
SuperMem: Enabling Application-transparent Secure Persistent
Memory with Low Overheads

Pengfei Zuo
Huazhong University of Science

and Technology, China
University of California Santa

Barbara, USA
pfzuo@hust.edu.cn

Yu Hua*

Huazhong University of Science
and Technology, China
csyhua@hust.edu.cn

Yuan Xie
University of California Santa

Barbara, USA
yuanxie@ece.ucsb.edu

ABSTRACT

Non-volatile memory (NVM) suffers from security vulnera-
bility to physical access based attacks due to non-volatility.
To ensure data security in NVM, counter mode encryption
is often used by considering its high security level and low
decryption latency. However, the counter mode encryption
incurs new persistence problem for crash consistency guar-
antee due to the requirement for atomically persisting both
data and its counter. To address this problem, existing work
requires a large battery backup or complex modifications on
both hardware and software layers due to employing a write-
back counter cache. The large battery backup is expensive and
software-layer modifications limit the portability of applica-
tions from the un-encrypted NVM to the encrypted one. Our
paper proposes SuperMem, an application-transparent secure
persistent memory by leveraging a write-through counter
cache to guarantee the atomicity of data and counter writes
without the needs of a large battery backup and software-
layer modifications. To reduce the performance overhead of a
baseline write-through counter cache, SuperMem leverages a
locality-aware counter write coalescing scheme to reduce the
number of write requests by exploiting the spatial locality
of counter storage and data writes. Moreover, SuperMem
leverages a cross-bank counter storage scheme to efficiently
distribute data and counter writes to different banks, thus
speeding up writes by exploiting bank parallelism. Exper-
imental results demonstrate that SuperMem improves the
performance by about 2× compared with an encrypted NVM
with a baseline write-through counter cache, and achieves
the performance comparable to an ideal secure NVM that
exhibits the optimal performance of an encrypted NVM.

*Corresponding author (Yu Hua)

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

MICRO ’52, October 12–16, 2019, Columbus, OH, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6938-1/19/10. . . $15.00
https://doi.org/10.1145/3352460.3358290

CCS CONCEPTS

• Hardware → Non-volatile memory; • Security and
privacy → Hardware attacks and countermeasures.

KEYWORDS

Non-volatile memory, memory encryption, crash consistency

ACM Reference Format:
Pengfei Zuo, Yu Hua, and Yuan Xie. 2019. SuperMem: Enabling
Application-transparent Secure Persistent Memory with Low Over-

heads. In MICRO ’52: The 52nd Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, October 12–16, 2019,
Columbus, OH, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3352460.3358290

1 INTRODUCTION

As DRAM suffers from limited scalability and high pow-
er leakage [31, 41], non-volatile memories (NVM), such as
PCM [43], ReRAM [1], STT-RAM [2], and 3D XPoint [18],
become promising candidates of the next-generation main
memory. NVM has the advantages of high scalability, high
density, and near-zero standby power. However, two funda-
mental issues need to be addressed in order to effectively use
NVM in memory systems, i.e., data persistence and security.

First, the non-volatility of NVM enables data to be per-
sistently stored into main memory for instantaneous failure
recovery. In order to ensure the correctness of persistent data,
crash consistency guarantee is non-trivial [32, 42], a factor
which needs to achieve the correct recovery of persistent data
in case of a system failure, e.g., power failure and system
crash. Specifically, NVM systems typically contain volatile
storage components, e.g., CPU caches and possible DRAM. If
a system failure occurs when a data structure in NVM is being
updated, the data structure may be left in a corrupted state.
Moreover, modern processor and memory controller usually
reorder memory writes. The partial update and reordering
cause the crash inconsistency in NVM [27, 48]. Hence, cache
line flush, memory barrier, and log-based mechanisms are
used to ensure the crash consistency [29, 45].

Second, the non-volatility of NVM also causes the security
problem of data remanence vulnerability [3, 50], since NVM
still retains data after systems are powered down. In the
legacy DRAM-based main memory, when using encryption
to protect data, the encrypted data are stored in disks, while
raw data are retained in main memory [14]. If a DRAMDIMM
is stolen, data are quickly lost due to the volatility. Unlike

479

https://doi.org/10.1145/3352460.3358290
https://doi.org/10.1145/3352460.3358290

MICRO ’52, October 12–16, 2019, Columbus, OH, USA Pengfei Zuo, Yu Hua, and Yuan Xie

it, if an NVM DIMM is stolen, an attacker can easily stream
out the data from the DIMM. Hence, memory encryption
becomes important to ensure data security in NVM. Counter
mode encryption [28, 50] is usually used in the secure NVM,
due to its low decryption latency and high security level.
Counter mode encryption uses a secret key associated with
the line address and a counter to generate a one-time pad
(OTP) via the AES encryption engine. In the counter mode
encryption, we encrypt the data via XORing the plaintext
with OTP, and decrypt the data by XORing the ciphertext
data with OTP. The counter mode encryption generates OTP
via the counter buffered in an on-chip counter cache, while in
the meantime, the data is fetched from memory. The parallel
execution thus hides the AES computation latency efficiently.

Nevertheless, it is challenging to ensure both crash consis-
tency and data security in NVM. This is because each data
write to the encrypted NVM generates two write requests,
i.e., one for the data and the other for its counter. To guar-
antee crash consistency, the two writes have to be persisted
at the same time. If a system failure occurs when the data
is persisted into NVM but its counter is not, the data fails
to be decrypted upon the system recovery due to no correct
counter. Similarly, if a system failure occurs when the counter
is persisted into NVM but its data is not, the old-version
data in NVM fails to be correctly decrypted. Unfortunately,
current computer systems cannot atomically perform the two
write requests to NVM, since the data is evicted from CPU
caches and the counter is evicted from the counter cache
managed by the memory controller. Programmers can active-
ly flush the data in CPU caches by using existing cache line
flush and memory barrier instructions for data persistence.
However, these instructions cannot control counter writes
from the counter cache.

To guarantee crash consistency of the encrypted NVM and
reduce its performance overhead, some existing works [3, 56]
use a write-back counter cache with battery backup. These
schemes persist counters in the counter cache into NVM by
using the battery power on system failures. However, in prac-
tice, the counter cache is usually hundreds of kilobytes or
even megabytes [3, 30, 47, 56] and thus the battery backup
for supporting the large counter cache is expensive and oc-
cupies large chip areas [49]. Modern processor vendors only
provide a small battery backup for the Asynchronous DRAM
Refresh (ADR) [20, 30, 37] with the small persistent domain
of tens of entries in the write queue of the memory controller.
Without using the large battery backup, existing work [30]
proposes a selective counter atomicity (SCA) scheme with a
write-back counter cache by adding new primitives in the pro-
gramming language including CounterAtomic variable and
counter_cache_writeback() function. These primitives en-
able programmers to explicitly flush specified counters from
the write-back counter cache into NVM. Moreover, the SCA
scheme adds a counter write queue into the memory con-
troller, which enables the data and its counter to wait for
each other. The counter atomicity is achieved by performing
modifications on both software and hardware layers including
programming language, compiler, and memory controller. As

a result, the applications initially running on a system with
the un-encrypted NVM cannot directly run on a system with
the encrypted NVM.

Our paper proposes SuperMem (pronunciation similar to
”Superman”), an application-transparent Secure persistent
Memory without a large battery backup and software-layer
modifications. SuperMem employs a write-through counter
cache that enables crash consistency guarantee of the encrypt-
ed NVM to be much easier compared with using a write-back
counter cache. However, the baseline write-through counter
cache incurs more counter write requests, thus decreasing the
system performance. SuperMem further improves the system
performance from two aspects, i.e., reducing the number of
counter write requests and speeding up memory writes. Specif-
ically, SuperMem leverages a locality-aware counter write
coalescing (CWC) scheme to reduce counter write requests
by exploring and exploiting the spatial locality of counter
storage and data writes. Moreover, SuperMem leverages a
cross-bank counter storage (XBank) scheme to efficiently
distribute data and counter writes to different banks, thus
speeding up writes by exploiting bank parallelism. In sum-
mary, SuperMem shows how to use the simple yet effective
CWC and XBank schemes to enable an encrypted NVM with
a write-through counter cache to deliver a high performance
comparable to an ideal secure NVM that exhibits the optimal
performance of an encrypted NVM. This paper makes the
following contributions:

∙ Counter write reduction by exploiting data local-
ity. We propose a locality-aware counter write coalesc-
ing (CWC) scheme to improve system performance in
SuperMem via significantly reducing the number of
NVM write requests from counters. By leveraging the
spatial locality of counter storage and data writes, i.e.,
the counters of the data with successive physical ad-
dresses are stored in the same memory line, the CWC
scheme merges different counter writes to the same
memory line in the write queue.

∙ Write speedup by leveraging bank parallelism. We
propose a cross-bank counter storage (XBank) scheme
to efficiently distribute data and counter writes to
different banks in SuperMem. Writes to different banks
can be handled by memory in parallel. Thus the XBank
scheme speeds up writes by leveraging bank parallelism.

∙ Application-transparent implementation. The im-
plementation of SuperMem only needs to perform s-
light modifications on the hardware layer without any
modifications on the software layer, e.g., programming
language and compiler, which are transparent for pro-
grammers and applications. Thus applications initially
running on an un-encrypted NVM can be directly exe-
cuted on an encrypted NVM with SuperMem.

∙ Experimental evaluation. We have implemented and
evaluated the SuperMem in gem5 [6] with NVMain [33].
Experimental results show the CWC scheme reduces
up to 50% of write requests in the encrypted NVM
with a write-through counter cache, and the XBank
scheme improves the system performance by up to 2×.

480

SuperMem: Enabling Application-transparent Secure Persistent Memory with Low Overheads MICRO ’52, October 12–16, 2019, Columbus, OH, USA

Thus SuperMem achieves the performance comparable
to an ideal secure NVM that presents the optimal
performance of an encrypted NVM.

2 BACKGROUND AND MOTIVATION

In this section, we first present the background of data per-
sistence and security issues in NVM. We then present the
gap between the persistence and security guarantees.

2.1 Consistency Guarantee for Persistence

In order to correctly persist data into NVM, it is important
to guarantee data crash consistency. However, modern CPUs
and memory controllers usually reorder memory writes, which
usually results in data inconsistency in case of system failures.
Thus cache line flush and memory barrier instructions are
used to enforce write ordering [23, 29, 32]. The cache line
flush instructions including clflush, clflushopt, and clwb

explicitly flush a dirty CPU cache line into the write queue
of the memory controller. The memory barrier instructions
including mfence and sfence order the memory operations
via blocking the memory operations after the fence, until the
memory operations before the fence complete. The pcommit

instruction was initially used to force the write requests
in the write queue into NVM but was deprecated later by
Intel [19], due to the use of asynchronous DRAM refresh
(ADR) mechanism [20, 30, 37]. The ADR is able to persist
the write requests in the write queue into NVM in case of a
system failure via the battery backup. Therefore, the cache
lines reaching the write queue are considered durable.

Moreover, the size of atomic memory write in modern
computer systems is 8 bytes, which is equal to the memory
bus width for 64-bit CPUs. If data larger than 8 bytes is
being updated and a system failure occurs before completing
the update, the data will be corrupted. Copy-based mech-
anisms [23, 29] such as logging and copy-on-write are used
to avoid the partial update. For example, the logging tech-
nique first writes the new data (redo logging) or old data
(undo logging) into a log, and then updates the data in place.
If a system failure occurs during the updating process, the
data can be recovered based on the log. Nevertheless, copy-
based mechanisms are expensive due to writing more data.
Some crafted data structures, e.g., wB+-tree [7], WORT [27],
FAST&FAIR [17], and level hashing [55], are proposed to
exploit the atomic write of NVM to ensure data crash consis-
tency, thus avoiding the overhead of copy-based mechanisms.
For example, a bit map associated with the data is used to
indicate which data are valid or invalid and the bit map is
smaller than an atomic write. The data structure changes the
bit map to atomically switch the data from the old version
to the new one.

2.2 Memory Encryption for Security

2.2.1 Threat Model. Our threat model is similar to existing
work on secure NVM [3, 30, 40, 50, 56], which aims to protect
NVM from two well-known physical access based attacks,

AES-ctrAddr

Line

Encrypted Line

Key

Ctr

AES-ctr
Addr

Line

Encrypted Line

Key
AESKey

Line

Encrypted Line

(a) Key (c) Key + Addr + Ctr(b) Key + Addr

Figure 1: The encryption methods (a) using a global
key; (b) using a key and line address; (c) using a key,
line address and a counter (ctr).

including stolen DIMM and bus snooping attacks1. In the
stolen DIMM attack, since NVM still retains data after sys-
tems are powered down, an attacker can easily stream out
the data stored in the NVM after stealing the NVM DIMM.
In the bus snooping attack, since NVM is accessed through
the memory bus, an attacker can insert a bus snooper to
obtain the data through the bus. To defend against these
attacks, memory encryption is important and non-trivial.

2.2.2 Security Guarantee via Encryption. A straightforward
method to encrypt a memory line is to use a block cipher
algorithm, e.g., AES [13], with a global key, as shown in
Figure 1a. However, an attacker can know which lines have
the same content via simply comparing encrypted lines, since
all lines are encrypted using the same key, which is vulnerable
to dictionary and replay attacks [3, 50]. Using the key along
with the line address to encrypt each line is more secure, as
shown in Figure 1b, which can ensure that different lines are
encrypted with different keys. However, this method is still
vulnerable to the dictionary attack for a single line, if an
attacker monitors consecutive writes to this line.

A secure method is to encrypt each memory line by using
the global key and line address in conjunction with a per-line
counter, as shown in Figure 1c. The counter increases by one
on each write and hence consecutive memory writes to the
same line are encrypted with different keys, achieving high
security level.

2.2.3 Latency Reduction via One Time Pad. As memory reads
are in the critical path of program execution, memory en-
cryption causes high latency of decryption that follows each
memory read due to serial execution, as shown in Figure 2a.
The serial execution significantly degrades the system per-
formance. Unlike it, counter mode encryption [28] is able
to reduce the decryption latency from the critical path of
memory reads via the one-time pad (OTP) technique, and
hence has been widely used in encrypted memory system-
s [3, 9, 40, 50, 56]. The main idea is to compute an OTP in
parallel with a memory read, and then XOR the OTP with
the ciphertext data to generate the plaintext, thus hiding the

1We do not consider bus tampering attacks in the threat model like ex-
isting work [3, 30, 40, 50, 56]. These attacks can be defended via Merkle
Trees based authentication techniques [38], which are orthogonal to
our work.

481

MICRO ’52, October 12–16, 2019, Columbus, OH, USA Pengfei Zuo, Yu Hua, and Yuan Xie

Decryption

Memory Access

Time

(a) Serial

(b) Parallel

Reduced
Latency

Memory Access

One Time Pad

Figure 2: Reducing the decryption latency using
One Time Pad (OTP).

decryption latency in the memory access latency, as shown
in Figure 2b.

2.2.4 Operations of Counter Mode Encryption. The security
of counter mode encryption is based on the premise that
each OTP is never reused for data encryption [28, 40, 50, 56].
To ensure this, the counter mode encryption uses a secret
key, the line address and the per-line counter to generate the
OTP through the AES circuit, as shown in Figure 3. For a
memory write, the cache line to be written is encrypted by
XORing its content with the OTP. To read a memory line, we
decrypt it by XORing its content with the OTP. All counters
are retained in main memory. To reduce the generation time
of OTPs, the memory controller manages an on-chip counter
cache to buffer the recently-accessed counters [30, 40, 56].

AES-ctr

LineAddr Counter

Key +
Plaintext Plaintext

+
Ciphertext Ciphertext

Encryption Decryption

OTP

Figure 3: The encryption and decryption processes
in counter mode encryption.

2.3 The Gap between Persistence and
Security

Each data write to the encrypted NVM produces two write
requests: data and its counter. To guarantee crash consistency,
the two writes have to be persisted at the same time. As
shown in Figure 4a, if a system failure occurs after the counter
has been persisted into NVM but before its data is persisted,
the data in NVM cannot be correctly decrypted upon the
system recovery since there is no correct counter. On the other
hand, as shown in Figure 4b, if a system failure occurs after
the data has been persisted into NVM but before its counter
is persisted, the data still cannot be decrypted. When both
data and its counter are persisted in an atomic manner, crash
consistency is guaranteed as shown in Figure 4c. However,
current computer systems fail to atomically perform the two
write requests to NVM because the data is evicted from CPU
caches and the counter is evicted from the counter cache
managed by the memory controller. Programmers are able to
actively flush the data in CPU caches by using existing cache
line flush and memory barrier instructions. However, these
instructions cannot control counter writes in the counter
cache [30, 39, 54].

DataCounter

Time

(a) Data write fails

Data Counter

(b) Counter write fails

Data

Counter

(c) Failure atomicity

Time Time

Figure 4: Different cases when system failures occur.

Even though some copy-based mechanisms have been used
in NVM to guarantee crash consistency, they do not work
in the encrypted NVM. We analyze the effectiveness of the
durable transaction [23, 29] that is a commonly-used solution
for crash consistency guarantee by using logging. When a
system failure occurs in the different stages of a durable trans-
action executed in an encrypted NVM, the recoverability of
the durable transaction is shown in Table 1. We observe when
a system failure occurs in the mutate and commit stages, the
data are unrecoverable. Specifically, when a system failure oc-
curs in the prepare stage, the data contents and the counters
encrypting the data are unmodified and correct, which are in
a consistent state. However, when a system failure occurs in
the mutate stage, the data are not updated completely and
become wrong. The contents of the log are correct due to the
use of log flush and memory barrier instructions, but it is
unknown whether the counters encrypting the log are correct-
ly persisted, since the cache line flush and memory barrier
instructions fail to handle the counters stored in the counter
cache. Hence, during a recovery, the log cannot be decrypted
due to no correct counters, thus failing to recover the logged
data. For the same reason, when a system failure occurs
in the commit stage, the correctness of both log and data
counters are unknown, and hence the data are unrecoverable.

Table 1: The recoverability when a system failure
occurs in the different stages of a transaction. (The
prepare stage creates a log entry to back up the data to
be written; the mutate stage modifies the data in place;
the commit stage invalidates the log entry created in
the prepare stage.)

Stage Log
Content

Log
Counter

Data
Content

Data
Counter

Recov-
erable?

Prepare Wrong Wrong Correct Correct Yes
Mutate Correct Unknown Wrong Wrong No
Commit Correct Unknown Correct Unknown No

To address the inconsistency problem in the encrypted N-
VM, existing work [30] proposed the concept of the selective
counter-atomicity (SCA), which indicates that either both
data and its associated counter have been simultaneously
persisted or not. In the write-back counter cache, the counter
is written into NVM only when being evicted. Therefore, SCA
adds the new primitive counter_cache_writeback() func-
tion in the programming language to enable programmers
to explicitly flush specified counter cache lines into NVM.
Moreover, SCA adds a counter write queue into the memory
controller, which enables the data and its counter to wait for
each other. However, the data and counters stalled in the
write queues decrease the system performance. The authors

482

SuperMem: Enabling Application-transparent Secure Persistent Memory with Low Overheads MICRO ’52, October 12–16, 2019, Columbus, OH, USA
La

st
 L

ev
e

l C
ac

h
e

Memory Controller

AES-ctr
Counter
Cache

Write Queue

OTPPlaintext

Ciphertext Counter

Counter

C
o

u
n

te
rs

En
cr

yp
te

d

N
V

M

Figure 5: The hardware architecture of SuperMem.
(The ADR is applied to the write queue and hence
cache lines reaching the write queue are considered
durable.)

observe some writes do not immediately affect the recover-
ability of data in a consistent state. For example, writes in
the mutate stage of a durable transaction are not consistent
when a system failure occurs. The transaction can still be
recovered by using the logging. Therefore, SCA selectively
relaxes the atomicity of these writes to improve performance
and adds the new primitive CounterAtomic to enable the
memory controller to identify the data writes that cannot
relax atomicity. SCA is effective when using copy-based mech-
anisms to guarantee crash consistency in the encrypted NVM
but requires the use of new programming primitives. When
porting the applications initially running on a system with
an un-encrypted NVM to the system with an encrypted
NVM, programmers have to modify the program codes of
applications by adding the new primitives in the right places.

3 THE SUPERMEM DESIGN

3.1 An Architectural Overview

Our paper proposes SuperMem, an application-transparent
solution to guarantee crash consistency of the encrypted
NVM. SuperMem employs a write-through counter cache
with a register (S3.2) that enables crash consistency to be
much easier than existing work using a write-back counter
cache. When the data is written into NVM, its corresponding
counter is also written into NVM following the data. Thus
SuperMem is application-transparent which does not require
programmers to actively flush counters from the counter
cache into NVM. However, using a write-through counter
cache always generates two write requests for each data write,
decreasing the system performance. We propose an efficient
cross-bank counter storage (Xbank) scheme (S3.3) to distrib-
ute the data write and its counter write to different banks,
improving the system performance by leveraging band paral-
lelism. Moreover, we also propose a counter write coalescing
(CWC) scheme (S3.4) in SuperMem to significantly reduce
the number of write requests by leveraging the spatial locality
of counter and data writes.

The hardware architecture of SuperMem is shown in Fig-
ure 5. When CPU issues a flush instruction, the corresponding
cache line is evicted from the last level cache to the mem-
ory controller. The memory controller encrypts the cache
line using a counter and then appends the encrypted cache
line in the write queue with the ADR mechanism presented

Memory Ctrl

Write Queue

CPU Flu(A)

Read(Ac) Ac++

App(Ac) App(A)

Ack(A)

Ret(A)

Enc(A)

Figure 6: The sequence that the memory controller
deals with a cache line flush by using a write-through
counter cache. (Flu(A): flushing the cache line A into
NVM; Ac: the counter of A; App(Ac): appending Ac
in the write queue; Enc(A): encrypting A; Ret(A): the
flush of A is retired.)

Memory Ctrl

Register

CPU Flu(A)

Read(Ac) Ac++

Sto(Ac) Sto(A)

Ack(A)

Ret(A)

Enc(A)

Write Queue App(Ac+A)

Figure 7: The sequence that the memory controller
deals with a cache line flush by using a write-through
counter cache with a register. (Sto(Ac): storing Ac
in the register.)

in Section 2.1. The write-through scheme is performed in
the counter cache. The Xbank scheme is used by the mem-
ory controller. The CWC scheme is performed in the write
queue to merge counter writes. As a whole, SuperMem on-
ly performs slight hardware modifications on the memory
controller, which are transparent for programmers and ap-
plications. Thus programs and applications running on an
un-encrypted NVM can be directly executed on an encrypted
NVM with SuperMem.

3.2 Write-through Counter Cache

SuperMem employs a write-through scheme in the counter
cache, which writes each dirty counter in the counter cache,
and simultaneously adds the counter copy into the write
queue. We show, further, how to schedule the cache line flush
via using the simple write-through scheme to ensure crash
consistency of the encrypted NVM.

Figure 6 shows the sequence diagram that the memory
controller deals with a cache line flush or a naturally evicted
CPU cache line in SuperMem. When the CPU issues a flush
for cache line 𝐴 (Flu(A)), the memory controller reads the
counter of 𝐴 from the counter cache (Read(Ac)), and then
adds the counter by one (Ac++). The updated counter is
used to encrypt 𝐴 (Enc(A)). During the encryption, the
updated counter is written back to the counter cache, and
simultaneously appended in the write queue (App(Ac)) via
the write-through scheme. After the encrypted 𝐴 is appended
in the write queue (App(A)), the memory controller sends
an ack (Ack(A)) to the CPU, and the cache line flush is
retired (Ret(A)). From Figure 6, we observe that the counter
encrypting a CPU cache line has been already appended in
the write queue before the cache line flush completes via
the write-through scheme. Hence, if the data is persisted, its
counter has been also persisted.

However, simply performing the baseline write-through
scheme cannot ensure crash consistency when the counter has
been persisted but the data has not. Specifically, we consider

483

MICRO ’52, October 12–16, 2019, Columbus, OH, USA Pengfei Zuo, Yu Hua, and Yuan Xie

0 1 2 3 4 5 6 7Bank ID:

Data0 Data1 Data2 Ctr0, Ctr1, Ctr2

Data Area

Ctr Area

(a) SingleBank storage

0 1 2 3 4 5 6 7Bank ID:

Data Area

Ctr Area

0 1 2 3 4 5 6 7

Ctr0, Data0 Ctr1, Data1 Ctr2, Data2

(b) SameBank storage

0 1 2 3 4 5 6 7Bank ID:

Data Area

Ctr Area

4 5 6 7 0 1 2 3

Data0 Data1 Data2 Ctr0 Ctr1 Ctr2

(c) XBank storage

Figure 8: Different counter storage approaches. (The number on a counter (Ctr) area indicates the bank number
storing its corresponding data, e.g., in Figure 8c, the Ctr area with the number 4 in Bank 0 stores the counters
of data in Bank 4.)

the flush for cache line 𝐴 shown in Figure 6 as an example.
If a system failure occurs after appending the counter of 𝐴
(i.e., App(Ac)) before appending 𝐴 (i.e., App(A)) in the write
queue, the counter of 𝐴 (i.e., 𝐴𝑐) is updated and persisted
in NVM using the ADR mechanism [20, 30, 37] but 𝐴 is not.
After the system is recovered from the failure, the old value
of 𝐴 cannot be decrypted using the new counter.

To address this problem, we add a register for the AES
encryption engine. During encrypting the data (i.e., a cache
line) evicted from CPU caches, we store its corresponding
counter in the register (𝑆𝑡𝑜(𝐴𝑐)) instead of directly appending
the counter in the write queue, as shown in Figure 7. After
encrypting the data, we first store the encrypted data in
the register (𝑆𝑡𝑜(𝐴)), and then simultaneously append the
encrypted data and its counter in the write queue (𝐴𝑝𝑝(𝐴𝑐+
𝐴)). We observe that either data and its associated counter
simultaneously exist in the write queue or not, by using a
register. As a result, the crash consistency of data and its
counter is ensured in SuperMem. Moreover, since the size of
the register is very small, i.e., 2 cache lines (one for the data
cache line and the other for its counter cache line).Reads and
writes in such a small register are very fast. The use of the
register has a negligible performance overhead.

3.3 Cross-bank Counter Storage

In existing secure NVM work with counter mode encryp-
tion [3, 30, 50, 56], counters are generally stored in a contin-
uous area in NVM (SingleBank), as shown in Figure 8a. The
storage approach is efficient for the write-back counter cache,
since most counter writes are buffered in the counter cache
and aren’t written into NVM. However, when employing
a write-through counter cache, each data write produces a
counter write to the counter storage bank. Thus the bank
storing counters becomes a bottleneck, decreasing the system
performance. For example, three data write requests, i.e.,
𝐷𝑎𝑡𝑎0, 𝐷𝑎𝑡𝑎1, and 𝐷𝑎𝑡𝑎2, are sent to Banks 0, 1, and 2,
respectively, as shown in Figure 8a. All their counter write
requests, i.e., 𝐶𝑡𝑟0, 𝐶𝑡𝑟1, and 𝐶𝑡𝑟2, are sent to the counter
storage bank, i.e., Bank 7. The three data write requests
can be served simultaneously due to the parallelism among
banks. However, the three counter write requests have to be
served one by one, thus blocking the following counter write
requests and degrading the system performance.

To avoid the performance bottleneck from accessing the
single bank of counters, one straightforward solution is to
store the counters of data into their local banks (SameBank),
as shown in Figure 8b. Each data write and its counter write
are sent to the same bank. In this case, however, the average
processing time that each bank serves for a data write is
doubled, compared with an un-encrypted NVM, since each
bank needs to serially serve for two write requests for each
data write. For example, Bank 0 needs to serially serve for
𝐷𝑎𝑡𝑎0 and 𝐶𝑡𝑟0, as shown in Figure 8b.

To reduce the processing time of write requests, we propose
a cross-bank counter storage (XBank) scheme which stores
each data and its counter into different banks instead of the
same bank. The two banks storing the data and their corre-
sponding counters are one-to-one way as shown in Figure 8c.
Moreover, the interval between the two bank numbers storing
data and their corresponding counters should be as large as
possible. It is because the operating system usually allocates
continuous memory space for the same application which
may locate in the adjacent banks. In this case, the data and
counter writes from the same application are easily sent to
the same bank, causing bank access conflicts. Therefore, in
the XBank scheme, if the data is stored in Bank 𝑋, we store
its corresponding counter in Bank (𝑋+𝑁/2)%𝑁 , where 𝑁 is
the total number of banks, e.g., 𝑁 is 8 in the example shown
in Figure 8c. By performing the XBank scheme, data and
counter writes are distributed into different banks, efficiently
reducing bank access conflicts. Hence, writes are sped up by
leveraging bank parallelism. For example, as shown in Fig-
ure 8c, the three data writes, i.e., 𝐷𝑎𝑡𝑎0, 𝐷𝑎𝑡𝑎1, and 𝐷𝑎𝑡𝑎2,
and their corresponding counter writes, i.e., 𝐶𝑡𝑟0, 𝐶𝑡𝑟1, and
𝐶𝑡𝑟2, can be served at the same time.

In general cases that only partial banks are accessed at
the same time, the XBank scheme becomes efficient due to
the strength of parallel execution. In the high-load cases that
almost all banks are simultaneously accessed, the XBank
scheme may have the similar performance to SameBank due
to high competition of bank accesses. However, it is still much
better than SingleBank. Even though in the worst case that
all memory banks are accessed at the same time, SuperMem
still delivers high performance as evaluated in Section 5.1.2,
due to efficiently synergizing the XBank scheme and the
CWC scheme presented in the next subsection.

484

SuperMem: Enabling Application-transparent Secure Persistent Memory with Low Overheads MICRO ’52, October 12–16, 2019, Columbus, OH, USA

m64

64 minor counters
 (each 7 bit)

 m3M

64B

m1 m2

Major counter
 (64 bit)

m4

Figure 9: The counter storage of
64 lines within a physical page.

AcA

The write queue
(Each cell is a cache line to be written into NVM)

 BcBCcCDcD

The log contents The counters of log contents

Figure 10: An illustration of the
write queue when writing a log.

A

The write queue
(1: from CPU caches; 0: from the counter cache)

 BCDcD
1 0 1 1 1

The counters of A, B, and C are removed

Figure 11: The write queue when
writing a log via the CWC scheme.

3.4 Locality-aware Counter Write
Coalescing

In the encrypted NVM, each CPU cache line flush appends
two write requests in the write queue, which doubles the
number of write requests, compared with an un-encrypted
NVM. We propose a locality-aware counter write coalescing
(CWC) scheme in SuperMem to reduce the number of counter
writes via exploiting the spatial locality of counter storage,
log and data writes.

3.4.1 Spatial Locality of Counter Storage. SuperMem exploits
the split counter mode encryption as shown in Figure 9, since
it not only reduces the storage overhead of counters [47]
but also facilitates our proposed counter write coalescing to
reduce counter writes. The counter mode encryption uses a
shared major counter (M) for a page and 64 minor counters
(𝑚1, 𝑚2, ..., 𝑚64) each for a memory line in the 4KB page,
as shown in Figure 9. The major counter is 64 bits and each
minor counter is 7 bits. Thus the counters of all memory lines
in a page are 64B and stored in one memory line, exhibiting
good spatial locality.

In a page, each memory line is encrypted by the per-page
major counter concatenated with a per-line minor counter.
When a memory line is rewritten, its corresponding minor
counter increases by one. Although updating a minor counter
only modifies several bits, persisting the minor counter has
to write the entire memory line into NVM since a memo-
ry line is the basic unit of memory writes. When a minor
counter overflows, counter mode encryption increases the
major counter by one, resets all minor counters to 0, and
re-encrypts all memory lines in the page using the new coun-
ters [47]. The process of re-encrypting a page is presented
in Section 3.4.4. The 64-bit major counter cannot overflow
throughout the lifespan of an NVM since the count range,
i.e., 264 ≈ 1020, is far larger than the cell endurance limit of
NVM, e.g., 107 − 109 for PCM [16, 34, 52] and 108 − 1012 for
ReRAM [25, 26].

3.4.2 Spatial Locality of Log and Data Writes. Since a log
is stored in a contiguous region in NVM, the log writes of
a transaction flush multiple cache lines which have the con-
tiguous physical addresses, thus having good spatial locality.
Moreover, the data writes of a transaction usually exhibit
spatial locality, since programs usually allocate a contigu-
ous memory region for a transaction. Hence, the cache lines
flushed into the contiguous region have contiguous physical
addresses. For example, a transaction inserts a 1KB key-value
item into a key-value store maintained in NVM, which flushes
16 cache lines with contiguous physical addresses.

(a) In-order writes (b) Out-of-order writes

Figure 12: The contents of the corresponding
counter cache lines when the CPU cache lines A, B,
C and D are flushed in order or out of order.

3.4.3 Counter Write Coalescing Scheme. Based on the locality
existing in counter storage, log and data writes, Figure 10
shows the write queue during flushing the log entry of a
transaction. The log entry contains multiple cache lines (i.e.,
A, B, C, and D) with contiguous physical addresses in the
same physical page. Since all counters of a page are contained
in one memory line as shown in Figure 9, the counter cache
lines of the log entry, i.e., 𝐴𝑐, 𝐵𝑐, 𝐶𝑐, and 𝐷𝑐, will be written
to the same memory line.

Since these counter cache lines are evicted from the write-
through counter cache, the latter counter cache lines contain
the updated contents of the former ones with the same ad-
dress. For example, the memory lines 𝐴, 𝐵, 𝐶 and 𝐷 corre-
spond to the minor counters 𝑚1, 𝑚2, 𝑚3 and 𝑚4, respectively.
𝐴𝑐, 𝐵𝑐, 𝐶𝑐, and 𝐷𝑐 are written into NVM in order, as shown
in Figure 12a. We observe that the counter cache line 𝐴𝑐

only contains the updated minor counter 𝑚1
′, 𝐵𝑐 contains

𝑚1
′ and 𝑚2

′, and 𝐶𝑐 contains 𝑚1
′, 𝑚2

′, and 𝑚3
′.

Moreover, the multiple cache lines of a log entry, i.e.,
𝐴, 𝐵, 𝐶 and 𝐷, may be flushed from CPU caches out of
order. For example, 𝐵, 𝐷, 𝐶 and 𝐴 are flushed in turn. The
corresponding counter cache lines are written into the write
queue in the order of 𝐵𝑐, 𝐷𝑐, 𝐶𝑐 and 𝐴𝑐. In this case, it is still
valid that the counter cache lines written latter contain the
updated contents of the former ones, as shown in Figure 12b.

According to the above observations and insights, we
present a counter write coalescing (CWC) scheme. Specifical-
ly, when a new counter cache line evicted from the counter
cache reaches the write queue, we check whether a counter
cache line in the write queue has the same physical address as
the new one. If yes, we merge these cache lines with the same
physical address. Moreover, instead of merging the latter
cache line into the former cache line in the write queue, we
directly remove the former cache line which is advantageous
to delay the counter cache line write for merging more writes.

485

MICRO ’52, October 12–16, 2019, Columbus, OH, USA Pengfei Zuo, Yu Hua, and Yuan Xie

For example, as shown in Figure 10, we directly remove 𝐴𝑐,
𝐵𝑐, and 𝐶𝑐 instead of merging 𝐷𝑐 into them. The deletions
of the former counter cache lines do not cause any loss of
data, since the new counter cache line contains the updated
contents of the removed ones as shown in Figure 12. To re-
duce the latency of checking the cache lines with the same
address, we add a one-bit flag for each cache line in the write
queue to facilitate fast identification of counter cache lines.
The flag is used to distinguish whether a cache line is from
CPU caches or the counter cache, i.e., ‘1’ for the cache lines
from CPU caches and ‘0’ for those from the counter cache.
Thus we can check the cache lines only from the counter
cache based on the flag. By performing the CWC scheme,
the new write queue is shown in Figure 11. We observe that
the number of write requests is significantly reduced, since
the counters of 𝐴, 𝐵 and 𝐶 are removed. When a transaction
flushes a log with the size of one page, 64 * 2 = 128 CPU
and counter cache lines are written into NVM without our
proposed CWC scheme. By using the CWC scheme, only
64 + 1 = 65 cache lines are written into NVM, thus reducing
almost half of NVM writes.

3.4.4 Page Re-encryption to Handle Overflow. In the counter
mode encryption, the major counter cannot overflow, as
discussed in Section 3.4.1. When the minor counter of a
memory line in a page overflows, the page needs to be re-
encrypted using the updated major counter. In the following,
we first present the page re-encryption process in existing
work [8, 47], which may cause the problem of crash inconsis-
tency for persistent memory. We then present how to perform
slight modifications to guarantee crash consistency during
page re-encryption.

To re-encrypt a page, all memory lines in this page are
read into the last level cache. These memory lines are then
re-encrypted one by one using the updated major counter
concatenated with a zeroed minor counter, and finally written
back into main memory. During re-encrypting these memory
lines, a re-encryption status register (RSR) maintained in the
memory controller is used to track the re-encryption status
of each memory line within a page [47]. The RSR stores the
page number and the old major counter of the page. The
RSR also maintains a done bit for each memory line within
the page to indicate whether the corresponding memory line
has already been re-encrypted. After all 64 done bits are set
to ‘1’ in the RSR, re-encryption in this page is complete and
the RSR is freed.

However, if a system failure occurs during re-encrypting
a page in persistent memory, some memory lines within the
page have been re-encrypted but others have not. In this case,
the re-encryption status and page number recorded in the
RSR are lost. After recovery, the system does not know which
page is being re-encrypted and which memory lines in this
page have not been re-encrypted. As a result, the memory
lines that have not been re-encrypted fail to be correctly
decrypted, thus resulting in an inconsistent state.

To guarantee crash consistency of page re-encryption, Su-
perMem employs the ADR mechanism (providing battery

Table 2: Configurations of the simulated system.

Processor
CPU 8 cores, X86-64 processor, 2 GHz

Private L1 cache 64KB, 8-way, LRU, 2-cycle latency
Private L2 cache 512KB, 8-way, LRU, 15-cycle latency
Shared L3 cache 4MB, 8-way, LRU, 30-cycle latency

Main Memory
Capacity 8GB, 8 banks

PCM latency model tRCD/tCL/tCWD/tFAW/tWTR/tWR
=48/15/13/50/7.5/300 ns

Write queue 32 entries
Counter cache 256KB, 8-way, LRU, 8-cycle latency

backup for the write queue) on the RSR. The battery over-
head is negligible, since the size of RSR is very small, i.e.,
20 bytes, including 32-bit physical page number, 64-bit old
major counter, and 64-bit done bits. The data stored in the
RSR are flushed into NVM in case of a system failure using
the ADR and loaded into RSR again when the system is
recovered. Thus the system knows which page is being re-
encrypted and which memory lines in the page have not been
re-encrypted, based on the contents of the RSR. Hence, the
system continues to complete the page re-encryption after
the recovery from a system failure. Moreover, the process of
re-encrypting each memory line is the same as that the mem-
ory controller deals with a regular cache line flush as shown
in Figure 7. The consistency of writing each re-encrypted
line is also ensured by the write-through scheme, and the
performance of page re-encryption is also improved by the
CWC and XBank schemes.

4 EVALUATION METHODOLOGY

As real hardware is not available yet for implementing the
proposed persistence and encryption schemes, we use gem5 [6]
with NVMain [33] to evaluate SuperMem. NVMain is a cycle-
accurate main memory simulator for emerging NVM technolo-
gies. The NVM system consists of x86-64 processors running
at 2GHz, 32KB L1 data and instruction caches, 512KB L2
caches, and 4MB shared L3 cache. The counter cache is 256K-
B. Without loss of generality, we model PCM technologies [10]
with 8GB capacity. The PCM latency model is the same as
that used in Xu et al.’s work [44]. We model an AES pipeline
encryption engine with the 24-cycle encryption latency, like
prior work [4, 49]. To support the simulation of persistent
memory, we employ the clwb and sfence instructions that
have been implemented in the latest gem5. We compare the
proposed SuperMem with the following schemes.

∙ An un-encrypted NVM (Unsec). It is a baseline NVM
system without using memory encryption.

∙ An ideal secure NVM with a write-back counter cache
(WB). It uses an ideal write-back counter cache in
which only the evicted dirty counter cache lines are
written into NVM. We assume the ideal write-back
counter cache is battery-backup and thus has no any
counter-atomicity performance overhead. Therefore,
the ideal secure NVM, i.e., the WB scheme in our
experiments, presents the optimal performance of an
encrypted NVM. SCA [30] uses a write-back counter

486

SuperMem: Enabling Application-transparent Secure Persistent Memory with Low Overheads MICRO ’52, October 12–16, 2019, Columbus, OH, USA

cache without using the large battery backup, but the
counter-atomicity data and counters waiting for each
other in write queues incur performance overhead as
discussed in Section 2.3. Therefore, SCA has lower
performance than the WB scheme.

∙ A write-through scheme (WT). It uses a baseline write-
through counter cache that flushes both data and its
counter into NVM for each data write. The WT scheme
does not require any software-layer modifications to
achieve counter crash consistency.

∙ A write-through scheme with CWC (WT+CWC). It
uses a write-through counter cache and employs our
proposed counter write coalescing (CWC) scheme pre-
sented in Section 3.4 to reduce counter writes.

∙ A write-through scheme with XBank (WT+XBank).
It uses a write-through counter cache and employs our
proposed cross-bank counter storage (XBank) scheme
presented in Section 3.3 to speed up memory write
requests.

We use five workloads to evaluate the performance of
SuperMem in the following. The ACID property (atomic-
ity, consistency, isolation, and durability) of operations in
these workloads is ensured via durable transaction. The five
workloads are widely used in existing work on persistent
memory [11, 22, 24, 30, 36].

∙ Array. Initializing a 1GB array and then randomly
swapping entries.

∙ Queue. Randomly enqueueing and dequeueing entries
in a 1GB queue.

∙ B-tree. Inserting random key-value items into a 1GB
B-tree based key-value store.

∙ Hash Table. Inserting random key-value items into a
1GB hash table based key-value store.

∙ RB-tree. Inserting random key-value items into a 1GB
red-black tree.

5 PERFORMANCE EVALUATION

In this section, we first investigate the impacts of different
schemes on transaction execution latency and the number
of write requests. We then evaluate the sensitivity of experi-
mental results under different configuration parameters.

5.1 Transaction Execution Latency

5.1.1 Single-core Performance. Figure 13 shows the average
latency of executing each transaction in different workloads.
We observe that compared with the Unsec scheme (i.e., with-
out secure guarantee) , the ideal WB scheme slightly increases
the transaction execution latency due to only increasing a
few counter memory writes as shown in Section 5.2. The WT
scheme increases the transaction execution latency by about
1.7×−2× across these workloads compared with the Unsec
scheme, since doubling the number of write requests to NVM
significantly degrades the system performance.

Our proposed SuperMem is based on the WT scheme. In
order to examine the efficiency of counter write coalescing

Array Queue B-tree Hash Table RB-tree0.0
0.5
1.0
1.5
2.0

 Unsec WB WT WT+CWC WT+XBank SuperMem

No
rm

aliz
ed

 Ex
ecu

tio
n L

ate
ncy

(a) 256B transaction size

Array Queue B-tree Hash Table RB-tree0.0
0.5
1.0
1.5
2.0

No
rm

aliz
ed

 Ex
ecu

tio
n L

ate
ncy Unsec WB WT WT+CWC WT+XBank SuperMem

(b) 1024B transaction size

Array Queue B-tree Hash Table RB-tree0.0
0.5
1.0
1.5
2.0

No
rm

aliz
ed

 Ex
ecu

tio
n L

ate
ncy Unsec WB WT WT+CWC WT+XBank SuperMem

(c) 4KB transaction size

Figure 13: The average latency of executing trans-
action requests with different transaction sizes nor-
malized to those of an un-encrypted NVM.

(CWC) and cross-bank counter storage (Xbank) in Super-
Mem, we evaluate the performance of the WT+CWC and
WT+Xbank schemes, respectively. The size of transaction
requests impacts the data storage locality and thus the perfor-
mance of the CWC scheme. Hence, we respectively evaluate
the performance of the transactions with a small 256B request
size (including only 4 cache-line writes), a 1024B request size,
and a 4096B request size.

Compared with the WT scheme, WT+CWC reduces the
average transaction execution latency by 17%−24% even with
a very small transaction request size, as shown in Figure 13a.
With increasing the transaction request size to 1024B and
4096B, WT+CWC reduces execution latency by 30%− 35%
and 40% − 48%, as shown in Figures 13b and 13c. This is
because the transaction with larger size has better spatial
locality, and thus more counter writes are merged by the
CWC scheme. Compared with the WT scheme, WT+XBank
reduces the transaction execution latency by up to 45%
among all workloads. This is due to the fact that the XBank
scheme efficiently distributes the data write and its counter

487

MICRO ’52, October 12–16, 2019, Columbus, OH, USA Pengfei Zuo, Yu Hua, and Yuan Xie

Array Queue B-tree Hash Table RB-tree0.0
0.5
1.0
1.5
2.0

No
rm

aliz
ed

 Ex
ecu

tio
n L

ate
ncy Unsec WB WT WT+CWC WT+XBank SuperMem

(a) 2 programs

Array Queue B-tree Hash Table RB-tree0.0
0.5
1.0
1.5
2.0

 Unsec WB WT WT+CWC WT+XBank SuperMem

No
rm

aliz
ed

 Ex
ecu

tio
n L

ate
ncy

(b) 4 programs

Array Queue B-tree Hash Table RB-tree0.0
0.5
1.0
1.5
2.0

No
rm

aliz
ed

 Ex
ecu

tio
n L

ate
ncy Unsec WB WT WT+CWC WT+XBank SuperMem

(c) 8 programs

Figure 14: The average latency of executing transac-
tion requests normalized to those of an un-encrypted
NVM in multi-core applications.

write into different banks, overlapping the write latency of
the two writes. By employing both CWC and Xbank schemes,
SuperMem improves about 2× performance compared with
the WT scheme and achieves the approximate performance
as the ideal WB scheme. The transaction execution latency
of SuperMem is slightly higher than the Unsec scheme, due
to encryption and decryption overheads.

5.1.2 Multi-core Performance. We evaluate the performance
of SuperMem in a multi-core system, where each thread
executes the same program on different cores. We use the
configurations of 32-entry write queue, 1KB transaction size,
and 256KB counter cache. We enable each program to have
the memory footprint size that is equal to the size of a
memory bank. Thus every program must access at least one
bank. For the 8-program experiments, the 8 memory banks
are used at the same time, which presents the worst-case
performance for the XBank scheme as described in Section 3.3.
The experimental results are shown in Figure 14.

We observe that compared with Unsec, the WT scheme
increases the transaction execution latency by 1.8×−2.4×,

like its single-core performance. Both the WT+CWC and
WT+XBank schemes significantly reduce the transaction
execution latency compared with the WT scheme. However,
different from the single-core performance, the WT+CWC
scheme has a lower transaction execution latency than the
WT+XBank scheme for most workloads in the 4-program
and 8-program experiments. It means that the CWC scheme
obtains more performance benefits than the XBank scheme in
multi-core applications due to more bank access competitions.
By employing both CWC and XBank schemes, SuperMem
also achieves the approximate multi-core performance as the
WB scheme.

5.2 The Number of Write Requests

Figure 15 shows the number of write requests to NVM nor-
malized to that of the Unsec scheme in the five workloads.
Since the proposed CWC scheme improves the system per-
formance by employing the spatial locality of log and data
writes, different transaction request sizes exhibit different spa-
tial localities, thus impacting the number of memory writes.
Therefore, we vary the transaction request sizes in the five
workloads from 256B to 4096B to evaluate the number of
NVM writes.

We observe the WB scheme increases the number of memo-
ry writes by 3%−16% due to evicting the dirty counter cache
lines from the counter cache into NVM for the small 256B
transaction request size. With the increase of the transaction
request size, the number of memory writes in the WB scheme
is reduced, since counter accesses have better spatial locality,
thus achieving higher counter cache hit ratio for the WB
scheme. The WT scheme incurs 2× memory writes compared
with the Unsec scheme whatever the transaction request size
is. The reason is that each data write in the secure NVM
produces two write requests: one for the data and the other
for the counter.

Compared with the WT scheme, SuperMem significantly
reduces the number of NVM writes. Even in the cases with
a small transaction request size as shown in Figure 15a,
SuperMem reduces 20%− 27% of memory writes, since the
transaction data writes have low locality while the log writes
always have good locality. When the transaction request size
increases, the locality of data writes significantly increases.
SuperMem reduces memory writes by 35%−42%, and 45%−
48% compared with the WT scheme, when the transaction
sizes are 1024B and 4096KB, respectively.

5.3 Sensitivity to Write Queue Size

We use the fixed configurations of 256KB counter cache and
1KB transaction size and vary the write queue length from 8
to 128 to evaluate the performance in terms of the number
of write requests and transaction execution latency.

Figure 16a shows the influence of different write queue
lengths on the percentage of reduced counter writes in Su-
perMem, compared with the WT scheme. We observe that
SuperMem reduces more counter writes with longer write
queue. The reason is that longer write queue provides more

488

SuperMem: Enabling Application-transparent Secure Persistent Memory with Low Overheads MICRO ’52, October 12–16, 2019, Columbus, OH, USA

Array
Queue B-tree

Hash Table
RB-tree0.0

0.5
1.0
1.5
2.0

 Unsec WB WT SuperMem

No
rm

aliz
ed

 #
of

Wr
ite

s

(a) 256B transaction size

Array
Queue B-tree

Hash Table
RB-tree0.0

0.5
1.0
1.5
2.0

No
rm

aliz
ed

 #
of

Wr
ite

s Unsec WB WT SuperMem

(b) 1KB transaction size

Array
Queue B-tree

Hash Table
RB-tree0.0

0.5
1.0
1.5
2.0

No
rm

aliz
ed

 #
of

Wr
ite

s Unsec WB WT SuperMem

(c) 4KB transaction size

Figure 15: The numbers of NVM write requests normalized to those of Unsec with different transaction sizes.

30%

40%

50%

60%

70%

80%

90%

8
1

6
3

2
6

4
1

2
8 8

1
6

3
2

6
4

1
2

8 8
1

6
3

2
6

4
1

2
8 8

1
6

3
2

6
4

1
2

8 8
1

6
3

2
6

4
1

2
8

Pe
rc

en
ta

ge
 o

f
R

ed
u

ce
d

C

o
u

n
te

r
W

ri
te

s

The Write Queue Length

Array Queue B-tree Hash Table RB-tree

(a) The percentage of reduced counter writes

0.8

0.85

0.9

0.95

1

1.05

1.1

8
1

6
3

2
6

4
1

2
8 8

1
6

3
2

6
4

1
2

8 8
1

6
3

2
6

4
1

2
8 8

1
6

3
2

6
4

1
2

8 8
1

6
3

2
6

4
1

2
8

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 L
at

en
cy

The Write Queue Length

Array Queue B-tree Hash Table RB-tree

(b) Execution latency normalized to an 8-entry write queue

Figure 16: The percentage of reduced counter writes
and average execution latency with different write
queue lengths.

opportunities for the CWC scheme to find and merge more
counter writes with the same physical address in the write
queue. When the write queue length increases from 8 to 128,
SuperMem reduces 35%, 37%, 40%, 40%, and 42% of more
counter writes for array, queue, B-tree, hash table, and RB-
tree workloads, respectively. When the write queue length
is larger than 32, the percentage of reduced counter writes
increases little for most workloads. Hence, a write queue with
the length of 32 is enough and reasonable for the CWC.

Figure 16b shows the influence of different write queue
lengths on the transaction execution latency in SuperMem.
We observe that increasing the write queue length decreas-
es the average latency of executing each transaction in all
workloads, since longer write queue reduces more counter
writes. When the write queue length increases from 8 to 32,

80%

85%

90%

95%

100%

1
K

8
K

6
4

K
5

1
2

K
4

M 1
K

8
K

6
4

K
5

1
2

K
4

M 1
K

8
K

6
4

K
5

1
2

K
4

M 1
K

8
K

6
4

K
5

1
2

K
4

M 1
K

8
K

6
4

K
5

1
2

K
4

M

C
o

u
n

te
r

C
ac

h
e

H
it

 R
at

e

The Counter Cache Size (B)

Array Queue B-tree Hash Table RB-tree

(a) Counter cache hit rate

1

1.01

1.02

1.03

1.04

1.05

8
K

6
4

K

5
1

2
K

4
M 8
K

6
4

K

5
1

2
K

4
M 8
K

6
4

K

5
1

2
K

4
M 8
K

6
4

K

5
1

2
K

4
M 8
K

6
4

K

5
1

2
K

4
M

Sp
ee

d
u

p
 o

ve
r

1
K

B
 C

o
u

n
te

r
C

ac
h

e

The Counter Cache Size (B)

Array Queue B-tree Hash Table RB-tree

(b) Speedup over a 1KB counter cache

Figure 17: The counter cache hit rates and the per-
formance of SuperMem with different counter cache
sizes.

the average transaction execution latency is reduced by 3%,
3%, 8%, 15%, and 4% for array, queue, B-tree, hash table,
and RB-tree workloads, respectively.

5.4 Sensitivity to Counter Cache Size

We use the fixed configurations of 32-entry write queue and
1KB transaction size and vary the counter cache size from
1KB to 4MB to evaluate the counter cache hit rate and
workload execution time.

Figure 17a shows the influence of different counter cache
sizes on the cache hit rate in SuperMem. We observe that
increasing the counter cache size has a substantial impact on
the counter cache hit rates for array, hash table, and RB-tree,
but rarely affects those of queue and B-tree. The reason is
that the dequeue or enqueue in the queue access continuous

489

MICRO ’52, October 12–16, 2019, Columbus, OH, USA Pengfei Zuo, Yu Hua, and Yuan Xie

memory space. In the B-tree structure, a node continuously
stores multiple key-value items which exhibit good spatial
locality for data accesses. In contrast, random entry swaps
in the array, item insertions into random hash locations in
the hash table, and the structure of one item per node in the
RB-tree exhibits poor spatial locality for data accesses. The
good spatial locality for data accesses produces high counter
cache hit rate. When reading a memory line in a page, all
counters that decrypt this page are loaded into the counter
cache, due to being stored in a memory line. The following
accesses to the same page always hit the counter cache. As
shown in Figure 17a, when the counter cache size increases
from 1KB to 4MB, the cache hit rate is improved by 12%,
14%, and 3% for array, hash table, and RB-tree workloads.

Figure 17b shows the influence of different counter cache
sizes on the overall execution time of workloads in SuperMem.
The execution time of workloads under different counter
cache sizes are normalized to those under 1KB counter cache
size. We observe that different counter cache sizes have little
impact on the execution time of queue and B-tree workloads.
For array, hash table, and RB-tree, the execution performance
is improved respectively by 4%, 5%, and 1%, when the counter
cache size increases from 1KB to 4MB.

6 RELATED WORK

Secure NVM. As NVM suffers from the data remanence
vulnerability, data security in NVM has been widely studied.
DEUCE [50] proposes a dual-counter encryption scheme to re-
duce the write traffic in the encrypted NVM by re-encrypting
only the modified words in a memory line. Based on DEUCE,
SECRET [40] further avoids the re-encryption of zero-content
words in a memory line to reduce bit writes. Silent Shred-
der [3] reduces NVM writes in the encrypted NVM by elim-
inating the full-zero cache line writes produced from data
shredding. DeWrite [56] proposes a lightweight deduplication
scheme to enhance the performance and endurance of the
encrypted NVM via eliminating duplicate-content writes. All
these schemes on the encrypted NVM mainly aim to reduce
the writes of encrypted data to NVM, which do not focus
on crash consistency in the secure NVM. Moreover, some
existing works focusing on memory authentication in NVM,
such as ASSURE [35], Triad-NVM [5], and Anubis [53], are
orthogonal to our work, as discussed in Section 2.2.1.

Crash Consistency in NVM. To achieve data per-
sistence, various durable transaction systems, such as M-
nemosyne [42], NV-Heaps [11], DudeTM [29], NVML [21],
and DCT [23], are proposed to manage persistent data with
crash consistency guarantee in NVM. Moreover, multiple
NVM-based file systems, such as BPFS [12], PMFS [15], Mo-
jim [51], NOVA [45], and NOVA-Fortis [46], are proposed to
achieve the improvement of storage performance by leverag-
ing the byte-addressable benefit of NVM, which also provide
the crash consistency guarantee by employing copy-based
techniques, e.g., logging, copy-on-write (shadowing page), and
replication. All these schemes are built on the un-encrypted
NVM without considering memory encryption on NVM.

Crash Consistency in Secure NVM. In order to offer
crash consistency of the encrypted NVM, existing schemes [3,
56] consider to use a write-back counter cache with the aid
of battery backup power. However, due to the high costs and
limited chip areas available [49], the backup battery becomes
difficult to be practical in real implementations. Modern
processor vendors only provide a small battery backup for the
Asynchronous DRAM Refresh (ADR) mechanism [20, 30, 37],
and thus a small-size domain—i.e., tens of entries in the write
queue—can be persistent. Without using the large battery
backup, Liu et al. [30] propose the selective counter-atomicity
(SCA) scheme with a write-back counter cache, which ensures
that data and its counter are atomically persisted with low
overheads by using new programming primitives. Unlike these
existing works that use the write-back counter cache but
need a large battery backup or software-layer modifications,
SuperMem shows how to use a write-through counter cache
to guarantee crash consistency of the encrypted NVM while
having low performance overheads via the simple yet efficient
XBank and CWC schemes. Moreover, Ye et al. [49] propose
Osiris to relax the counter persistence during application
execution and recover wrong counters after a system failure by
leveraging error-correction codes and Merkle Tree. However,
Osiris incurs long counter recovery time when the system
is recovered from a failure and the recovery time linearly
increases with the memory size [53]. In contrast, our proposed
SuperMem and SCA [30] do not need to recover counters due
to strict counter persistence during application execution.

7 CONCLUSION

This paper proposes SuperMem to achieve both security and
persistence in non-volatile main memory. SuperMem lever-
ages a write-through counter cache scheme with a register to
guarantee crash consistency in the encrypted NVM. Moreover,
a counter write coalescing scheme is introduced to reduce the
number of write requests and a cross-bank counter storage
scheme is employed to reduce the processing time of write
requests. These schemes are implemented with slight modi-
fications only on the hardware layer, which are transparent
for programmers and applications. Thus programs and ap-
plications running on an un-encrypted NVM can be directly
executed on an encrypted NVM with SuperMem. Experimen-
tal results show that SuperMem achieves the performance
comparable to an ideal secure NVM exhibiting the optimal
performance of an encrypted NVM.

ACKNOWLEDGMENTS

This work was supported by National Key Research and De-
velopment Program of China under Grant 2016YFB1000202,
and National Natural Science Foundation of China (NSFC)
under Grant 61772212. This work was also supported in part
by NSF 1816833, 1730309, and CRISP, one of six centers in
JUMP, a SRC program sponsored by DARPA. Pengfei Zuo
was also supported by a grant from the China Scholarship
Council (CSC).

490

SuperMem: Enabling Application-transparent Secure Persistent Memory with Low Overheads MICRO ’52, October 12–16, 2019, Columbus, OH, USA

REFERENCES
[1] Hiroyuki Akinaga and Hisashi Shima. 2010. Resistive random

access memory (ReRAM) based on metal oxides. Proc. IEEE 98,
12 (2010), 2237–2251.

[2] Dmytro Apalkov, Alexey Khvalkovskiy, Steven Watts, Vladimir
Nikitin, Xueti Tang, Daniel Lottis, Kiseok Moon, Xiao Luo, Eu-
gene Chen, Adrian Ong, et al. 2013. Spin-transfer torque magnetic
random access memory (STT-MRAM). ACM Journal on Emerg-
ing Technologies in Computing Systems (JETC) 9, 2 (2013),
13:1–13:35.

[3] Amro Awad, Pratyusa Manadhata, Stuart Haber, Yan Solihin, and
William Horne. 2016. Silent Shredder: Zero-Cost Shredding for
Secure Non-Volatile Main Memory Controllers. In Proceedings of
the 21st International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

[4] A. Awad, Y. Wang, D. Shands, and Y. Solihin. 2017. ObfusMem:
A low-overhead access obfuscation for trusted memories. In Pro-
ceedings of the 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA). 107–119.

[5] Amro Awad, Mao Ye, Yan Solihin, Laurent Njilla, and Kazi Abu
Zubair. 2019. Triad-NVM: Persistency for Integrity-Protected
and Encrypted Non-Volatile Memories. In Proceedings of the
2019 ACM/IEEE 46th Annual International Symposium on
Computer Architecture (ISCA).

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K
Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R
Hower, Tushar Krishna, Somayeh Sardashti, et al. 2011. The
gem5 simulator. ACM SIGARCH Computer Architecture News
39, 2 (2011), 1–7.

[7] Shimin Chen and Qin Jin. 2015. Persistent b+-trees in non-
volatile main memory. Proceedings of the VLDB Endowment 8,
7 (2015), 786–797.

[8] Siddhartha Chhabra, Brian Rogers, Yan Solihin, and Milos
Prvulovic. 2011. SecureME: a hardware-software approach to
full system security. In Proceedings of the international confer-
ence on Supercomputing (ICS).

[9] Siddhartha Chhabra and Yan Solihin. 2011. i-NVMM: a secure
non-volatile main memory system with incremental encryption.
In Proceedings of the Annual International Symposium on Com-
puter Architecture (ISCA).

[10] Youngdon Choi, Ickhyun Song, Mu-Hui Park, Hoeju Chung,
Sanghoan Chang, Beakhyoung Cho, Jinyoung Kim, Younghoon
Oh, Duckmin Kwon, Jung Sunwoo, et al. 2012. A 20nm 1.8 V
8Gb PRAM with 40MB/s program bandwidth. In Proceedings of
the International Solid-State Circuits Conference (ISSCC).

[11] Joel Coburn, Adrian M Caulfield, Ameen Akel, Laura M Grup-
p, Rajesh K Gupta, Ranjit Jhala, and Steven Swanson. 2011.
NV-Heaps: making persistent objects fast and safe with next-
generation, non-volatile memories. In Proceedings of the Six-
teenth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

[12] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin
Ipek, Benjamin Lee, Doug Burger, and Derrick Coetzee. 2009.
Better I/O through byte-addressable, persistent memory. In Pro-
ceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles (SOSP).

[13] Joan Daemen and Vincent Rijmen. 2013. The design of Rijndael:
AES-the advanced encryption standard. Springer Science &
Business Media.

[14] Kaplan David, Powell Jeremy, and Woller Tom. 2016. AMD
Memory Encryption. AMD White Paper (2016).

[15] Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy,
Philip Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson.
2014. System software for persistent memory. In Proceedings
of the Ninth European Conference on Computer Systems (Eu-
rosys).

[16] Yuncheng Guo, Yu Hua, and Pengfei Zuo. 2018. A Latency-
optimized and Energy-efficient Write Scheme in NVM-based Main
Memory. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (2018).

[17] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok
Nam. 2018. Endurable transient inconsistency in byte-addressable
persistent B+-tree. In Proceedings of the 16th USENIX Confer-
ence on File and Storage Technologies (FAST).

[18] Intel Corporation. 2015. Introducing Intel Optane Technology
- Bringing 3D XPoint Memory to Storage and Memory Prod-
ucts. https://newsroom.intel.com/press-kits/introducing-intel-

optane-technology-bringing-3d-xpoint-memory-to-storage-and-
memory-products/.

[19] Intel Corporation. 2016. Deprecating the PCOMMIT In-
struction. https://software.intel.com/en-us/blogs/2016/09/12/
deprecate-pcommit-instruction.

[20] Intel Corporation. 2017. Intel® Architecture Instruction
Set Extensions and Future Features Programming Refer-
ence. https://software.intel.com/sites/default/files/managed/
c5/15/architecture-instruction-set-extensions-programming-
reference.pdf.

[21] Intel Corporation. 2018. Persistent memory programming. http:
//pmem.io/.

[22] Aasheesh Kolli, Vaibhav Gogte, Ali Saidi, Stephan Diestel-
horst, Peter M Chen, Satish Narayanasamy, and Thomas F
Wenisch. 2017. Language-level persistency. In Proceedings of the
ACM/IEEE 44th Annual International Symposium on Comput-
er Architecture (ISCA).

[23] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M Chen, and
Thomas F Wenisch. 2016. High-performance transactions for
persistent memories. In Proceedings of the Twenty-First Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

[24] Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali Saidi, Steven
Pelley, Sihang Liu, Peter M Chen, and Thomas F Wenisch. 2016.
Delegated persist ordering. In Proceedings of the 49th Annu-
al IEEE/ACM International Symposium on Microarchitecture
(MICRO).

[25] HY Lee, YS Chen, PS Chen, PY Gu, YY Hsu, SM Wang, WH Liu,
CH Tsai, SS Sheu, PC Chiang, et al. 2010. Evidence and solution
of over-RESET problem for HfO x based resistive memory with
sub-ns switching speed and high endurance. In Proceedings of the
2010 IEEE International Electron Devices Meeting (IEDM).

[26] Myoung-Jae Lee, Chang Bum Lee, Dongsoo Lee, Seung Ryul Lee,
Man Chang, Ji Hyun Hur, Young-Bae Kim, Chang-Jung Kim,
David H Seo, Sunae Seo, U-In Chung, In-Kyeong Yoo, and Kinam
Kim. 2011. A fast, high-endurance and scalable non-volatile
memory device made from asymmetric Ta2O5-x/TaO2-x bilayer
structures. Nature materials 10, 8 (2011), 625–630.

[27] Se Kwon Lee, K Hyun Lim, Hyunsub Song, Beomseok Nam, and
Sam H Noh. 2017. WORT: Write Optimal Radix Tree for Per-
sistent Memory Storage Systems. In Proceeding of the USENIX
Conference on File and Storage Technologies (FAST).

[28] By H Lipmaa, P. Rogaway, and D. Wagner. 2000. CTR-Mode
Encryption, Comments to NIST concerning AES Modes of Oper-
ations. In NIST Workshop on Modes of Operation.

[29] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Y-
ongwei Wu, Weimin Zheng, and Jinglei Ren. 2017. DUDETM:
Building Durable Transactions with Decoupling for Persistent
Memory. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS).

[30] Sihang Liu, Aasheesh Kolli, Jinglei Ren, and Samira Khan. 2018.
Crash Consistency in Encrypted Non-Volatile Main Memory Sys-
tems. In Proceedings of the IEEE 24th International Symposium
on High-Performance Computer Architecture (HPCA).

[31] W Mueller, G Aichmayr, W Bergner, E Erben, T Hecht, C
Kapteyn, A Kersch, S Kudelka, F Lau, J Luetzen, et al. 2005.
Challenges for the DRAM Cell Scaling to 40nm. In IEEE Inter-
national Electron Devices Meeting (IEDM).

[32] Steven Pelley, Peter M Chen, and Thomas F Wenisch. 2014. Memo-
ry persistency. In the ACM/IEEE 41st International Symposium
on Computer Architecture (ISCA).

[33] Matthew Poremba, Tao Zhang, and Yuan Xie. 2015. Nvmain
2.0: A user-friendly memory simulator to model (non-) volatile
memory systems. IEEE Computer Architecture Letters 14, 2
(2015), 140–143.

[34] Moinuddin K Qureshi, John Karidis, Michele Franceschini, Vi-
jayalakshmi Srinivasan, Luis Lastras, and Bulent Abali. 2009.
Enhancing lifetime and security of PCM-based main memory with
start-gap wear leveling. In Proceedings of the Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO).

[35] Joydeep Rakshit and Kartik Mohanram. 2017. ASSURE: Authen-
tication Scheme for SecURE energy efficient non-volatile memories.
In Proceedings of the 54th ACM/EDAC/IEEE Design Automa-
tion Conference (DAC).

491

https://newsroom.intel.com/press-kits/introducing-intel-optane-technology-bringing-3d-xpoint-memory-to-storage-and-memory-products/
https://newsroom.intel.com/press-kits/introducing-intel-optane-technology-bringing-3d-xpoint-memory-to-storage-and-memory-products/
https://newsroom.intel.com/press-kits/introducing-intel-optane-technology-bringing-3d-xpoint-memory-to-storage-and-memory-products/
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
http://pmem.io/
http://pmem.io/

MICRO ’52, October 12–16, 2019, Columbus, OH, USA Pengfei Zuo, Yu Hua, and Yuan Xie

[36] Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yong-
wei Wu, and Onur Mutlu. 2015. ThyNVM: Enabling software-
transparent crash consistency in persistent memory systems. In
Proceedings of the 48th International Symposium on Microar-
chitecture (MICRO).

[37] Seunghee Shin, Satish Kumar Tirukkovalluri, James Tuck, and
Yan Solihin. 2017. Proteus: a flexible and fast software supported
hardware logging approach for NVM. In Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO).

[38] G Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk,
and Srinivas Devadas. 2003. Efficient memory integrity verifica-
tion and encryption for secure processors. In Proceedings of the
36th annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO).

[39] Shivam Swami and Kartik Mohanram. 2018. ACME: Advanced
counter mode encryption for secure non-volatile memories. In
Proceedings of the 55th ACM/ESDA/IEEE Design Automation
Conference (DAC).

[40] Shivam Swami, Joydeep Rakshit, and Kartik Mohanram. 2016.
SECRET: smartly EnCRypted energy efficient non-volatile mem-
ories. In Proceedings of the 53rd Annual Design Automation
Conference (DAC).

[41] Shyamkumar Thoziyoor, Jung Ho Ahn, Matteo Monchiero, Jay B
Brockman, and Norman P Jouppi. 2008. A comprehensive memory
modeling tool and its application to the design and analysis
of future memory hierarchies. In International Symposium on
Computer Architecture (ISCA).

[42] Haris Volos, Andres Jaan Tack, and Michael M Swift. 2011. M-
nemosyne: Lightweight persistent memory. In Proceedings of the
Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

[43] H-S Philip Wong, Simone Raoux, SangBum Kim, Jiale Liang,
John P Reifenberg, Bipin Rajendran, Mehdi Asheghi, and Ken-
neth E Goodson. 2010. Phase change memory. Proc. IEEE 98,
12 (2010), 2201–2227.

[44] Cong Xu, Dimin Niu, Naveen Muralimanohar, Rajeev Balasubra-
monian, Tao Zhang, Shimeng Yu, and Yuan Xie. 2015. Overcom-
ing the challenges of crossbar resistive memory architectures. In
2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA).

[45] Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured
File System for Hybrid Volatile/Non-volatile Main Memories. In
Proceedings of the 14th USENIX Conference on File and Storage
Technologies (FAST).

[46] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangad-
haraiah, Amit Borase, Tamires Brito Da Silva, Steven Swanson,
and Andy Rudoff. 2017. NOVA-Fortis: A fault-tolerant non-
volatile main memory file system. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP).

[47] Chenyu Yan, Daniel Englender, Milos Prvulovic, Brian Rogers,
and Yan Solihin. 2006. Improving cost, performance, and security
of memory encryption and authentication. In Proceedings of the
Annual International Symposium on Computer Architecture
(ISCA).

[48] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang,
Khai Leong Yong, and Bingsheng He. 2015. NV-Tree: Reduc-
ing Consistency Cost for NVM-based Single Level Systems. In
Proceeding of the USENIX Conference on File and Storage
Technologies (FAST).

[49] Mao Ye, Clayton Hughes, and Amro Awad. 2018. Osiris: A Low-
Cost Mechanism to Enable Restoration of Secure Non-Volatile
Memories. In Proceedings of the 51st Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO).

[50] Vinson Young, Prashant J Nair, and Moinuddin K Qureshi. 2015.
DEUCE: Write-efficient encryption for non-volatile memories. In
Proceedings of the 20th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS).

[51] Yiying Zhang, Jian Yang, Amirsaman Memaripour, and Steven
Swanson. 2015. Mojim: A reliable and highly-available non-volatile
memory system. In Proceedings of the 19th International Con-
ference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS).

[52] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. 2009. A
durable and energy efficient main memory using phase change
memory technology. In Proceedings of the Annual International
Symposium on Computer Architecture (ISCA).

[53] Kazi Abu Zubair and Amro Awad. 2019. Anubis: ultra-low over-
head and recovery time for secure non-volatile memories. In Pro-
ceedings of the 46th International Symposium on Computer
Architecture (ISCA).

[54] Pengfei Zuo and Yu Hua. 2018. SecPM: a secure and persistent
memory system for non-volatile memory. In 10th USENIX Work-
shop on Hot Topics in Storage and File Systems (HotStorage).

[55] Pengfei Zuo, Yu Hua, and Jie Wu. 2018. Write-Optimized and
High-Performance Hashing Index Scheme for Persistent Memory.
In Proceedings of the 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI).

[56] Pengfei Zuo, Yu Hua, Ming Zhao, Wen Zhou, and Yuncheng
Guo. 2018. Improving the Performance and Endurance of En-
crypted Non-volatile Main Memory through Deduplicating Writes.
In Proceedings of the 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO).

492

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Consistency Guarantee for Persistence
	2.2 Memory Encryption for Security
	2.3 The Gap between Persistence and Security

	3 The SuperMem Design
	3.1 An Architectural Overview
	3.2 Write-through Counter Cache
	3.3 Cross-bank Counter Storage
	3.4 Locality-aware Counter Write Coalescing

	4 Evaluation Methodology
	5 Performance Evaluation
	5.1 Transaction Execution Latency
	5.2 The Number of Write Requests
	5.3 Sensitivity to Write Queue Size
	5.4 Sensitivity to Counter Cache Size

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

