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Sparse One-Grab Sampling with
Probabilistic Guarantees
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Abstract—Sampling is an important and effective strategy in analyzing “big data,” whereby a smaller subset of a dataset is used to
estimate the characteristics of its entire population. The main goal in sampling is often to achieve a significant gain in the computational
time. However, a major obstacle towards this goal is the assessment of the smallest sample size needed to ensure, with a high
probability, a faithful representation of the entire dataset, especially when the data set is compiled of a large number of diverse
structures (e.g., clusters). To address this problem, we propose a method referred to as the Sparse Withdrawal of Inliers in a First Trial
(SWIFT) that determines the smallest sample size of a subset of a dataset sampled in one grab, with the guarantee that the subset
provides a sufficient number of samples from each of the underlying structures necessary for the discovery and inference. The latter is
established with high probability, and the lower bound of the smallest sample size depends on probabilistic guarantees. In addition,

we derive an upper bound on the smallest sample size that allows for detection of the structures and show that the two bounds are very
close to each other in a variety of scenarios. We show that the problem can be modeled using either a hypergeometric or a multinomial
probability mass function (pmf), and derive accurate mathematical bounds to determine a tight approximation to the sample size,
leading thus to a sparse sampling strategy. The key features of the proposed method are: (i) sparseness of the sampled subset for
analyzing data, where the level of sparseness is independent of the population size; (ii) no prior knowledge of the distribution of data,
or the number of underlying structures in the data; and (iii) robustness in the presence of overwhelming number of outliers. We evaluate
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the method thoroughly in terms of accuracy, its behavior against different parameters, and its effectiveness in reducing the
computational cost in various applications of computer vision, such as subspace clustering and structure from motion.

Index Terms—Sampling big data, sample size, probabilistic guarantees, parameter/structure estimation, subspace clustering

1 INTRODUCTION

ESTIMATING and clustering the underlying structures
in data are among the most fundamental problems
in computer vision, machine learning, and data analytics.
However, the unprecedented growth in data with often high
ratio of outliers has created an ever more pressing need for
faster and more accurate methods [1]. A popular approach
explored in the literature to tackle these problems of size and
dimensionality is to estimate the characteristics of the entire
data population using only sampled subsets of the data.
Methods like RANdom SAmpling Consensus (RANSAC)
[2], use sampling to find a single structure in the data, typi-
cally for outlier rejection or removal [3], [4], [5]. In most appli-
cations, however, multiple instances of a model (structure)
exist simultaneously. Examples include multiple indepen-
dently moving objects in a video, multiple planes in a scene,
or multiple instances of the same face in a database under
varying lighting conditions. One of the main challenges in
such multi-structured data is a high percentage of outliers in
the population due to: (i) gross outliers, which are comprised
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of points that do not belong to any model instance, and
(ii) pseudo-outliers, which are points that are inliers to one
model instance (structure), but effectively act as outliers to
all other model instances in the population [6].

Existing sampling techniques can be broadly divided
into two groups: (i) Random iterative (multi-grab) sam-
pling methods that sequentially grab multiple subsets of
data in order to fit model instances, and (ii) One-time or
one-grab sampling methods that generate all possible
hypotheses or model instances from a single subset of
data. More details on these two groups of methods are dis-
cussed in the next section. However, it is worth noting that
a major issue that is overlooked in one-grab sampling is
the question of the minimal sample size, which guarantees
with high probability that all underlying structures or
model instances are discovered. In simple terms, if not
enough samples are taken, then one may miss some model
instances, and if too many samples are taken, then the ben-
efits of sampling for reducing the computational cost is
diminished or may be lost. The study reported herein is
focused on this latter problem in one-grab sampling. We
provide tight upper and lower bounds on the sample size
required for discovering all underlying structures. We pro-
vide strong theoretical guarantees and confirm them via
simulations and experiments. In particular, we verify that
our method leads to a much smaller sample size than the
state-of-the-art methods in the literature [7], [8]. In addi-
tion, our experiments on real data demonstrate that the
proposed solution reduces computational cost without
compromising accuracy.

0162-8828 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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More specifically, we answer the following question:

“Given a large population of N points with C embedded struc-
tures and gross outliers, what is the minimum number of points r
to be selected randomly in one grab in order to make sure with
probability P that at least  points are selected on each structure,
where ¢ is the number of degrees of freedom of each structure.”

The answer to this question is significant because of the
following reasons: (i) We will show that even under a huge
number of pseudo-outliers and gross outliers, r is extremely
small (i.e., using our estimate for the sample size yields in
practice a sparse subset of the population); (ii) Although P
is an intricate function of r (difficult to invert), we prove
that it is a non-decreasing function. Hence, r can be mathe-
matically approximated and found by a simple one-dimen-
sional search, regardless of the dimensionality of the data;
(iii) The sample size r is very slowly growing with the num-
ber of underlying structures C, keeping the sampled subset
sparse even under overwhelming numbers of pseudo-out-
liers; (iv) The method does not assume any prior knowledge
about the distribution of data; (v) The sparsity of the sam-
pled subset implies a significant reduction in computation.

The rest of this paper is organized as follows. Section 2
provides a survey of the related work. In Section 3, we
introduce our sparse sampling scheme and demonstrate
with some simple examples. Section 4 shows the accuracy
of the presented method using experiments. Section 5
presents example applications in computer vision. Finally,
Section 6 provides a discussion of the important findings
and the concluding remarks.

2 RELATED WORK

Below, we review the related work on statistical sampling
and discuss their pros and cons.

Iterative Multi-Grab Sampling Methods. These methods focus
on iteratively sampling subsets of points for finding consen-
sus sets that yield the underlying model instances [9]. Greedy
methods such as RANSAC or RANSAC-like methods [2],
[10], [11], [12] focus on sequentially detecting structures
and estimating their parameters. In order to detect each of the
structures, many subsets of e-tuples are sampled randomly
until a set consisting of only inliers is determined. Here, ¢
represents the number of degrees of freedom of the model
instances and e-tuples is a subset of € points. Multi-RANSAC
[8], on the other hand, attempts to find all model instances in
parallel, but it assumes that the underlying structures do not
intersect, which is an impractical limitation for most applica-
tions. Iterative multi-grab methods are generally suboptimal
for multi-structure data (e.g., when multiple model instances
co-exist in data), since the stopping criterion is usually non-
trivial, and inaccurate initial fitting can significantly affect the
detection of the model instances [13]. These sequential meth-
ods also assume the outliers are distributed uniformly, which
is violated when multiple model instances are present, form-
ing thus pseudo-outliers that are not distributed uniformly.
This issue is discussed in [14], where it is shown that clustered
pseudo-outliers are more difficult to handle than uniformly
distributed gross outliers. More recent studies [15], [16], [17]
attempt to use regularization for better model fitting, while
handling multiple intersecting structures. These methods are
also iterative. However, instead of using a greedy sequential
approach, they resort to a constraint optimization process to
find the underlying model instances that can optimally repre-
sent the entire data. A major drawback of these methods is
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that at many iterations one may end up testing unnecessary
model hypotheses. Moreover, the method is in part super-
vised, since the number of model instances is assumed to be
known a priori, which in practice may not be feasible.

One-Grab Sampling Methods. These methods strive to find
the best segmentation of the entire data by estimating a set of
putative model instances from a sampled subset of data. Start-
ing with a set of putative models, they attempt to determine
those that best fit the entire population. In [18] a set of
randomly sampled points are used to grow the models that
best fit the data. Similarly, the methods in [14], [19] use a
subset of points to accelerate the model fitting process, but
provide no guaranty as to how big the sample set should be.
The method proposed in [20] achieves optimal model
selection by measuring a residual error based on histogram
distribution of every point in the data for all possible
predicted models from a sampled subset of the population.
The methods in [21] and [22] also start with a set of initial
models derived from randomly selected points and merge
them to obtain the best segmentation of the entire data. In a
similar manner, the Multi-Bernoulli SAmple Consensus
(MBSAC) method proposed in [7] grabs a subset of e-tuples
and uses a multi-Bernoulli filtering approach [23] in order to
detect all the model instances simultaneously. This method
provides some guaranties on the number of required e-tuples
to be sampled, and determines the optimal model instances
by removing the models with low probabilities. Random
Cluster Models (RCM), proposed in [24], includes a condi-
tional random sampling of possible model hypotheses from
initially clustered points in a weighted graph. This method
along with many others like [1], [23], [25] use some prior
knowledge in order to sample points and select the initial
hypotheses.

One-grab sampling methods handle multi-model fitting
problems well and are not affected by the perils of iterative
multi-grab sampling. However, they mostly suffer from poor
computational efficiency. In order to detect all the models in
the data, these methods either include the entire population
[26], [27], or sample a subset of population with no guaranty
on the optimal sample size, i.e., use heuristics. This often leads
to either failing to detect some valid model instances, or taking
too many samples leading to too many hypotheses in their
search for the optimal segmentation of data. This becomes, in
particular, problematic when dealing with “big data” in a
high-dimensional space. To tackle the computational cost of
these methods, a natural solution would be to avoid excessive
oversampling by finding an accurate method of determining
the required sample size, which is the focus of this paper. In
particular, we generalize the one-grab sampling, since a tight
choice of sample size also allows for sampling without any
prior assumptions, while guaranteeing that all model instan-
ces can be discovered. The key is to determine the size of the
one-grab sampled set, so that all the structures are still repre-
sented adequately and can be discovered with high probabil-
ity, despite a substantial ratio of outliers. This turns out to be
the solution to a complex nonlinear equation with no analytic
closed form answer. We solve the problem by formulating it
in terms of either a multinomial or a hypergeometric pmf
and bounding the solution to reduce it to a binary search
problem. We impose no constraints on the distribution of
points. Thus the samples are taken uniformly, i.e., requiring
no prior knowledge of the distribution of data. Moreover,
the proposed method can handle structures with different
dimensions.
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3 PROPOSED METHOD

Sparse Withdrawal of Inliers in a First Trial [28] is a one-grab
sampling method that we propose in order to select a random
subset of data with no prior assumption about the distribution
of points, and with the guaranty that the estimated optimal
sample size is both tightly bounded and sufficient to deter-
mine, with high probability, all the underlying model instan-
ces in the data. Since taking a one-grab sample of r points
from a population of size N may be viewed as sampling r
points one point at a time without replacement, as is well
known, the probability of whether a randomly drawn point
has some specified feature is determined by the hypergeomet-
ric pmf [29], [30]. Also, as is well-known, if the population size
N is much larger than r, then this probability is closely
approximated by a multinomial pmf [29], [30]. Intuitively, we
can see why this is true, because multinomial pmf models
sampling with replacement, and when N > r, the chance of
drawing the same sample point after replacement would be
extremely negligible, i.e., multinomial would asymptotically
approach the hypergeometric. We will show later that, indeed
for most practical applications, the condition N >> r is readily
satisfied, i.e., our tightly bounding of the estimate of sample
size yields also the desired sparsity. This is in contrast to other
methods described earlier that rely on heuristics. Sampling
with replacement modeled by multinomial pmf is easier to
handle mathematically, due to the independence of events
leading to simpler approximations. Therefore, below we
study both the hypergeometric model, which is the true math-
ematical model for our problem, and the multinomial model
that closely approximates our problem. We thus analyze and
compare the accuracy of both models in Section 4.

3.1 Definitions and Notations
We consider the situation where a population of N' points is

comprised of C classes with sizes 0, . .., 0c where Zf 0; = N.
In a real situation, neither the number of classes nor their sizes
are known, so we propose a sampling algorithm that does not
assume this knowledge. In particular, our algorithm requires
four input parameters: the population size N, the minimum
size of a sample set per structure ¢, the minimum model size
6, and the probability 1 — § of grabbing at least ¢ points from
each structure. While parameters N, ¢, and 6 are model-
driven, parameter § is custom defined and depends on the
application at hand. For example, it is likely that one would
choose a lower value for § in health-related or safety-related
applications than in analyzing marketing data. The value ¢
here is greater than or equal to the number of degrees of free-
dom of each model instance. The minimum model size, 9, is
the minimum number of inlier points necessary to accept a
candidate model. If the class size is smaller than 6, then we are
not interested in extracting it.

The sampling is then carried out by grabbing = points at
random from the population. If there are d; points from each
of C classes (model instances), then Z d; = rand the proba-
bility of sampled points d; > € for each of C' classes is A,
where ¢ A = 5. A key novelty of our sampling method, as
mentioned earlier, is that it provides the tight lower bounds
r=r(N,e,0,8) such that d; > ¢ for each of the classes
i=1,...,C, with probability of at least 1 — 8. To derive the
SWIFT sampling method, we start by assuming the worst-
case scenario, where all model instances in the population
are presumed to be of size 6. This implies that (i) all outliers
are pseudo-outliers and (i) the maximum number of
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possible model instances C' that can be potentially present in
the population is given by

N
C— H M

where [-] rounds the fraction to the nearest upper integer, and
N is the population size. As explained earlier, with this one-
time grab sampling, the vector (d, ..., d¢) follows the multi-
variate hypergeometric distribution (since the sampling is
equivalent to point-by-point sampling without replacement),
so the derivation of SWIFT in this case does not require any
additional assumptions.

3.2 Modeling SWIFT by Hypergeometric
Distribution

We have a population of N points comprising of underlying
C model instances. Suppose now we select a subset of r
points sampled at random in a one-time-grab, with d; points
coming from the ith instance. Then, the pmf of the vector
(di,---,dc) follows the multivariate hypergeometric dis-
tribution (sampling without replacement) [29], [30]:

c (s
7dc=9€c)=Hi_(lT>(wi), (2)

T

P(dlzl'h...

where N is the population size, C' is the number of classes
and 6y,...,0¢ are their respectlve sizes, with 37 6, = N,
Ziczl zi=r and 0<uz;<6;, i=1,...,C. Equation (2)
expresses the probability of a given sample set in terms of 7.
However, our goal in SWIFT sampling is to solve the
inverse problem of finding r for a given probability. For this
purpose, we recall that we are dealing with the symmetric
case of 0 =0y = --- =0c =6 and the worst case scenario,
where for a given N, the maximum possible classes is
C= %. Therefore, N = C6 and Equation (2) becomes:

e (1)
7dC:IC):W- (3)
The objective of the method can then be expressed as
follows: Find r such that, for a given value § > 0, the proba-
bility of selecting at least ¢ points in each of C'model instances
isatleast1 — §, thatis

P(dlzl’l,...

c
P(ﬁiczl(d,; > 8)) >1-6 provided Z di=r. 4)

The solution to the above problem can be determined by
finding the lower and upper bounds for the tail probabilities
of the multivariate hypergeometric pmf (see, e.g., [31], [32],
[33]) and use them for derivation of the value of r.

3.2.1 Lower Bound

We find a lower bound for the probability in the left-hand
side of the inequality Equation (4) and use it for finding the
lower bound for r. Note that P(d; > ¢) =1— P(d; <e—1)
and, therefore,

PN (d>e)] =1-P[Ul (d <e-1)]
c (5)
>1-) P(d<e-1).
i=1

Using the above inequality, we can prove the following
theorem:
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Theorem 1. Let (C' — 1)6 > r. Then, one has

C
P(NLy(di>e) =1 P(d<e—1)=1-CA, (6)
i=1

where
A=P(d <e—1)
e S ] e R
and
Py =0) = [[ Vol < (1-D)<e? ®
0 N N

The proof of this and later theorems are placed in the
Appendix, which is available in the IEEE Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2018.2871850).

Algorithm 1. Estimating Sampling Size r by Hypergeo-
metric pmf
Input: N and (¢, 6, 6)

1: SetC := [ﬂ
TMin ‘= Cxe
TMax = N
A:=0

Do Binary search {since A(r) is non-increasing on r}
2: while ryi, < 7Ty.x do
= %(TMin + rMax)
Find A using inequities (6)-(8)
if CA > §then
TMin =T
else

Thax =T
9:  endif
10: end while

11: return r

Setting CA = § and solving Equation (7) for r with A =2,

we obtain the necessary lower bound on the SWIFT sampling
size. The derived inequality for A(r) in Equation (7) is a non-
increasing function on r. This sets the statement in Equa-
tion (6) as a non-decreasing function of » when C'is reasonably
small. Given N and (¢, 6, §), we can simply find r by using a
binary search through all possible values of r between C' x ¢
and N. For P(d; = 0), one can either use the exact formula or
its upper bound in Equation (8). In our numerical studies, we
used the exact expression for better accuracy. Algorithm 1
shows the detailed steps to find the sample size r. Note that,
since we are using the lower bounds for the multivariate
hypergeometric pmf, Theorem 1 provides the bound on the
sample size r. In order to show that this lower bound is tight,
in the next section, we study also the upper bound for .

3.2.2 Upper Bound

In this section, we derive an upper bound for the tail probabil-
ities of the hypergeometric pmf, which will set an upper
bound on the sample size r for SWIFT. In particular, the
following statement is true:

Theorem 2. If (C' — 2)0 > r, then

ce-1)

PO, (d; 2 €)) S1- CA+—— | o
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where A is defined in Equation (7),

A/:P[(dléé—l)m(dggé—l)]

e—1 e-1 r 0 K+l (10)
<r 3 ()lem]
;; k, 1) |(C—=2)0—r
and
20,
Py = P(dy = 0,dy = 0) < (1 —é) <ed. (D

By combining (6) and (9), the probability of choosing at
least € points in each model instances can be bounded above
and below as:

. -1

1-CA< PN (d;>¢))<1—CA +%A’. (12)

In Section 4, we demonstrate that the bounds derived
above are indeed very tight, providing accurate estimates
for r. The described estimation for the upper-bound is used
to show the accuracy and tightness of estimated sample size
r with respect to the ground-truth.

3.3 Modeling SWIFT by Multinomial Distribution
Although SWIFT is a “one-grab” sampling method, and
hence is exactly modeled by the multivariate hypergeometric
pmf, the estimation of 7 requires solution of nonlinear
inequalities, which can be time consuming when both N and
C are large. However, as mentioned earlier, when N > r the
hypergeometric pmf can be accurately approximated by the
multinomial pmf, which basically implies that sampling with
replacement approaches the sampling without replacement
when N > r. Again, this is due to the fact that for N > r, the
probability of grabbing any sample point more than once
becomes extremely negligible. Since choosing r as small as
possible is one of the goals of SWIFT, the assumption of
N > r is justified. This motivates us in this section to study
the approximation of the tail probabilities based also on a
multinomial pmf. An important outcome of the study in this
section is that it eliminates the need for searching for  when
N > r(see Algorithm 2).

Algorithm 2. Estimating Sampling Size r by Multinomial
pmf

Input: N and (¢, 6, )

1: Set r according to formula (16) or (18)

2: if N > r then

3:  returnr

4: else

5:  Find r using algorithm1 using formula (14) instead of
(6)-(8)
return r

end if

N

Suppose a set of r points is selected at random with
replacement from a population of N > r points comprised
of C classes with sizes 0y, ...,60¢, so that ZLC 0; = N. Then,
the pmf of d; is given by:

Y\ o S
P(d, = ;) = (m)pﬁ(l gy, (13)
K3

where ZLC z,=1,0<z; <0;and p; = % Using Equation (5)
and recalling that C6 = N, ; =6 and p; = L fori=1,...,C,
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we obtain that the inequality Equation (6) still holds in this
case, but with a different value of A:

A=P(d <ec—1)
Sme-nt
:;U (k)T:Bm(r,5>,

where % d; =r>¢ex C and Bin(r, &) is the binomial
pmf. Note that r is the only unknown variable in Equa-
tion (14) and that the right-hand side of this equation is a
non-decreasing function of » when C is relatively small.
Thus, similar to Section 3.2.1, one can find the value of r by
using a binary search through the possible values. More-
over, by applying Bernstein inequality for the tail probabil-
ity of the binomial distribution: for any ¢t > 0

1
P(Bin(r,a) < é—t)
12C?
< — .
= CXp( 2(C—1) + 4C2t/3>

We can find an explicit lower bound on r. In particular,
the following statements hold.

(14)

(15)

Theorem 3. Let N be large, so that the multinomial approximation
of the hypergeometric distribution holds. If

rZ%Cln(%) +2C(€e—1), (16)
then
PN, (di =€) > 14 ()

Proposition 1. Based on the Central Limit Theorem [34], if the
total sample size r is relatively large, (say, r is an order of mag-
nitude bigger than C), then the binomial distribution for the
sample size d; in the ith model instance can be approximated
by the normal distribution: Bin(r,}) ~ N (’5,7((’0—3% Thus,
the sampling size r can be obtained by:

r> (A*(C —1)+2C(e - 1)), (18)
where A is:
A:max(l’HQIH(\/%a))' (19)

Based on what is described in this section, the multinomial
distribution estimation can be used to calculate a lower-bound
for » when the condition in inequity Equation (18) is satisfied.
Otherwise, one needs to use Equation (14) or use the hyper-
geometric estimation of 7. In Equation (4), we will evaluate
the tightness of the inequality Equation (18). Algorithm 2
shows the steps for finding r using the multinomial model.

3.4 Clustering and Parameter Estimation

Once a SWIFT subset of a population of points is selected, the
sampled points are used to estimate the model parameters.
We can then detect the valid model instances in the popula-
tion, where valid means a model size larger than 6. Different
clustering method may be used as the back-end to our
sampling step, e.g., [15], [19], [21], [35], [36]. In our experi-
ments below, we used mean-shift [37], [38] (also used later in
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(c) Points and the sampled subset (d) Detected Lines

Fig. 1. The population includes eight lines and 50 percent gross outliers.
(a) shows the data points and sampled subset when the size of the sample
set is calculated using SWIFT. (b) shows the detected lines using SWIFT
samples and mean-shift. (c) and (d) show the underestimated sample size
and the detected lines, failing to find all the instances in the data.

Section 5), which is a non-parametric unsupervised clustering
method that does not require a prior knowledge of the
number of clusters nor any constraints on the distribution of
the clusters. The application studied in Section 5.4 uses a dif-
ferent algorithm [39] in the clustering step.

To demonstrate immediately how SWIFT is useful in
guaranteeing an accurate estimate of the required sample size
in order to find all model instances from a sparse subset of
data, we run a test on a simple synthetic data. In this experi-
ment, we show that an accurate sample size r can yield
sufficient number of points to detect all the model instances.
On the other hand, one is likely to fail in finding all the model
instances, when we do not have a guaranty on sample size.
This example includes 2D lines in a population size of 850
points and is illustrated in Fig. 1. The points form 8 noisy lines
in 2D, crossing randomly in the presence of 50 percent gross
outliers. In Figs. 1a and 1b we used SWIFT to calculate the
sample size r. The selected sample size is = 66 which is com-
puted with input parameters (e = 2,0 = 80,1 — 8§ = 0.95).
Using this sample size, r points are uniformly sampled in a
one-time grab, as shown with small red boxes in Fig. 1a. This
subset generates 2145 hypotheses without any preprocessing
for finding neighboring points (as in [19]) nor having any
prior knowledge regarding the distribution of the data. Fig. 1b
shows the clusters formed from the sampled subset and the
subsequently detected inliers. As shown, a sufficient number
of points are selected and all the models (lines) are detected
accurately. On the other hand, Fig. 1c and 1d show how the
same process for detecting model instances can fail, when
the sample size is insufficient. In this example, we used the
same data as in the previous experiment. The sample subset is
33, which is selected uniformly at random and generates
528 hypotheses. As illustrated, two out of eight model instan-
ces are not detected.

4 EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed sparse one-grab
sampling method, and investigate the effect of different
input parameters.
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Fig. 2. Comparison of estimated r averaged over 200 independent trials versus ground-truth of » when N € {10°,10* 10°}, ¢ € {2,5}, and

C € {5,50}.

4.1 Accuracy of the Proposed Sampling Method

As mentioned earlier, due to the non-decreasing property of
the derived equations in Section 3, the SWIFT sample size r
can be estimated by a simple search, with the time complex-
ity of O(log(N)). The success of the proposed SWIFT
sampling highly depends on the accuracy of the estimated
values for input parameters. In essence, by following
the worst-case scenario, we are treating the problem as if
there were no gross outliers in the population. Moreover,
the parameter 0 is chosen to be equal to the smallest possible
size for a valid model instance. These two assumptions, plus
the fact that the value of the probability P is in practice cho-
sen as high, ensure that the computed sample size r can
guarantee with high probability at least ¢ points on every
structure. Below, we experimentally evaluate the accuracy
of the estimated sample size r and the derived bounds in
Equations (6), (12) and (14). For this purpose, we used a sta-
tistical simulation of sampling without replacement to gen-
erate a “ground-truth” data set for different sample sizes
with the computed probabilities. The ground-truth simula-
tion was averaged over 1000 independent trials.

Accuracy of Estimated Sample Size. In Sections 3.2 and 3.3, we
introduced two different solutions for the lower bound of the
sample size r, based on hypergeometric and multinomial pmf
models. The defined §(r) in both inequity Equation (7) and
the equality Equation (14) are non-increasing with respect to
r. Using binary search through all possible values of r, one
can find the best sample size . We validated the accuracy of
these estimates against ground-truth. For this purpose, we
chose different population sizes with different embedded
model instances. The ground-truth and estimated values of r
given by Equations (7) and (14) are plotted as a function of the
probability 1 — §in Fig. 2. These plots present the average val-
ues of r over 200 independent trials for population sizes of
N € {10%,10*,10°}. As expected, our approximations of the
lower bound estimation of hypergeometric distribution and
multinomial distribution follow the ground-truth closely. The
multinomial distribution can overestimate the sample size
when the number of classes grow.

In Section 3.2.1, we derived an estimate of r based on the
hypergeometric model. To find the estimate, we used an
assumption of 6 >> ¢ in Equation (7). Now, we examine how
violating this assumption affects the accuracy of estimating
the sample size r. For this purpose, we kept the population
size N and ¢ fixed and increased the number of possible
classes C. As a result of this increase, the minimum size for
a valid class 6 will decrease and get closer to ¢. This violates
the assumption of 6 > . As illustrated in Fig. 3, when
6> ¢ holds, the estimated sample size r is very accurate
and close to the ground-truth. However, by decreasing the
class size 6, the distance between 6 and e shrinks. This

reduces the accuracy of the estimated value r, and in fact
the method overestimates the sample size 7.

In addition to the estimated upper/lower bounds, in
Section 3.3, we introduced an approximation for sample size r
under the condition of > C. In this part, we examine the
accuracy of the estimate in Equation (18). In Fig. 4, the result
of the estimated values of r given by Eqaution (18) and the
ground-truth are plotted against different desired proba-
bility values 1 — 8§ and when N € {10%,10%,10°}. In Fig. 4a,
the computed value of r satisfies the condition of r > C.
Thus, the estimated value r (using Equation (18)) closely
follows the ground-truth in most parts and overestimates
the sample size when probability 1 —4§ is close to one.
However, the experiment in Fig. 4b violated the condition
of r> C. Therefore, the estimated sample size r using
Equation (18) overestimated the sample size r and it is not
close enough to the ground-truth.

Tightness of Upper/Lower Bounds. We evaluated the tight-
ness of both upper and lower bounds given by the inequal-
ities in Equations (6) and (9). For this purpose, we examined
different population sizes with different numbers of model
instances. The results are presented in Fig. 5. These graphs
illustrate the average results over 200 independent trials com-
puted for population sizes of N = {10% 10% 10*}. Results
demonstrate that both the lower bound and the upper bound
approximations tightly follow the ground-truth of 1 —34.
Of course, a conservative estimate of » would be given by
Equation (6). However, the proof of tightness of these bounds
indicates that we would not drastically overestimate r using
Equation (6).

4.2 Role of Different Parameters
In this section, we investigate the effect of changing each of
the parameters in Equation (6) on estimating the value of 7.
The Role of ¢. One of the parameters in estimating r is
the minimum sample set ¢ per structure to be withdrawn by
SWIFT. If the population size N is fixed, then the growth in
¢ leads to an increase in the number of required samples r
for a given probability 1 — 8. This behavior is illustrated in
Fig. 6a in which the population size, N, and the number of
model instances C' are kept constant. However, we can see
that the growth in 7 as ¢ increases is independent of 1 — 6.
Number of Model Instances C and Model Size 6. In a constant
population size N, increasing the number of model instances
forces the method to grab more points in order to guarantee,
with probability 1 —§, minimum ¢ points on each model
instance. This behavior is shown in Fig. 6b. Note that the rela-
tion between 0 and C'is defined based on Equation (1). When
N is constant, increasing C' is equivalent to decreasing the
value of 0. Therefore, a similar behavior is observed for 6 in
Fig. 6¢c. A very important observation is that, when the
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Fig. 3. Examine the difference between 6 and ¢ on the accuracy of estimated r in hypergeometric distribution. Here, N € {10%,10%,10°}, ¢ = 5 and

from left to right C'is C € {5, 20, 50}.

number of classes C'is fixed, increasing the population size N
does not affect the number of required sampled points r, i.e.,
the level of sparseness is independent of the population size. In other
words, r remains small regardless of the population size NN,
which is a desirable sparseness property and justifies the mul-
tinomial approximation. On the other hand, in Equation (1),
we see that adding more gross outliers increases the worst
case estimate for C' in Equation (6). In the next section, we
study the possible applications that can use SWIFT as the front
end. Later, we compare SWIFT with the state of the art
method proposed in [7].

5 APPLICATION EXAMPLES

As a generic unsupervised sparse sampling method, SWIFT
can be used in virtually any scenario where multiple struc-
tures need to be detected in a large population of points.
Here, a structure could be in a physical space (e.g., planar
surfaces or other 3D structures), or in some abstract feature
space (e.g., the space of all fundamental matrices, all homog-
raphies in some configuration of scene/camera motion, or
subspaces formed in some high dimensional spaces). Below,
we give some examples.

5.1 Detecting 2D lines
In this experiment, we consider detecting 2D lines. This is a
classical model detection and it is used in this section to
study the effect of SWIFT sampling on accuracy and time
complexity of detected models. We show that sample sizes
smaller than the one given by SWIFT can fail to detect all
model instances and decrease the accuracy in model detec-
tion. Also, oversampling does not increase the likelihood of
detection and would increase the computational time.

We generated a dataset of up to eight noisy lines that
intersect each other. An example of this dataset has been
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Fig. 4. Examine the average accuracy of estimated r using multinomial
estimation in Equation (18). Here, N =10° and from left to right
e ={20,2} and C € {4,20}. The condition of r > C'is satisfied in (a) and
violated in (b).

shown in Fig. 1. We detected the model instances by sam-
pling a subset of points in a one-time grab sampling. Using
this subset, we generated all the valid hypotheses and found
their inliers. Finally, we applied mean-shift to discover the
lines. To show that SWIFT sampling can guarantee a suffi-
cient number of points and high accuracy, we ran three sep-
arate experiments: (i) using SWIFT to estimate the optimal
sample size, (ii) an underestimated sample size, and (iii) an
overestimated sample size. Table 1 shows the percentage of
points sampled, the accuracy, and the time cost of the exam-
ined scenarios. As shown in the table, SWIFT sampling has
similar accuracy compared with the result of the overesti-
mated sample size. The underestimated sample size is faster
but has lower accuracy. The time complexity using SWIFT
sample size is an order of magnitude better than the overes-
timated case. The data in this dataset is contaminated with
Gaussian noise and the results are shown in the presence of
(i) no gross outliers and (ii) 50 percent gross outliers.

5.2 Detecting 3D Planes

Plane detection is a prerequisite for various computer vision
tasks. In this experiment, we investigated the accuracy of
our sparse sampling method for detecting planes in 3D
space. In the first step, we considered synthetic models as
illustrated in Fig. 7. We examined two different scenarios.
The first used a set of 3D points from Castelvecchio dataset
[21] with three planes and no gross outliers (Fig. 7a). Using
SWIFT sampling just 5.6 percent of the data is used to detect
planes in this figure. In Fig. 7b, we used a synthetic dataset,
with two planes and 50 percent gross outliers. Using SWIFT,
1.4 percent of data was selected for the detection step. As it
is shown in Fig. 7, the planes are detected correctly and
gross outliers are not included in the models. Note also that
the estimated sample sizes for both cases were similar
despite different population sizes.

In the second experiment, we examined real cases where
images are collected with Kinect. Generally, the point clouds
generated with Kinect include a huge number of points while
the number of valid model instances in the scene is small. (i.e.,
N and 6 are large relative to C). In these particular cases, the
procedure of finding inliers for all the candidate model instan-
ces is a time consuming process since the total number of
points N = 167,028 is extremely large. In order to overcome
this problem, the SWIFT method was applied in two levels. In
the first level, the value of » was computed to sample the mini-
mum required number of points to instantiate each model
candidate (which is €; = 3 for detecting planes). Thus, the
sample size r is used to instantiate all the model candidates.
In the second level, we set the value of € to a bigger number
(e.g., €2 =100) and sampled a subset of points from the
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TABLE 1
Performance Comparison Among 3 Different Scenarios of
(i) SWIFT Sample Size (ii) Underestimated Sample Size (iii) Overestimated Sample Size
Gross Outlier: 0%
#Classes 2 4 6 8
%Sample  %Acc Time(s) %Sample %Acc Time(s) %Sample %Acc Time(s) %Sample %Acc  Time(s)
Underestimated 2.06 0.68 0.02 2.26 0.77 0.03 2.16 0.76 0.03 2.59 0.88 0.05
Overestimated 254 1.00 0.08 26.6 1.00 0.36 259 1.00 0.99 31.2 0.98 3.24
SWIFT (r) 8.45 1.00 0.05 8.86 1.00 0.08 8.65 1.00 0.14 10.4 0.99 0.35
Gross Outlier: 50%
#Classes 2 4 6 8
%Sample  %Acc Time(s) %Sample %Acc Time(s) %Sample %Acc Time(s) %Sample %Acc Time(s)
Underestimated 2.19 0.96 0.03 2.60 0.91 0.05 2.56 0.92 0.08 2.58 0.87 0.10
Overestimated 26.2 1.00 0.87 31.2 1.00 2.68 30.4 0.99 6.49 30.6 0.98 11.9
SWIFT (r) 8.74 1.00 0.14 10.4 1.00 0.33 10.1 1.00 0.69 10.2 0.98 1.15

population with a guaranty of selecting at least 2 = 100
points in each plane. The second subset of points was then
used, instead of the entire population, as the group of points
from which we selected the inliers for each model candidate.
This example shows that SWIFT can be inherently imple-
mented also in a multi-level setting. Fig. 8 shows the point
cloud data from Kinect used to accurately detect three planes
in the scene using the SWIFT algorithm. By filtering the points
with depth = 0 the total number of points in the cloud was
N = 167,028 and 6 = 30,000. Setting 1 — 8 = 0.9, the size of
sampled points in the first level when ¢; = 3 is r = 43 and in
the second level when g5 = 100is r = 722.

5.3 Multibody Structure from Motion

Estimating motion models in a video sequence is a classical
problem in computer vision. This problem gets more compli-
cated in dynamic cases when multiple rigid objects move
independently in a 3D scene [40], [41]. Multibody structure
from motion refers to the problem when there are several
views of a 3D scene and the motions, structures, and camera
calibration are unknown. Recent studies in this area suggest
various solutions to this problem [40], [42]. In this section, we
used the method in [42] but used SWIFT in the sampling step.
The first assumption in [42] is that the number of independent
motions in the scene and their parameters are unknown,
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Fig. 7. Using SWIFT to detect 3D Planeswhen 1 — § = 0.9. (a) Data is from
the Castelvecchio dataset [21] where r = 42 and N = 754. (b) Blue points
are outliers that are not grouped in any model when » = 43 and N = 3,000.

where each motion may either be estimated with a homogra-
phy or a fundamental matrix. Thus, to start the process a set
of 2-D point correspondences is required. Then a fixed num-
ber of point sets are randomly sampled to generate candidate
homographies and fundamental matrices, using the con-
straints that the minimum required correspondences for a
homography is 4 and for fundamental matrix is 7. A short-
coming of the method in [42], however, is that one must spec-
ify the number of samples in order to ensure detecting all the
motions in the scene. To investigate the application of SWIFT
in this problem, we generated 100 synthetic scenes each con-
taining three 3D-objects (not necessarily planar) and a single
moving camera. For each synthetic scene, an initial 300 x 300
image was created. The 3D-objects and the camera were
moved randomly and independently and then a new
300 x 300 image was taken. An example of 3D-objects and
their 2D projections are shown in Fig. 9. Using the images,
point correspondences were generated by selecting 50 ran-
dom points from each object. Assuming that points at close
proximity are likely to belong to the same object, the sampling
strategy explained in [42] divided images heuristically into 9
overlapping areas and sampled points locally. In our experi-
ment, to exploit the proximity constraint, we applied a simple
image segmentation algorithm to divide the image into sepa-
rate clusters. Later, we show that the accuracy of image
segmentation does not affect the final results.

The proposed method in [42] samples a batch of e-tuples
to detect fundamental matrices and the homographies.
Since the degree of freedom of fundamental matrices and
the homographies are different, separate sets have to be
sampled for detecting each of the matrices. In SWIFT, how-
ever, r points are sampled in a one-time grab. We can
employ the sampled set r to find both homographies and
fundamental matrices, i.e., since ¢ for a fundamental matrix
is greater that ¢ for a homography, we can sample r as the
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Fig. 8. Detecting planes in 3D point cloud data collected using a Kinect.

number of points required for finding all fundamental
matrices. A subset of r is sufficient to find the homogra-
phies. In the first experiment, the effect of changing the
accuracy of image segmentation was studied. In this experi-
ment, based on the chosen value of 6, the sample size r was
computed and grabbed from the total population of
N = 200 points, with 50 points (25 percent) of gross outliers
added to the correspondences. Using the sample set of r
points, the number of inliers selected in each segment is
computed. Fig. 10 shows the number of inliers per segment
as the accuracy of image segmentation is increasing with
ep =4 and ¢y =7 for the homographies and fundamental
matrices, respectively. As can be seen from this experiment,
a key advantage of using SWIFT sampling is that the
required number of samples to maintain a certain level of
accuracy with a given probability 1 —§ can be calculated.
Therefore, the accuracy of the results can be maintained
stable as illustrated in Fig. 11. In fact, as the number of gross
outliers is growing, the size of population [V is also increas-
ing. Since, the other parameters 6, § and ¢ are fixed, increas-
ing N leads to selecting a more accurate number of points 7.
Figs. 11a, 11b, 11c, 11d demonstrate the idea of automatic
adaption of r and stability of SWIFT sampling in terms of
accuracy of results. The parameters in this figure, in (a), the
computed SWIFT sample size for (¢ =4, 6= {40,50},
1-86=0.9) is r={42,32} for multinomial model and
r={36,29} for hypergeometric model. In (b) for (¢ =7,
6 = {40,50}, 1 — 8 = 0.9), the computed SWIFT sample size
r = {63,49} and r = {45, 36} for the multinomial and hyper-
geometric models respectively.

To examine the method on a real case, we used the image
data in [42] that include three motions and %25 gross out-
liers. Using the SWIFT algorithm, we calculated the sample
points for both homographies and fundamental matrices.
First, we used SWIFT to sample a sufficient number of
points. Assuming that points at close proximity belong to

{c) 2D projection of 9a (d) 2D projection of 9b

Fig. 9. Synthetic data for multibody structure from motion. The outliers are added after moving objects and computing the 2D projections. These
outliers are not shown in this figure. (a) The 3D objects that are not necessarily planar. (b) 3D objects are moved randomly and independently.
(c) The image is taken from (a). (d) The image is taken from (b) after moving the camera.
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Fig. 10. The effect of image segmentation accuracy on the average num-
ber of inliers sampled in each model instance when we have three
motions.

one motion, we applied a basic image segmentation in order
to cluster objects of the scene (Fig. 12a). Then the initial can-
didate homographies and fundamental matrices were calcu-
lated using the method in [42], with segmentation used as a
proximity constraint. In this example, the average number
of initial candidates (homographies and fundamental matri-
ces) generated over 20 trials, were 13,073. Basically, the esti-
mated SWIFT sample size r guarantees with probability
1—-48=0.9 that the group of candidates includes all the
existing motions in the scene.

5.4 Spectral Subspace Clustering
The problem of clustering high dimensional data when it
forms multiple subspaces is studied in various areas of
machine learning, computer vision, and pattern recognition.
In a large variety of applications, data naturally forms clusters
of low-dimensional subspaces. Therefore, the main aim of
these subspace clustering algorithms is to discover such clus-
ters by finding a sparse representation for each subspace. For
instance, in a video of multiple moving rigid objects, the tra-
jectories can be represented by high-dimensional vectors. Yet,
they can span low-dimensional linear manifolds [43]. Thus,
the goal is to cluster the trajectories of different motions in
separate subspaces. Several methods are proposed in this
area based on iterative [44], [45], algebraic [46], [47], statistical
[48], [49], [50] and spectral clustering [51], [52], [53], [54].
Spectral clustering techniques [55] attempt to construct an
affinity matrix to define the similarity between data points,
and hence cluster the high-dimensional data. These methods
use either local [47], [51] or global information [52], [53], [54]
for forming the similarity matrix. Below we show that the
Sparse Subspace Clustering (SSC) algorithm presented in [36]
and [56] can be more efficiently implemented using SWIFT as
a preprocessing step.

The main idea in [36] and [56] is that, by having suffi-
cient number of points in each subspace, any point in a
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(c) Right Image

(a) Segmented (b) Left Image

Fig. 12. Detecting multibody structure from motion when the segmenta-
tion accuracy is 80 percent and N = 200 includes 25 percent gross out-
liers. For fundamental matrices, the sample sizes are r = 63 and r = 50
for multinomial and hypergeometric models, respectively. (a) Segmented
image. Yellow dots are the correspondences, and red stars are the sam-
pled points using SWIFT. (b) and (c) images with three objects moved
independently and the detected motions using the method in [42].

subspace can be represented as a linear combination of
other points in that subspace. In other words, if
{z; € R”};V1 defines a collection of N data points in an
ambient space of dimension n drawn from a union of C
1ndependent linear subspaces {S; } with dimensions
{d < n}J ., any data point z; can be represented as

= X,.Z, where z; € Sj, and X,. are all the data points in
S exceiot z;. In a general case, hen the population is a
union of points from multiple subspaces, z; is represented
as z; = X;Z; and can be recovered as a sparse solution of
the following ¢; optimization problem[36].

min||Z;||, subject to z; = X;Z;, (20)
where X; includes all the points in the population of size N
except ;. It is expected that the optimal solution would
include non-zero coefficients corresponding to the columns
of X; that are in the same subspace as ;. Thus, the coeffi-
cient matrices Z;’s can be used to build the affinity matrix
and determine the subspace clusters. The SSC method can
estimate the cluster with a high level of accuracy [55]. How-
ever, it is computationally expensive when we have a very
large dataset. An efficient solution to reduce the time com-
plexity of the SSC algorithm would be to start with a subset
of points sampled from the dataset[57], [58]. The process
of finding sparse coefficients and clustering points can be
done in 2 steps. First, find sparse coefficients for a sample
set of r points. Second, locate inliers for each cluster.
Although a similar idea was explored in [59], their choice of
size for the sampled subset was rather ad-hoc. In particular,
SSC requires that each subspace of dimension d; have at
least d; 4 1 points for the method to work. This is obv1ously
a natural setting for SWIFT, since it guarantees such a mini-
mum subset with high probability. Furthermore, it provides
a tight estimate to ensure low time-complexity. Once the
subspaces are estimated in the subset sampled by SWIFT,
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Fig. 11. The effect of changing percentage of outliers on required sampled points and accuracy of multibody structure form motion in [42]. The results
are in the presence of three independent motions and when the image segmentation has an average accuracy of 65 percent and 6 = 40. (a) % of
Detected models. (b) and (c) Values of » when ¢ = {4, 7}, respectively. (d) Initial candidates for both homographies and fundamental matrices.
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they can serve as the initial solution to cluster the whole
population of data. The proposed SWIFT-SSC is summa-
rized in Algorithm 3.

Density of Subspaces. The study in [60] shows that improv-
ing the accuracy of SSC depends on increasing the number
of inliers in each subspace as well as decreasing the affinity
between subspaces. They show that, under some conditions,
increasing the number of inliers of subspaces does not
noticeably change the accuracy of the SSC algorithm. This
confirms that oversampling in those cases can in fact slow
down the clustering process without improving the accu-
racy ﬁ?f the final result. They define a density parameter
p; =5 as the ratio of the inliers to the dimensions of the
subspaces, and show that one gets a stable level of accuracy
when the ratio p ~ 3. In this experiment, we show that
SWIFT sampling can be used to sample sufficient points to
detect all the subspaces with a high level of accuracy. Using
the study [60], we can estimate the parameter . We set
¢ = pd + 1 and show that when p € {3,4}, we sample suffi-
cient inliers from each subspace to cluster them with a high
accuracy. Oversampling increases the time complexity
without noticeable changes in accuracy.

Algorithm 3. Subspace Clustering Using SWIFT

Input: a set of data points X € R™ and the number of desired

clusters C.

1: SWIFT sampling: Using N as the population size, C' as the
number of classes, and ¢ = max;[d;], sample r points using
SWIFT for a choice of 1 — 4.

2: Cluster sampled points: Cluster the randomly sampled r
data points into C classes using the SSC algorithm.

3: Find inliers: Using the proposed method in [59], determine
the inliers for each cluster in the entire population.

Below, we show that SWIFT sampling indeed attains the
optimal number of inliers for each subspace. The data in
this experiment included 3 subspaces of dimension d = 20
in R4 with 500 points in each subspace. The angles between
the subspaces were %, which caused the subspaces to over-
lap. The results in [60] show that the accuracy of SSC did
not change noticeably after p; = d—j = 3.25. In this experi-

ment, to compare the effect of SWIFT sampling, we varied
the ratio p in the range p € [1, 7]. Ground-truth is defined as
sampling p x d points from each subspace. SWIFT sample
size is computed using ¢ = pd +1, N = 4,500, C' =3, and
1-6=0.9. As demonstrated in Fig. 13, the accuracy is
roughly stable when p € [3,4] and the estimated SWIFT
sample size is very close to the ground truth. We show
the SWIFT sampling for both the hypergeometric pmf Equa-
tions (6), (7), (8) and multinomial pmf Equation (14) models
are very close to the ground truth.

Subspaces with Different Dimensions. In the case of subspa-
ces with different dimensions d;, we are still able to com-
pute the required sample size using the SWIFT algorithm.
We need to make sure that a sufficient number of points,
pd; + 1, are sampled from each subspace. This means that
we need to make sure a subspace with the largest dimen-
sion, d,, = max;{d;}, has enough points to be detected.
Thus, in the SWIFT algorithm, we can set € = pd,, + 1,
which forces (with the probability 1 — §) the sampling pro-
cess to select € points from each of the subspaces, even those
with lower dimensions. As it turns out, this still gives us a
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Fig. 13. The effect of changing the ratio of inliers (p) on accuracy of clus-
tering. The estimated SWIFT sample size when 1 — § = 0.9 is shown in
gray dotted lines. When p = 3, the actual size of the sampled population
needs to be 225 (ground truth), the calculated value by SWIFT sampling
using hypergeometric and multinomial pmf models are 193 and 219,
respectively. These results were averaged over 100 trials.

very sparse subset of the points that can be used to detect
the subspaces with a very high probability and accuracy.
To show the sparsity of the computed sample size in SWIFT,
we generated a dataset of 4 subspaces. The subspaces have
dimensions d; = {2,5,10,15}, with each containing 2,500
points in an ambient space of dimension 50. In order to com-
pute the sample size r, we need to set € = p X dmax + 1,
where dyx = 15 is the maximum dimension of the subspa-
ces. Table 2 shows the values of the computed sample sizes
using SWIFT and compares them with manual sampling
of points, setting ¢ = p x {2,5,10,15}. However, a manual
sampling would be only possible if one can accurately
distinguish the subspaces to sample the required number of
points from each of them. Since, in practice, we do not have
such prior knowledge about the subspaces, using SWIFT is
the most optimal option. SWIFT selects point uniformly
with sufficient number of points in each subspace, even
though it adds a small overhead to some subspaces. As pre-
sented in Table 2, the computed value of the SWIFT sample
size is still very sparse compared to the population size. The
ground truth of the optimal sample size using statistical
simulation is also added in this table for comparison.

Face Clustering as a Subspace Clustering Example. Face clus-
tering is one of the many applications in subspace clustering.
Face image clustering techniques try to cluster images of the
same subject under varying lighting conditions in one group.
Studies in [61], [62], [63] show that a set of images of an object
under varying illumination lies in a low-dimensional linear
subspace of the image space of up to nine dimensions. This
can be used to determine the minimum sample set € in the
SWIFT method. The Extended Yale B Database [64] is a facial
dataset widely used in subspace clustering literature [56],
[59], [65] and contains 2,414 frontal face images of 38 human
subjects taken under approximately 64 different illumination
conditions (Fig. 14). In this experiment, we used the SWIFT
algorithm to study the sample size required to cluster face
images using [36]. We used subsets of 5 different subjects
from the dataset. Each subject includes 64 images (6 = 64).
By changing the ratio of the inliers (p) in the subspaces, we
examined the accuracy of the subspace clustering algorithm.
The graph in Fig. 15 shows the accuracy of the clustering
algorithm as a function of p. In addition, the calculated sam-
pled size using the SWIFT algorithm is shown for p = 3.
As we can see in this figure, both multinomial and
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TABLE 2
Comparing the Size of SWIFT Sampling, the Manually
Sampled Points, and the Ground-Truth

Population & Density #Manually #HyperGeo #Multinomial Ground

Size Sampled Truth
15 1 36 93 93 96
30 2 68 157 164 167

10000 45 3 100 221 232 234
60 4 132 277 299 300
75 5 164 332 365 366
90 6 196 381 432 431

In the SWIFT algorithm, dy.x = 15 and P = 0.9.

hypergeometric SWIFT estimations give answers that are
very close to the ground truth. However, the multinomial
pmf model overestimates the sample size, while the hyper-
geometric model underestimates it, but both are close to the
optimal sample size.

6 DiscussION AND CONCLUSION

This paper introduces a sparse one-time grab random
sampling method, which together with an unsupervised
clustering method, such as mean-shift, can be used to
simultaneously detect multiple structures or subspaces in
a large population of high-dimensional data with over-
whelming percentage of outliers. When the data is too big
to handle, a popular approach is to sample a subset of the
data that remains representative of the whole population.
SWIFT provides a generic solution to a well-known ques-
tion: How big should the sampled “subset” be in order to
remain “representative” of the whole population? Appli-
cation examples are numerous, and some were discussed
in the paper. For instance, one case is when a large set of
points are tracked across many frames for a moving cam-
era observing several independently moving objects in
the scene—a problem known as multi-body structure
from motion in computer vision.

We proved that one-time grab random sampling can be
accurately modeled using either a hypergeometric or a mul-
tinomial pmf (i.e., as either sampling without replacement
or with replacement under some constraints). The hyper-
geometric pmf is the exact mathematical model for one-
grab sampling, since it is equivalent to sampling without
replacement. We found a non-decreasing relation for esti-
mating the sample size for the hypergeometric model,
where one can find the sample size by using a binary search
in a time complexity of O(log N). We carefully derived tight
upper bound and lower bound for this model and illus-
trated experimentally the accuracy. However, when N is
too large, finding the sample size can be time consuming.
Thus, we derived also an approximation of the random
sample size using a multinomial model of pmf (i.e., sam-
pling with replacement assuming N > 7). This approxi-
mation can be obtained in O(1) and does not require a
searching process. As it is shown, this approximation is not
as tight as the estimated sample size through the search pro-
cess. We carefully studied the behavior and accuracy of
these models, providing a practical method of selecting the
minimum sample size that guarantees with some probabil-
ity the detection of all model instances (e.g., subspaces) in
the data. In addition to accuracy, one desirable behavior of
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Fig. 14. Example of images in the Extended Yale Database B.
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Fig. 15. Accuracy of clustering face images. Computed sample sizes
using both multinomial and hypergeometric SWIFT methods are shown
in gray lines. In this experiment, N = 320, P = 0.9, and C = 5. Results is
averaged over 100 images.

SWIFT sampling is “sparseness”, which we have shown is
independent of the population size, making our solution
important for processing and analyses of “big data”.

An important lesson learned in this study is that our
solution makes one-grab sampling methods now competi-
tive with multi-grab methods. Popular multi-grab methods
such as RANSAC or its variations have long established
the answer to their sampling questions such as sample size
(per grab) and the number of sampling iterations. Our study
now reveals a main disadvantage of multi-grab methods
that they have to guarantee sufficient number of samples at
each iteration, which over a large number of iterations leads
to a huge number of samples. This is in particular is exacer-
bated when multiple structures need to be discovered. By
settling the unanswered sampling question of sufficient
sample size for one-grab methods and providing high prob-
ability guarantees, we show that this class of methods has a
huge advantage of ensuring that a sparse subset of data can
solve usual data mining problems in “Big Data” without
resorting to heuristics. To demonstrate these points, we
compared the sample sizes computed by SWIFT against the
number of points sampled in other existing methods. As
mentioned earlier, sampling methods, such as [7], sample a
batch of e-tuples, with the total number of sampled points
as ¢ times the number of e-tuples. This is in certain ways
similar to multi-RANSAC. Fig. 16 compares the number of
sampled points in SWIFT with the method in [7], and the
sequential-RANSAC [11]. The values for sequential-RAN-
SAC are computed using the number of required sampled
points to detect each model instance, times the maximum
number of instances C [7]. As illustrated, the sample size
obtained by SWIFT sampling is significantly smaller than
the values in the other two methods.

To conclude, we solve an important problem in sampling
a high-dimensional “big data” for mining knowledge, i.e.,
finding structures, patterns, or subspaces. The key question



JABERI ET AL.: SPARSE ONE-GRAB SAMPLING WITH PROBABILISTIC GUARANTEES

4000 2
——Sequential-RANSAC |
=—Multi-bernoulli
——SWIFT

10

4 6 8
# Model Instances (C)

Fig. 16. Comparing the averaged number of samples r over 200 trials in
sequential RANSAC, the proposed method (MBSAC) in [7], and SWIFT
when N = {10%,10%,10"}, ¢ = 2,and P = 0.9.

of how many samples one should take to ensure with some
probability that all subspaces or structures are adequately
represented in the sampled subset has been answered in
this paper. The problem involves the solution to a hard
inverse problem, which we solved by finding tight bounds
to the solution. One problem that will need further investi-
gation is the extension of SWIFT to a muti-level or a hierar-
chical SWIFT method. Note that this idea of multi-level
sampling is not the same as sequential sampling, since at
each level all the subspaces are sought to be determined.
We experimented with this idea in one of the example appli-
cations, and the results indicated that this divide-and-
conquer approach can further reduce the time complexity
of solving these problems by sampling.
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