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Topological Mott insulator with bosonic edge modes in one-dimensional fermionic superlattices
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We investigate topological phase transitions driven by interaction and identify a topological Mott insulator
state in one-dimensional fermionic optical superlattices through a numerical density-matrix renormalization-
group method. Remarkably, the low-energy edge excitations change from spin-1/2 fermionic single-particle
modes to spin-1 bosonic collective modes across the phase transition. Due to spin-charge separation, the low-
energy theory is governed by an effective spin superexchange model, whereas the charge degree of freedom is
fully gapped out. Such topological Mott state can be characterized by a spin Chern number and gapless magnon
modes protected by a finite spin gap. The proposed experimental setup is simple and may pave the way for the
experimental observation of exotic topological Mott states.
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I. INTRODUCTION

The interplay between single-particle band topology and
many-body interaction plays a crucial role in many important
strongly correlated phenomena in condensed-matter physics.
Unlike single-particle topological states [1,2], interactions can
induce remarkable physical phenomena such as fractional-
ization of emergent collective excitations and give rise to
intriguing correlated states that exhibit nontrivial topologi-
cal properties. Prominent examples are fractional quantum
Hall effects [3,4], where constituent particles are electrons
but emergent quasiparticles only carry fractions of electron
charge, and topological Mott insulator [5] with deconfined
spinon excitations.

One-dimensional (1D) interacting systems, which are
amenable to exact methods, provide fundamental insights
for understanding strongly correlated states. Due to the con-
fined geometry, the low-energy excitations are collective and
exhibit a peculiar fractionalization, spin-charge separation
(SCS). A single-particle excitation is divided into two collec-
tive modes, which possess charge and spin degrees of free-
dom, respectively. In a topological Mott insulator, low-energy
excitations lie in the spin sector, whereas charge excitations
are frozen by strong interactions. The topological properties
manifest themselves by the appearance of gapless modes at
the boundary protected by the insulating bulk. In previous
studies, these edge modes are composed of spinons [6,7] car-
rying spin-1/2 and no charge. As spinful modes can also carry
integer spin (like magnon, spin-1), two natural and important
questions need to be addressed. (i) Are there topological Mott
insulator states hosting other types of spinful edge modes
and how does one characterize them? (ii) Since SCS severely
changes the low-energy excitations, what is the bulk-edge
correspondence in a topological Mott insulator state?
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In this paper, we address these two important questions
by studying the Mott insulator states in a 1D fermionic
optical superlattice. Ultracold atoms in optical lattices have
provided unprecedented controllability to simulate strongly
interacting systems. In particular, 1D optical superlattices
open a simple avenue towards realizing exotic topological
states [8–16] because of their exact correspondence with
quantum Hall physics [17,18] in an extended space. Here
we scrutinize Mott transitions in 1D optical superlattices and
identify a topological Mott insulator using the quasiexact nu-
merical density-matrix renormalization group (DMRG). Such
Mott phase transition from a band topological insulator to
a topological Mott insulator is accompanied by bulk excita-
tion gap closing, SCS, and the change of spin Chern num-
ber. The corresponding low-energy excitations change from
single-particle spin-1/2 fermionic modes to collective spin-1
bosonic modes, consistent with the spin Chern number change
across the transition (i.e., bulk-edge correspondence). The
low-energy physics is governed by an antiferromagnetic spin
superexchange model due to SCS. Our proposed experimental
setup involves fermions in a 1D triple-well superlattice and is
simple to realize in experiments comparing to other complex
lattice models or materials [5–7].

The remainder of this paper is organized as follows. In
Sec. II, we introduce the Fermi-Hubbard model with a su-
perlattice potential and show its topological properties on the
single-particle level. In Sec. III, we demonstrate the topo-
logical Mott transition, accompanied by SCS with increasing
interaction strength. Section IV is devoted to the bulk-edge
correspondence. We show the emergence of different types
of edge states and/or excitations before and after SCS. In
Sec. V, we discuss the nontrivial (bosonic) magnon excita-
tions in the topological Mott insulator. And finally, in Sec. VI,
we draw conclusions and discuss the observations of the
discovered topological Mott physics in current cold atom
experiments. More technical details and numerical results are
provided in the Appendix. In Appendix A 1, the 1D effective
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spin superexchange model is derived. Appendix A 2 further
demonstrates the adiabatic continuity and topological prop-
erties of the spin superexchange model. In Appendix A 3, the
entanglement spectrum is calculated as an identification of the
Mott transition. Appendix A 4 presents the spatial charge and
spin distributions for the many-body system. Appendix A 5
discusses the disorder effect.

II. SINGLE-PARTICLE PHYSICS

We consider 1D Fermi gases with two internal states
(labeled by σ =↑,↓) tightly confined in transverse directions
[Fig. 1(a)]. Two counterpropagating laser beams (wavelength
λ) form a main optical lattice V0(x) = V0 cos2(k0x) with k0 =
2π/λ. Two additional laser beams (wavelength λ′) incident
at a tilt angle θ0 form a secondary weak lattice V2(x) =
V2 cos2(k2x + ϕ) with k2 = 2π cos θ0/λ

′ and relative phase ϕ

with respect to the main lattice. As illustrated in Fig. 1(b),
the total potential V (x) = V0(x) + V2(x) forms a superlattice,
with its period determined by the ratio q = k0/k2 = λ′

λ cos θ0
.

Such an optical superlattice has been experimentally realized
by many groups [19–21].

When the potential depth V0 is much larger than the recoil
energy Er = h̄2k2

0/2M (M is the atomic mass), only the lowest
Bloch band needs to be considered and the system can be well
approximated [22–25] by the following tight-binding model
with a superlattice potential

H =
L∑

j=1,σ

[−t (c†
jσ c j+1σ + H.c.) + μ jn jσ ] + Unj↑n j↓, (1)

where c jσ annihilates a spin-σ fermion at jth site, L is the
length of the chain, and μ j = μ cos(2π j/q + ϕ) is the on-site
(long period) superlattice potential. t is the hopping strength
between nearest sites and hereafter set as the energy unit,
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FIG. 1. (a) Schematics of experimental setup. A two-component
Fermi gas is tightly confined in 1D. Two counterpropagating lasers
(wavelength λ) form the main lattice, while two lasers (wavelength
λ′) incident at an angle θ0 form the secondary weak long-period
lattice. t and U denote the hopping and interspecies interaction
strength, respectively. (b) The resulting lattice potentials. The local
minima of the total potential V (x) are located at the minima of the
main lattice. (c) Single-particle bands with respect to superlattice
phase ϕ under OBC. Red lines highlight the end modes. q = 3,
μ = 1.2, and L = 240.

t = 1. A cyclical variation of ϕ brings back the Hamiltonian
H (ϕ) = H (ϕ + 2π ), which is crucial for topological Thou-
less pumping [26] and the evolution of edge modes. The su-
perlattice phase ϕ provides a synthetic dimension to mimic 2D
topological physics [8–16]. The interaction U between atoms
can be tuned over a wide range via Feshbach resonance or
confinement induced resonance [27] for 1D systems. At half-
filling, the Hamiltonian remains invariant under the simulta-
neous transformations ϕ → ϕ + π and c jσ → c†

jσ̄ , yielding
an energy spectrum of period π on ϕ.

In this paper, we elaborate on the q = 3 case and the
generalization to other periods is straightforward. For the
incommensurate case, the interaction can induce many-body
localization [21]. Since each unit cell has three sites, the
single-particle spectrum contains three bands [Fig. 1(c)]. Dif-
ferent from a normal insulator, there are end modes connect-
ing adjacent bands in each gap under open boundary condition
(OBC). Under periodic boundary condition (PBC), these end
modes merge into bulk bands and disappear. The nontrivial
band topology is characterized by Chern number [8–14]

C = 1

2π

∫∫
dθ dϕ F (θ, ϕ), (2)

formulated in the 2D parameter space spanned by (θ, ϕ) ∈
[0, 2π ] × [0, 2π ], where θ is introduced by imposing a twist
boundary condition [28,29] � j+L = � jeiθ on the wave func-
tion, and F (θ, ϕ) = Im(〈 ∂�

∂ϕ
| ∂�

∂θ
〉 − 〈 ∂�

∂θ
| ∂�

∂ϕ
〉) is the Berry

curvature. C = 1 and −1 when the chemical potential lies
in the first and second band gaps, respectively. According
to bulk-edge correspondence, the Chern number is equal to
the number of chiral edge states by adiabatically evolving ϕ,
as long as the bulk gap remains finite in the whole process
[26,30–32].

III. TOPOLOGICAL MOTT TRANSITION
AND SPIN-CHARGE SEPARATION

Now we consider an interacting many-body system
(N↑, N↓) composed of N↑ spin-up and N↓ spin-down atoms on
the above superlattice. Both total density ρ = ∑

j,σ n jσ /L and
magnetization m = ∑

j (n j↑ − n j↓)/L are conserved quanti-
ties. We denote the nth lowest eigenenergy and corresponding
wave function as En(N↑, N↓) and �n(N↑, N↓), respectively.
n = 0 then refers to the many-body ground state. In the subse-
quent DMRG calculations, density-matrix eigenstates are kept
dynamically to ensure the discarded weight less than 10−9.
The maximum truncation error of the ground-state energy is
about 10−7 and in general 10–15 sweeps are enough to reach
the required precision.

We utilize three different bulk excitation gaps to char-
acterize the low-energy modes: charge gap 
c = [E0(N↑ +
1, N↓ + 1) + E0(N↑ − 1, N↓ − 1) − 2E0(N↑, N↓)]/2 with a
fixed magnetization m, spin gap 
s = [E0(N↑ + 1, N↓ − 1) +
E0(N↑ − 1, N↓ + 1) − 2E0(N↑, N↓)]/2 with a fixed density ρ,
and neutral gap 
ne = E1(N↑, N↓) − E0(N↑, N↓). The neutral
gap directly gives the lowest excitation energy of the many-
body system (N↑, N↓).

We concentrate on the half-filling case with ρ = 1 and
m = −1/3. In the noninteracting limit, the two-component
fermionic atoms populate single-particle levels from low to
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FIG. 2. (a) Sketch of level occupation in noninteracting limit
with ρ = 1 and m = −1/3. δ1 and δ2 denote the single-particle band
gaps, characterized by C = ±1, respectively. (b) The spin gap 
s

(black square), charge gap 
c (red circle), and neutral gap 
ne (blue
triangle) as a function of interaction U with L = 72 lattice sites. The
inset shows finite-size analysis of the three gaps at U = 3.5. The red
lines are from polynomial fitting. ϕ = 0; μ = 1.2.

high independently as sketched in Fig. 2(a). The spin-up
atoms are filled up to the first band gap (denoted as δ1) and
spin-down atoms to the second band gap (denoted as δ2).
Because two band gaps are characterized by opposite Chern
numbers C = ±1, the system is in a quantum spin Hall–like
state with a spin Chern number Cs = 2 [33,34], which is
defined by Eq. (2) through choosing θ↑ = −θ↓ for the twisted
boundary condition. Here a single-particle excitation should
overcome the band gaps and carry both charge and spin degree
of freedom. The spin and charge gaps are equal, determined by

s = 
c = (δ1 + δ2)/2 because spin and charge modes are
tightly bound together. 
ne = min{δ1, δ2} in this case.

With increasing interaction, the spin and charge modes
would exhibit totally different behaviors. Figure 2(b) plots the
three gaps with respect to U . Due to the repulsion between
different components, the atoms prefer occupying higher lev-
els. Starting from the same value, both 
c and 
s decrease
first. 
c arrives at its minimum at Uc ≈ 2.9, where 
ne closes.

c and 
s coincide with each other at U < Uc, revealing
that spin and charge modes are coupled together. After the
critical point, an obvious separation between spin and charge
excitations happens. 
c grows rapidly (linearly) by further
increasing U , whereas 
s is slowly suppressed (with 1/U ).
Note that none of the three excitation gaps can close for any
U > Uc, and the system enters into a Mott insulator phase,
with every lattice site being populated at U → ∞. Since the
low-energy excitation now possesses only spin degrees of
freedom, 
ne coincides with 
s in this regime, as clearly
demonstrated by our numerical results. To rule out the size
effect, we do a finite-size scaling of different gaps after Mott
transition. As shown in the inset of Fig. 2(b), 
c and 
s

(
ne) both tend to finite values in the thermodynamic limit,
which is crucial for the protection of nontrivial topological
properties.

The Mott transition at U = Uc is of first order, with
gap closings between ground and first excited states. Lattice
translation symmetry forces En(ϕ) = En(ϕ + π/3) at ρ = 1;
therefore, there are six gap closings at ϕp = pπ/3 (0 � p � 5
is an integer) in the whole evolution period of ϕ ∈ [0, 2π ].
Across the Mott transition, the spin Chern number changes

six from Cs = 2 to Cs = −4, consistent with the simultaneous
gap closing at six ϕ’s.

The Mott transition is accompanied with SCS. After the
transition, the Hamiltonian can be represented by two distinct
sectors H = Hc + Hs. While the charge sector Hc is fully
gapped out due to the strong interaction, the low-energy
physics is governed by an effective spin sector Hs. A second-
order perturbation theory at large U leads to an antiferromag-
netic spin superexchange Hamiltonian (Appendix A 1)

Hs =
∑

j

J

[
1 + (μ j+1 − μ j )2

U 2

]
S j · S j+1, (3)

with periodically modulated exchange couplings. Here S j =
c†

jσc j/2 is the local spin operator at jth site. J = 4t2/U is the
key energy scale of Mott physics and 
ne (
s) decreases by
1/U to the leading order, which agrees with the DMRG re-
sults. From the standard bosonization theory [35], m = −1/3
is a quantized magnetization plateau that is topologically
protected [13]. All the nontrivial properties can be understood
from the above low-energy theory (Appendix A 2).

IV. BULK-EDGE CORRESPONDENCE

The appearance of edge states is usually considered as
a hallmark of topological properties. We note that here the
appearance of edge states in the superlattice system is at-
tributed to the 2D topology, which is different from the
typical 1D symmetry-protected topological phase (e.g., spin-1
Haldane phase [36,37]). Instead of ground-state degeneracy,
gapless edge excitations emerge with the evolution of the
superlattice phase ϕ. The topological properties are protected
by charge and spin-Sz conservation symmetries. As SCS has
severely changed the nature of low-energy excitations, bulk-
edge correspondence of a topological Mott state is differ-
ent. To this end, we study the low-energy spectrum under
different boundary conditions and demonstrate the conse-
quence of SCS. The charge distribution of a neutral exci-
tation is nne

j = n j[�1(N↑, N↓)] − n j[�0(N↑, N↓)]. Here [�]
represents taking the expectation value on state � and nj =
n j↑ + n j↓. Similarly, the spin distribution of a neutral exci-
tation is Sne

j = Sz
j[�1(N↑, N↓)] − Sz

j[�0(N↑, N↓)] with Sz
j =

(n j↑ − n j↓)/2. For each end, the accumulated charge (spin) is
nne

l (Sne
l ) = ∑

j<L/2 nne
j (Sne

j ) and nne
r (Sne

r ) = ∑
j>L/2 nne

j (Sne
j ),

respectively.
Our results are summarized in Fig. 3. Before SCS, the

low-energy spectrum is fully gapped [Fig. 3(a)], while, under
OBC, the ground state and first excited state cross at ϕ =
−π/3, 2π/3 as shown in Fig. 3(c). Such boundary depen-
dence indicates that, near these band crossings, the neutral
excitations are gapless and localized at the ends. The cross-
ings are reminiscent of the single-particle level crossings
in Fig. 1(c). Due to the superlattice modulation, the charge
and/or spin densities for both ground state and first excited
state exhibit periodic oscillations. They share nearly the same
distributions in the bulk, while being very different at two ends
(Appendix A 4). Figure 3(e) plots the spatial distributions of
spin and charge for one of the gapless neutral excitations. It is
clear that the excitation carries both spin and charge degree
of freedom at the two ends. Our numeric shows nne

l = 1,
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FIG. 3. Evolution of low-energy spectrum with ϕ under (a) PBC
and (c) OBC for U = 1 and (b) PBC and (d) OBC for U = 3.5.
Panels (e) and (f) represent the spatial distributions of charge nne

j

(blue square) and spin Sne
j (red circle) for the chosen neutral exci-

tation modes [shown by “cross” in (c) and (d)], respectively. ρ = 1,
m = −1/3, μ = 1.2, U = 3.5, and L = 72.

Sne
l = −1/2 for the left end and vice versa for the right end,

which is in agreement with the bulk spin Chern number Cs = 2
and validates the single-particle nature of these low-energy
modes.

After SCS, the low-energy spectrum is fully gapped under
PBC [Fig. 3(b)] and gapless end modes still emerge as shown
in Fig. 3(d). Note that the appearance of these modes is at
different ϕ’s (ϕ = −5π/6, π/6), which can be understood
from the adiabatic continuity (Appendix A 2) of the effective
spin Hamiltonian (3). We have nne

l,r = 0, Sne
l,r = ±1 for left and

right ends [Fig. 3(f)]. These two pairs of spin-1 edge modes
are consistent with bulk spin Chern number Cs = −4.

Further, to describe the quantum correlations between
two subsystems by a real-space partition, we calculate the
entanglement spectrum. Our DMRG simulations show that
the entanglement spectra for different phases exhibit similar
band crossings with their low-energy spectra (Appendix A 3).
With the increase of interaction strength, the entanglement
entropy undergoes a sharp change and reaches its peak at the
Mott transition point. Both the entanglement spectrum and
entanglement entropy can be used as indicators of the Mott
transition.

V. TOPOLOGICAL MAGNON EXCITATION

Starting from the many-body ground state �0(N↑, N↓),
we consider another two types of quasiparticle excitations.
One is the magnon excitation purely in the spin sector
with fixed total density. The quasiparticle spectrum is de-
termined by the additional energy required to flip one
spin-up to spin-down: 
Es(N↑, N↓) = E0(N↑ − 1, N↓ + 1) −
E0(N↑, N↓). The spatial spin distribution of the quasiparticle is

S j = Sz

j[�0(N↑ − 1, N↓ + 1)] − Sz
j[�0(N↑, N↓)]. The other

one is purely in the charge sector with fixed spin polarization
(magnetization). The quasiparticle spectrum is determined by
the additional energy required to add two atoms (one spin-up,

FIG. 4. (a) Magnon spectrum 
Es(24, 48) and 
Es(25, 47) un-
der PBC (blue square) and OBC (magenta circle) at filling ρ = 1.
(b) Charge spectrum 
Ec(24, 48) and 
Ec(23, 47) under PBC (blue
square) and OBC (magenta circle) for magnetization m = −1/3.
(c) Spatial distributions of the two in-gap magnon modes [labeled
by “cross” in (a)]. (d) Spatial distributions of the charge excitation at
ϕ = 0. The double-headed arrows denote the spin and charge gaps.
μ = 1.2, U = 3.5, and L = 72.

one spin-down) to the many-body system: 
Ec(N↑, N↓) =
E0(N↑ + 1, N↓ + 1) − E0(N↑, N↓). Its spatial charge distri-
bution is 
n j = n j[�0(N↑ + 1, N↓ + 1)] − n j[�0(N↑, N↓)].
These two types of quasiparticle excitations provide another
perspective of the topological Mott physics.

In Figs. 4(a) and 4(b), we show their quasiparticle spectra
after Mott transition. Under PBC, both spectra are split into
two branches, separated by a finite magnon gap (∼2
s) and
charge gap (∼2
c), respectively, while, under OBC, some in-
gap magnon modes appear and cross at ϕ = −5π/6 and π/6
[Fig. 4(a)], similar to the low-energy excitations in Fig. 3(d).
The distributions of the magnon excitations in two typical
phases ϕ = −14π/15, ϕ = −11π/15 are shown in Fig. 4(c),
which are well localized at the two ends. With the evolution
of phase ϕ, these in-gap modes may touch the (top or bottom)
bulk quasiparticle bands. Note that once such a band touching
happens, the magnon modes would merge into the bulk and
reappear on the other end. This is similar to the band touching
between edge state and bulk bands [38] in the quantum
Hall system. Furthermore, the magnon excitation, which is
protected by a finite spin gap, is stable against disorder
(Appendix A 5). The above nontrivial magnon excitations are
closely related to the quantized magnetization plateau [13] of
our effective model (3). As a comparison, the quasiparticle
spectrum in the charge sector stays fully gapped under OBC as
shown in Fig. 4(b). For any ϕ, the charge excitations distribute
on the whole lattice [Fig. 4(d)], revealing the triviality in the
charge sector.

VI. DISCUSSION AND SUMMARY

Our mechanism of inducing topological Mott insulator
states based on SCS is quite general. The topological Mott
physics here can be extended to (i) other period q (includ-
ing the incommensurate case, i.e., the famous Aubry-André
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model [39]), (ii) other fillings or magnetizations, and (iii) off-
diagonal counterparts of model (1), i.e., triple-well lattices
with periodic modulations on tunneling t , instead of on-site
energy μ j . The emergence of topological Mott insulator states
with various spin Chern numbers and spinful edge modes is
expected from our low-energy theory.

The proposed topological Mott insulator state and associ-
ated low-energy excitations can be experimentally probed in
ultracold atomic gases. In addition to the proposed scheme
using two sets of optical lattices, the 1D fermionic superlattice
can also be generated using the recently developed digital
micromirror device [40,41]. For fermionic 6Li atoms [42,43],
the wavelength of the laser beam is chosen as λ = 1064 nm,
with the recoil energy Er ≈ 2π h̄ × 29.4 kHz. At V0/Er = 5,
t ≈ 2π h̄ × 1.9 kHz. The neutral and spin gaps of the topo-
logical Mott insulator state are then 
ne ≈ 0.2t = 2π h̄ ×
390 Hz, which is large enough (compared to temperature)
to protect the topological properties [43]. These excitation
gaps may be measured using radio-frequency spectroscopy
[44–46]. The edge magnon excitations in the spin sector can
be generated using a two-photon Raman process and their spin
distributions at each site can be measured by detecting atomic
spin distributions of different many-body ground states using
spin-resolved quantum gas microscope [47–52] in optical
lattices.

In summary, we have studied topological Mott transitions
accompanied by SCS in a simple 1D optical superlattice,
with low-energy excitations changing from single-particle
spin-1/2 modes to bosonic spin-1 collective modes at the
boundary. A topological Mott insulator state, characterized
by spin Chern number and gapless magnon excitations, is
identified. Our work may pave the way for the experimental

observation of topological Mott insulator states in ultracold
atomic gases.
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APPENDIX

In this Appendix, we provide details on the derivation of
the effective spin superexchange model, its topological prop-
erties which govern the low-energy physics, entanglement
spectrum, the spatial charge and/or spin-density distributions
of the many-body ground state, and the stability of the topo-
logical Mott phase against disorder.

1. Derivation of the effective spin superexchange model

We give a simple derivation of the effective spin superex-
change model [Eq. (3) in the main text] using the second-order
perturbation theory. To this end, we split the Hamiltonian
[Eq. (1)] into two parts: H = Unj↑n j↓ + Hpert, with Hpert =∑

j,σ [−t (c†
jσ c j+1σ + H.c.) + μ jn jσ ] as the perturbation term.

For the half-filling case ρ = 1 and U � t , the local Hilbert
space on sites j and j + 1 is spanned by the following four
basis: |↑ j,↑ j+1〉, |↑ j,↓ j+1〉, |↓ j,↑ j+1〉, and |↓ j,↓ j+1〉. The
effective Hamiltonian can be represented in this basis as Hs =∑

j Hj, j+1, with

Hj, j+1 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 − t2

U+μ j+1−μ j
− t2

U+μ j−μ j+1

t2

U+μ j+1−μ j
+ t2

U+μ j−μ j+1
0

0 t2

U+μ j+1−μ j
+ t2

U+μ j−μ j+1
− t2

U+μ j+1−μ j
− t2

U+μ j−μ j+1
0

0 0 0 0

⎞
⎟⎟⎟⎟⎠. (A1)

Using spin-1/2 operator S = (Sx, Sy, Sz ), the above Hamilto-
nian can be further represented as

Hs =
∑

j

4t2U

U 2 − (μ j+1 − μ j )2
[S j · S j+1 − 1/4]. (A2)

By setting J = 4t2

U and Taylor expanding the exchange coeffi-
cient by 1/U to the second order, we can get the effective spin
superexchange model Eq. (3) after neglecting the constant
term.

2. Adiabatic continuity and topological properties

Now we demonstrate the topological properties of the spin
superexchange model, which dictates the low-energy physics
of the system. To be more intuitive and clear, we introduce an

anisotropy parameter g in Sz
jS

z
j+1 term:

Hs(g) =
∑

j

J j (Sx
j S

x
j+1 + Sy

j S
y
j+1 + gSz

jS
z
j+1), (A3)

with Jj = J[1 + (μ j+1−μ j )2

U 2 ]. When g = 1, the above model
recovers our low-energy Hamiltonian Eq. (3). The case g = 0
corresponds to an exactly solvable spin-XX chain by Jordan-
Wigner transformation. We first show the nontrivial topology
of g = 0 case and then demonstrate the adiabatic continuity in
the whole region g � 0.

For g = 0, the Jordan-Wigner transformation (denoted
S±

k = Sx
k ± iSy

k)

d†
j = eiπ

∑ j−1
k=1 S+

k S−
k S+

j , d j = e−iπ
∑ j−1

k=1 S+
k S−

k S−
j (A4)

takes the model (A3) to a spinless fermion model: HJ−W =∑
j J[1 + (μ j+1−μ j )2

U 2 ](d†
j d j+1 + d†

j+1d j ). The band structure of
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FIG. 5. (a) Single-particle band of Jordan-Wigner fermions, g = 0. (b) Excitation gap with respect to anisotropy parameter g. The inset
shows its finite-size scaling at g = 1 and ϕ = 0. (c) The lowest two eigenenergies of model (A3) under OBC (magenta circle) and PBC (blue
square) with the evolution of ϕ. μ2/U 2 = 0.2 for all figures.

HJ−W is shown in Fig. 5(a). Due to the periodically modu-
lated hoppings of Jordan-Wigner fermions, the single-particle
spectrum εd

n consists of three (bulk) topological bands and
gapless end modes inside the band gap with the evolution of
phase ϕ under OBC. Notice that, different from the original
single-particle band in Fig. 1, these end modes now cross at
ϕ = −5π/6 and ϕ = π/6 [consistent with the DMRG results
in Figs. 3(b) and 4(a) in the main text] and correspond to
(spinful) low-energy collective modes.

To demonstrate the adiabatic continuity in the whole region
g � 0, we plot the excitation gap (energy difference between
the ground state and first excited state) of model (A3) with
respect to g in Fig. 5(b). With increasing g from Jordan-
Wigner limit g = 0, the excitation gap increases. From the
scaling behavior of the gap [inset of Fig. 5(b)], we can see it
tends to a finite value in the thermodynamical limit at g = 1.
The above adiabatic continuity reveals that our effective spin
superexchange model Hs has the same topological properties
as those of Jordan-Wigner fermions.

Furthermore, we show the low-energy spectrum of the spin
superexchange model Eq. (3) in Fig. 5(c). Although there
always exists an excitation gap at any ϕ under PBC, the
ground state and first excited state touch at ϕ = −5π/6 and
ϕ = π/6 under OBC [consistent with the DMRG results in
Figs. 3(b) and 4(a) in the main text]. As these crossings de-
pend on the boundary condition, the excitations around these
touching points are well-localized end modes (not shown).
For example, at ϕ = −9π/10, our numeric gives accumulated
spin distribution 
Sz = 0.9996 on the left end and 
Sz =
−0.9996 on the right end. The integer spinful end modes

are consistent with those neutral excitations in the main text
[Fig. 3(f) in the main text].

3. Entanglement spectrum

Entanglement spectrum (ES), which describes the quantum
correlations between two subsystems (A and B), provides
another perspective to investigate the topological properties
of quantum many-body systems [53]. Through a real-space
partition, the ES can be directly obtained from the eigenvalues
of the reduced density matrix of the subsystem. Formally, the
total density matrix associated with state |�〉 is ρ = |�〉〈�|.
By taking the trace over the degrees of freedom in one of the
subsystems (for example B), we can get the reduced density
matrix of subsystem A:

ρA = trB(ρ). (A5)

An eigenvalue decomposition of ρA yields

ρA =
∑

n

ωn

∣∣�A
n

〉〈
�A

n

∣∣. (A6)

The eigenvalue spectrum ωn, which gives the weight in the
Schmidt decomposition, forms the ES. In DMRG algorithm,
the ES can be directly obtained from the superblock ground
state |�〉 = ∑

m,n F m,n|�A
m〉|�B

n 〉, where |�A
m 〉 and |�B

m〉 are
the orthonormal basis in the two (block) Hilbert spaces and
F m,n is a rectangular matrix. By singular-value decomposition
F = UDV ′, we have

|�〉 =
∑

n

λn

∣∣�A
n

〉∣∣�B
n

〉
. (A7)
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FIG. 6. Entanglement spectrum (ES) for model (1) in the main text. (a) ES with respect to ϕ before spin-charge separation, U = 1. (b) ES
with respect to ϕ after spin-charge separation, U = 3.5. (c) ES as a function of interaction strength U , ϕ = 0. (d) Entanglement entropy (EE)
as a function of U . In the calculation of the ES, OBC is applied. Other parameters are μ = 1.2 and L = 72.
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FIG. 7. Charge density nj and spin density Sz
j for the many-body

ground state �0 and first excited state �1. Their difference gives the
spatial charge and/or spin distributions of the low-energy (neutral)
excitation [see Fig. 3(e) in the main text], which are localized at the
two ends. The parameters are the same as Fig. 3(e).

Obviously, the ES is given by ωn = |λn|2. Based on the ES,
the entanglement entropy (EE) is defined as

EE = −
∑

n

ωn log ωn. (A8)

The main results of our DMRG simulations are summarized in
Fig. 6. For the two topological phases (before and after spin-
charge separation) of model (1), their ES with respect to the
superlattice phase ϕ [Figs. 6(a) and 6(b)] exhibits similar band
crossings as the low-energy spectrum [Figs. 3(c) and 3(d) in
the main text], revealing the gapless nature of the edge modes.
Either ES or EE can be further used as an indicator of the
topological phase transition as shown in Figs. 6(c) and 6(d). At
the transition point U = Uc, the ES as well as EE undergoes a
sharp change.

4. Spatial charge and spin-density distributions

In this section, we illustrate the spatial charge and/or spin-
density distributions of the ground state �0 and first excited
state �1 from DMRG simulations. Due to the spatial modula-
tions of the superlattice, both charge and spin densities exhibit
periodic oscillations (with period q of the superlattice). Let
us take the topological phase before spin-charge separation as
an example (the conclusions are the same for the topological
Mott phase after spin-charge separation), as depicted in Fig. 7.

FIG. 8. Topological Mott phase with disorder. (a) Spin-gap 
s

with respect to the disorder strength W under PBC. Here for each
disorder strength, 
s is averaged over 50 different realizations of ran-
dom disorder. (b) Magnon spectrum 
Es(24, 48) and 
Es(25, 47)
under PBC (blue square) and OBC (magenta circle) with respect to
the superlattice phase ϕ. W = 0.5. Other parameters are the same as
Fig. 4 in the main text, i.e., μ = 1.2, U = 3.5, and L = 72.

It is clear that while the two many-body states (�0 and �1)
share nearly the same charge and/or spin distributions in the
bulk, they do not at the two ends. Their differences give the
corresponding charge and/or spin distributions of the neutral
excitation, i.e., nne

j = n j[�1] − n j[�0] and Sne
j = Sz

j[�1] −
Sz

j[�0]. Hence the neutral excitations are mainly localized at
the two ends, as shown in Fig. 3(e) in the main text.

5. Stability against disorder

The topological Mott phase, which is protected by a fi-
nite excitation gap (spin gap), is stable against disorder. We
introduce disorder through the random on-site energy with a
uniform distribution within [−W,W ], where W is the disorder
strength. Our DMRG results are summarized in Fig. 8.

First, we show the dependence of the spin gap 
s with
respect to the disorder strength W in Fig. 8(a). With increasing
W , the spin gap slightly decreases. The numeric shows 
s

changes by 16% up to W = 0.8. Next, we demonstrate the
stability of edge modes against disorder. We take the magnon
excitation as an example. Figure 8(b) depicts the magnon
spectra under OBC and PBC for a medium disorder strength
W = 0.5. It is clear that, inside the bulk magnon gap, there
still exist in-gap magnon excitations, which are localized at
the two ends. All these results indicate that the topological
Mott phase survives to a large disorder strength.
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