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Abstract

We prove an equivariant localization theorem over an algebraically closed field of characteristic zero

for smooth quotient stacks by reductive groups X{G in the setting of derived loop spaces as well as

Hochschild homology and its cyclic variants. We show that the derived loop spaces of the stack X{G

and its classical z-fixed point stack π0pXz
q{Gz become equivalent after completion along a semisimple

parameter rzs P G{{G, implying the analogous statement for Hochschild and cyclic homology of the dg

category of perfect complexes PerfpX{Gq. We then prove an analogue of the Atiyah-Segal completion

theorem in the setting of periodic cyclic homology, where the completion of the periodic cyclic homology

of PerfpX{Gq at the identity res P G{{G is identified with a 2-periodic version of the derived de Rham

cohomology of X{G. Together, these results identify the completed periodic cyclic homology of a stack

X{G over a parameter rzs P G{{G with the 2-periodic derived de Rham cohomology of its z-fixed points.
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1 Introduction

Derived loop spaces appear naturally in questions of Hochschild homology. When X is a prestack such

that the derived categories QCohpXq and IndCohpXq are compactly generated by PerfpXq and CohpXq

respectively, their Hochschild homology can be computed in two ways. On one hand, it is computed by the
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usual cyclic bar complex, but it can also be naturally identified with the global sections of a sheaf of functions

or distributions on the derived loop space LX of X [BN13b]:

HHpQCohpXqq “ OpLXq, HHpIndCohpXqq “ ωpLXq.

When X is a derived scheme, the loop space LX is equivalent to the shifted odd tangent bundle via a derived

variant of the Hochschild-Kostant-Rosenberg theorem, reflecting the Zariski-local nature of derived loops.

Introducing the S1-action, results in [BN12] [Pre15] identify periodic cyclic homology with 2-periodic derived

de Rham (co)homology:

HP pPerfpXqq “ OpLXqTate » C‚dRpX; kqppuqq, HP pCohpXqq “ ωpLXqTate » C‚,dRpX; kqppuqq

where u P C2pBS1; kq is the degree two universal Chern class. Furthermore, over k “ C, the main result in

[Bha12] identifies derived de Rham cohomology with Betti de Rham cohomology of the analytification, and

we have that HP pPerfpXqq » C‚dRpX
an; kqppuqq. Our goal in this paper is to investigate the periodic cyclic

homology where X is taken to be a smooth quotient stack.

A difficulty in understanding the Hochschild homology of stacks which does not appear for schemes is the

failure of derived loop spaces to form a cosheaf for the smooth topology; informally, Hochschild homology

is Zariski local but not smooth local1. On the other hand, as argued in [BN12], sheaves and functions on

formal loop spaces (i.e. loop spaces completed at constant loops) can be computed via a smooth covers.

We begin to bridge this gap by understanding the global loop space LpX{Gq after completion over fibers

of the map to LpBGq “ G{G as well as to its affinization G{{G. We show that completion over G{G gives

a certain formal loop space and completion over G{{G gives a certain unipotent loop space, formalizing a

“Jordan decomposition for loop spaces” which appeared in [BN13a], where it was applied to realize a moduli

stack of Langlands parameters for representations of real reductive groups. Informally, we view X{G as a

family of formal loop spaces over G{G, which we in turn view as a family of unipotent loop spaces over G{{G,

ultimately realizing X{G as a family of unipotent loop spaces over the affine parameter space G{{G.

This paper contains two main theorems. The first realizes well-established equivariant localization pat-

terns (e.g. as in [GKM98] [Tho87] [Tho86]) in the setting of Hochschild homology via its geometric avatar, the

derived loop space. The second realizes an Atiyah-Segal style (e.g. as in [AS69] [Tho88]) completion theorem

identifying completed periodic cyclic homology with 2-periodic equivariant derived de Rham cohomology.

Over C a theorem of Bhatt [Bha12] gives an identification with the Betti cohomology of the analytification.

We mention a few related results in the literature. An analogous theory was explored by Block and

Getzler in [BG94] in the setting of a compact group G acting on a compact smooth manifold M . Similar

results appear in the algebraic setting when G is finite (i.e. X{G is a Deligne-Mumford stack) in Theorem

1.15 of [ACH14], and in the case of an smooth affine quotient stack in Lemma 4.11 and Proposition 4.12 of

[HP16]. We generalize their statements to the case of a general smooth quasi-projective quotient stack. Our

statements have also been investigated in the setting of smooth quotient stacks with finitely many orbits in

[BN13a], with special attention to the case BzG{B in Theorem 3.5 of op. cit.

We will now begin stating our results precisely. The following theorem is an abridged version of our

geometric equivariant localization theorem for derived loop spaces, which appears in the main text as Theorem

3.1.12.

Theorem A (Equivariant localization for derived loop spaces). Let G be a reductive group acting on a

smooth variety X over an algebraically closed field k of characteristic 0, and z P G a semisimple element.

Note that LpX{Gq naturally lives over LpBGq; let pLzpX{Gq denote the completion of LpX{Gq along the fiber

over the semisimple orbit tG ¨ zu{G Ă LpBGq and let Luz pX{Gq denote the completion over the saturation

1This depends on definitions. Our notion of Hochschild homology is the one that is computed by a cyclic bar complex of a
small dg category. Other authors have considered a variant which is obtained by extending the notion of Hochschild homology
of affine schemes to stacks via flat descent, which is smooth local by definition and is equivalent to the a completed version of
the former.

2



rzs P G{{G. For X a smooth variety with a G-action, there are functorial S1-equivariant isomorphisms

pLzpπ0pX
zq{Gzq pLzpX{Gq, Luz pπ0pX

zq{Gzq Luz pX{Gq.
» »

We remark briefly on the assumptions of the theorem. We assume that k is algebraically closed and that

z is semisimple in reductive G since we argue via the Luna slice theorem, and we work in characteristic 0

since we model derived schemes locally as dg algebras. The assumption that X is smooth is used to compute

via Koszul resolutions, and is essential since the statement is false otherwise.

We note that in the case that G is a torus, these statements can be strengthened: the above maps are

equivalences on a Zariski open neighborhood over z, recovering the equivariant localization in [CG10] for

K-theory in the setting of periodic cyclic homology. However, for a nonabelian reductive group G, this fails

even in the case when X is a point (see Remark 3.1.14 and Example 3.1.3). Our result implies the following

interpretation of derived fixed points, which also appears in [ACH14] as Corollary 1.12.

Corollary 1.0.1. Let G be a reductive group acting on a smooth variety X and z P G semisimple. We have

a natural identification of the derived z-fixed points:

Lpπ0pX
zqq Xz :“ LpX{Gq ˆBG tzu.»

Proof. The “shift by z” map on Lpπ0pX
zq{Gzqq is a (non-S1-equivariant!) equivalence, so that

pLzpπ0pX
zq{Gqq » pLpπ0pX

zq{Gzq,

and in particular since loop spaces commuted with fiber products, Xz » Lpπ0pX
zqq.

The unipotent version of equivariant localization for loop spaces implies an equivariant localization result

for Hochschild homology and its cyclic variants. The following appears in the main text as Theorems 3.2.3

and 3.2.10.

Corollary 1.0.2 (Equivariant localization for Hochschild homology). Let G be reductive group acting on a

smooth variety X, and z P G a semisimple element. Then we have an S1-equivariant equivalence

HHpPerfpX{Gqq
pz HHpPerfpπ0pX

zq{Gzqq
pz

»

and similarly when replacing HH with its cyclic variants HC,HN, and HP .

Note that since the formation of periodic cyclic homology involves a colimit, this is not automatic in that

case. The fact that X is smooth gives us a cohomological boundedness of Hochschild homology, which is

essential in establishing the above result.

After identifying the completed derived loop spaces over a central character z, we are interested in

identifying this completion with de Rham cohomology via an analogue of the Atiyah-Segal completion theorem

in the setting of periodic cyclic homology. The following theorem is a consequence of Proposition 4.2.6 and

Theorem 4.3.1.

Theorem B (Atiyah-Segal completion for periodic cyclic homology). Let X{G be a global quotient stack

where X is an algebraic space. Then, there is an equivalence

HP pPerfpX{Gqq
pe C‚dRpX{G; kq pb

!
k kppuqq

»

where C‚dRpX{G; kq denotes the derived de Rham cohomology, and pb
!

indicates completion with respect to the

coarsest topology induced by the derived Hodge filtration and u-adic filtration on respective tensor factors.
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When k “ C, applying a generalization of the main theorem of [Bha12] to geometric stacks, we can

identify Tate functions on formal loop spaces with Betti cohomology.

Corollary 1.0.3. Let X{G be a finite type global quotient stack over k “ C, where X is an algebraic space.

Then, there is an equivalence

HP pPerfpX{Gqq
pe C‚dRpX

an{Gan;Cq pb! Cppuqq»

where C‚dRpX
an{Gan;Cq denotes de Rham cohomology of the analytification and pb

!
indicates completion with

respect to the coarsest topology induced by the Hodge filtration in the Cartan model for equivariant cohomology

and u-adic filtration on respective tensor factors.

The main technical hurdle in the proof of the theorem is that the fiber of LpX{Gq over res P G{{G does

not just contain formal loops but also unipotent loops. In Theorem 4.3.1 we show that this difference vanishes

after applying the Tate construction.

Theorem C. For X a quasicompact algebraic space acted on by an affine algebraic group G, the pullback

functor on derived global functions induces an isomorphism

OpLupX{GqqTate Op pLpX{GqqTate.»

In particular, if U is a unipotent group, then the pullback functor induces an equivalence

HP pPerfpX{Uqq HP pPerfpXqq.»

Following an analysis of the twisted S1-rotation action on LpX{Gq above points of G{G away from the

identity in Section 4.1, we relate this completion theorem to our localization theorem in Theorem 4.3.2.

Theorem D. Let G be a reductive group acting on a smooth quasi-projective variety X. The periodic cyclic

homology HP pPerfpX{Gqq is naturally a module over HP pPerfpBGqq “ krG{{Gsppuqq. For a closed point

z P G{{G, we have an identification of the formal completion at z with 2-periodic Betti cohomology of the

z-fixed points

HP pPerfpX{Gqq
pz C‚dRpπ0pX

zq{Gz; kq pb
!
k kppuqq

»

as a module over HP pPerfpBGqq
pz » C‚dRpBG

z; kq pb
!
k kppuqq, contravariantly functorial with respect to X.

Using Corollary 1.0.1, we also obtain an identification of the (derived) specialization of periodic cyclic

homology at z P G with non-equivariant cohomology of z-fixed points.

Corollary 1.0.4. Let X be a smooth variety with an action of a reductive group G. For z P G semisimple,

let kz denote the skyscraper sheaf at rzs P G{{G. We have an equivalence

HP pPerfpX{Gqq bLkrG{Gsppuqq kzppuqq C‚dRpπ0pX
zq; kqppuqq.»

We indicate two natural directions in which our results may be extended. The first is to ask what happens

when X is allowed to be singular; in this case, one can study either the Hochschild homology of CohpXq

or PerfpXq. In the case when X is a fiber product of smooth schemes, the geometric statement follows

immediately from our results, but it is unclear to us how to generalize beyond that case. If a geometric

statement is out of reach, it is also of interest as to whether the global localization statements for periodic

cyclic homology hold; an obstruction to applying the standard techniques of embedding a singular quotient

stack into a smooth one is the lack of a devissage theorem for the periodic cyclic homology of stacks. A

4



second direction would be to categorify these results in a generalization of the Koszul duality of [Pre15] and

[BN12]. In addition, it would be pleasing to have a more conceptual proof of Theorem 4.3.1.

We end our introduction with a few toy examples.

Example 1.0.5. Let G “ Gm “ Spec krz, z´1s act on X “ A1 “ Spec krxs by scaling, i.e. assign Gm-weight

|x| “ 1. The loop space can be calculated directly via Proposition 2.1.8

LpA1{Gmq “
Spec krz, z´1, xs{xxpz ´ 1qy

Gm
.

The Hochschild homology and periodic cyclic homology can also be calculated directly

HHpPerfpA1{Gmqq “ pkrz, z´1, xs{xpz ´ 1qqGm “ krz, z´1s, HP pPerfpA1{Gmqq “ krz, z´1sppuqq

as the S1-equivariant structure on a complex concentrated in a single cohomological degree can only be

realized by the zero map. Completing at any z0 P Gm gives, for t “ z ´ z0 and |t| “ 0,

HP pPerfpA1{Gmqqpz » krrtssppuqq

where t “ z ´ z0.

On the other hand, we can compute H‚ppXzqan; kqppuqq for each z0. For z “ z0 ‰ 1, the fixed points

π0pX
z0q{Gz0 “ t0u{Gm » BS1, whose 2-periodic cohomology is H‚pBS1; kq b! kppuqq “ krrsss b! kppuqq

with |s| “ 2. For z “ 1 the fixed points are A1{Gm » C{S1 » BS1, and the same argument applies. The

identification krrsssppuqq » krrtssppuqq is by tu “ s; in particular it is necessary to invert the degree 2 operator

u. The discrepancy between the cohomological degrees of t and s is a manifestation of the Koszul duality

degree-weight shearing discussed in [BN12].

Example 1.0.6 (Flag variety). Let X “ G{B be the flag variety with the usual action of G. Then,

X{G “ BB, so LpX{Gq “ B{B “ rG{G is the Grothendieck-Springer resolution; the fiber for the map
rGÑ G over any point g P G consists of the Borel subgroups containing g, i.e. the g-fixed points of G{B. We

identify the Hochschild homology HHpPerfpBBqq as a HHpPerfpBGqq-module by the inclusion map

HHpPerfpBBqq “ OpG̃{Gq “ krHs Ð HHpPerfpBGqq “ OpG{Gq “ krHsW

where H is the universal Cartan subgroup and W is the universal Weyl group2. Let s P G be a semisimple

element, and rss its adjoint orbit. Completing at rss P krHsW , we have

HHpPerfpBBqq
xrss
“

à

|W ¨s|

krrhss Ð HP pPerfpBGqq
ps » krrhssWGs .

In particular, the rank of HP pPerfpBBqq
ps over HP pPerfpBGqq

ps is |W ¨ s| ¨ |WGs | “ |W | by a theorem

of Steinberg and Pittie [Ste75]. Note that h is placed in cohomological degree zero. Applying the Tate

construction, we find that

HP pPerfpBBqq
xrss
» krrhssWGs ppuqq.

On the other hand, the fixed points pG{Bqs consist of Borel subgroups containing s; by conjugating, we

can choose a torus such that s P T Ă B; let t be the Lie algebra of T . There is a Gs-action on pG{Bqs and

its stabilizer at every point is conjugate to Bs, but the action may not be transitive; thus, pG{Bqs is the

disjoint union of copies of Gs{Bs. To count the number of connected components, we count T -fixed points:

the T -fixed points of G{B are also s-fixed points, and furthermore each Gs{Bs contains |WGs | such T -fixed

2It is known that OpG̃q has vanishing higher cohomology.
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points, so we have |W |{|WGs | connected components. Finally, accounting for T -equivariance, we have

H‚p
ž

|W |{|W ¨s|

BpBsqan; kq “
à

|W |{|WGs |

krrhss Ð H‚pBpGsqan; kq “ krrtssWGs

where t is placed in cohomological degree 2. In particular,

HP pPerfpBBqq
xrss
» krrhssWGs ppuqq » krrtssWGs ppuqq » H‚ppBBsqan; kq b! kppuqq

under the isomorphism uh » t.

1.1 Conventions and notation

In this note, k will denote an algebraically closed field of characteristic zero, and we work over pt “ Specpkq.

Unless otherwise stated, all functors and categories are derived, e.g. for an affine scheme X “ SpecpAq, we

denote by QCohpXq the derived category of unbounded complexes of A-modules localized with respect to

quasi-isomorphisms, and b “ bL although we sometimes use the latter notation for emphasis (e.g. when

performing calculations). We indicate a functor that is not derived by writing π0 or H0.

All gradings follow cohomological grading conventions (i.e. differentials increase degree), unless otherwise

indicated by a subscript, and HH will always denote the cochain complex of Hochschild chains rather than

its cohomology groups, which we denote H‚pHHq. We refer to the nth cohomology group of a chain complex

V by HnpV q “ π´npV q.

We require a theory of 8-categories and derived algebraic geometry. Such theory has been developed by

by Toën and Vezzosi in [TV05] [TV08] and by Lurie in [Lur17] [Lur09b] [Lur18] [Lur09a] [Lur11a] [Lur11b]

[Lur11c]. Below, we summarize some of the main definitions.

Remark 1.1.1 (8-categories). By8-category we mean an p8, 1q-category, and we do not specify a particular

model3. We let S denote the 8-category of 8-groupoids or spaces and we will take for granted that the

category of 8-categories is enriched in S. We let stk denote the 8-category of small (stable) k-linear

8-categories whose 1-morphisms are k-linear exact functors, and PrLk the category of presentable (stable)

k-linear 8-categories whose 1-morphisms are functors which are k-linear exact left adjoints4. Note that

presentable 8-categories admit a combinatorial model structure.

For such a category C P PrLk , we let Cω P stk denote its compact objects. For C P stk, we let

IndpCq P PrLk denote its ind-completion. By [Coh16], a presentable k-linear 8-category in PrLk has an

associated k-linear differential graded category in dgcatk. We will denote by FunLk p´,´q and FunRk p´,´q

the spaces of k-linear exact functors which are left and right adjoints respectively. For more details, see

Chapter 5 of [Lur09b], Section 1.4.4 in [Lur17], and Section 6 of [Lur11a].

Remark 1.1.2 (Derived stacks). We let DRng denote the 8-category of derived rings (or derived algebras

over k); during our exposition we do not insist on a particular model, but we will always compute in the

category of dg algebras over k with its projective model structure. The opposite category Aff “ DRngop is

defined to be the category of affine derived schemes. A derived scheme is as a derived locally ringed space

whose 0-truncation is a scheme and whose higher homotopy groups are quasicoherent [Toë14] [Lur18]. The

global sections functor and derived spectrum functors induce equivalences identifying Aff with the category

of derived schemes whose π0 is affine in the classical sense. We will refer to derived schemes as simply

schemes, and use the term classical scheme to refer to a derived scheme X for which π0pXq “ X.

A dg scheme [CK01] or embeddable derived scheme is defined somewhat differently; it is defined to be a

scheme pX,OXq along with a non-positively graded sheaf of complexes O‚X such that O0
X “ OX and HnpO‚Xq

3A forthcoming book by Riehl and Verity [RV18] establishes the model-independence of p8, 1q-categories and its foundational
properties, constructions, and theorems.

4In particular, by Remark 6.5 in [Lur11a], k-linear presentable categories are automatically stable. By the adjoint functor
theorem, left adjoint functors commute with filtered colimits.
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are quasicoherent. In particular, a dg scheme Z “ pX,O‚Xq admits an embedding Z Ñ X into the classical

scheme X “ pX,OXq. Every derived scheme is locally modeled by a dg scheme.

A prestack is an 8-functor Affop :“ DRng Ñ S, and a (derived) stack is a prestack which is a sheaf

for the derived étale topology [GR17] [TV08]. We mean (derived) algebraic stack in the sense of [DG13]:

an (derived) Artin 1-stack whose diagonal is quasi-separated, quasi-compact, and representable by (derived)

schemes and admits an atlas by a (derived) scheme. We mean geometric stack in the sense of [BN12]: an

algebraic stack whose diagonal map is affine. We say an algebraic stack is quasi-compact if it admits a

quasi-compact atlas U (equivalently, if it admits an affine atlas). A map of prestacks X Ñ Y is schematic

if for any scheme S and map S Ñ Y , the base change X ˆY S to S is a scheme. A map of derived schemes

f : X Ñ Y is a closed immersion if it is in the classical sense on π0; a map of algebraic stacks is a closed

immersion if it is after base change to an atlas.
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2 Background

In this section we provide some basic exposition on Hochschild homology, loop spaces and derived algebraic

geometry. At parts it is an informal summary of the existing literature, and at parts we provide proofs of

some folklore likely known to experts.

2.1 Derived loop spaces and its variants

An in-depth discussion of derived loop spaces, which we often simply refer to as loop spaces, can be found in

[BN12]. We will summarize the main definitions and prove some foundational results in the case of the loop

space of an algebraic or geometric stack. These should probably be skipped on a first reading; the essential

statements for the main body of the paper are in Propositions 2.1.20 and 2.1.25, which provide an explicit

description of the formal and unipotent loops of a global quotient stack.

Definition 2.1.1. We consider the higher derived stack S1 as the locally constant sheaf on Aff with value

the topological circle S1. Its affinization is the shifted affine line BGa “ SpecC‚pS1; kq and the map

S1 “ BZÑ BGa is induced by the map of abelian groups ZÑ Ga.

Remark 2.1.2. The stack BGa is not an affine scheme since C‚pBS1; kq is not connective, but it still has a

well-defined functor of points; it is an example of a coaffine stack (in the language of [Lur11b]) or an affine

stack (in the language of [Toë06]). Explicitly, by Lemma 2.2.5 in [Toë06] or the introduction to Section 4 of

[Lur11b], it is the right Kan extension5 of the classical stack6 sending an affine scheme S “ SpecpRq to the

Eilenberg-Maclane space KpR, 1q where R is considered as an abelian group under addition. The affinization

map S1 Ñ BGa is given on S-points by the map of Eilenberg-Maclane spaces Kp1,Zq Ñ Kp1, Sq where we

consider S as an abelian group under addition. We fix an isomorphism C‚pS1; kq » krηs where |η| “ 1.

5That is, the (fully faithful) left adjoint to the restriction of a prestack (i.e. a functor DRng Ñ S) to a classical prestack
(i.e. a functor RngÑ S).

6In fact, coaffine stacks are always left Kan extensions of classical stacks.
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Definition 2.1.3. Let X be a prestack. We define the derived loop space and its variants as follows.

• The (derived) loop space of X is the derived mapping stack

LpXq :“ MappS1, Xq » X ˆXˆX X.

The second presentation is a consequence of the presentation of S1 via the homotopy pushout S1 »

pt
š

S0 pt “ ΣS0, and the property that derived mapping stacks take coproducts in the source to

products. The evaluation map p : LX Ñ X realizes the loop space as a relative group stack over X.

The derived loop space has a canonical S1-action by loop rotation.

• The formal loop space pLpXq is the completion of LpXq along constant loops X Ñ LX. It inherits a

loop rotation S1-action from LX.

• The unipotent loop space LupXq is the derived mapping stack

LupXq :“ MappBGa, Xq

and the affinization map S1 Ñ BGa defines a map LuX Ñ LX. There is a natural BGa ¸Gm-action

on LuX arising from the natural Gm-action on BGa, compatible with the S1-action on LX.

• If X admits a cotangent complex, we define the odd tangent bundle, a linearized form of the loop space,

by

TX r´1s :“ SpecX SymX LX r1s

i.e. the relative spectrum of the derived symmetric powers7 of the cotangent complex. There is a

projection q : TX r´1s Ñ X and a zero section c : X Ñ TX r´1s induced by the structure and

augmentation maps respectively. We write pTX r´1s for the odd tangent bundle completed at its zero

section. Both TX r´1s and pTX r´1s are equipped with a natural BGa¸Gm-action, where the BGa-action

is encoded by the de Rham differential and the Gm-action is by scaling on the fibers.

Definition 2.1.4. Let X be a quasicompact geometric stack. There is an exponential map

exp : pTX r´1s Ñ pLX

defined in Section 6 of [BN12]. In particular, pLX has a natural BGa ¸ Gm-action compatible with the

S1-action.

Theorem 2.1.5 (Hochschild-Kostant-Rosenberg). The exponential map is an equivalence.

Proof. For the stacky case, see Section 6 of [BN12]; when X is a derived scheme, see the main theorem of

[BF08].

Example 2.1.6. If X “ SpecpAq, then the derived loop space

LpXq “ SpecpAbAbkAop Aq “ SpecpC‚pA;Aqq

is the derived spectrum of the cyclic bar complex equipped with the shuffle product. The rotation S1-action

has a combinatorial realization via the cyclic structure on the cyclic bar complex [Lod92] [Jon87]. In this

example, we think of the bar resolution B‚pAq Ñ A as the A b Aop-module obtained by tensoring A with

7We define the relative spectrum as follows: for an algebra object A P QCohpXq, we define the S-points for SpecX A as pairs
pη, δq where η P XpSq and δ : S Ñ Spec η˚A which are compatible under the projection; note that η˚A is an algebra since
S is an affine derived scheme and pullback preserves the monoidal structure on quasicoherent sheaves. The symmetric algebra
functor SymX is left adjoint to the forgetful functor from the category of augmented commutative unital associative algebra
objects of QCohpXq, which exists by the adjoint functor theorem.
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the map of simplicial complexes I Ñ pt, where the unit interval I is presented by a simplicial set with two

0-simplices and one non-degenerate 1-simplex:

B‚pAq “ Ab I Ñ A X » MapDStpI,Xq “ SpecpAb Iq.

The cyclic bar complex C‚pAq “ B‚pAq bAbAop A is obtained by gluing the two 0-simplices of I, i.e. it is

the chain complex associated to the tensor product of A with the presentation of S1 by one 0-simplex and

one non-degenerate 1-simplex:

C‚pAq “ Ab S1 LpXq “ MapDStpS
1, SpecpAqq “ SpecpAb S1q.

This makes LX into a cocyclic scheme and OpLXq into a cyclic algebra.

Example 2.1.7. If X is a stack, then π0pLXq is the (classical) inertia stack of X, so LX can be thought of

as a derived inertia stack. In particular, let X “ BG; then LpBGq “ G{G is the stacky adjoint quotient (see

Proposition 2.1.8 below). Note that LpBGq “ BG ˆBGˆBG BG is classical since the diagonal map is flat.

The S1-equivariant structure on OpG{Gq has a description in terms of the a cyclic algebra arising from the

cyclic structure on the simplicial Cech nerve for the atlas GÑ G{G (see Section 7.3.3 of [Lod92]).

Proposition 2.1.8 (Loop space of a quotient stack). The loop space of a quotient stack LpX{Gq can be

computed by the G-equivariant fiber product

LpX{Gq pX ˆGq{G

X{G pX ˆXq{G

aˆp

∆

where G acts on X ˆX and X ˆG diagonally.

Proof. Note that X{GˆX{G » pX ˆXq{pGˆGq with action pg1, g2q ¨ px1, x2q “ pg1x1, g2x2q. We write

X

G
ˆXˆX

GˆG

X

G
“
X ˆG

GˆG
ˆXˆX

GˆG

X ˆG

GˆG

where the map X ˆGÑ X ˆX sends px, gq ÞÑ px, gxq and the action of GˆG on X ˆG is pg1, g2q ¨ px, gq “

pg1x, g2gg
´1
1 q. The claim follows from the “two-out-of-three” lemma for pullback squares applied to

LpX{Gq pX ˆGq{G pX ˆGq{pGˆGq

X{G pX ˆXq{G pX ˆXq{pGˆGq.

Remark 2.1.9. Forgetting G-equivariance, the geometric points of the loop space LpX{GqˆBG pt are given

by

pLpX{Gq ˆBG ptqpkq “ tpx, gq P Xpkq ˆGpkq | g ¨ x “ xu.

The geometric fiber of the map LpX{Gq Ñ LpBGq “ G{G over g P Gpkq is the fixed points Xgpkq. The

geometric fiber of the evaluation map LpX{Gq Ñ X{G over x P Xpkq is the stabilizer of x in Gpkq.

Example 2.1.10 (Odd tangent bundle of smooth quotient stacks). In the case of X{G where X is smooth,

we have that

LX{G “
`

Ω1
X Ñ g˚ bOX

˘

9



where the internal differential d is the Cartan differential:

Symn
pLX{Gr1sq “ Symn

pΩ1
X Ñ g˚ bOXq » pΩnX Ñ g˚ b Ωn´1

X Ñ ¨ ¨ ¨ Ñ Symn
pg˚q bOXq,

p˚OpTX{Gr´1s “

˜

lim
k

à

iěk

Sym‚ g˚

Syměk g˚
b ΩiX ris, d

¸

.

The resulting de Rham complex is called the Cartan model for equivariant cohomology; see Proposition 4.12

of [HP16] for more discussion. This example can also be carried out when X is not smooth, replacing Ω1
X

with LX .

2.1.1 Loop spaces of algebraic and geometric stacks

We prove some technical facts which may be skipped on a first reading. Note that a quasi-compact geometric

stack is automatically QCA in the sense of [DG13].

Remark 2.1.11. The following principles are standard and will be used frequently. If X is an algebraic

stack then X admits a cover by a disjoint union of affine schemes; if X is quasi-compact this disjoint union

can be taken to be finite, so that X admits a cover by an affine scheme. If X is geometric (i.e. has affine

diagonal), then

S ˆX T “ pS ˆ T q ˆXˆX X

is affine for any affine schemes S, T .

Lemma 2.1.12. Let X be an algebraic stack. Then LX is an algebraic stack. If X is geometric, then LX
is geometric. If X is geometric and quasi-compact, then so is LX.

Proof. Assume X is algebraic. That LX is algebraic follows from the fact that LX “ MappS1, Xq is a finite

limit, and any finite limit of algebraic stacks is algebraic. An algebraic stack X is geometric if and only if for

any map from an affine U Ñ X, the stack U ˆX U is an affine scheme. In particular, U ˆXˆX X is a cover

for LX, and we have

pU ˆXˆX Xq ˆLX pU ˆXˆX Xq “ U ˆX pLX ˆLX pU ˆXˆX Xqq “ pU ˆX Uq ˆXˆX X

which is affine since U ˆX U is affine and the diagonal map is affine, so LX is geometric. Assume X is also

quasi-compact; then it admits a cover by an affine U , and U ˆXˆX X is also affine since the diagonal is

affine.

Lemma 2.1.13. Let X be an algebraic stack. Then the inclusion of constant loops X Ñ LpXq is a

(schematic) closed immersion.

Proof. Since the diagonal map X Ñ XˆX is representable by schemes, so is the evaluation map LpXq Ñ X.

Let U Ñ X be an atlas for X with U a scheme; its base change along the evaluation map gives a cover by

a scheme U ˆXˆX X Ñ LX. In particular, by the two-out-of-three property of Cartesian squares, the left

square is Cartesian

U U ˆXˆX X U

X LX X

i.e. the base change of the inclusion of constant loops X Ñ LX along an atlas is a scheme, so it is schematic.

It is a closed embedding since any map of derived schemes which admits a retract is a closed embedding, and

U Ñ U ˆXˆX X admits a retract by universal property.

We provide a proof for the last claim. It suffices to assume all schemes are classical, since the the property

of being a closed immersion depends only on classical schemes and the property of admitting a retract is

10



preserved by π0. Let f : Z Ñ Y be a map of schemes admitting a retract. We can verify that f is a closed

immersion affine locally on Y , so assume Y is affine. It is a closed immersion if f 7 : OY Ñ f˚OZ is surjective.

Since Y is affine, this is equivalent to OpY q Ñ OpZq being surjective, which follows since the composition on

global functions OpZq Ñ OpY q Ñ OpZq is the identity.

We now introduce the notion of based loops of a stack. Namely, given a point of a stack, the based loop

space is the group of automorphisms of that point and the unipotent based loops consist of the unipotent

automorphisms. We use these characterizations in Propositions 2.1.20 and 2.1.25 to give explicit descriptions

of the formal and unipotent loop spaces of quotient stacks.

Definition 2.1.14. Let X be a prestack, and x : S Ñ X be an S-point where S is an affine derived scheme.

The group of based loops at x, which we denote ΩpX,xq, is the 8-group object8 in prestacks over S defined

to be the Cech nerve of the map x : S Ñ X, i.e. its underlying derived stack is LX ˆX S or equivalently the

pullback

ΩpX,xq S

S X.

x

x

If f : X Ñ Y is a map of prestacks, with x P XpSq, then there is a natural map of 8-groups Ωpf, xq :

ΩpX,xq Ñ ΩpY, fpxqq. We define the unipotent based loops of X, denoted ΩupX,xq, by the fiber product

LupXq ˆX S; there is a natural map ΩupX,xq Ñ ΩpX,xq. Note that the unipotent based loops do not form

a group.

Remark 2.1.15. If X is algebraic, then based loops at x P XpSq form an 8-group object in derived schemes

over S, and if X is geometric, the based loops form an 8-group object in affine derived schemes over S.

Example 2.1.16. Let X be an (affine) derived scheme and x P Xpkq a geometric point. Then, ΩpX,xq “

TX,xr´1s “ Spec Symx˚LX r1s is the odd tangent space at x P Xpkq. The comultiplication on functions is

given by the natural comultiplication on the symmetric algebra and antipode map by the sign morphism.

Lemma 2.1.17. For any S-point x P XpSq, we have a natural identification of prestacks over S

ΩupX,xq “ Homgrp,SpGa ˆ S,ΩpX,xqq

where the natural map ΩupX,xq Ñ ΩpX,xq is identified with evaluation at 1 P Ga.

Proof. Let f : S1 Ñ S and γ P ΩupX,xqpS1q with base point f˚x. Note that

ΩpX,xq ˆS S
1 “ ΩpX, f˚xq “ CechpS1 Ñ X ˆS S

1q.

We will also use γ to denote its image in pLuXqpS1q. Let ι0 : pt Ñ BGa denote the inclusion of the (additive)

identity. The diagram

S1 S1

BGa ˆ S1 X ˆS S
1

id

ι0ˆidS1 x

γ

commutes, and therefore we have a map of the corresponding Cech nerves as 8-groupoids, giving us a map

ΩupX,xqpS1q Ñ Homgrp,S1pGa ˆ S1,ΩpX,xq ˆS S1q
8The notion of an 8-group can be found in Defintion 7.2.2.1 of [Lur09b], a useful characterization in Proposition 7.2.2.4 of

op. cit. . Proposition 6.1.2.11 of op. cit. shows that Cech nerves are 8-groupoid objects in any 8-category, so that ΩpX,xq is a
groupoid object in derived stacks and therefore a group object in derived stacks over S. We use the notation Homgrp to denote
the space of group homomorphisms.
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for every S1, natural in f , inducing a map of stacks

ΩupX,xq Ñ Homgrp,SpGa ˆ S,ΩpX,xqq.

We now produce the inverse to this map. To do so, we need to produce a map Homgrp,S1pGa ˆ
S1,ΩpX, f˚xqq Ñ ΩupX,xqpSq natural in f : S1 Ñ S. First, note that ΩupX,xqpSq “ MappBGaˆS1, XqˆXpSq
MappS1, Sq, so we only need to define a map

Homgrp,S1pGa ˆ S1,ΩpX, f˚xqq Ñ MappBGa ˆ S1, Xq.

Taking geometric realizations of the 8-groups over S considered as simplicial objects in derived stack, we

obtain a map BGaˆS1 Ñ BSΩpX, f˚xq. We compose with the map BSΩpX, f˚xq Ñ X induced by universal

property of geometric realizations applied to the augmentation map f˚x : S1 Ñ X. We leave the verification

that these two maps are inverses to the reader, and naturality with respect to evaluation at 1 P Ga (essentially

since S1 “ BZÑ BGa is induced by the inclusion of 1 P Ga).

The following notion of a contracting action will be used in Section 4.3.

Definition 2.1.18. Let X “ SpecpRq be an affine scheme with a Gm-action. We say the Gm-action is

contracting if it acts by only non-positive weights on R. In this case, the fixed point locus is Y “ SpecpRGmq,

and we say the Gm-action contracts to Y . In particular, there are maps Y Ñ X Ñ Y . More generally,

let X be a prestack with a Gm-action, equipped with a Gm-equivariant affine map p : X Ñ Y where Y

is given the trivial action. We say the Gm-action contracts to Y if for any affine S and map S Ñ Y , the

induced Gm-action on S ˆY X contracts to S. In particular, this implies there is also a Gm-equivariant

section Y Ñ X.

Lemma 2.1.19. Let X be a quasi-compact geometric stack. The Gm-actions on LuX and TX r´1s contract

to the fixed point locus of constant loops.

Proof. The claim for TX r´1s is by definition. For the unipotent loop space, take x P XpSq. It suffices to

show that the induced Gm-action on ΩupX,xq is contracting. This follows from the description of ΩupX,xq “

Homgrp,SpGa,ΩpX,xqq, and the contracting Gm-action on Ga.

2.1.2 Formal and unipotent loops over schematic maps

In [BN12], it is shown that for X a scheme, pLpXq “ LupXq “ LpXq. This is not true for stacks, but we will

now show that for a schematic map f : X Ñ Y , the formal and unipotent loops of X are loops in X whose

images in Y are formal and unipotent respectively.

Proposition 2.1.20. Suppose that f : X Ñ Y is a map of algebraic stacks representable by schemes. Then,

pLpXq “ pLpY q ˆLpY q LpXq.

Proof. It suffices to show that the closed classical substack π0pY ˆLpY qLpXqq has the same reduced points as

X Ă LpXq. To do this, it suffices to check on geometric points. Consider the diagram of classical pullbacks

ΩpX,xq ΩpY, fpxqq Spec k

Spec k f´1pfpxqq X

Spec k Y.

x

x

fpxq
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Since f is schematic, x : Spec k Ñ f´1pfpxqq is a closed embedding of schemes (since it as a map of schemes

admitting a retract; see Lemma 2.1.13). Since Y is an algebraic stack, ΩpY, fpxqqq is a scheme, and so

ΩpX,xq Ñ ΩpY, fpxqq is a closed embedding of schemes and a map of affine (classical) group schemes. The

preimage of the identity is thus the identity, so constant loops in LY are preimages of constant loops in

LX.

Example 2.1.21 (Quotient stacks). In the case of quotient stacks, we have a map LpX{Gq Ñ LpBGq “ G{G.

The above proposition says that pLpX{Gq is the completion of LpX{Gq at the closed substack of points lying

over teu{G Ă G{G.

The following is well-known, but we provide a brief argument for the reader’s convenience.

Proposition 2.1.22. Let H,G be groups in affine derived schemes over k. There is a natural identification

MappBH,BGq “ HomgrppH,Gq{G

where G acts on HomgrppH,Gq by the adjoint action.

Proof. Note that we assume k has characteristic zero. We define maps Φ : MappBH,BGq Ñ HomgrppH,Gq{G

and Ψ : HomgrppH,Gq{G Ñ MappBH,BGq and leave the verification that they are strict inverses to the

reader. These are maps of sheaves; we will restrict our attention to defining their map on S-points ΦS and

ΨS .

The map ΦS of spaces is defined as follows. Let F P MapSpBHˆS,BGˆSq be the map of sheaves whose

value at S1 Ñ S is a functor FS1 from (right) H-torsors over S1 to G-torsors over S1. We define

ΦSpF qpS
1q “

$

’

’

’

&

’

’

’

%

FS1pH ˆ S1q HomS´grppH ˆ S,Gˆ Sq

S1

φ

G´torsor

,

/

/

/

.

/

/

/

-

where φ is defined as follows. There is a canonical identification of automorphisms of the trivial torsor

AutS1pS
1 ˆ Hq “ HpS1q, and for h P AutSpS ˆ Hq, F phq is an automorphism of F pS1 ˆ Gq, which we

abusively write F phq P G as an section in GpS1q. We define φpxqphq “ x ¨ F phq.

The map Ψ is defined as follows. The S-points of HomgrppH,Gq{G are G-torsors P over S with G-

equivariant maps φ : P Ñ HomgrppH,Gq. We define for S1 Ñ S and Q a H-torsor over S1

ΨSpP, φqpS
1qpQq “ QˆH pP ˆS S

1q

where H acts on P on the left via φ.

Definition 2.1.23. A map of prestacks X Ñ Y is a monomorphism, i.e. X is a substack of Y , if for any

affine derived scheme S and y P Y pSq the fiber product tyu ˆY pSq XpSq is contractible (in the category of

spaces).

Proposition 2.1.24. Let X be a geometric stack. The map LuX Ñ LX is a monomorphism, i.e. unipotence

of a loop is a property and not a structure.

Proof. Let S “ SpecpRq. Consider an S-point γ P pLXqpSq, which determines a base point x P XpSq and

a based loop g P ΩpX,xqpSq. We wish to show that LuXpSq ˆLXpSq tpγqu is contractible. Equivalently,

we wish to show that ΩupX,xqpSq ˆΩpX,xqpSq tgu is contractible. Since X is geometric, ΩpX,xq is derived

affine. By Lemma 2.1.17 it suffices to show that for a derived affine group G over S, the map of stacks

Homgrp,SpGa ˆ S,Gq Ñ G is a monomorphism on S-points. Note that an 8-group object is by definition an

8-monoid object satisfying a condition; in particular, the map Homgrp,SpGaˆS,Gq Ñ Hommon,SpGaˆS,Gq
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is a monomorphism. Furthermore, the forgetful functor from CoalgpAlgpRqq to CoalgpR -modq “ CoalgpRq

is fully faithful, so the map Hommon,SpGa ˆ S,Gq Ñ HomCoalgpRqpp˚OΩpX,xq,OSˆGaq is a monomorphism.

It suffices to show that the map induced by evaluation at 1 P Ga:

HomCoalgpRqpp˚OΩpX,xq,OSˆGaq “ HomCoalgpR -modqpRrΩpX,xqs, Rrxsq Ñ HomRpRrΩpX,xqs, Rq

is also a monomorphism. By the calculation in Lemma 1.12 of [GG99], OS bk OpGaq is the cofree coalgebra

object in CoalgpQCohpSqq, so this map is an equivalence.

Proposition 2.1.25 (Unipotent loops of quotient stacks). Let G be a classical affine algebraic group over

k. Then,

LupBGq “ pU{G

where U is the unipotent cone of G (i.e. the closed subvariety of unipotent elements of G). Furthermore, if

G acts on a scheme X, then LupX{Gq is computed by the pullback square

LupX{Gq LpX{Gq

pU{G G{G.

Proof. It suffices to prove the statement on based loops at a given x P pX{GqpSq where S be an affine derived

scheme, say S “ SpecpRq. The based loops in X{G for any S-point x P XpSq can be computed via a fiber

product

ΩpX{G, xq ΩpBG, ppxqq “ Gˆ S

S X.x

Let UG denote the unipotent cone of G, and let UΩpX{G,xq denote the closed reduced classical subscheme of

the inverse image of UG ˆ S Ă Gˆ S. Let pUΩpX{G,xq the formal completion of ΩpX{G, xq at UΩpX{G,xq. We

first claim that ΩupX{G, xq “ pUΩpX{G,xq.

Using Proposition 2.1.17, evaluation at 1 P Ga provides a map Φ : ΩupX{G, xq Ñ ΩpX{G, xq, which is a

monomorphism by Proposition 2.1.24. Such a map factors through pUΩpX{G,xq if its (classical) set-theoretic

image lies in the inverse image of the unipotent cone U ˆ S. This, we can check on k-points of S, and

in particular assume that S “ k. The claim now follows from the classical result that for a map of linear

algebraic groups over k, the image of a unipotent element must also be unipotent (i.e. its eigenvalues are all

1 P k). In particular, ΩupX{G, xq Ă pUΩpX{G,xq Ă ΩpX{G, xq.

For surjectivity, we define the inverse map Ψ : pUΩpX{G,xq Ñ ΩupX{G, xq “ Homgrp,SpGa,S ,ΩpX{G, xqq
via the adjoint to an exponential map Ga,S ˆS pUΩpX{G,xq Ñ ΩpX{G, xq which we will now construct. We

take as a given that such an exponential map is constructed for classical affine algebraic groups over k, i.e.

we have a map Ga ˆ pUG Ñ G. To define an exponential map for ΩpX{G, xq, we use the universal property

of fiber products and the classical fact that if an S-point g P GpSq fixes x P XpSq, then so does gt P GpSq for

t P GapSq. More precisely, the following diagram commutes, inducing the desired exponential map

Ga,S ˆS pUΩpX{G,xq Ga,S ˆ pUG

ΩpX{G, xq Gˆ S

S X.

exp

x
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2.2 Cyclic homology

In this section we give a brief overview of the basic definitions of Hochschild homology and cyclic homology,

as developed in Section 5.5 of [Lur17]. Further discussion can be found in [BN13b] [BN13b] [Hoy18] [AMR17]

[AF17] [AFR18] [NS18].

Definition 2.2.1. Let Catb be a symmetric monoidal 8-category with monoidal unit 1b, and X P Catb
a 1-dualizable object with dual X_, coevaluation η : 1b Ñ X bX_ and evaluation ε : X_ bX Ñ 1b. We

define the dimension of X by

dimpXq “ ε ˝ η P EndCatbp1bq.

If F : X Ñ Y is a morphism with a right dual (i.e. adjoint) G, then we can define

dimpF q : dimpXq trpG ˝ F q trpF ˝Gq dimpY q.
γ » υ

Remark 2.2.2. More precisely, the a choice of dualizing structure for X P Catb determines an explicit

dimension dimpXq. By Proposition 4.6.1.10 in [Lur17], the space of dualizing structures on X is contractible;

therefore, dimpXq is defined uniquely up to unique isomorphism in the homotopy category HopEndCatbp1bqq.

This fact allows us to compute Hochschild homology in two different ways using different dualizing structures

on a category and know that they are equivalent without explicitly producing an equivalence.

Remark 2.2.3. Lurie’s proof of the Cobordism Hypothesis [Lur09c] allows for an equivalent formulation:

there is a bijection between 1-dualizable objects X P Catb and framed extended Catb-valued n-dimensional

topological field theories ZX ; for a 1-dualizable object X we define the dimension by

dimpXq “ ZXpS1q.

By this definition, there is evidently an S1-action on dimpXq. The relationship between S1-action and its

explicit realization via the cyclic structure is spelled out in Theorem 5.5.3.11 in [Lur17].

We will define the Hochschild homology of a category to be its dimension; we first need to define a

monoidal structure on 8-categories.

Definition 2.2.4 (Lurie tensor product). The category PrL is equipped with a monidal structure called the

Lurie tensor product in Proposition 4.8.1.15 of [Lur17], which can be thought of as an 8-analogue of the

Deligne tensor product. It is equipped with a canonical functor

CˆD Ñ CbD pX,Y q ÞÑ X b Y.

which is initial amongst functors out of CˆD which preserve small colimits separately in each variable.

Remark 2.2.5. Proposition 4.8.1.17 of [Lur17] provides an explicit realization CbD » FunRpCop,Dq which

is presentable by Lemma 4.8.1.16 of [Lur17]. In particular, by [Lur09b] Proposition 5.5.3.8, the Lurie tensor

product makes PrL into a closed monoidal category with internal mapping object FunLp´,´q. Furthermore,

by Propositions 4.8.2.10 and 4.8.2.18 in [Lur17], the Lurie tensor product induces a tensor product on k-linear

presentable categories PrLk .

Definition 2.2.6. Let PrL,ωk,_ be the 8-category of dualizable presentable stable k-linear 8-categories, and

functors which preserve compact objects. We define the Hochschild homology functor by

HH :“ dim : PrL,ωk,_ Ñ FunLk pVectk,Vectkq » Vectk.

By [AFR18], the Hochschild homology as defined above has an S1-action.
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Remark 2.2.7. The dimension of a dualizable k-linear category takes values in chain complexes under the

equivalence

EndCatbp1bq “ FunLk pVectk,Vectkq » Vectk.

That is, every such endofunctor F commuting with colimits is determined by its value F pkq. In particular,

a choice of dualizing structure determines an explicit Hochschild chain complex.

Remark 2.2.8. Note that the Lurie tensor product is defined on PrL, and dimension is functorial only for

right dualizable maps, so Hochschild homology is only functorial for functors whose right adjoints also admit

right adjoints (equivalently, whose right adjoints are also continuous). By Proposition 5.5.7.2 of [Lur09b],

these are exactly the functors which preserve compact objects.

Traditionally, Hochschild homology is formulated in the setting of small stable k-linear dg categories.

In particular, in this setting it is possible to explicitly write out a bar complex computing the Hochschild

homology. We will see that the above “large” notion of Hochschild homology is a generalization of the “small”

version. The following is proven in Theorem D.7.0.7 in [Lur18] and Proposition 4.6.15 in [Lur17].

Proposition 2.2.9. If C P PrLk is compactly generated, then it is dualizable. In particular, if C “ IndpC0q,

then C_ “ IndpC0,opq, and the evaluation map is given by ind-completion via universal properties of the

Yoneda pairing Homp´,´q : C0,op ˆC Ñ Vectk. Furthermore, there are natural isomorphisms

FunLk pC,Cq » FunLk pC,Vectkq bC » C_ bC

which realize the coevaluation via the identity functor in FunLk pC,Cq.

Definition 2.2.10. Let stk be the8-category of small stable k-linear8-categories. We define the Hochschild

homology functor

HH :“ dim ˝ Ind : stk Ñ FunLk pVectk,Vectkq » Vectk

i.e. HHpCq is the image of k under the composition

Vectk FunLk pC,Cq C_ bC Vectk.
coev » ev

Remark 2.2.11. If C is compactly generated, then HHpCq “ HHpCωq, so the two definitions of Hochschild

homology given above are compatible.

We now seek to understand the S1-action on Hochschild homology. While there are purely categorical

ways to view S1 actions, we model the concretely on chain complexes via a mixed differential.

Definition 2.2.12. A mixed complex is a dg-module over the dg-algebra H‚pS
1; kq » krεs where |ε| “ ´1.

Explicitly, it is a chain complex pV, dq with a mixed differential ε of cohomological degree ´1 such that dε “ εd

and ε2 “ 0.

We are interested in the following operations on mixed complexes.

Definition 2.2.13. We define the S1-invariants and S1-coinvariants functors by

V S
1

:“ RHomC‚pS1;kqpC‚pES
1; kq, V q » pV rruss, d` uεq P krruss -mod,

VS1 :“ V bC‚pS1;kq C‚pES
1; kq » pV ru´1s, d` uεq P krruss -modu´tors .

and the Tate construction by

V Tate “ V S
1

bkrruss kppuqq “ limukVS1 “ pV ppuqq, d` uεq » pV ppuqq, d` uεq P kppuqq -mod .
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Remark 2.2.14. The action of C‚pS
1; kq on C‚pES

1; kq comes from the sweep action of chains of [GKM98].

Taking a presentation of ES1 as a colimit of odd spheres with free S1-actions, the S1-invariants can be

expressed as a filtered limit

V S
1

“ lim
n
RHomC‚pS1;kqpC‚pS

2n`1; kq, V q » lim
n
pV rus{un, d` uεq.

Remark 2.2.15. Note that the S1-invariants operation (as well as the Tate construction) is not continuous

as defined above9, but can be made so by considering mixed complexes in the category Indpkrεs -modf.g.q

instead.

Definition 2.2.16. We respectively define the negative cyclic homology, cyclic homology and periodic cyclic

homology by

HNpCq :“ HHpCqS
1

, HCpCq :“ HHpCqS1 , HP pCq :“ HHpCqTate.

In this note we consider two different explicit models of Hochschild homology and its cyclic variants. One

is the usual cyclic bar construction on a small dg category, and the other is via S1-equivariant functions on

the derived loop space.

Example 2.2.17 (Algebraic model). Let A be a dg algebra (or more generally, a dg category) over k, and

C “ A -mod the category of left dg-modules over A. For two dg categories A,B, an AopbkB-module defines

a continuous functor A -mod Ñ B -mod. By the dg Morita theory of [Toë07], this functor

Aop bB -mod Ñ FunLk pA -mod, B -modq

is an equivalence. Under this equvalence, the coevaluation k -mod Ñ AbAop -mod corresponds to the functor

Abk´, where A is considered as a bimodule over itself, and the evaulation map corresponds to ´bAbAop A.

In particular, the Hochschild homology is given by the usual Hochschild homology

HHpA -modq “ HHpA;Aq “ AbAbAop A.

Definition 2.2.18 (Cyclic bar complex). The cyclic nerve of a small k-linear dg category C is the cyclic

vector space whose n-simplices are given by

CnpCq “
ž

X0,...,XnPObpCq

HomCpX0, Xnq bHomCpXn, Xn´1q b ¨ ¨ ¨ b HomCpX1, X0q

where the face maps are given by composition, the degeneracy maps by the identity homomorphism, and

the cyclic structure by rotation of the terms. Its associated chain complex, which also abusively denote by

C‚pCq, is the cyclic bar complex which is naturally a mixed complex with the mixed differential arising via

the Connes B-operator. This mixed differential exhibits the S1-action on Hochschild homology [Hoy18].

Remark 2.2.19. One can obtain smaller models by taking objects from a set of compact generators (see

Theorem 5.2 of [Kel06]) rather than all of ObpCq; for example, if C “ A -perf, then the free module A is a

compact generator and one recovers the classical cyclic bar complex C‚pA;Aq.

Example 2.2.20 (Geometric model). By [BFN10], when X is a perfect stack (e.g. a quotient stack of

a derived quasiprojective scheme by an affine group in characteristic zero), then QCohpXq is compactly

generated by PerfpXq and we have isomorphisms

QCohpXq bQCohpXq » QCohpX ˆXq » FunLk pQCohpXq,QCohpXqq

9For example, consider N “ colimn kr´2ns. Since N is acyclic, NS1
“ 0. On the other hand, pkr´2nsqS

1
“ u´1krruss so

that colimpkr´2nsqS
1
“ kppuqq.
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where the functors on the right are given by integral transforms. Explicitly, we identify

QCohpXq QCohpXq_»

on compact objects K P PerfpXq by

K ÞÑ ΓpX,K b´q » ΓpX,HomXpK_,´qq.

Letting p : X Ñ Specpkq be the map to a point and ∆ : X Ñ X ˆX the diagonal, the coevaluation is given

by the functor ∆˚p
˚ and the evaluation by p˚∆˚. In particular, we find that the Hochschild homology is

HHpPerfpXqq » p˚∆˚∆˚p
˚k “ ΓpX,∆˚∆˚OXq » ΓpLX,OLXq “ OpLXq

with the last isomorphism arising via base change. The S1-action on OpLXq is the S1-equivariant structure

arising from loop rotation; for details see Remark 3.2 and Proposition 4.2 in [BN13b].

Remark 2.2.21. If X is QCA but not perfect, it is not currently known whether QCohpXq is compactly

generated. On the other hand, by Theorem 4.3.1 of [DG13], QCohpXq is dualizable, so that

HHpQCohpXqq “ OpLXq

by a similar argument. It does not appear to be known whether HHpPerfpXqq agrees with HHpQCohpXqq.

2.3 The equivariant cyclic bar construction

We now define an explicit model for the Hochschild homology of a quotient stack.

Proposition 2.3.1. Let X be a quasiprojective scheme with an action of a reductive group G, and let

p : X{G Ñ BG and q : X Ñ X{G be the natural maps of stacks. Let E P PerfpX{Gq be a locally free sheaf

such that q˚E is a compact generator of QCohpXq. Define

A “ p˚RHomXpE , Eq P AlgpQCohpBGqq.

Then, the functor

RHomXpE ,´q : QCohpX{Gq Ñ A -modQCohpBGq

is an equivalence of dg categories.

Proof. Since X is quasiprojective, it admits an equivariant compact generator E of PerfpXq (not PerfpX{Gq).

The functor is fully faithful since q is an atlas and q˚E is a generator. It is essentially surjective, since

A -perfQCohpBGq is generated by Ab V for V P IrrpGq, and RHomX{GpE , E b V q “ Ab V .

We need the following formula for G-representations.

Proposition 2.3.2. Let G be a reductive affine algebraic group, and V,W two rational representations of G

(i.e. V,W P QCohpBGq). Then, there is a natural equivalence

à

UPIrrpGq

pV b U˚qG b pU bW qG pV bW qG.»

More generally, for V0, . . . , Vn rational representations of G, there is a natural equivalence

à

U1,...,UnPIrrpGq

pV0 b U
˚
1 q
G b pU1 b V1 b U

˚
2 q
G b ¨ ¨ ¨ b pUn b Vnq

G pV0 b ¨ ¨ ¨ b Vnq
G.»
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Proof. Consider V b W P QCohpBG ˆ BGq as a G ˆ G-representation. The projection formula defines an

equivalence

ΓpBGˆBG,∆˚OBG b pV bW qq Ñ ΓpBG,∆˚pV bW qq.

The result follows by unwinding this equivalence using the Peter-Weyl theorem for reductive algebraic groups

∆˚OBG “ krGs “
À

UPIrrpGq U
˚ bU , and noting that taking global sections amounts to taking G or GˆG-

invariants (note that there are no higher cohomology groups since G is reductive). The second claim results

from iterating the first, or by applying the projection formula to the diagonal BGÑ BGˆn.

Remark 2.3.3. The map above, which we now denote φ, and its inverse ψ can be written out explicitly:

φpv0 b u
˚
1 b u1 b v1 b u

˚
2 b ¨ ¨ ¨ b un b vnq “ pu

˚
1 pu1q ¨ ¨ ¨u

˚
npunqq ¨ v0 b ¨ ¨ ¨ b vn

ψpv0 b ¨ ¨ ¨ b vnq “ π

¨

˝

ÿ

U1,...,UnPIrrpGq

v0 b η1 b v1 b η2 b ¨ ¨ ¨ b ηn b vn

˛

‚

where ηi P U
˚
i bUi is the identity map, and π “ p´qG b ¨ ¨ ¨ b p´qG is the tensor products of the projections

to the G-invariant isotypic component.

Definition 2.3.4. Let A P AlgpQCohpBGqq be an associated algebra object with coaction map c : A Ñ

Ab krGs. The equivariant cyclic bar complex C‚pA,Gq, defined in [BG94], is the mixed complex associated

to the following cyclic vector space. We define the n-simplices by

CnpA,Gq “ pA
bn`1 b krGsqG

with face and degeneracy maps

dipa0 b ¨ ¨ ¨ b an b fq “ a0 b ¨ ¨ ¨ b aiai`1 b ¨ ¨ ¨ b an b f i “ 0, . . . , n´ 1,

dnpa0 b ¨ ¨ ¨ b an b fq “ cpanqa0 b ¨ ¨ ¨ b f,

and cyclic structure

tpa0 b ¨ ¨ ¨ b an b fq “ cpanq b a0 b ¨ ¨ ¨ b an´1 b f,

sn`1pa0 b ¨ ¨ ¨ b an b fq “ 1b a0 b ¨ ¨ ¨ b an b f.

Remark 2.3.5. Note that it is essential to take G-invariants for C‚pA,Gq to admit a cyclic sructure. In

particular, if a0 b ¨ ¨ ¨ b an b f is G-invariant, then

cpa0q b ¨ ¨ ¨ b cpanq b f “ a0 b ¨ ¨ ¨ b an b f.

Proposition 2.3.6. The equivariant cyclic bar complex C‚pG,Aq computes HHpPerfpA -modQCohpBGqqq.

Proof. Since A generates A -perf, the objects A b Vλ generate A -perfQCohpBGq and we have the following

“small” model for HHpA -perfQCohpBGqq. The cyclic bar complex corresponding to the generating set tAbV |

V P IrrpGqu of A -perfQCohpBGq has terms

DnpA,Gq “
à

V0,...,VnPIrrpGq

HomApAbV0, AbV1q
GbHomApAbV1, AbV2q

Gb¨ ¨ ¨bHomApAbVn´1, AbVnq
G.

Using the natural isomorphism HomApAb V,AbW q
G “ pAb V ˚ bW qG, we rewrite:

DnpA,Gq “
à

V0,...,VnPIrrpGq

pV ˚0 bAb V1q
G b pV ˚1 bAb V2q

G b ¨ ¨ ¨ b pV ˚n bAb V0q
G.
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Next, we can rewrite CnpA,Gq using the Peter-Weyl theorem for reductive algebraic groups:

CnpA,Gq “
à

V0PIrrpGq

pV0 b
˚ Abn b V0q

G.

Applying Proposition 2.3.2 to each summand (i.e. for fixed V0) produces an equivalence DnpA,Gq Ñ

CnpA,Gq; the claim that it defines a map of cyclic objects is left to the reader.

Remark 2.3.7. The equivariant cyclic bar complex C‚pX,Gq provides us with an explicit model of the

Hochschild homology HHpPerfpX{Gqq as a krGsG-linear mixed complex (i.e. both the internal and mixed

differentials are krGsG-linear). Furthermore, since p´qG is a left adjoint functor whose right adjoint preserves

epimorphisms, the terms in C‚pA,Gq are also projective.

2.4 Formal and derived completions

We review the notion of formal completions of derived stacks and the notion of derived completion in the

derived category. This section is essentially a summary of the results in Chapter 4 of [Lur11c], Section 3.4 of

[BS15], Section 15.80 of the [Sta18], and Chapter 6 of [GR14].

Definition 2.4.1. Let f : X Ñ Y be a map of derived stacks (or more generally, prestacks). The formal

completion of f , written xYX , is a prestack whose functor-of-points whose S-points are given by diagrams

π0pSq
red X

S Y.

It can also be defined via the fiber product

xYX :“ Y ˆY dR XdR.

Lemma 2.4.2. The formal completion of a map X Ñ Y only depends on π0pXq
red Ñ Y . In particular, if

Z Ñ Y is a closed embedding, then xYZ ˆY X “ {Xπ0pZˆYXqred .

Proof. This follows directly from the functor-of-points characterization of formal completions, and that

π0pXq
red is the universal stack that canonically factors any map from a classical reduced scheme π0pSq

red.

Definition 2.4.3. Let f : A Ñ B be a map of derived rings. Following [Lur09a], we say that f is étale

if the induced map π0pAq Ñ π0pBq is étale and for every n P Z, the map πnpAq bπ0pAq π0pBq Ñ πnpBq

is an isomorphism of abelian groups. A map of derived schemes is étale if it is for a Zariski cover, and a

representable map of derived Atin stacks is étale if it is after base change to a cover.

Proposition 2.4.4. Let X,Y, Z be stacks admitting deformation theory10. Suppose that f : X Ñ Y is étale,

and let Z Ñ X be any map. Then, the relative cotangent complex vanishes LX{Y » 0. Furthermore, the map

on formal completions pXZ Ñ pYZ is an equivalence.

Proof. The first sentence is Proposition 2.22 in [Lur09a]. For the second, by the exact triangle for cotangent

complexes we have a natural isomorphism LZ{Y » LZ{X under LZ , and note that the formal completion of

a map Z Ñ X is a colimit of square-zero extensions controlled by the the map between cotangent complexes

LZ Ñ LZ{X (see Chapter IV.5 in [GR17]).

We now discuss how to compute the derived completion of a quasicoherent complex in the derived category.

It is defined abstractly a the left adjoint to an inclusion functor of complete objects which we now define.

10This notion is defined in Chapter IV of [GR17] and is satisfied by quotient stacks.
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Definition 2.4.5. Let A be a connective dg ring, and fix an ideal I Ă π0pAq. We define the full subcategory

A -modnil of I-nilpotent objects consisting of those modules on which I acts locally nilpotently, i.e. for each

cycle m P H‚pMq there is some power of I which annihilates m. By Proposition 4.1.12 and 4.1.15 in [Lur11c],

the inclusion A -modnil ãÑ A -mod is continuous and preserves compact objects; therefore it has a continuous

right adjoint ΓI , which we call the local cohomology functor. We define the full subcategory A -modloc of I-

local objects as the right orthogonal to A -modnil, and the full subcategory A -modcpl of I-complete modules

to be the right orthogonal to A -modloc. The subcategory A -modcpl has an equivalent characterization as

those modules such that the homotopy (derived) limit

¨ ¨ ¨ M M Mx x x

is zero for all x P I. By Proposition 4.2.2 of [Lur11c], the inclusion of the complete objects has a left adjoint,

which we call the (derived) completion functor and denote yp´q.

The following is Proposition 4.2.5 in [Lur11c].

Proposition 2.4.6. The composition of left adjoints

A -modnil A -mod A -modcpl
yp´q

is an equivalence. Consequently, the composition of its right adjoints

A -modcpl A -mod A -modnil
Γ

is also an equivalence.

Example 2.4.7. Let A “ krxs and I “ pxq, then krrxss is I-complete, krx, x´1s{krxs is I-nilpotent, krxs is

neither, and krxs{xn is both. Furthermore,

ΓIpkrrxssq “ ΓIpkrxsq “ krx, x´1s{krxsr´1s {krx, x´1s{krxs “ {krxsr1s “ krrxssr1s.

The derived completion and local cohomology functors can each be computed in two ways. The following

can be found as Propositions 15.80.10 and 15.80.17 in [Sta18] and in a global form as Proposition 3.5.1 in

[BS15] and Proposition 6.7.4 in [GR14]. The statements on local cohomology are well known (and which we

will not use).

Proposition 2.4.8. Assume π0pAq is a noetherian ring, and choose generators f1, . . . , fr of I Ă π0pAq. We

define the complex

G‚ “

ˆ

π0pAq
ś

π0pAqr
1
fi
s

ś

i,j π0pAqr
1
fi
, 1
fj
s ¨ ¨ ¨ π0pAqr

1
f1
, . . . , 1

fr
s

˙

.

The derived completion of an A-module M can be computed in two ways:

xM “ R lim
n
M bLπ0pAq

A{pfn1 , . . . , f
n
r q » RHomπ0pAqpG

‚,Mq.

Likewise, we can compute the local cohomology of M by

ΓIpMq “ colim
n

RHomπ0pAqpM{pf
n
1 , . . . , f

n
r q,Mq » G‚ bLπ0pAq

M.

The latter formula is the calculation of local cohomology via a Cech resolution with supports on an affine

scheme.
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Remark 2.4.9. A theory of formal completions is described in [GR14] with the following notation. Let X

be a dg scheme, and Z Ă X a classical closed subscheme. There is a functor pi˚ : QCohpXq Ñ QCohp pXZq

with a fully faithful (continuous) left adjoint pi? whose essential image is the category of quasicoherent sheaves

supported on Z, and a fully faithful (non-continuous!) right adjoint pi˚ whose essential image is the category

of quasicoherent sheaves complete with respect to the ideal sheaf for Z. There is an exact triangle of functors

arising from the localization functor pi?pi
˚ (whose essential image is cocomplete):

ΓZ “ pi?pi
˚ Ñ idQCohpXq Ñ j˚j

˚ “ p´q|U .

In particular, the functor on the left is local cohomology, and the functor on the right is restriction to U .

The (non-continuous) functor pi˚pi
˚ is the (derived) completion.

The following lemma is likely well-known, but we could not find a reference.

Lemma 2.4.10. Let X be a derived scheme, i : Z Ă X a closed subscheme and j : U “ X ´ Z Ñ X its

complement. Let φ : F Ñ G be a map of quasicoherent sheaves on X. If the derived completion pφZ and the

restriction φ|U are isomorphisms, then φ is an isomorphism.

Proof. Using the above exact triangle, to show that φ is an isomorphism, it suffices to show that ΓZpφq is an

isomorphism, or equivalently, that ΓZpconepφqq “ 0. To this end, note that {conepφq “ pi˚pi
˚ conepφq “ 0, and

that pi˚ is fully faithful, so that pi˚ conepφq “ 0, so that ΓZpconepφqq “ pi?pi
˚ conepφq “ 0.

Example 2.4.11. The above is not true for non-derived completions. For example, take X “ A1, Z “ t0u,

and φ : 0 ÑM “ krx, x´1s{krxs (M is the module of distributions supported at zero). Since M is supported

at zero, M |U “ 0, and since xkM “M for all k, xMZ “ 0, but φ is not an isomorphism. On the other hand,

the derived completion of M is krrxssr1s.

3 An equivariant localization theorem in derived loop spaces and

Hochschild homology

3.1 Equivariant localization for derived loop spaces

The following construction defines a notion of formal and unipotent loops near a semisimple orbit of G{G,

i.e. an adjoint closed G-orbit in G consisting of semisimple elements.

Definition 3.1.1 (z-formal and z-unipotent loops). Let X be a derived scheme, G a reductive group acting

on X, and z P G a semisimple element. We let Gz denote the centralizer of z, i.e. the z-fixed points

under the adjoint action. We define Z “ tgzg´1 | g P Gu to be the closed G-orbit containing z and

Uz “ tgzug
´1 | g P G, u P U X Gzu to be its saturation (here, U is the unipotent cone of G and Gz is the

centralizer of z). We define the z-formal and z-unipotent loops in BG by

pLzpBGq :“ pZ{GÑ LpBGq “ G{G, Luz pBGq :“ xUz{GÑ LpBGq “ G{G.

For a quotient stack X{G, we define the z-formal and z-unipotent loops by the pullback squares:

pLzpX{Gq LpX{Gq Luz pX{Gq LpX{Gq

pLzpBGq LpBGq Luz pBGq LpBGq.

This construction is functorial in representable maps over BG. Note that by Propositions 2.1.20 and

2.1.25, pLepX{Gq “ pLpX{Gq and Lue pX{Gq “ LupX{Gq, where e P G is the identity.
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Proposition 3.1.2. Let G be a reductive group, and z P G a semisimple element. The map LpBGzq Ñ
LpBGq is (Zariski) locally étale at z, i.e. there is a Zariski open neighborhood of Z{G Ă LpBGq “ G{G, and

therefore a Zariski open neighborhood of Uz{G Ă LpBGq, on which the map is étale.

Proof. Let us recall the set-up of the étale slice theorem as in [Dré04]. Let G be a reductive group acting on

an affine variety X, and x P X a closed point such that the stabilizer ZGpxq is reductive. We define a map

φ : X Ñ TxpXq as follows. Let m be the maximal ideal for x P X; the quotient map to the cotangent space

has a ZGpxq-equivariant splitting m{m2 Ñ m since ZGpxq is reductive, defining a map Symkpm{m
2q Ñ krXs.

Geometrically, this means choosing functions f1, . . . , fn P krXs vanishing at x whose differentials generate

the cotangent space at x, and defining the map φ : X Ñ TxpXq by evaluation

y ÞÑ
ÿ

fipyq
d

dfi

ˇ

ˇ

ˇ

ˇ

y“x

,

in a ZGpxq-equivariant manner. The étale slice is the inverse image φ´1pNq where N Ă TxpXq is any normal

subspace to TxpG ¨ xq Ă TxpXq, and the theorem tells us that the map GˆZGpxq φ´1pNq Ñ X is étale.

Specializing to our situation, where G acts on itself by the adjoint action, we produce the Gz-equivariant

map φ : GÑ TzpGq as follows. Affine locally at z, we can choose generators f1, . . . , fn such that

krGs{pf1, . . . , frq “ krGzs,

and the vanishing of df1, . . . , dfr cuts out gz Ă TzpGq » gz (i.e. the translation of TepGq “ g by central z).

Thus it suffices to show that gz is a normal subspace to TzpG ¨ zq, since φ´1pgzq “ Gz by construction. On

the other hand, we have a natural isomorphism G ¨ z » G{Gz, inducing TzpG ¨ zq » gz{gzz, which produces a

splitting of TzpG ¨ zq Ă TzpGq whose kernel is gz. Explicitly, z is semisimple and acts on g, so g decomposes

into z-eigenspaces; gz is the trivial eigenspace and g{gz is isomorphic to the sum of all other eigenspaces.

Using the fact that the map Gz ˆG
z

GÑ G is G-equivariant, and since for any u P Uz we have z P G ¨ u,

it follows that every open set containing Z also contains Uz.

Example 3.1.3. Let G be a simple reductive algebraic group and choose z P G regular semisimple. Its

centralizer is a torus T and the map GˆT T reg Ñ Grs is étale with fiber WT “ NpT q{T .

Corollary 3.1.4. Let X be a prestack equipped with the action of a reductive group G over k, and let z P G

be central. Then, LpX{Gzq Ñ LpX{Gq is étale over a neighborhood of Uz{G Ă G{G. In particular, the

natural maps pLzpX{Gzq Ñ pLzpX{Gq and Luz pX{Gzq Ñ Luz pX{Gq are equivalences.

Proof. Loop spaces commute with fiber products, and X{Gz “ X{G ˆBG BG
z. The second claim follows

since étale maps induces equivalences on formal completions along isomorphic closed subschemes. It is a

straightforward verification that the map

Uz,Gz ˆ
Gz G “ tphuzh´1, gq | g P G, h P Gz, u P UG XG

zu ÝÑ Uz,G “ tguzg
´1 | u P UG XG

zu

is an isomorphism.

We define two competing notions of z-invariants.

Definition 3.1.5. In the set-up above, we define the derived z-invariants Xz to be the derived fiber product

of the diagram

Xz X

X pX ˆXq

Γz

∆

where Γz denotes the graph of the action by a closed point z P G. We define the classical z-invariants Xz to

be π0pX
zq{Gz, or equivalently, the above square considered as an underived fiber product.
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Given this notion of z-formal and z-unipotent loops, we are ready to define the localization map comparing

z-formal and unipotent loops with the formal and unipotent loops of the classical z-fixed points.

Definition 3.1.6 (Localization map and formal localization map). We define the following maps realizing

localizations from the most global to local.

• We define the global localization map via the composition

`z : Lpπ0pX
zq{Gzq LpX{Gzq LpX{Gq

induced by the sequence of natural maps of quotient stacks π0pX
zq{Gz Ñ X{Gz Ñ X{G where the

first map is the closed immeresion and the second map is the base change map along BGz Ñ BG. For

U{G Ă G{G an open subscheme, we by `z,U the restriction of `z to U . The map lives over the natural

map LpBGzq Ñ LpBGq.

• The unipotent localization map `uz : Lupπ0pX
zq{Gzq Luz pX{Gq is the base change of `z along

Luz pBGzq LpBGzq

Luz pBGq LpBGq

»

where the isomorphism on the left arises via Corollary 3.1.4. Note that the map lives over Luz pBGq.

• The formal localization map p`z : pLzpπ0pX
zq{Gzq pLzpX{Gq is the base change of `z along

pLzpBGzq LpBGzq

pLzpBGq LpBGq

»

where the isomorphism on the left arises via Corollary 3.1.4. Note that the map lives over pLzpBGq.

Remark 3.1.7. Applying the functor ´ˆBG pt, `z can be identified with the map induced on fiber products

of the diagrams

GˆG
z

pπ0pX
zq ˆGzq

GˆG
z

π0pX
zq GˆG

z

pπ0pX
zq ˆ π0pX

zqq

ÝÑ

X ˆG

X X ˆX

where the top map sends ph, x, gq ÞÑ ph ¨ x, hgh´1q.

We now investigate the map Lpπ0pX
zq{Gzqq Ñ LpX{Gzq. For ease of notation, we can replace Gz with

a reductive group G in which z is central. Our goal is to find an open G-closed neighborhood U{G Ă G{G

on which the above map is an equivalence. Let us first consider the case when G “ T is a torus.

Lemma 3.1.8 (Finiteness of stabilizer subgroups). Let T be a torus acting on a (quasicompact) variety X.

Only finitely many subgroups of T may appear as stabilizers of this action.

Proof. We can work affine locally, since X has a finite T -closed Zariski cover, and may also assume that X

is connected. If every point of X has stabilizer of equal dimension to T , the possible stabilizer subgroups are

in bijection with a subset of the set of subgroups of the (finite) component group T {T ˝. If there is a point
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x P X whose stabilizer T x Ă T has strictly smaller dimension, then by the Luna slice theorem (note that the

stabilizer T x is reductive since every subgroup is) there is a locally closed subvariety V Ă X such that the

map a : T ˆT
x

V Ñ X is étale and dominant. Any stabilizer of a point in the image of a must be a subgroup

of T x, so the problem reduces to considering (a) the action of T x on V along with (b) the action of T on

the compliment of V Ă X (which is a closed subvariety, therefore affine, of strictly smaller dimension). Note

that in both cases, the dimension of either the variety or the group decreases, and that the claim is obviously

true for zero-dimensional varieties and discrete (finite) groups, so the lemma follows by induction.

Corollary 3.1.9. In the above situation, let z P T and let U Ă T be the open neighborhood of z obtained by

deleting the finitely many stabilizers which do not contain z. Then, for w P U , we have Xw Ă Xz.

We bootstrap this reuslt to prove an analogous result for general reductive G.

Proposition 3.1.10. Let G be a reductive group, z P G a central element and X a scheme with a G-action.

Then, there is an open neighborhood U of z in G that is closed under the adjoint action and such that w P U

implies that Xw Ă Xz.

Proof. We define U as follows. First, take a maximal torus T Ă G containing z. By Proposition 3.1.8, there

is an open neighborhood U 1 of T with the given property. We define

U “ tgtug´1 | t P U 1, g P G, u P CGptq
uniu

where CGptq
uni are the unipotent elements in the centralizer of t. The set U is evidently G-closed. By Jordan

decomposition, G´ U “ G ¨ pT ´ U 1q, so U is open since T ´ U 1 is closed. It remains to show that if w P U ,

then Xw Ă Xz.

Every w P U has a Jordan decomposition w “ su where s is semisimple and u is unipotent; in particular,

s “ gtg´1 for some t P U 1 and g P G. First, note that Xs “ g ¨Xt Ă g ¨Xz “ Xz (since Xz is G-closed for

central z). By the following lemma, it follows that Xw Ă Xs Ă Xz.

Lemma 3.1.11. Let w P G be an element of a reductive group acting on a scheme X, with Jordan decom-

position w “ su for semisimple s and unipotent u. Then, Xw Ă Xs.

Proof. If u “ e the claim is trivial, so suppose u ‰ e. Take x P Xw. There is a 1-parameter subgroup of G

containing s, and a choice of unipotent u ‰ 1 uniquely defines an injective map of algebraic groups Ga Ñ G,

assembling into an injective map of group schemes Gm ˆ Ga Ñ G. Then, H “ pGm ˆ Gaq XGx is a closed

group scheme of G which is at most two-dimensional and which contains w “ su. The connected component

H˝ is either the trivial group, Gm ˆ t0u, t1u ˆ Ga, or the entire group Gm ˆ Ga. If it is the trivial group

then H is discrete, therefore finite, but this is impossible since the projection to Ga is open and there are no

finite group subschemes of Ga. For the same reason, H˝ cannot be Gm ˆ t0u. In the remaining two cases,

wH˝ Ă H Ă Gx, so w P Gx as desired.

Given this, we are now ready to prove our main theorem.

Theorem 3.1.12. Let X be a smooth variety with an action of a reductive group G, and z P G semisimple.

There is an open substack U{G Ă G{G containing z such that the S1-equivariant map

`z,U : Lpπ0pX
zq{Gzq ˆGz{Gz pU XG

zq{Gz LpX{Gq ˆG{G U{G

is étale. If z P G is central, then `z,U is an equivalence. In particular, the S1-equivariant maps on z-unipotent

loops and z-formal loops are equivalences:

`uz : Luz pπ0pX
zq{Gzq Luz pX{Gq, p`z : pLzpπ0pX

zq{Gzq pLzpX{Gq.» »
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Proof. Assuming the first statement holds, then the statement on z-unipotent and formal loops follows since

the global localization map is a composition Lpπ0pX
zq{Gzq Ñ LpX{Gzq Ñ LpX{Gq. By the first statement

of the theorem, since z is central in Gz, there is an open substack U of Gz{Gz containing both Z “ G ¨ tzu

and its saturation Uz over which the first map is an equivalence. By Proposition 3.1.2, the second map is

étale on U , inducing an equivalence on formal completions along Z and Uz by the argument in Corollary

3.1.4.

We now prove the first statement. Let U2 Ă Gz be an open neighborhood of z P Gz from Proposition

3.1.10, i.e. such that π0pX
wq Ă π0pX

zq for w P U2. Let U 1 Ă G be an open neighborhood of z on

which φ is étale, obtained via Proposition 3.1.2; note that this implies that φ is open over U 1. Define

U “ φpU2q X U 1 Ă G. By construction, the map LpX{Gzq Ñ LpX{Gq is étale over U . It remains to prove

that the map is an equivalence when z P G is central; in this case Gz “ G.

We proceed by base changing from BG to Specpkq (i.e. forgetting equivariance). Take Y “ π0pX
zq for

shorthand, and recall that U Ă G is an open subscheme on which π0pX
wq Ă π0pX

zq for w P U . This means

we wish to show that the map of derived schemes

i : Y ˆYˆY pY ˆ Uq Ñ X ˆXˆX pX ˆ Uq

is an equivalence. Since i is a closed embedding (and therefore affine), we view the map of derived schemes

affine locally as a map of differential graded sheaves of algebras on U ˆ G, which we abusively denote by

OLpX{Gq Ñ OLpY {Gq “ i˚OLpY {Gq. Since these sheaves have coherent cohomology on XˆG and closed points

are dense in X ˆG (X ˆG is locally finite type over a field), it suffices to check the claim on local rings at

closed points px,wq P π0pLpX{Gqq Ă X ˆG where w P U2 Ă G and x P π0pX
wq Ă π0pX

zq (via the defining

property of U2).

Note that Y “ π0pX
zq is smooth when z P G is semisimple in reductive G by a standard argument11.

Consequently, the diagonal maps are local complete intersections, and Y “ π0pX
zq Ă X is also a local

complete intersection. The z-action on the cotangent space T˚x pXq is semisimple, and determines a splitting

with identifications

T˚x pXq “ E0 ‘ E1, E0 “
à

λ‰1

kerpz ´ λq » N˚x pπ0pX
zq{Xq, E1 “ kerpz ´ 1q » T˚x pπ0pX

zqq.

Let J denote the ideal such that OY,x “ OX,x{J . We aim to compute

OX,x bLOXˆX,px,xq OXˆG,px,wq ÝÑ OY,x b
L
OYˆY,px,xq OYˆG,px,wq. (1)

Let v1, . . . , vr be a basis of E1 and vr`1, . . . , vn a basis of E0. By Nakayama’s lemma we can lift this basis of

the cotangent space to generators x1, . . . , xn P mX,x Ă OX,x such that J “ px1, . . . , xrq. Furthermore, again

by Nakayama, txi b 1 ´ 1 b xi | i “ 1, . . . , nu form a regular sequence for the diagonal12 X Ă X ˆ X at

px, xq, and likewise the images of txi b 1´ 1b xi | i “ r` 1, . . . , nu form a regular sequence for the diagonal

Y Ă Y ˆ Y at px, xq.

Taking semi-free Koszul resolutions of the diagonal, as well as OYˆG,px,wq as a OXˆG,px,wq-module, Equa-

tion 1 can be rewritten

OXˆG,px,wqrε1, . . . , εns OYˆG,px,wqrεr`1, . . . , εns OXˆG,px,wqrε11, . . . , ε1r, εr`1, . . . , εns (2)

where |εi| “ ´1, and the internal differentials are defined by dpεiq “ cpxiq ´ xi b 1 and dpε1iq “ xi b 1. The

map on the right is a quasi-isomorphism. To show that Equation 2 is a quasi-isomorphism, it suffices to

produce the dotted map above making the diagram commute. Explicitly, we wish to show that the derived

11Choose a torus T containing z and apply the étale slice theorem to a T -closed affine open cover.
12Since A and A{J are Cohen-Macaulay, any minimal generating set is automatically regular.
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equations imposed by dpε1q, . . . , dpεrq and by dpε11q, . . . , dpε
1
rq differ by an (invertible) change of variables.

That is, we wish to find an element of GLrpOXˆG,px,wqq which transforms

tx1 b 1, . . . , xr b 1u into tcpx1q ´ x1 b 1, . . . , cpxrq ´ xr b 1u.

The element z is central, so w fixes π0pX
zq, and in particular the coaction map c preserves the ideal

J . Thus, we can write cpxiq “
řr
i,j“1 eijpxj b 1q for some eij P OXˆG,px,wq. Let E “ peijq denote the

corresponding matrix; the matrix E´ I is invertible if its evaluation at w P G is invertible. The matrix Epwq

is the action of w on the conormal space E0 “ N˚x pπ0pX
zq{Xq; in particular, pE ´ Iqpwq is invertible if and

only if Epwq has no fixed vectors. But w cannot fix any vectors on a normal space of its fixed-point variety,

and since Nxpπ0pX
z{Xq Ă Nxpπ0pX

w{Xqq, the claim follows.

Corollary 3.1.13. Let X,Y, Z be smooth varieties, with maps f : X Ñ Z and g : Y Ñ Z. Then

pLzpπ0pX
zq ˆπ0pZzq π0pY

zqq » pLzpX ˆZ Y q

where all fiber products are derived.

Proof. This follows immediately since loop spaces commute with fiber products.

Remark 3.1.14. Note that in the case G “ T is a torus, every element of T is central, so `z,U is an

equivalence. Furthermore, Proposition 3.1.8 gives an explicit description of the open set U , which is maximal,

on which `z is an equivalence.

3.2 Equivariant localization for Hochschild and cyclic homology

First, let us show that the completion over a closed point of the affinization rzs P G{{G is the same as taking

z-unipotent loops.

Lemma 3.2.1. Let a : G{GÑ G{{G be the affinization, and let apzq “ rzs P G{{G. The map above induces

an isomorphism on completions

Luz pBGq » {a´1przsq{G Ă LpBGq.

In particular, the map Luz pBGq Ñ LpBGq factors isomorphically through {a´1przsq{G.

Proof. This follows from Proposition 2.1.25 and the observation that the classical reduced fiber over rzs P G

in G{G is isomorphic to UGz{G
z, where UGz is the unipotent cone of Gz. That is, if u P Gz is unipotent, then

uz “ zu P G has the same eigenvalues as z, so apzq “ apzuq, and by Jordan composition any y P µ´1przsq

can be written uniquely in this way. Furthermore, Guz Ă Gz; letting U be the unipotent elements of Gz, it

follows from Proposition 3.1.2 that the map GˆG
z

U Ñ G is a closed embedding with image µ´1przsq.

As an application of the above geometric incarnations of equivariant localization, we obtain the following

equivariant localization results in Hochschild and cyclic homology.

Definition 3.2.2 (Completion and localization of Hochschild homology). Let G be a reductive group. Note

that HHpPerfpX{Gqq is naturally a HHpPerfpBGqq “ krGsG-module. Let z P G be a reductive element

representing a closed point of SpecpkrGsGq “ G{{G. We denote by HHpPerfpX{Gqqz the localization at the

maximal defining z P G{{G and HHpPerfpX{Gqq
pz the completion at z. We define the analgous notions for

HN,HC and HP , taking care to completed with respect to the ideals Izrruss and Izppuqq where Iz Ă krGsG

is the ideal defining z P G{{G.

The following is an immediate corollary of the the localization theorem for unipotent loops.
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Theorem 3.2.3 (Equivariant localization for Hochschild homology). Let X be a smooth scheme, G a reduc-

tive group, and z P G semisimple. Then the natural map on completions induced by pullback is an equivalence:

HHpPerfpX{Gqq
pz HHpPerfpπ0pX

zq{Gzqq
pz “ OpLuz pπ0pX

zq{Gzqq.»

If z P G is central, the map on localizations is an equivalence:

HHpPerfpX{Gqqz HHpPerfpπ0pX
zq{Gqqz “ OpLpπ0pX

zq{Gqq bOG{{G OG{{G,rzs.
»

Proof. Via Lemma 3.2.1, we have a natural identification HHpPerfpπ0pX
zq{Gzqq

pz » OpLuz pX{Gqq. The

first claim then follows directly from Theorem 3.1.12, and base change for derived completions along closed

embeddings. The second claim for localizations follows by Theorem 3.1.12, since in that case the map on

Hochschild homology is an equivalence for an open set containing z.

Remark 3.2.4. For cyclic homology, the situation is a little more delicate. The formation of cyclic homology

HC involves a filtered colimit, the formation of negative cyclic homology HN involves a cofiltered limit, and

the formation of periodic cyclic homology involves both. On the other hand, localization commutes with

colimits and finite limits but not cofiltered limits, and completion commutes with limits but not colimits.

We first need to introduce a few technical notions regarding mixed complexes, with the aim of proving that

in our situation formal completions commute with the Tate construction on Hochschild homology. Analogous

results and arguments can be found in [Kal15].

Definition 3.2.5. Let pV, d, εq be a mixed complex. We define

V
ś

Tate “ p
ź

k

V uk, d` uεq V ‘Tate “ p
à

k

V uk, d` uεq “ pV ru´1, us, d` uεq

where |u| “ 2. There are natural maps

V ‘Tate Ñ V Tate Ñ V
ś

Tate.

Remark 3.2.6. Lemma 2.6 of [Kal15] shows that the Tate construction preserves quasi-isomorphisms, es-

sentially because it is computed via the right spectral sequence. On the other hand, the other variants above

do not preserve quasi-isomorphisms. In particular, they are not well-behaved in the derived category.

Definition 3.2.7. We say a complex V is cohomologically bounded below (respectively, above) if HipV q “ 0

for all sufficiently small (respectively, large) i. We say V is strictly bounded below (respectively, above) if V

if V i “ 0 for i sufficiently small (respectively, large).

Lemma 3.2.8. Let pV, d, εq be a mixed complex. If V is strictly bounded below, then V ‘Tate Ñ V Tate is an

isomorphism. If V is strictly bounded above, then V Tate Ñ V
ś

Tate is an isomorphism.

Proof. The proof of the first statement appears as Corollary 2.7 in [Kal15], which we repeat for convenience.

The chain complex V ‘Tate is, in the nth cohomological degree, the vector space
À

k u
kV n´2k. whereas V Tate

is in the nth cohomological degree the vector space p
À

kě0 u
kV n´2kqˆp

ś

kă0 u
kV n´2k. Since V n´2k “ 0 for

large k, the product is finite and therefore a direct sum, so the map is an isomorphism. A similar argument

proves the second statement.

Lemma 3.2.9. Let pVα, dα, εαq be a degree-wise Mittag-Leffler sequential diagram of mixed complexes such

that the Vα are uniformly cohomologically bounded above (i.e. right t-bounded). Then, the functors p´qS1

and p´qTate commute with limits, i.e.

plim
α
Vαq

Tate » lim
α
V Tate
α .
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Proof. First, since the limit is degree-wise Mittag-Leffler, R lim “ lim. Note that since the Vα are uniformly

cohomologically bounded above, so is their limit. Since we are only interested in computing the usual

Tate construction which respects quasi-isomorphisms, we can replace each of the Vα and limVα with their

(strictly bounded above) truncations; the resulting complex is still Mittag-Leffler. Now, note that the
ś

Tate

construction commutes with limits.

Theorem 3.2.10 (Equivariant localization for cyclic homology). Let X be a smooth scheme, G a reductive

group, and z P G semisimple. Then the following maps on completions induced by pullback are equivalences

HNpPerfpX{Gqq
pz HNpPerfpπ0pX

zq{Gzqq
pz “ OpLuz pπ0pX

zq{GzqqS
1

,»

HCpPerfpX{Gqq
pz HCpPerfpπ0pX

zq{Gzqq
pz “ OpLuz pπ0pX

zq{GzqqS1 ,»

HP pPerfpX{Gqq
pz HP pPerfpπ0pX

zq{Gzqq
pz “ OpLuz pπ0pX

zq{GzqqTate.»

Proof. Via Lemma 3.2.1, we have a natural identification HHpPerfpπ0pX
zq{Gzqq

pz » OpLuz pX{Gqq. If we can

show that the limit diagram in the formation of the derived completion satisfies the conditions of Lemma

3.2.9, then the claims would follow via Theorem 3.2.3.

Take A P AlgpQCohpBGqq to be as in Proposition 2.3.1. First, note that HHpPerfpX{Gqq » C‚pA,Gq

is cohomologically bounded above since A is cohomologically bounded. By Remark 2.3.7, its terms are

projective, so the terms in the limit computing its derived completion with respect to an ideal of krGsG are

classical quotients. Therefore, the limit diagram satisfies the conditions of Lemma 3.2.9.

Remark 3.2.11. While the statement in the above theorem for negative cyclic homology was more or less

automatic, the statements for cyclic homology and periodic cyclic homology are strongly dependent on the

cohomological right-boundedness of Hochschild homology, which we expect to fail for CohpX{Gq where X is

singular.

4 An Atiyah-Segal completion theorem for periodic cyclic homol-

ogy

4.1 Twisted circle actions on loop spaces

Definition 4.1.1. Let G be an affine algebraic group over k. A G-action on a prestack X is defined to

be a prestack Y over BG, along with an identification Y ˆBG pt » X. We often abuse notation and write

Y “ X{G and understand that the identification implicitly. Furthermore, if Z Ă G is a closed normal

subgroup, a trivialization of the action of Z on X is defined to be a G1 :“ G{Z-action on X along with an

identification X{G1 ˆBG1 BG » X{G. If z P G is central, then it generates a normal closed subgroup Z; we

sometimes write z-trivialization to mean a Z-trivialization.

Furthemore, note that any X equipped with a z-trivialization is equipped with a shift map µz : X{GÑ

X{G defined as follows. It is defined on BG via the map of groups GÑ G taking g ÞÑ zg “ gz. It is defined

on X{G by transporting the map idX{G1 ˆidBG1 µz. across the trivialization X{G » X{G1 ˆBG1 BG. It is

evidently an equivalence with inverse µz´1 .

Example 4.1.2. If X is a classical scheme with a G-action, on which a normal subgroup Z Ă G acts trivially,

then there is a canonical trivialization of the action of Z on X.

Definition 4.1.3 (Twisted S1-actions). Let G a linear algebraic group over k and X a scheme over k with

an action of G. We define the following various circle actions on X{G. Let z P G be central.

• The loop rotation S1-action, denoted ρ, on the loop space LpX{Gq.
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• The z-twisting S1-action, denoted τz, on BG is induced via the map of groups ZˆGÑ G defined by

pn, gq ÞÑ zng “ gzn. More generally, if X is equipped with a z-trivialization, then the corresponding

z-twisting S1 action on X{G is defined via the identification X{G » X{G1 ˆBG1 BG, where S1 acts

on X{G1 and BG1 trivially, but on BG via the z-twisting described above. It is evident that the maps

defining the fiber product diagram are S1-equivariant.

• The z-twisted rotation, denoted ρz, on LpX{Gq is the diagonal of the S1 ˆ S1-action ρ ˆ Lτz. Note

that it makes sense to talk about the diagonal since ρ and Lτz commute: ρ commutes with any group

action of the form Lγ, where γ is an S1-action on X{G.

Furthermore, for w P G central, the map µz : X{GÑ X{G is S1-equivariant with respect to τzw on the left

and τw on the right. In particular, Lpµzq : LpX{Gq Ñ LpX{Gq is equivariant with respect to ρzw on the left

and ρz on the right.

Remark 4.1.4. Using Proposition 2.1.8, we see that the shift map Lpµzq : LpX{Gq Ñ LpX{Gq has an

explicit realization as the multiplication by z map G{GÑ G{G on the upper-right term in the fiber product

LpX{Gq ˆBG pt pX ˆGq{G

X{G pX ˆXq{G.

aˆp

∆

Example 4.1.5. On PerfpG{Gq, the rotation ρ acts on fibers over g P G by g; the z-twisting Lτz acts on

fibers over any g P G by z, and the twisted rotation ρz acts on fibers over g P G by gz “ zg.

Example 4.1.6. Let G “ T be a torus (in particular, every t P T is central). We can explicitly describe the

S1-actions on linear categories

PerfpLpBT qq “ PerfpT ˆBT q »
à

λPΛ

PerfpT q

where Λ is the character lattice of T . Let tzλ | λ P Λu denote the natural basis of monomials for krT s. The

rotation S1-action ρ acts on the λ-summand by zλ. The t-twisting action τt on BT acts on the λ-summand

by the scalar zλptq. The t-twisted rotation ρt acts on the λ-summand by zλptqzλ.

Let us take the t-twisted rotation ρt. We have, via the category13 PreMF in [Pre11],

PerfpLpBT qqS
1

“
à

λPΛ

PreMFpT, 1´ zλptq ¨ zλq,

Perfp pLpBT qqS
1

“
à

λPΛ
λptq“1

PreMFp pT , 1´ zλq.

For the second identity, the zeros of 1 ´ zλptqzλ meet the constant loops if and only if zλptq “ 1. After

passing to the Tate category under the rotation action, we note that the zero locus of 1´ zλ is smooth (it is

a subgroup of T ) of codimension 1 unless λ “ 0 (in which case it has codimension zero and must be derived).

Therefore,

PerfpLpBT qqTate “
à

λPΛ

MFpT, 1´ zλptq ¨ zλq “ PerfpT q bk kpuqq,

Perfp pLpBT qqTate “
à

λPΛ
λptq“1

MFp pT , 1´ zλq “ Perfp pT q bk kppuqq.

Note that the Tate categories do not depend on the twisting at all (but the S1-invariant categories do).
13For M a scheme and f : M Ñ Gm, the category PreMFpM, fq is the category PerfpM ˆGm t1uq with an extra kruss-linear

structure acting by cohomological operators.
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Proposition 4.1.7. Suppose z P G is a central element of a reductive group and acts on a quasiprojective

scheme X trivially. Then, there is a krruss-linear equivalence

Lpµzq˚ : OpLpX{GqqS1,ρ OpLpX{GqqS1,ρz .»

The same holds for formal and unipotent loop spaces.

Proof. Since X is quasiprojective, it has a compact G-equivariant generator E of QCohpXq. Let A “

RHomXpE , Eq, so that QCohpXq » A -modQCohpBGq. Let c : A Ñ A b krGs be the coaction; note that

the z-twisted rotation is given by twisting the coaction by z, i.e. czpaqp´, gq :“ cpaqp´, gzq “ cpaqp´, zgq.

Since z acts on X trivially, this is equal to the usual coaction c, inducing an equivalence of S1-invariants

under the untwisted and z-twisted rotations.

4.2 Tate-equivariant functions on formal loop spaces compute analytic de Rham

cohomology

We now set out to prove the equivariant localization theorem for periodic cyclic homology. We first introduce

some technical notions needed to phrase the result in the 2-periodic setting. Recall the following notions for

vector spaces (not chain complexes) from [Bei08].

Definition 4.2.1. A linear topological vector space is a a vector space V which admits a topology for which

the vector space operations are continuous, and such that there is a system of neighborhoods at 0 consisting

of subspaces. In this case, the topology is generated by this system at 0 and translations under addition.

The completion pV of V is the limit over the system of neighborhoods Uα:

pV :“ lim
0PUα

V {Uα.

We say the topology is complete if the natural map V Ñ pV is an isomorphism. Let V1, V2 be linear topological

vector spaces. We define a linear topological vector space, the !-tensor product V1 b
! V2, via the naive tensor

product on underlying vector spaces equipped with topology by the basis consisting of open sets of the form

U1 b V2 ` V1 bU2, where U1 Ă V1 and U2 Ă V2 are opens. We define V1
xb! V2 to be V1 b

! V2 completed with

respect to this topology.

These notions generalize immediately to chain complexes, where we replace the notion of subspace with

subcomplex. In this case, the complexes term-wise satisfy the Mittag-Leffler condition and therefore lim1
“ 0,

so R lim “ lim. Note that as in [Kal15]

V1
xb! V2 “ lim

V1

lim
V2

V1 b V2.

Remark 4.2.2. It is unclear to us how the notion of a topological chain complex should interact with

quasi-isomorphisms.

We now review the constructions and results of [Bha12] and [Har75].

Definition 4.2.3. Let X be a finite-type derived stack with affine diagonal over k, and LX its cotangent

complex. The derived de Rham complex dRX is the sum-totalization of the complex p
À

ně0

Źn LX r´ns, ddRq,
which comes equipped with a Hodge filtration F k dRX “ p

À

něk

Źn LX r´ns, ddRq. The Hodge-completed

derived de Rham complex xdRX is the completion of dRX with respect to the Hodge filtration (see Construction

4.1 in [Bha12]). We will denote the derived global sections of this complex to be the complex of derived de

Rham cochains C‚dRpX; kq.

We have two competing notions of Hodge filtrations in the negative cyclic homology of PerfpX{Gq. Both

play an essential role.
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Definition 4.2.4. Let pV, d, εq be a mixed complex. The noncommutative Hodge filtration on V S
1

and V Tate

is the decreasing filtration defined by the subspaces ukV S
1

.

Definition 4.2.5. The odd tangent complex TX r´1s is affine over X, so we can consider OTX r´1s as an

algebra in the category QCohpXq. Furthermore, the ideal sheaf for the zero section defines an exhaustive

decreasing filtration on OTX r´1s, which induces an exhaustive decreasing filtration on OpTX r´1sqS
1

whose

completion is OppTX r´1sqS
1

. We call this the geometric Hodge filtration.

Proposition 4.2.6. Let X be a geometric stack with a smooth cover by a variety. There is a natural

quasi-isomorphism

Op pLpXqqTate C‚dRpX; kq pb
!
kppuqq»

where we consider the de Rham complex C‚dRpX; kq as a topological chain complex with respect to the derived

Hodge filtration, and kppuqq with respect to the noncommutative Hodge filtration.

Proof. By Theorem 6.9 of [BN12], the exponential map pTX r´1s Ñ pLpXq is an filtration-preserving isomor-

phism, so we can compute OppTX r´1sqTate instead. Note that p´qS
1

commutes with totalization, so we first

compute

OppTX r´1sqS
1

“ lim
nÑ8

lim
mÑ8

¨

˚

˝

à

0ďiďn
0ďjďm

RΓpX,ΩiX risqu
j , u ¨ ddR

˛

‹

‚

.

Note that the filtration defined by the limit parameter n is the geometric Hodge filtration, and the filtration

defined by the limit parameter m is the non-commutative Hodge filtration. As we take the limit with respect

to both, it amounts to computing the direct sum complex p
À

0ďi,j RΓpX,ΩiX risqu
j , u ¨ ddRq with respect to

the opens

Unm “

¨

˚

˝

à

iěn or
jěm

RΓpX,ΩiX risqu
j , u ¨ ddR

˛

‹

‚

.

There is a subcomplex (in fact, a direct summand) of the direct sum complex defined by taking the

summands where j ě i:

V “

˜

à

0ďiďj

RΓpX,ΩiX risqu
j , u ¨ ddR

¸

.

It is a subcomplex since the de Rham differential takes the pi, jq-summand to the pi` 1, j` 1q-summand. Its

quotient

V 1 “

˜

à

0ďjăi

RΓpX,ΩiX risqu
j , u ¨ ddR

¸

is u-torsion. Note that kppuqq is flat as a (dg) krruss-module, so ´bkrruss kppuqq kills u-torsion modules, and

in particular we have an equivalence induced by the inclusion on completions

pV bkrruss kppuqq » OppTX r´1sqTate.

Consider the alternative topology on V defined by opens

Wkm “

¨

˚

˝

à

i´jěk or
jěm

RΓpX,ΩiX risqu
j , u ¨ ddR

˛

‹

‚

.

The parameter k in this topology defines the derived Hodge filtration in the derived de Rham complex, and

the parameter m in this filtration defines a u-adic filtration. In particular, the completion of V with respect
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to the topology defined by the Wkm is ΓpX, xdRXq pb
!
krruss.

We claim these two topologies defined by Unm and Vkm are equivalent. Indeed, this is an easy verification

as all indices are bounded below. Explicitly, Wnm Ă Unm and Uk`m,m ĂWkm. In particular, the completion

with respect to this topology is the limit under the usual Hodge filtration on each summand of V defined by

letting i´ j be constant, and the limit under the noncommutative Hodge filtration. Thus, via the universal

property of the limit, we have a canonical equivalence

pV » ΓpX, xdRXq pb
!
krruss

and in particular,

Op pLpXqqTate » V bkrruss kppuqq » ΓpX, xdRXq pb
!
kppuqq » C‚dRpX; kqxb! kppuqq.

Remark 4.2.7. The above proposition is false if we do not consider the topologies. For example, take X “

BGm. Then, we have Op pLpBGmqq “ krrrtss where |t| “ 0, and in particular, H0pOp pLpBGmqqTateq “ krrtss.

On the other hand, H‚pBGm; kq » krss “ krrsss where |s| “ 2, so H0pH‚pBGm; kqppuqqq “ krsu´1s.

Finally, we discuss results relating derived de Rham cohomology to analytic (Betti) cohomology when

k “ C. It is well-known by experts and is essentially a simple corollary of results in [Bha12], [Har75]

and [BN12]. A general discussion can also be found in the introduction of [Kal15]. We first define a few

intermediate chain complexes.

Definition 4.2.8. For a choice of embedding of i : X Ñ M for smooth M , the Hartshorne algebraic de

Rham complex ΩHX is defined by

ΩHX :“ {i´1OM bi´1OM i´1Ω‚Y .

We define the term-wise Hodge-completed derived de Rham complex associated to a groupoid presentation

U1 U0 of a stack as above to be the totalization of the double complex xdRUj . Since for schemes Ui,

the de Rham cohomology computes Betti cohomology, Lemma 32 of [Beh04] implies that the cohomology of

this complex is independent of choice of cover.

Corollary 4.27 in [Bha12] and Theorem 1.1 in Chapter IV of [Har75] can be summarized in the following

statement, identifying the derived de Rham cohomology of a possibly singular scheme X over C with its Betti

cohomology. For details, see Construcion 4.25 in [Bha12].

Theorem 4.2.9 (Bhatt, Hartshorne). Let X be a finite type scheme over k “ C. There is a natural

map of sheaves of dg k-algebras xdRX Ñ ΩHX on X which is a quasi-isomorphism. Letting j : Xan Ñ X

be the analytification map, and Ω‚Xan the analytic de Rham complex on Xan, the map of dg k-algebras

j´1ΩHX Ñ Ω‚Xan is a quasi-isomorphism. All together, the map j´1
xdRX Ñ Ω‚Xan is a quasi-isomorphism,

and Ω‚Xan resolves the constant sheaf CXan . Therefore, the hypercohomology of the derived de Rham complex

computes the Betti cohomology of Xan.

Corollary 4.2.10. Let X be a finite type stack over k “ C presented as a groupoid U1 U0 . Then,

Betti cohomology of Xan is computed by the term-wise Hodge-completed derived de Rham complex associated

to U‚.

Corollary 4.2.11. Let X be a finite type derived stack over k “ C. Then, there is a natural quasi-

isomorphism

Op pLXqTate C‚dRpX
an;Cq pbk kppuqq.»

Proof. By Proposition 6.4 of [BN12], the Hodge-completed graded algebra of differential forms is a graded

sheaf on the smooth site of X, i.e. the Hodge-completed derived de Rham complex for stacks is quasi-

isomorphic to the term-wise Hodge-completed derived de Rham complex associated to an atlas U Ñ X of
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the stack X. This implies that the derived de Rham complex computes Betti cohomology and in particular,

using Proposition 4.2.6 there is an filtration-preserving equivalence in the derived category C‚dRpX;Cq »
C‚pXan;Cq.

4.3 Comparing global functions on unipotent and formal loop spaces

We prove a completion theorem for periodic cyclic homology, assuming the following theorem, which is proven

as Theorem 4.3.22.

Theorem 4.3.1. Let X be a quasicompact algebraic space with an action of an affine algebraic group G.

The map on functions induced by pullback is an equivalence:

OpLupX{GqqTate Op pLpX{GqqTate» .

Theorem 4.3.2 (Atiyah-Segal completion for periodic cyclic homology). Let G be a reductive group acting

on a smooth quasi-projective variety X. The periodic cyclic homology HP pPerfpX{Gqq is naturally a module

over HP pPerfpBGqq “ krG{{Gsppuqq. For a closed point z P G{{G, we have an identification of the formal

completion at z with a 2-periodicization of the singular cohomology of the fixed points

HP pPerfpX{Gqq
pz C‚dRppX

zqan{pGzqan; kq pb
!
k kppuqq

»

as a module over HP pPerfpBGqq
pz » C‚dRpBpG

zqan; kq b!
k kppuqq, contravariantly functorial with respect to

X.

Proof. By Theorem 3.2.3 and Theorem 3.1.12,

HP pPerfpX{Gqq
pz » OpLuz pX{GqqTate » OpLupπ0pX

zq{GzqqTate,ρz .

By Proposition 4.1.7 and Theorem 4.3.1,

OpLupπ0pX
zq{GzqqTate,ρz » OpLupπ0pX

zq{GzqqTate » Op pLpπ0pX
zq{GzqqTate.

Finally, by Theorem 4.2.6, we have

Op pLpπ0pX
zq{GzqqTate » C‚dRpπ0pX

zqan{pGzqan; kqppuqq.

It remains to prove Theorem 4.3.1. Central to our proof will be to use the fact that the map is a pro-

graded isomorphism; the following lemma establishes a general situation when this is true. Let us first clarify

what we mean by a pro-graded isomorphism, and why this notion is necessary.

Definition 4.3.3. A pro-graded chain complex V is an object of PropQCohpBGmqq; that is, it is a fil-

tered limit of graded chain complexes14. Letting Ln denote the weight n twisted one-dimensional Gm-

representation, the nth homogeneous part functor is given by

p´qwt“n :“ ev ˝ PropΓqpBGm,´b L´nq : PropQCohpBGmqq Ñ Vectk.

where the functor

PropΓqpBGm,´q : PropQCohpBGmqq Ñ PropVectkq

14By Proposition 1.1.3.6 of [Lur17], this category is stable.
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is the functor induced on pro-completions from ΓpBGm,´q : QCohpBGmq Ñ QCohpptq and the functor

ev : PropVectkq Ñ Vectk

takes a limit diagram and evaluates it in Vectk (which has all limits); it is right adjoint to the inclusion.

The underlying chain complex is given by

ev ˝ Propp˚q : PropQCohpBGmqq Ñ Vectk

where p : pt Ñ BGm is the usual atlas so that p˚ is the forgetful functor. A map of graded chain complexes

is a pro-graded isomorphism if it is an isomorphism on nth graded parts for all n.

Remark 4.3.4. We require this formalism for the following reason. Let p : pt Ñ BGm be the standard

atlas; the pullback (forgetful functor) p˚ does not commute with limits since the category QCohpBGmq
cannot differentiate between direct sums and direct products across different weights. In particular, objects

of QCohpBGmq are Z-graded chain complexes, which are equal to the direct sum of their homogeneous

pieces15.

Example 4.3.5. For example, completing t0u Ă A1{Gm (under the usual scaling action),

lim
n,QCohpptq

krxs{xn “ krrxss lim
n,QCohpBGmq

krxs{xn “ krxs.

Remark 4.3.6. One way to remedy this is to keep track of the limit diagrams by working in the category

PropQCohpBGmqq and apply the evaluation functor in Vectk “ QCohpptq rather than QCohpBGmq. How-

ever, the category PropQCohpBGmqq contains more information than we need: we do not wish to track the

topologies on vector spaces as we only care about their completions. Instead, we consider a smaller category:

the category of kZ-modules

Definition 4.3.7. We define a functor (morally, some kind of Cartier duality) D : QCohpBGmq Ñ QCohpZq
as follows: it is a standard calculation that QCohpBGmq »

À

nPZ QCohpptq. For V P QCohpBGmq, we

denote by Vn the summand corresponding to n P Z. Define Dp
À

Vnq “
À

in,˚Vn where in : Specpkq Ñ Z is

the inclusion of the point tnu.

Letting r : Z Ñ SpecpkZq denote the affinization map, we define a functor Ψ : PropQCohpBGmqq Ñ
QCohpSpec kZqq “ kZ -mod via the composition

PropQCohpBGmqq PropQCohpZqq PropQCohpSpecpkZqqq QCohpSpecpkZqq.
PropDq

Ψ

Propr˚q ev

Definition 4.3.8. For any n P Z, there is a natural map ιn : Spec k Ñ Spec kZ defined by projection to the

nth coordinate. Denote by kn “ ιn,˚k P QCohpSpec kZq, and note that kn is projective since it is a summand

of the free module decomposed by kZ “ kn ‘ p
ś

m‰n kmq. We define the n-stalk of a kZ-complex M to be

ι˚nM “ kn bM and the n-costalk to be ι!nM “ Hompkn,Mq; since kn is projective the underived functor is

the derived functor.

Remark 4.3.9. The notion of costalk and stalk are canonically equivalent. It is a direct verification that

in fact, i!pV q “ i˚pV q “ Vn. Let pn P k
Z denote the element with 0 in the nth component and 1 everywhere

else. Let en denote the element with 1 in the nth component and 0 everywhere else. Then, pn ` en “ 1, so

we find that V “ pnV ‘ enV , and i!pV q “ kerppnq while i˚pV q “ cokerppnq.

Composing Ψ with the global sections functors recovers the underlying vector space, and composing with

the costalk at n P Spec kZ recovers the nth homogeneous part. In particular, if we are interested in studying

15To see this, note that objects of QCohpBGmq are chain complexes which are OpGmq-coalgebras, i.e. equipped with a map
V Ñ V bk krz, z

´1s. In particular, tensors have finite rank, so any vector can only have finitely many homogeneous parts.
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the underlying vector space of V P PropQCohpBGmqq via its homogeneous components, it suffices to consider

it as an object of QCohpSpecpkZqq.

Proposition 4.3.10. We have commutative diagrams of functors

PropQCohpBGmqq kZ -mod PropQCohpBGmqq kZ -mod

Vectk Vectk
ev˝Propp˚q

Φ

ΓpSpec kZ,´q ev˝PropΓqpBGm,´bL´nq

Φ

ι!n

Proof. We factor the first diagram as follows

PropQCohpBGmqq PropkZ -modq kZ -mod

Propk -modq k -mod
Propp˚q

Propr˚˝Dq

PropΓq

ev

Γ

ev

and the second in the analogous way. So, the proposition follows from two claims: (1) that the diagrams

above commute without the Pro, i.e. p˚ “ ΓpSpec kZ,´q ˝ r˚ ˝D and ΓpBGm,´q “ ι!0 ˝ r˚ ˝D, and (2) that

the evaluation functor PropkZ -modq Ñ kZ -mod commutes with global sections and taking costalks.

The first claim can be directly verified: it suffices to consider abelian categories since all functors are

exact. In particular, if V P QCohpBGmq♥, then it is a krz, z´1s-comodule, i.e. there is a map

V Ñ V b krz, z´1s »
à

n

Vnz
n.

The functor D takes V to the complex on Z whose value on open affine tnu P Z is Vn. The functor r˚
takes DpV q to

À

n Vn where kZ acts in the natural way. Finally, we see that the global sections are exactly

p˚V “
À

Vn and the costalk i!np
À

n Vnq “ HomkZpkn,
À

n Vnq “ Vn.

Since the evaluation functor is a right adjoint, we prove the second claim by showing that both the

global sections functor and the costalks functor are right adjoints, and then using the general fact that right

adjoints commute. The global sections functor is right adjoint to the restrictions of scalars functor (it is also

left adjoint to the “corestriction of scalars” functor RHomkpk
Z,´q). The costalks functor is right adjoint to

the pushforward (and in this case is equal to the stalks functor, which is a left adjoint).

Remark 4.3.11. In fact, since the global sections and (co)stalk functors are both left and right adjoints in

the above situation, the above construction and proposition are valid for any iteration of taking Pro and Ind

categories.

Definition 4.3.12. Let V be a kZ-module. The support of v P V is the closed subscheme defined by the

annihilator ideal of v.

Lemma 4.3.13. A pro-graded isomorphism is injective.

Proof. This is the easy fact that if a map of sheaves on SpecpkZq is zero on stalks at closed points, then it is

zero, and the observation that on Spec kZ, costalks and stalks coincide.

Lemma 4.3.14. Suppose that f : V Ñ W is a pro-graded isomorphism of pro-graded vector spaces such

that either V or W are supported at finitely many weights. Then f is an isomorphism on underlying vector

spaces. More generally, let A be a sheaf of algebras on SpecpkZq, and f : V Ñ W a pro-graded isomorphism

of sheaves of A-modules where W is generated by elements supported at finitely many weights. Then, f is an

isomorphism on underlying vector spaces.
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Proof. For the first claim, the assumptions of the proposition imply that V and W have finite support, whose

points consist entirely of closed points of kZ. A map being a pro-graded isomorphism means that it is an

isomorphism at stalks of closed points.

For the second more general claim, note that if W is an A-module, and w P W is an element of finitely

many weights, say w “ w1 ` ¨ ¨ ¨ ` wr where the wi are homogeneous of weight ci, then wi P A ¨ w since

eci ¨w “ wi, where eci P k
Z is the characteristic function at i P Z. In particular, W having a set of generators

supported at finitely many weights is equivalent to W having a set of homogeneous generators. Now, if

f : V Ñ W is a pro-graded isomorphism, then it is injective by the previous lemma. For surjectivity, note

that for a given homogeneous w P W , since f is a pro-graded isomorphism, we have a homogeneous v P V

such that fpvq “ w, and surjectivity follows since W is generated by homogeneous elements.

The following lemma allows us to reduce statements in the derived category to statements in the abelian

category.

Lemma 4.3.15. A map f : V Ñ W is a pro-graded quasi-isomorphism of pro-graded complexes if and only

if each of the Hipfq : HipV q Ñ HipW q are pro-graded isomorphisms of modules.

Proof. We can take a map f : V Ñ W of complexes of kZ-modules. It is easy to verify that taking nth

homogeneous parts (i.e. talking stalks via localization) is exact, so that if Hnpfq is a pro-graded isomorphism,

it is an isomorphism of modules and therefore f is a quasi-isomorphism. Conversely, the global sections functor

is clearly exact.

Definition 4.3.16. A pro-graded dg-algebra is an object of PropAlgpQCohpBGmqqq. If A is a pro-graded

dg-algebra, then SpecpAq is naturally a dg-indscheme with a Gm-action in the sense of [GR14]. We will use

the word ind-stack to mean a prestack which can be written as an inductive limit of closed embeddings of

(derived) QCA stacks (in the sense of [DG13]); in practice we only need the case of a formal completion of a

closed substack of a quotient stack.

Recall the definition of a contracting Gm-action in Definition 2.1.18.

Lemma 4.3.17. Let A be a noetherian weight Zď0 pro-graded connective dg-algebra, which is generated in

negative weights over its weight 0 part, and let I “ π0pA
wtă0q Ă π0pAq be the classical augmentation ideal.

The derived completion A Ñ xAI is a pro-graded quasi-isomorphism. Globally, if X is an ind-stack with a

representable contracting Gm-action with fixed point locus Z Ă X, then OX Ñ O
yXZ

is a pro-graded quasi-

isomorphism of quasicoherent sheaves on X. In particular, OpXq Ñ OpyXZq is a pro-graded isomorphism.

Proof. Choose generators f1, . . . , fr of I. By Proposition 2.4.8 we can compute the homotopy limit xAI via

the limit
xAI “ lim

n

`

Abπ0pAq K
‚
n

˘

where K‚n is the Koszul complex for fn1 , . . . , f
n
r P π0pAq. Since f1, . . . , fr are of strictly negative weight, for

large n, pK‚nq
wtě´k “ pπ0pAqq

wtě´k for any k. Furthermore, homotopy limits can be computed in the derived

category of k-complexes, and in particular we can compute the homotopy limit on each graded piece. Thus,

pxAIq
wt“k is a computed by a limit which stabilizes at Awt“k, proving the claim. For the global claim where

X is an ind-scheme, one can pass to an open affine Gm-closed cover (which exists since Gm is a torus). For

the global claim where X is an ind-stack, one can check the equivalence on a cover of X.

Recall that by Remark 6.11 of [BN12] that there are embeddings pLpX{Gq ãÑ LupX{Gq ãÑ TX r´1s. Thus,

formal loops and unipotent loops inherit compatible Gm-actions and their functions are Zď0 pro-graded. We

have the following.

Lemma 4.3.18. Let X be a geometric stack. The map induced by pullback

OpLuXq Op pLXq»
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is a pro-graded (quasi-)isomorphism.

Proof. An argument is outlined in Corollary 2.7 of [BN13a]; we will repeat it for convenience. By Lemma

2.1.12, LX is geometric. The formal loops pLX are the completion of the unipotent loops LuX along constant

loops, and the action is contracting by Lemma 2.1.19. The statement follows by Lemma 4.3.17.

Example 4.3.19. The pro-graded isomorphism of Lemma 4.3.18 may fail to be an isomorphism. For

example, take X “ G{U where U is any unipotent subgroup of G; then we have that

LppG{Uq{Gq “ LpBUq “ U{U Ñ LpBGq “ G{G

has image inside the unipotent cone of G. In particular,

LupBUq “ LpBUq “ U{U pLpBUq “ pu{U.

For example, if U “ BGa, then the map is

OpLupBGaqq “ OpGa ˆBGaq “ krx, ηs Ñ Op pLpBGaqq “ OppGa ˆBGaq “ krrxssrηs

is a pro-graded isomorphism but not an isomorphism, where |x| “ 0 is a generator for OpGaq and |η| “ 1 is

a generator for OpBGaq.

Using the fact that the map is a pro-graded isomorphism, we can show in the case of a unipotent group

that the map on Tate-equivariant functions is an isomorphism by a finiteness argument. Essentially, we show

that applying the Tate construction collapses enough of the target to produce an isomorphism. We include

the following proposition as an easy precursor to the next one; it is not required in future arguments.

Corollary 4.3.20. Let U be a unipotent algebraic group, and X a quasicompact algebraic space with a

U -action. Then, the natural map induced by pullback

OpLupX{UqqTate Op pLpX{UqqTate»

is an isomorphism. In particular, taking X “ pt,

OpLupBUqqTate “ OpU{UqTate Op pLpBUqq » kppuqq»

is an isomorphism.

Proof. By Lemma 4.3.18, the map is a pro-graded isomorphism. Furthermore, applying the Tate construction,

we have that Op pLpX{Uqq » H‚pX; kqppuqq since U is contractible, where u has cohomological degree 2 and

weight 1. The statement follows from Lemma 4.3.14: for quasicompact algebraic spaces X, H‚pX; kq is

finite-dimensional and therefore has has a homogeneous basis.

A tweaking of the above argument gives us the reductive case.

Corollary 4.3.21. Let G be a reductive algebraic group, and X a quasicompact algebraic space with a G-

action. Then, the natural map induced by pullback

OpLupX{GqqTate Op pLpX{GqqTate»

is an isomorphism.

Proof. Let h denote the universal Cartan of the Lie algebra g of G, and W the universal Weyl group acting

on h. By Proposition 4.2.6 we have

Op pLpBGqqTate » C‚dRpBG; kq b! ppuqq » krrhssW ppuqq
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where h is in cohomological degree zero and subcomplex H‚pBG; kq is given by krhusW . By Proposition 2.1.25,

and the identification G{{G » T {{W for reductive groups G, we have that LupBGq “ LpBGqˆT {{W xt0u, and

in particular by base change,

OpLupBGqq » Opxt0u

so that OpLupBGqqTate » Op pLpBGqqTate » krrhssW ppuqq. In particular,

OpLupX{GqqTate Ñ Op pLpX{GqqTate

is a map of module objects over the algebra object krrhssW ppuqq in the category QCohpSpecpkZqq, where h has

weight -1 and cohomological degree 0, and its cohomology groups are linear over H0pkrrhssW ppuqqq “ krrhssW .

We claim that the cohomology groups of the target

HipOp pLpX{GqqTateq » HipC‚dRpX{G; kq b! kppuqqq

are finitely generated over krrhssW by weight-homogeneous generators; assuming the claim, the result follows

from Lemma 4.3.17 and Lemma 4.3.14.

To see the claim, we trace through the identification of Proposition 4.2.6, keeping track of the weights.

The cotangent complex LX has weight -1 and u has weight 1 by convention. Thus, we find that under the

identification of Proposition 4.2.6, C‚dRpX{G; kq has weight 0 and u has weight 1. Therefore, it suffices to show

that the ring H‚pX{G; kq is finitely generated over H‚pBG; kq by finitely many cohomologically homogeneous

generators. This can be observed via the derived Cartan model for equivariant cohomology, which computes

H‚pX{G; kq via a double complex whose E1 page is H‚pXq bk krrgss
G, completing the claim.

We can now prove Theorem 4.3.1, which we restate for convenience.

Theorem 4.3.22. Let X be a quasicompact algebraic space with an action of an affine algebraic group G.

The natural map induced by pullback

OpLupX{GqqTate Op pLpX{GqqTate»

is an isomorphism.

Proof. Every affine algebraic group G embeds as a subgroup of a reductive group K. Apply the previous

corollary to pX ˆG Kq{K. Note that X ˆG K is not guaranteed to be a scheme, but is always an algebraic

space.

References

[ABV92] Jeffrey Adams, Dan Barbasch, and David A. Vogan Jr. The Langlands classification and irreducible

characters for real reductive groups. Vol. 104. Progress in Mathematics. Birkhäuser Boston, Inc.,
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[Toë07] Bertrand Toën. “The homotopy theory of dg-categories and derived Morita theory”. Invent. Math.

167.3 (2007), pp. 615–667.

[Toë14] Bertrand Toën. “Derived algebraic geometry”. EMS Surv. Math. Sci. 1.2 (2014), pp. 153–240.
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