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A variant of the Mordell–Lang conjecture
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The Mordell–Lang conjecture (proven by Faltings, Vojta and Mc-
Quillan) states that the intersection of a subvariety V of a semi-
abelian variety G defined over an algebraically closed field k of
characteristic 0 with a finite rank subgroup Γ ≤ G(k) is a finite
union of cosets of subgroups of Γ. We explore a variant of this con-
jecture when G = Ga ×A for an abelian variety A defined over k.

1. Introduction

Throughout our paper, each subvariety is assumed to be closed. Unless
otherwise noted, k will always denote an algebraically closed field of charac-
teristic 0.

Faltings [Fal94] proved the Mordell–Lang conjecture, thus showing that
any subvariety of an abelian variety A defined over k intersects a finitely
generated subgroup Γ ≤ A(k) in a finite union of cosets of subgroups of
Γ. Vojta [Voj96] proved that Faltings’ result holds when we replace the
abelian variety A by extensions G of A by an algebraic torus, i.e., when G
is a semiabelian variety. Then McQuillan [McQ95] extended further Vojta’s
theorem by proving that the conclusion holds when we replace Γ by any finite
rank subgroup of a semiabelian variety. It is natural to ask whether a variant
of the Mordell–Lang conjecture holds when we replace G by a more general
commutative algebraic group, which is the extension of an abelian variety by
some commutative linear algebraic group H. However, it is easy to see that
if dimH ≥ 2 and H is not a torus (i.e., G is not a semiabelian variety), then
there are examples when an irreducible subvariety V ⊆ G meets a finitely
generated subgroup of G(k) in a Zariski dense subset and moreover V is not
a coset of an algebraic subgroup of G (as predicted by the variant of the
Mordell–Lang conjecture).

Example 1.1. If G = G2
a, then the graph of any polynomial of degree larger

than 1 with integer coefficients would contain infinitely many integral points,
thus contradicting the corresponding Mordell–Lang principle for G.
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Example 1.2. If G = Ga ×Gm, then the diagonal subvariety ∆ ⊆ G con-
tains infinitely many points of the subgroup Γ spanned by (1, 1) and (0, 2);
more precisely, (2n, 2n) ∈ ∆ for each n ∈ N. However, ∆ is not a coset of a
subgroup of G.

Vojta [Voj96, page 134] noted the example, similar to our Example 1.1,
of the subvariety of G2

a defined by Pell’s equation as evidence for his “doubt
that this [Mordell–Lang] result can be generalized to a larger class of group
varieties”. We see, instead, that these examples suggest that the only commu-
tative algebraic group G for which a variant of the Mordell–Lang conjecture
might hold is an extension of an abelian variety by a single copy of Ga. As-
suming the Bombieri–Lang conjecture1, we prove in Section 2 that a variant
of the Mordell–Lang conjecture holds for an algebraic group isomorphic to a
product of an abelian variety with the one-dimensional additive group. First,
we state the aforementioned conjecture of Bombieri–Lang; for more details
on this famous conjecture, see [BG06, Chapter 14]. We also note that the
Bombieri–Lang conjecture is a special case of Vojta’s conjectures which play a
central role in arithmetic geometry (see [BG06, Conjecture 14.3.2 and its Re-
mark 14.3.7]).

Conjecture 1.3 (Bombieri–Lang–Vojta). Let X be a projective variety
of general type defined over Q. Then for each number field K, the set X(K)
is not Zariski dense in X.

A smooth projective variety X is of general type if its canonical divisor
KX is big, i.e., κ(X) := κ(X,KX) = dimX; in general, a (possibly singular)
variety is of general type if it admits a smooth model of general type. If
dimX = 1, then Conjecture 1.3 is equivalent to the well-known Mordell
conjecture, proven by Faltings [Fal83]. We prove the following result.

Theorem 1.4. Let A be an abelian variety defined over Q and let Γ be a
finitely generated subgroup of (Ga ×A)(Q). If Conjecture 1.3 holds, then for
each subvariety V ⊆ Ga ×A, the intersection V (Q) ∩ Γ is a finite union of
cosets of subgroups of Γ.

The problem of proving unconditionally the results of this paper in the
most general case seems deeply linked with the conjecture of Vojta for a
generically finite cover of an abelian variety. In turn, this seems to be out of
reach of the present methods, unless one inserts additional assumptions.

1Bombieri formulated this conjecture only in the case of surfaces.
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Unconditionally, we can prove Theorem 1.4 when dimA = 1 (see Theo-
rem 1.5), and also when V is birational to a subvariety of an abelian variety
(see Remark 2.2). In the case when V is birational to a subvariety of some
abelian variety, the result follows as a consequence of Faltings’ result [Fal91,
Theorem 2] regarding the finiteness of the number of S-integral points on
an abelian variety with respect to an ample divisor (see also Remark 2.2
and our proof of Theorem 1.4). In the case A is an elliptic curve, we can
prove a more general result (inspired by the results of [CMZ13]), valid for
any commutative algebraic group of dimension 2 that is an extension of an
elliptic curve by a copy of the additive group.

Theorem 1.5. Let K be a finitely generated field of characteristic 0, let
E/K be an elliptic curve and let G be a commutative algebraic group which
is an extension of E by Ga, i.e., there is a short exact sequence of connected
algebraic groups:

0 −→ Ga −→ G −→ E −→ 0.

Let Γ be a subgroup of G(K) such that Γ ∩Ga is finitely generated, and let T
be a subset of Γ. Then the Zariski closure of T is a finite union of translates
of algebraic subgroups of G.

Assuming that A is an abelian variety of k/Q-trace 0 (i.e., there is no
nonconstant morphism between A and some abelian variety defined over Q),
then we can prove unconditionally the conclusion from Theorem 1.4 even
in the more general case when we intersect a subvariety V ⊆ Ga ×A with a
finite rank subgroup.

Theorem 1.6. Let k be an algebraically closed field of characteristic 0,
let A be an abelian variety such that Tr

k/Q(A) = 0. Then each subvariety
V ⊆ Ga ×A intersects a finite rank subgroup Γ ≤ (Ga ×A)(k) in a finite
union of cosets of subgroups of Γ.

We prove Theorem 1.6 in Section 3 using the ideas introduced by
Hrushovski [Hru96] for his proof of the function field version of the Mordell–
Lang conjecture. We note that Theorem 1.6 fails if the abelian variety were
defined over a number field. Indeed, if A is an abelian variety whose Q-rational
points are Zariski dense, while V ⊆ Ga ×A is the graph of any non-constant
rational function f : A −→ P1 defined over Q, and Γ := (Ga ×A)(Q), then
V (Q) ∩ Γ is Zariski dense in V , even though V is not a coset of an algebraic
subgroup of Ga ×A.
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2. Proofs of Theorems 1.4 and 1.5

Proof of Theorem 1.4. We only need to prove the case when V is irreducible.
Hence we may assume that V is integral. Next, it suffices to prove that if
V ∩ Γ is Zariski dense in V then V is a translate of an algebraic subgroup
of Ga ×A. Let π2 : Ga ×A −→ A be the usual projection morphism. Then
by Faltings’ theorem [Fal94], we may replace A by the Zariski closure of
π2(V ∩ Γ) which is a translate of an abelian subvariety of A, and assume
that π2|V : V −→ A is dominant. If π2|V is of relative dimension 1, then
V = Ga ×A and we are done. So we only need to consider the case that
π2|V is generically finite. Let π1 : Ga ×A −→ Ga be the usual projection
morphism. If π1|V : V −→ Ga is not dominant, i.e., π1(V ) is a point, then V
is contained in a fibre F ∼= A of π1. It follows that V = F by the dimension
reasoning and hence V is a translate of the abelian variety A. Hence, from
now on, we may assume further that π1|V : V −→ Ga is dominant. We will
prove that in this case, our hypotheses yield a contradiction.

Let P1 ×A be the compactification of Ga ×A (such that P1 −Ga = {∞})
and V the Zariski closure of V in P1 ×A. Also, by a slight abuse of notation,
we still denote by π2 the projection morphism P1 ×A −→ A. Then by the
Stein factorization, there exists a normal projective variety Y endowed with
a birational morphism ι : V −→ Y and with a finite morphism f : Y −→ A
such that π2|V = f ◦ ι.

Let K be a number field such that V , V , Y , ι and f are all defined
over K, and also Γ ≤ (Ga ×A)(K). Since V (K) ∩ Γ is Zariski dense in V , we
conclude that Y (K) is Zariski dense in Y .

Applying Kawamata’s structure theorem [Kaw81, Theorem 13] to the
finite morphism f : Y −→ A, there exists a finite étale cover φ : Ỹ −→ Y such
that Ỹ is isomorphic to the direct product B̃ ×W , where B̃ is a finite étale
cover of an abelian subvariety B of A and W is a normal projective variety
of general type, i.e., κ(W ) = dimW . Since Y (K) is Zariski dense in Y and
φ : Ỹ −→ Y is étale, the Chevalley–Weil theorem (see [CZ17, p. 585] and
[BG06, Theorem 10.3.11]) yields that there exists a finite extension L/K such
that Ỹ (L) is Zariski dense in Ỹ . In particular, at the expense of replacing
L by another finite extension, we obtain that W (L) is Zariski dense in W ,
which contradicts Conjecture 1.3, if dimW > 0.

So, from now on, we may assume that W is a point, which yields that
Ỹ and therefore Y itself is an abelian variety. Since Y is birational to V ,
composing this birational map with π1|V , we obtain a non-constant rational
function g : Y −→ P1 (note that π1|V : V −→ Ga is dominant). Since Γ is a



i
i

“7-Ghioca” — 2019/11/18 — 12:02 — page 1387 — #5 i
i

i
i

i
i

A variant of the Mordell–Lang conjecture 1387

finitely generated subgroup of (Ga ×A)(K), we have that π1(Γ) is a set of
S-integral points in K with respect to a suitable finite set S of places of K.

We let D := g∗({∞}) be the divisor of Y which is the pullback of the
point at infinity for the inclusion Ga ⊆ P1; note that D is a divisor because
g is non-constant. We let ι̃ : V −→ Y be the corresponding birational map
and then for each point x ∈ ι̃(Γ ∩ V ) (note that Γ ∩ V is Zariski dense in V ),
we have that g(x) is S-integral with respect to the divisor D of Y . If D is
ample, then Faltings’ theorem [Fal91, Theorem 2] yields a contradiction to
the fact that there exist infinitely many such S-integral points (for a variant
of Faltings’ theorem in the context of semiabelian varieties, see [Voj99]). We
show next that the general case reduces to this special case.

Assume now that D is not ample. Let C be the connected component of
the stabilizer of D in Y . Then C is an abelian subvariety of Y of positive
dimension. Let Z be a complement of C in Y , i.e., Z is a proper abelian
subvariety of Y such that Y is isogenous to C × Z. Therefore, without loss
of generality, we may replace Y by C × Z. We let h := g|Z , which is still a
non-constant rational function Z −→ P1 and moreover, h∗({∞}) is an ample
divisor of Z. Another application of Faltings’ [Fal91, Theorem 2] provides a
contradiction, which finishes our proof of Theorem 1.4. �

Remark 2.1. Using the notation as in Theorem 1.4, if A is a simple abelian
variety, then one does not need to use [Kaw81, Theorem 13] to finish the
proof. Indeed, [Kaw81] was employed only in the case the finite morphism
f : Y −→ A is ramified, because in the case f is unramified, we immediately
derive that Y must itself be an abelian variety and proceed as in the proof of
Theorem 1.4 invoking only Faltings’ theorem [Fal91] regarding the finiteness
of the number of S-integral points on an abelian variety with respect to an
ample divisor. Now, if f is ramified, the canonical divisor KY of Y is the
ramification divisor of f , and moreover since f is a finite map, we obtain
that KY = f∗(Df ) for some effective divisor Df of A. If A is simple, then
each nontrivial effective divisor of it is ample and therefore we obtain that
KY is big, which still allows us to apply the Bombieri–Lang–Vojta conjecture
to obtain a contradiction.

Remark 2.2. As shown in our proof of Theorem 1.4, the only point in which
we employed the validity of Conjecture 1.3 is for the case when the finite
morphism Y −→ A is ramified. In particular, this means that Theorem 1.4
holds unconditionally if the subvariety V ⊆ Ga ×A is birational to an abelian
variety. Furthermore, if V ⊆ Ga ×A is birational to a subvariety Y of some
arbitrary abelian variety B, then the assumption that V contains a Zariski
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dense set of K-rational points yields that Y contains a Zariski dense set of
rational points and therefore, Faltings’ theorem [Fal94] yields that Y must
be a coset of an abelian subvariety of B. So, V is birational to an abelian
variety itself and we are done using Faltings’ theorem [Fal91] regarding the
finiteness of the S-integral points on an abelian variety.

For the general case of a non-split extension G of an arbitrary abelian
variety A (defined over a field of characteristic 0) by a copy of the additive
group, the corresponding variant of the Mordell–Lang conjecture is quite
subtle. However, we can settle unconditionally the case when A is an elliptic
curve.

Proof of Theorem 1.5. First, we observe that since Γ projects to E(K), which
is a finitely generated group (due to the classical Mordell–Weil theorem), we
get that Γ must itself be finitely generated (since so is its intersection with
Ga(K) by the assumption). Hence, our goal is to show that if V ⊆ G is an
irreducible curve with the property that V ∩ Γ is Zariski dense in V , then V
must be a coset of a one-dimensional algebraic subgroup of G. We have two
cases: either G is a split extension, or not.

Case 1. G is a split extension. So, at the expense of replacing G by an
isogenous copy of it and also replace k by a finite extension, we may assume
G = Ga × E.

If V does not project dominantly onto one of the two factors of Ga × E,
then we obtain the desired conclusion. So, assume the curve V ⊆ Ga × E
projects dominantly onto both factors of Ga × E; using the hypothesis that
V contains infinitely many points of the subgroup Γ ≤ (Ga × E)(K), then
we derive a contradiction. We observe that V must have positive genus since
it projects dominantly onto the elliptic curve E; then we derive (similar to
the proof of Theorem 1.4) a contradiction due to the finiteness of the number
of S-integral points on a curve of positive genus.

Case 2. G is a non-split extension.
We settle this case using the fact that G does not contain complete

curves (see [CMZ13] for this and other facts on such group extensions). So, if
the curve V ⊆ G contained infinitely many points from a finitely generated
subgroup Γ of G, then these points would be S-integral with respect to the
complement of V in the projective closure of it, where S is a finite set of
places containing those of bad reduction either for G or for a set of generators
for Γ. (See also [CMZ13] for an explicit projective embedding of G, obtained
first by Serre, in a letter to Masser reproduced in the aforementioned paper.)
But since V is affine, Siegel’s Theorem would entail that V has genus 0; hence
V could not dominate E and would be a translate of Ga, as required. �
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3. Proof of Theorem 1.6

We work with the differential algebraic methods of [Bui92, Hru96] and
recommend the book [MTF06] for general background.

We begin by endowing k with a derivation ∂ : k→ k for which the field
of constants k∂ := {x ∈ k : ∂(x) = 0} is the field Q of algebraic numbers.
Since the statement of Theorem 1.6 becomes only formally more difficult with
k replaced by a larger field, we may, and do, replace k with its differential
closure, which is still an algebraically closed differential field having field of
constants equal to Q. For the sake of readability, we shall identify algebraic
(and differential algebraic) varieties with their sets of k-points.

By the usual reductions, we may assume that V is irreducible, contains
the identity element of the group, and has a trivial stabilizer. We are charged
with showing that if V ∩ Γ is Zariski dense in V (where Γ ≤ (Ga ×A)(k) is
a group of finite rank), then V must consist of a single point.

We find a differential algebraic subgroup Γ̃ ≤ Ga ×A for which Γ ≤ Γ̃ and
Γ̃ has finite Morley rank (see [Mar00, (5.1)]). Let Ξ be the image of Γ̃ under
the projection map Ga ×A→ A and let B be the connected component of
the identity of the Zariski closure of Ξ. Since it is an algebraic subgroup
of A, then B also has k/Q-trace zero. Hence, by [HS, Proposition 2.6]
(also proven in [PZ03]) the Manin kernel B] of B is locally modular and
is thus orthogonal to the field of constants. By [Pil96, Lemma 4.2], every
Zariski dense differential algebraic subgroup of B contains B]; thus, B] ≤ Ξ.
Consider also the image Υ of Γ̃ under the projection Ga ×A→ Ga. Since Υ is
a finite Morley rank subgroup of the additive group, it is a finite dimensional
vector space over the field of constants and is, therefore, fully orthogonal to
B]. The group Γ̃ ∩ (Υ×B]) is a differential algebraic subgroup of Υ ×B]

which projects onto B]. By the orthogonality of B] and Υ, every differential
algebraic subvariety is a union of products T × S where S ⊆ B] and T ⊆ Υ.
It follows that {0} ×B] ≤ Γ̃.

Let Y := Γ̃ ∩ V . Since Γ ∩ V is Zariski dense in V , we have that the
differential algebraic variety Y is Zariski dense in V . Since V is irreducible
as an algebraic variety, there exists some component X of Y which is Zariski
dense in V . Translating, we may assume that X contains the identity element.

By [Hru96, Proposition 4.4] there is a differential algebraic groups H ≤ Γ̃
for which X is a union of cosets of the connected component of (H ∩ ({0} ×
B])) and X is contained in H + ({0} ×B]). The group (H ∩ ({0} ×B]))
is contained in the stabilizer of X and the Zariski closure of this group is
contained in the stabilizer of V . As we have reduced to the case that V has
a trivial stabilizer, H ∩ ({0} ×B]) is itself trivial.



i
i

“7-Ghioca” — 2019/11/18 — 12:02 — page 1390 — #8 i
i

i
i

i
i

1390 D. Ghioca, F. Hu, T. Scanlon, and U. Zannier

Using again that B] is orthogonal to the field of constants, it follows that
H ≤ Ga × {0}. Indeed, as before we let Φ be the projection of H to A and
Ψ be the projection of H to Ga. As Ψ ⊥ Φ and H ≤ Ψ× Φ, it must be that
H = Ψ× Φ. By [Pil96, Lemma 4.2] again, Φ contains the Manin kernel C] of
the connected component C of its Zariski closure, and C] ≤ B]. We know the
group ({0} ×B]) ∩H contains {0} × C] and is trivial. Hence C] = {0} and
therefore C = {0} (note that C] is Zariski dense in C); so, H ≤ Ga × {0}.

Therefore, we know that X ⊆ H + ({0} ×B]) and that the two groups
in the sum are orthogonal. Hence, X may be expressed as S + T with S ⊆ H
and T ⊆ ({0} ×B]). Since B] is locally modular, by [HP85] the set T is a
translate of a subgroup. Using that X has a trivial stabilizer, it follows that
T is a single point. Taking Zariski closures, we see that V is a translate of
a subvariety of Ga × {0}. Because V has trivial stabilizer, this subvariety
cannot be all of Ga × {0}. Thus, V is a single point as we needed to show.
This concludes our proof of Theorem 1.6.

Remark 3.1. We expect that these differential algebraic techniques could
be pushed to prove a relative Mordell–Lang theorem for general commutative
algebraic groups. The statement we expect to be true is the following. Let
G be a commutative algebraic group over the algebraically closed field k of
characteristic zero. Let Γ ≤ G(k) be a finite rank subgroup and let V ⊆ G
be an irreducible subvariety for which Γ ∩ V (k) is Zariski dense in V . Then
there should be an algebraic subgroup H ≤ G of G, an algebraic group J
defined over Q, an algebraic variety Y ⊆ J also defined over Q, a point
a ∈ G(k), and a map of algebraic groups h : H → Jk (where Jk is the base
change of J from Q to k) so that V = a+ h−1(Yk). When G is an extension
of an abelian variety of Q-trace zero by Ga, then this conjecture would imply
that V must be a translate of an algebraic subgroup of G. What is missing
from the existing literature on the structure of differential algebraic groups
is an appropriate analogue of the Socle Theorem ([Hru96, Propositions 4.3
and 4.4]) for groups with non-rigid semipluriminimal socles.
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