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Higher-order topological superconductors hosting Majorana-Kramers pairs (MKPs) as corner modes
have recently been proposed in a two-dimensional quantum spin Hall insulator proximity-coupled to
unconventional cuprate or iron-based superconductors. Here, we show that such MKPs can be realized
using a conventional s-wave superfluid with a soliton in cold atom systems governed by the Hubbard-
Hofstadter model. The MKPs emerge in the presence of interaction at the “corners” defined by the
intersections of line solitons and the one-dimensional edges of the system. Our scheme is based on the
recently realized cold atom Hubbard-Hofstadter lattice and will pave the way for observing possible higher-
order topological superfluidity with conventional s-wave superfluids or superconductors.
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Introduction.—D-dimensional topological insulators or
superconductors (TI-TS) are characterized by a fully
gapped bulk spectrum and stable gapless conducting
states localized on (D − 1)-dimensional boundaries [1,2].
Examples include the 3D strong TI with an odd number of
gapless Dirac cones localized on 2D surfaces and the 1D
spinless p-wave superconductors (SCs) with zero-dimen-
sional Majorana zero modes (MZMs) localized near the end
points of the system. By contrast, the recently introduced
so-called higher-order TIs and TSs are gapped in the bulk
as well as on the (D − 1)-dimensional boundary but have
robust gapless topological modes on (D − 2)-dimensional
“edges” defined on the boundary, e.g., corners in 2D
systems and hinges in 3D systems. This idea has been
used to explain the existence of protected low-energy
corner modes in 2D quantized electric quadrupole insula-
tors [3–11] and the existence of 1D protected gapless hinge
modes in 3D crystals of bismuth [12].
It has been recently proposed [13–15] that zero-

dimensional Majorana corner modes (MCMs) in 2D SC
systems can be realized from a combination of 2D TI
[quantum spin Hall insulator (QSHI)] and unconventional
(non-s-wave) superconductors. Excitations in these sys-
tems come in the form of MKPs, which are distinct from
nondegenerate MZMs [16–26] and are protected by time-
reversal (TR) symmetry [27–46]. Unfortunately, MCMs
proposed in the condensed matter systems [13–15,47–51]
have not been realized to date.
In this Letter, we propose ultracold atoms in optical

lattices as a clean and straightforward route to realize
MCMs and higher-order topological superfluidity with
ordinary s-wave superfluids. 2D QSHI Hamiltonians have

now been experimentally realized in cold atom systems
on square optical lattices [52]. These systems are accurately
modeled by a two-component Hofstadter model in a TR-
invariant scheme where the atoms experience opposite
uniform magnetic fields for each of the two components
[52–59]. Furthermore, s-wave superfluidity can be induced
with an attractive Hubbard interaction arising from a
Feshbach resonance between the fermions [60–66].
Specifically, we study a 2D TR-invariant Hofstadter
model H0, with an attractive Hubbard interaction HI:
H ¼ H0 þHI . The model is characterized by an interac-
tion-controlled phase transition between a QSHI and a
superfluid (SF). Above a critical value of the attractive
interaction, both the edge and the bulk have a nonzero
superfluid order parameter due to BCS-like pairing. Since
the edge spectrum is gapped, the 2D superfluid is topo-
logically trivial, according to the conventional (lower-
order) bulk-boundary correspondence. We show, however,
that the superfluid can host MKPs when a line soliton
intersects the edges, changing the sign of the superfluid
order parameter [14,15]. Dark solitons [67], which have
been successfully observed recently in Fermi gases [68–70]
using phase imprinting [71], can arise as topological
defects where the order parameter vanishes and the phase
changes by π [72,73]. Intuitively, the edge states are gapped
by the superfluid order parameter, which acts as a Dirac
mass. At the intersection of the dark line soliton with the
sample edges, the superfluid order parameter (and, hence,
the Dirac mass) changes sign, producing a pair of localized
zero-dimensional MZMs protected by TR symmetry.
Tunneling into the soliton edges can be used to observe
these MKPs [72]. We emphasize that the uniform
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superfluid with no soliton is topologically trivial (in the
conventional sense), with the appropriate Z2 invariant [74]
being trivially zero because of the absence of gapless edge
modes. Therefore, our work proposes the first cold-atom-
based realization of (D − 2)-dimensional MZMs in what is
aD-dimensional topologically trivial system in the conven-
tional sense and is thus an experimentally realizable higher-
order topological superfluid.
Noninteracting model and Hofstadter bands.—The

Hofstadter model [54] describes noninteracting particles
on a 2D lattice in the presence of a perpendicular magnetic
field B ¼ Bẑ given by the vector potential A ¼ ð0; Bx; 0Þ.
We consider a generalization of the original model that
includes a spin-dependent magnetic field:

H0 ¼ −
X
i;j;σ

½txc†i;j;σciþ1;j;σ þ tσyðiÞc†i;j;σci;jþ1;σ þ H:c:�

þ
X
i;j;σ

ðVi;j − μÞc†i;j;σci;j;σ; ð1Þ

where ði; jÞ labels the sites of a square lattice with lattice
constant a, c†i;j;σ ðci;j;σÞ creates (annihilates) a particle at
ði; jÞ with spin σ ≡ f↑;↓g, and tx ¼ t and jtσyðiÞj ¼ t are
nearest-neighbor hopping amplitudes along the x and y
directions, respectively. We set t ¼ 1 and consider (i) peri-
odic boundary conditions, (ii) a cylindrical geometry
(periodic in the y direction and a finite width in the x
direction, Lx ¼ aNx), and (iii) a rectangular geometry with
Lx ¼ aNx, Ly ¼ aNy. The chemical potential is μ, while
Vi;j is a position-dependent confinement potential (see
Supplemental Material [75]).
In the presence of the (spin-dependent) magnetic

field, the hopping amplitude tσyðiÞ acquires a spin- and
x-dependent phase factor ei2πϕxi;σ , with ϕxi;σ ¼ sσeBaxi=h.
Here, xi ¼ ia is the position along the x direction, while
s↑ ¼ 1 and s↓ ¼ −1 correspond to opposite magnetic field
orientations for the two spin components, which explicitly
restores TR symmetry, in contrast with the original
Hofstadter model. We define the number of magnetic-flux
quanta per unit cell as α ¼ ðBa2Þ=ϕ0, with ϕ0 ¼ h=e the
magnetic-flux quantum, and we have tσyðlÞ ¼ tesσi2παl.
For α ¼ p=q, with p and q primes, the single-particle
energy spectrum is given by q subbands ϵkn, with
n¼0;1;2;…;q−1. Here, we focus on the case α ¼ 1=3.
We expect similar physics for other values of α that support
QSHI phases.
In momentum space, k ¼ ðkx; kyÞ, Eq. (1) with α ¼ 0

can be written as H0ðkÞ ¼ −2t
P

kx;ky;σ½cosðkxÞ þ cosðkyÞ�.
The corresponding energy spectrum has a bandwidth
of 8t, and the system is topologically trivial. To explore
a topologically nontrivial regime, we consider α ¼ 1=3 and
use the Fourier transform ci;j;σ ¼ N−1=2

0

P
ke

ikrck;β;σ, where
r ¼ ði; jÞ and N0 is the total number of lattice sites. The

field-induced phase factors contained in tσyðlÞ give rise
to a new periodicity in the x direction: ei2πsσαl ¼
1; ei2πsσ=3; ei4πsσ=3 for lmod 3 ¼ 0, 1, 2, respectively. We
label the nonequivalent sites in the nth magnetic unit cell as
β ¼ 0, 1, 2, and we have xl=a ¼ lðn; βÞ ¼ nqþ β. The
corresponding first Brillouin zone is kx ∈ ½−π=q; π=q�
and ky ∈ ½−π; π�. After Fourier transforming, we can
rewrite H0 as

H0ðkÞ ¼
X
kσ

ψ†
k;σ

0
B@

h0 eiky e−iky

e−iky h1 eiky

eiky e−iky h2

1
CA ⊗ I2ψk;σ; ð2Þ

where In is the n × n identity matrix, kβ ¼
ðkx − β2πα; kyÞ, ψk;σ ¼ ðck1;σ; ck2;σ; ck3;σÞT , and hβ ¼
2 cos ðkx − 2πβαÞ, with β ¼ 0, 1, 2. The corresponding
band structure is characterized by q ¼ 3 spin-degenerate
bands with nonzero Berry curvatureΩσ

k and a nonzero spin-
dependent Chern number. Although the total Chern number
of a fully filled band is zero due to TR symmetry [82], the
corresponding Z2 invariant reveals a topological-nontrivial
QSHI phase. The characteristic edge modes can be
obtained using a cylindrical geometry with periodic boun-
dary conditions in the y direction. The corresponding band
structure for a system with both hard and soft confinement
[75] is shown in Fig. 1. The red lines indicate the
(confinement-dependent) gapless edge states, while the
(dense) blue lines correspond to the bulk spectrum.
When the chemical potential intersects the red lines,
e.g., at �kσ , the system supports a pair of gapless edge
states ðk↑;−k↓Þ located along one of the edges and another
pair ð−k↑;k↓Þ located on the other edge. Consequently, if
μ lies within a bulk gap, the system is in a topological QSHI
phase with pairs of counterpropagating gapless modes
located along the edges.
Attractive interactions.—Next, we introduce an attractive

interaction described in real space by the Hubbard term

HI ¼ −U
X
i;j

ni;j;↑ni;j;↓; ð3Þ

where U > 0 is the magnitude of the on-site attraction. In
cold atom systems, the interaction can derive from an
attractive Feshbach resonance [63,66]. We study the effect
of this attractive interaction at the mean-field level using a
BCS-like approximation. In k space, we have

HI →
X
k;β

ðΔ†c−k;β↓ck;β↑þΔc†k;β↑c
†
−k;β↓Þþ

3N0

U
jΔj2; ð4Þ

where we have introduced a uniform [83] order parameter
Δ ¼ −ðU=N0Þ

P
khc−k;β↓ck;β↑i, with h� � �i indicating the

thermal average. At this mean-field level, the total
Hamiltonian becomes
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HMF¼
X
k

Ψ†
k

�
hBðkÞ−μ Δ·I3
Δ†·I3 −h�Bð−kÞþμ

�
ΨkþE; ð5Þ

whereΨk ¼ ðψk;↑;ψ
†
−k;↓ÞT , hB is the matrix in Eq. (2), and

E ¼ −
P

kð3μ − 3jΔj2=U þ TrE−k;↓Þ is an energy offset.
We solve this model using a self-consistent BCS-like
formalism outlined in Supplemental Material [75].
The mean-field phase diagram corresponding to Eq. (5)

is shown in Fig. 2. When the chemical potential lies within
the bulk gap, the self-consistent value of the s-wave pairing
becomes nonzero only above a finite interaction strength
UcðμÞ. For U < UcðμÞ, the system is in a QSHI phase with
Δ ¼ 0, while U > UcðμÞ corresponds to the superfluid
phase (Δ ≠ 0). Note that, for μ ∈ ½−2t;−0.7t�, the phase
transition from a QSHI state with filling factor n0 ¼ 2=3 to
the SF state occurs at a critical interaction on the order of 3t.
On the other hand, at half filling (n0 ¼ 1), Δ ≠ 0 for any
finite U and the system is in a SF phase. Below, we will
show that the SF phase supports MKPs in the presence of a
line soliton, when the order parameter changes sign.
Soliton-induced Majorana zero-energy modes.—Next,

we show that, in the presence of a line soliton, MKPs emerge
at the “corners” defined by the intersection of the solitonwith
the edge of the system,which is in a TR symmetric SF phase.
In the presence of a dark soliton, the order parameter changes

sign, vanishing along a node line. To study the impact
of the soliton, we construct the Bogoliubov–de Gennes
(BdG) equations in real space and solve them self-
consistently [75]. We choose the initial value of the order
parameter to be used in the self-consistent scheme as
Δ̃i;j¼Δi;j tanh½ði−28þ5cos½ðj−1Þπ=ðNy−1Þ�Þ=ξ�, where
Δi;j is a constant phase self-consistent solution (i.e., obtained
without the soliton) and ξ ¼ 2.5. We then solve the BdG
equations for Nx × Ny ¼ 50 × 34 sites and n0 ¼ 2=3.
In Fig. 3, we show the self-consistent solution forΔðx; yÞ

for a system with U ¼ 3.5t without a soliton (top) and with
a line soliton (bottom). Note that U > UcðμÞ, so that,
without the soliton, the system is in a SF phase with a
nonvanishing order parameter both in the bulk and on the
edge. The bottom panel shows that the soliton changes the
sign of the order parameter, as expected. Note that for
U < UcðμÞ the order parameter vanishes in the bulk but
remains finite on the edge, where it changes sign in the
presence of a soliton (see Supplemental Material [75]).
The low-energy spectra corresponding to the self-

consistent solutions in Fig. 3 are shown in Fig. 4. The
top panel (no soliton) is characterized by a finite quasi-
particle gap and low-energy states located along the edges
of the system (see the inset). The bottom panel, corre-
sponding to a system with a soliton, has four zero-energy
states (red circles) representing the MKPs. As shown in the
inset, the corresponding wave functions are localized at the
intersection of the line soliton with the edges of the system.
Our results show that MKPs can be induced at soliton

edges in a conventional s-wave SF. We have checked that

FIG. 2. Left: The mean-field phase diagram obtained by
plotting the self-consistent value of the pairing order parameter
Δ for kBT ¼ 10−4t. The dashed white line indicates the phase
boundary. Center: Chemical potential as a function of the filling
factor for Δ ¼ 0. Right: Mean-field Δ as a function of the
interaction strength for two different filling factors. The n0 ¼ 1
line shows Δ ≠ 0 (i.e., superfluid phase) all the way to U ∼ 0,
while for n0 ¼ 2=3 one needs U ∼ 3t to enter the superfluid
phase. The green dotted lines mark the band edges of the bulk
spectrum in Fig. 1.

FIG. 1. Band structure of the noninteracting two-component
Hofstadter model H0, with α ¼ 1=3 and periodic boundary
conditions in the y direction. (a) System with Nx ¼ 92 and hard
confinement in the x direction. (b) System with Nx ¼ 92 and soft
(Gaussian) confinement (see Supplemental Material [75]). The
bulk states are shown in blue, and the red curves represent the
gapless edge modes.
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the line soliton and the corresponding MKPs are robust
against small perturbations (e.g., thermal fluctuations and
on-site disorder; see Supplemental Material [75]) and are
thus topologically robust.
Implementation.—To implement H0, we envision an

experimental setup similar to Ref. [52], since this scheme
does not rely on the internal atomic structure. We consider a
3D cubic optical lattice where confinement along z sepa-
rates the system into parallel x–y planes. The 2D Hubbard
model then approximates the dynamics of 40K or 6Li placed
with one atom per site in a deep optical lattice with uniform
hopping t if we equally populate two Zeeman levels with
opposite magnetic moments. A magnetic field gradient
along the y direction creates a splitting (much larger than t)
between opposite spins in neighboring sites. In addition to
the primary lattice beams, a pair of running-wave beams are
applied parallel to the x − y bonds of the square lattice to
dynamically restore resonant tunneling, assuming the

running-wave lattice depth is much smaller than the spin
splitting. This setup induces the complex spin-dependent
phase in Eq. (1) in a rotating wave approximation.
To implement HI, we require an attractive Feshbach

resonance. For magnetic Feshbach resonances, typical
magnetic field gradients (∼10 mG=μm) leave the attractive
interaction spatially uniform, since common resonances
occur at relatively high fields (∼400–700 G) and can be
broad, as in, e.g., 6Li. It also safe to assume that close
proximity to the Feshbach resonance does not lead to
strong heating and loss [84], since the Raman coupling [52]
between the same hyperfine states (and neighboring lattice
sites) does not induce any new three-body loss channel.
Tuning the chemical potential near zero (Fig. 4) allows

observation of MZMs. Spatially resolved radio-frequency
spectroscopy and probing of the density profile have been
proposed as an experimental approach to detect these
MZMs [73,76]. The soliton-induced MZMs can be manip-
ulated by controlling the spatial location of the soliton
excitation, which may be beneficial for topological braid-
ing [85,86] of MZMs.
Discussion and conclusion.—The essential physics for

the creation of MKPs and higher-order topological super-
fluidity in the current system is similar to the proposals for
higher-order topological superconductors in solid state
systems. In both cases, the non-SC “normal” system is a
2D QSHI. This system has counterpropagating Kramers
pairs of gapless edge states (see Fig. 1), which can support
spin-singlet superconductivity. Furthermore, in both sys-
tems, introducing superconductivity (by the proximity
effect in solid state systems and interaction induced,
via Feshbach resonance, in the present work) gaps out
the edge modes, which signals that the system is a
topologically trivial superconductor or superfluid (because

FIG. 3. Position-dependent pairing potential Δðx; yÞ for a
strongly interacting system with U ¼ 3.5t, i.e., in the SF phase.
The pairing potential is obtained as the self-consistent solution of
the mean-field equations (Eqs. S7–S10) for a finite system with
Nx × Ny ¼ 50 × 34 and soft confinement (see Supplemental
Material [75]) at finite temperature kBT ¼ 0.01t. The total
number of particles is fixed: N ¼ 800. Top: Self-consistent
solution with a constant phase. The (self-consistent) chemical
potential is μ ¼ −1.250t. Bottom: Self-consistent solution with a
line soliton. The chemical potential is μ ¼ −1.248t. Note that
Δðx; yÞ is nonzero in the bulk—consistent with the phase diagram
in Fig. 2(b)—as well as on the boundary of the system, except
along the line soliton.

FIG. 4. Top: Low-energy spectrum of the Hofstadter-Hubbard
model with a strong interaction (U ¼ 3.5t) within the mean-field
approximation for a system with constant phase pairing potential
and parameters corresponding to Fig. 3 (top). Bottom: The same
but for parameters corresponding to the bottom panel in Fig. 3.
Note that in the presence of a line soliton the system hosts two
pairs of zero-energy Majorana bound states (red dots). The insets
plot the wave functions of the states marked by arrows.
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the edge modes are gapped). However, whenever the
superconducting gap changes sign (and, thus, goes through
zero) at a point along the edge, a Kramers pair of localized
MZMs are nucleated by the Jackiew-Rebbi mechanism,
which is common to both the solid state proposals and the
present work (a Kramers pair of zero modes is nucleated
because the system is time-reversal invariant).
The key difference between the solid state case and the

current setup is that in the former system the change of sign
of the superconducting gap is proposed to be realized by the
proximity effect with an unconventional superconductor
(such as d wave or s� wave, which change sign in
momentum space), while in our work the change of sign
of the superconducting gap is due to a soliton in the s-wave
superfluid. The other significant difference between the two
proposals is that, while the proximity effect of unconven-
tional d- or s�-wave superconductivity on QSHI in solid
state systems has not yet been demonstrated experimentally
(and is probably going to be hard), the main ingredients of
the same physics within our proposal, namely, the two-
component Hofstadter model (and, thus, a QSHI [52–59]),
on-site attractive interactions and nonzero SC pair potential
[60–66], and creation of dark solitons [67–70], have all
been individually realized in the cold atom systems.
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