,” Multimedia Tools
Applications, pp. 1–19, 2016.

195

Authorized licensed use limited to: University of Central Florida. Downloaded on May 22,2020 at 01:48:28 UTC from IEEE Xplore. Restrictions apply.

[12] S. Kang, L. Norooz, V. Oguamanam, A. C. Plane, T. L. Clegg, and
J. E. Froehlich, “Sharedphys: Live physiological sensing, whole-body
interaction, and large-screen visualizations to support shared inquiry
experiences,” in Proceedings of the The 15th International Conference
on Interaction Design and Children, IDC ’16, Manchester, United
Kingdom, June 21-24, 2016, pp. 275–287, 2016.

[13] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transac-
tions on Knowledge Data Engineering, vol. 22, no. 10, pp. 1345–1359,
2010.

[14] B. Wang and J. Pineau, “Online boosting algorithms for anytime transfer
and multitask learning,” in Twenty-Ninth AAAI Conference on Artificial
Intelligence, pp. 3038–3044, 2015.

[15] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification
and Regression Trees. Wadsworth, 1984.

[16] K. Karpouzis, G. N. Yannakakis, N. Shaker, and S. Asteriadis, “The
platformer experience dataset,” in International Conference on Affective
Computing and Intelligent Interaction, pp. 712–718, 2015.

[17] W. Dai, Q. Yang, G. R. Xue, and Y. Yu, “Boosting for transfer learning,”
in International Conference on Machine Learning, pp. 193–200, 2007.

[18] J. W. Lee and C. G. Giraud-Carrier, “Transfer learning in decision
trees,” in Proceedings of the International Joint Conference on Neural
Networks, IJCNN 2007, Celebrating 20 years of neural networks,
Orlando, Florida, USA, August 12-17, 2007, pp. 726–731, 2007.

[19] N. Martin and J. Diverrez, “From physiological measures to an automatic
recognition system of stress,” in HCI International 2016 - Posters’
Extended Abstracts - 18th International Conference, HCI International
2016, Toronto, Canada, July 17-22, 2016, Proceedings, Part II, pp. 172–
176, 2016.

[20] J. Huang, A. J. Smola, A. Gretton, K. M. Borgwardt, and B. Scholkopf,
“Correcting sample selection bias by unlabeled data,” in International
Conference on Neural Information Processing Systems, pp. 601–608,
2006.

[21] J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, and N. D.
Lawrence, “Covariate shift by kernel mean matching,” Dataset Shift in
Machine Learning, pp. 131–160, 2009.

[22] Z. Zhao, Y. Chen, J. Liu, Z. Shen, and M. Liu, “Cross-people mobile-
phone based activity recognition,” in International Joint Conference on
Artificial Intelligence, pp. 2545–2550, 2011.

[23] N. Yu and J. Kong, “User experience with web browsing on small
screens: Experimental investigations of mobile-page interface design and
homepage design for news websites,” Inf. Sci., vol. 330, pp. 427–443,
2016.

[24] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” J. Comput. Syst. Sci.,
vol. 55, no. 1, pp. 119–139, 1997.

[25] E. N. Castellar, K. Oksanen, and J. V. Looy, “Assessing game experience:
Heart rate variability, in-game behavior and self-report measures,” in
International Workshop on Quality of Multimedia Experience, pp. 292–
296, 2014.

[26] S. Zhou, E. N. Smirnov, G. Schoenmakers, and R. Peeters, “Conformal
decision-tree approach to instance transfer,” Annals of Mathematics
Artificial Intelligence, vol. 81, no. 1-2, pp. 85–104, 2017.

196

Authorized licensed use limited to: University of Central Florida. Downloaded on May 22,2020 at 01:48:28 UTC from IEEE Xplore. Restrictions apply.

