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Abstract

We prove an equivariant localization theorem over an algebraically closed field of characteristic zero
for smooth quotient stacks by reductive groups X /G in the setting of derived loop spaces as well as
Hochschild homology and its cyclic variants. We show that the derived loop spaces of the stack X/G
and its classical z-fixed point stack mo(X*)/G* become equivalent after completion along a semisimple
parameter [z] € G//G, implying the analogous statement for Hochschild and cyclic homology of the dg
category of perfect complexes Perf(X/G). We then prove an analogue of the Atiyah-Segal completion
theorem in the setting of periodic cyclic homology, where the completion of the periodic cyclic homology
of Perf(X/G) at the identity [e] € G//G is identified with a 2-periodic version of the derived de Rham
cohomology of X/G. Together, these results identify the completed periodic cyclic homology of a stack
X /@G over a parameter [z] € G//G with the 2-periodic derived de Rham cohomology of its z-fixed points.
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Derived loop spaces appear naturally in questions of Hochschild homology. When X is a prestack such
that the derived categories QCoh(X) and IndCoh(X) are compactly generated by Perf(X) and Coh(X)
respectively, their Hochschild homology can be computed in two ways. On one hand, it is computed by the



usual cyclic bar complex, but it can also be naturally identified with the global sections of a sheaf of functions
or distributions on the derived loop space £LX of X [BN13b]:

HH(QCoh(X)) = O(LX),  HH(IndCoh(X)) = w(£X).

When X is a derived scheme, the loop space £X is equivalent to the shifted odd tangent bundle via a derived
variant of the Hochschild-Kostant-Rosenberg theorem, reflecting the Zariski-local nature of derived loops.
Introducing the S'-action, results in [BN12] [Prel5] identify periodic cyclic homology with 2-periodic derived
de Rham (co)homology:

HP(Perf(X)) = O(LX)™ ~ O3 (X5 k) (),  HP(Coh(X)) = w(L£X)™™ ~ O\ qr (X; k) (1))

where u € C?(BS"; k) is the degree two universal Chern class. Furthermore, over k = C, the main result in
[Bhal2] identifies derived de Rham cohomology with Betti de Rham cohomology of the analytification, and
we have that HP(Perf(X)) ~ Cir(X*";k)((v)). Our goal in this paper is to investigate the periodic cyclic
homology where X is taken to be a smooth quotient stack.

A difficulty in understanding the Hochschild homology of stacks which does not appear for schemes is the
failure of derived loop spaces to form a cosheaf for the smooth topology; informally, Hochschild homology
is Zariski local but not smooth local'. On the other hand, as argued in [BN12], sheaves and functions on
formal loop spaces (i.e. loop spaces completed at constant loops) can be computed via a smooth covers.
We begin to bridge this gap by understanding the global loop space L£(X/G) after completion over fibers
of the map to L(BG) = G/G as well as to its affinization G//G. We show that completion over G/G gives
a certain formal loop space and completion over G//G gives a certain unipotent loop space, formalizing a
“Jordan decomposition for loop spaces” which appeared in [BN13a], where it was applied to realize a moduli
stack of Langlands parameters for representations of real reductive groups. Informally, we view X /G as a
family of formal loop spaces over G/G, which we in turn view as a family of unipotent loop spaces over G//G,
ultimately realizing X /G as a family of unipotent loop spaces over the affine parameter space G//G.

This paper contains two main theorems. The first realizes well-established equivariant localization pat-
terns (e.g. asin [GKM98] [Tho87] [Tho86]) in the setting of Hochschild homology via its geometric avatar, the
derived loop space. The second realizes an Atiyah-Segal style (e.g. as in [AS69] [Tho88]) completion theorem
identifying completed periodic cyclic homology with 2-periodic equivariant derived de Rham cohomology.
Over C a theorem of Bhatt [Bhal2] gives an identification with the Betti cohomology of the analytification.

We mention a few related results in the literature. An analogous theory was explored by Block and
Getzler in [BG94] in the setting of a compact group G acting on a compact smooth manifold M. Similar
results appear in the algebraic setting when G is finite (i.e. X /G is a Deligne-Mumford stack) in Theorem
1.15 of [ACH14], and in the case of an smooth affine quotient stack in Lemma 4.11 and Proposition 4.12 of
[HP16]. We generalize their statements to the case of a general smooth quasi-projective quotient stack. Our
statements have also been investigated in the setting of smooth quotient stacks with finitely many orbits in
[BN13a], with special attention to the case B\G/B in Theorem 3.5 of op. cit.

We will now begin stating our results precisely. The following theorem is an abridged version of our
geometric equivariant localization theorem for derived loop spaces, which appears in the main text as Theorem
3.1.12.

Theorem A (Equivariant localization for derived loop spaces). Let G be a reductive group acting on a
smooth variety X over an algebraically closed field k of characteristic 0, and z € G a semisimple element.
Note that £(X /G) naturally lives over L(BG); let £,(X/G) denote the completion of L(X/G) along the fiber
over the semisimple orbit {G - z}/G < L(BG) and let LY(X/G) denote the completion over the saturation

1This depends on definitions. Our notion of Hochschild homology is the one that is computed by a cyclic bar complex of a
small dg category. Other authors have considered a variant which is obtained by extending the notion of Hochschild homology
of affine schemes to stacks via flat descent, which is smooth local by definition and is equivalent to the a completed version of
the former.



[2] € G//G. For X a smooth variety with a G-action, there are functorial S*-equivariant isomorphisms

L.(mo(X?)/G*) —= L.(X/G), L (mo(X?)/G7) —=— LYX/G).

We remark briefly on the assumptions of the theorem. We assume that k is algebraically closed and that
z is semisimple in reductive G since we argue via the Luna slice theorem, and we work in characteristic 0
since we model derived schemes locally as dg algebras. The assumption that X is smooth is used to compute
via Koszul resolutions, and is essential since the statement is false otherwise.

We note that in the case that G is a torus, these statements can be strengthened: the above maps are
equivalences on a Zariski open neighborhood over z, recovering the equivariant localization in [CG10] for
K-theory in the setting of periodic cyclic homology. However, for a nonabelian reductive group G, this fails
even in the case when X is a point (see Remark 3.1.14 and Example 3.1.3). Our result implies the following
interpretation of derived fixed points, which also appears in [ACH14] as Corollary 1.12.

Corollary 1.0.1. Let G be a reductive group acting on a smooth variety X and z € G semisimple. We have
a natural identification of the derived z-fixed points:

L(mo(X?)) —— X7 := L(X/G) xpc {z}.
Proof. The “shift by z” map on L(mo(X?)/G?)) is a (non-S'-equivariant!) equivalence, so that
L.(mo(X7)/@) = L(mo(X7)/G?),
and in particular since loop spaces commuted with fiber products, X* ~ L(mo(X?)). O

The unipotent version of equivariant localization for loop spaces implies an equivariant localization result
for Hochschild homology and its cyclic variants. The following appears in the main text as Theorems 3.2.3
and 3.2.10.

Corollary 1.0.2 (Equivariant localization for Hochschild homology). Let G be reductive group acting on a
smooth variety X, and z € G a semisimple element. Then we have an S'-equivariant equivalence

HH (Perf(X/G)); —— HH (Perf(mo(X?)/G?))z
and similarly when replacing HH with its cyclic variants HC, HN, and HP.

Note that since the formation of periodic cyclic homology involves a colimit, this is not automatic in that
case. The fact that X is smooth gives us a cohomological boundedness of Hochschild homology, which is
essential in establishing the above result.

After identifying the completed derived loop spaces over a central character z, we are interested in
identifying this completion with de Rham cohomology via an analogue of the Atiyah-Segal completion theorem
in the setting of periodic cyclic homology. The following theorem is a consequence of Proposition 4.2.6 and
Theorem 4.3.1.

Theorem B (Atiyah-Segal completion for periodic cyclic homology). Let X/G be a global quotient stack
where X is an algebraic space. Then, there is an equivalence

HP(Perf(X/G))s —= C3x(X/G; k) @, k((w))

where Cyp(X/G; k) denotes the derived de Rham cohomology, and C;)! indicates completion with respect to the
coarsest topology induced by the derived Hodge filtration and u-adic filtration on respective tensor factors.



When k£ = C, applying a generalization of the main theorem of [Bhal2| to geometric stacks, we can
identify Tate functions on formal loop spaces with Betti cohomology.

Corollary 1.0.3. Let X/G be a finite type global quotient stack over k = C, where X is an algebraic space.
Then, there is an equivalence

HP(Perf(X/G))e —= O3(X /G C)® C((u))

where C3p (X" /G, C) denotes de Rham cohomology of the analytification and &)! indicates completion with
respect to the coarsest topology induced by the Hodge filtration in the Cartan model for equivariant cohomology
and u-adic filtration on respective tensor factors.

The main technical hurdle in the proof of the theorem is that the fiber of £L(X/G) over [e] € G//G does
not just contain formal loops but also unipotent loops. In Theorem 4.3.1 we show that this difference vanishes
after applying the Tate construction.

Theorem C. For X a quasicompact algebraic space acted on by an affine algebraic group G, the pullback
functor on derived global functions induces an isomorphism

O(LM(X/G))™e —=— O(L(X/G))™.
In particular, if U is a unipotent group, then the pullback functor induces an equivalence
HP(Perf(X/U)) —— HP(Perf(X)).

Following an analysis of the twisted S!-rotation action on £(X/G) above points of G/G away from the
identity in Section 4.1, we relate this completion theorem to our localization theorem in Theorem 4.3.2.

Theorem D. Let G be a reductive group acting on a smooth quasi-projective variety X. The periodic cyclic
homology HP(Perf(X/Q)) is naturally a module over HP(Perf(BQG)) = k[G//G]((w)). For a closed point
z € G//G, we have an identification of the formal completion at z with 2-periodic Betti cohomology of the
z-fixed points

HP(Perf(X/G)): —= Cplmo(X7)/G%5 k) @y k((u))

as a module over HP(Perf(BG)); ~ C3,(BG*; k) ®'k k((w)), contravariantly functorial with respect to X.

Using Corollary 1.0.1, we also obtain an identification of the (derived) specialization of periodic cyclic
homology at z € G with non-equivariant cohomology of z-fixed points.

Corollary 1.0.4. Let X be a smooth variety with an action of a reductive group G. For z € G semisimple,
let k. denote the skyscraper sheaf at [z] € G//G. We have an equivalence

HP(Perf(X/G)) ®£[G/G]((u)) k2 ((u)) —— Cip(mo(X*); k) ((u)-

We indicate two natural directions in which our results may be extended. The first is to ask what happens
when X is allowed to be singular; in this case, one can study either the Hochschild homology of Coh(X)
or Perf(X). In the case when X is a fiber product of smooth schemes, the geometric statement follows
immediately from our results, but it is unclear to us how to generalize beyond that case. If a geometric
statement is out of reach, it is also of interest as to whether the global localization statements for periodic
cyclic homology hold; an obstruction to applying the standard techniques of embedding a singular quotient
stack into a smooth one is the lack of a devissage theorem for the periodic cyclic homology of stacks. A



second direction would be to categorify these results in a generalization of the Koszul duality of [Prel5] and
[BN12]. In addition, it would be pleasing to have a more conceptual proof of Theorem 4.3.1.
We end our introduction with a few toy examples.

Example 1.0.5. Let G = G,, = Speck[z,271] act on X = A! = Spec k[x] by scaling, i.e. assign G,,-weight
|z| = 1. The loop space can be calculated directly via Proposition 2.1.8

_ Spec k[z, 27 Y 2] {z(2 — 1))
Gm

L(AY/G,,)

The Hochschild homology and periodic cyclic homology can also be calculated directly
HH(Perf(A'/G,,)) = (k[z, 271, z]/x(z — 1)) = k[z,27Y],  HP(Perf(A'/G,,)) = k[z, 271]((w))

as the S'-equivariant structure on a complex concentrated in a single cohomological degree can only be
realized by the zero map. Completing at any zg € G, gives, for t = z — 2z and |¢| = 0,

HP(Perf(A'/Gy,))z ~ k[[t]]((w))

where t = z — 2.

On the other hand, we can compute H*((X*)*"; k)((u)) for each zy. For z = zp # 1, the fixed points
mo(X*)/G* = {0}/G,, ~ BS', whose 2-periodic cohomology is H*(BS'; k) ® k((v)) = k[[s]] ® k((v))
with |s| = 2. For 2z = 1 the fixed points are A'/G,, ~ C/S' ~ BS!, and the same argument applies. The
identification k[[s]]((w)) ~ E[[¢]]((u)) is by tu = s; in particular it is necessary to invert the degree 2 operator
u. The discrepancy between the cohomological degrees of ¢t and s is a manifestation of the Koszul duality
degree-weight shearing discussed in [BN12].

Example 1.0.6 (Flag variety). Let X = G/B be the flag variety with the usual action of G. Then,
X/G = BB, so L(X/G) = B/B = G/G is the Grothendieck-Springer resolution; the fiber for the map
G — G over any point g € G consists of the Borel subgroups containing g, i.e. the g-fixed points of G/B. We
identify the Hochschild homology H H (Perf(BB)) as a HH (Perf(BG))-module by the inclusion map

HH(Perf(BB)) = O(G/G) = k[H] < HH(Perf(BG)) = O(G/G) = k[H]W

where H is the universal Cartan subgroup and W is the universal Weyl group?. Let s € G be a semisimple
element, and [s] its adjoint orbit. Completing at [s] € k[H]", we have

HH(Perf(BB)) = ‘(—Bl k[[b]] — HP(Perf(BG))s ~ k[[n]]"".
W-s

In particular, the rank of HP(Perf(BB)); over HP(Perf(BG))s is |W - s| - |[Wgs| = |W| by a theorem
of Steinberg and Pittie [Ste75]. Note that b is placed in cohomological degree zero. Applying the Tate
construction, we find that

HP(Perf(BB)) ~ K{[6]]™" (w).

On the other hand, the fixed points (G/B)® consist of Borel subgroups containing s; by conjugating, we
can choose a torus such that s € T < B; let t be the Lie algebra of T. There is a G*-action on (G/B)® and
its stabilizer at every point is conjugate to B®, but the action may not be transitive; thus, (G/B)® is the
disjoint union of copies of G*/B?®. To count the number of connected components, we count T-fixed points:
the T-fixed points of G/B are also s-fixed points, and furthermore each G°/B? contains |Wgs| such T-fixed

2Tt is known that O(G) has vanishing higher cohomology.



points, so we have |W|/|Wgs

g [ BB)™k= @D K]« H(BG)™k) = k][]

[WI/IW-s| [Wl/[wes|

connected components. Finally, accounting for T-equivariance, we have

where t is placed in cohomological degree 2. In particular,

HP(Perf(BB)) iy ~ K[[B]]"" ((w) ~ k[t ((w) > H*((BB*)""; k) ®' k((u))

under the isomorphism uh ~ t.

1.1 Conventions and notation

In this note, k will denote an algebraically closed field of characteristic zero, and we work over pt = Spec(k).
Unless otherwise stated, all functors and categories are derived, e.g. for an affine scheme X = Spec(A), we
denote by QCoh(X) the derived category of unbounded complexes of A-modules localized with respect to
quasi-isomorphisms, and ® = ®” although we sometimes use the latter notation for emphasis (e.g. when
performing calculations). We indicate a functor that is not derived by writing 7 or H°.

All gradings follow cohomological grading conventions (i.e. differentials increase degree), unless otherwise
indicated by a subscript, and H H will always denote the cochain complex of Hochschild chains rather than
its cohomology groups, which we denote H*(H H). We refer to the nth cohomology group of a chain complex
V by H*(V) = m_p (V).

We require a theory of co-categories and derived algebraic geometry. Such theory has been developed by
by Toén and Vezzosi in [TV05] [TV08] and by Lurie in [Lurl?] [Lur09b] [Lurl8] [Lur09a] [Lurlla] [Lurllb]
[Lurllc]. Below, we summarize some of the main definitions.

Remark 1.1.1 (oo-categories). By oo-category we mean an (00, 1)-category, and we do not specify a particular
model®. We let S denote the oco-category of co-groupoids or spaces and we will take for granted that the
category of oo-categories is enriched in S. We let sty denote the oo-category of small (stable) k-linear
oo-categories whose 1-morphisms are k-linear exact functors, and Prﬁ the category of presentable (stable)
k-linear oo-categories whose 1-morphisms are functors which are k-linear exact left adjoints?. Note that
presentable co-categories admit a combinatorial model structure.

For such a category C € Pré, we let C“ € st; denote its compact objects. For C € stg, we let
Ind(C) € Pry denote its ind-completion. By [Coh16], a presentable k-linear co-category in Pry has an
associated k-linear differential graded category in dgcat). We will denote by Funk(—, —) and Funf(—, —)
the spaces of k-linear exact functors which are left and right adjoints respectively. For more details, see
Chapter 5 of [Lur09b], Section 1.4.4 in [Lurl7], and Section 6 of [Lurlla).

Remark 1.1.2 (Derived stacks). We let DRng denote the co-category of derived rings (or derived algebras
over k); during our exposition we do not insist on a particular model, but we will always compute in the
category of dg algebras over k with its projective model structure. The opposite category Aff = DRng is
defined to be the category of affine derived schemes. A derived scheme is as a derived locally ringed space
whose O-truncation is a scheme and whose higher homotopy groups are quasicoherent [Toél4] [Lurl8]. The
global sections functor and derived spectrum functors induce equivalences identifying Aff with the category
of derived schemes whose 7 is affine in the classical sense. We will refer to derived schemes as simply
schemes, and use the term classical scheme to refer to a derived scheme X for which 7o(X) = X.

A dg scheme [CKO1] or embeddable derived scheme is defined somewhat differently; it is defined to be a
scheme (X, Ox) along with a non-positively graded sheaf of complexes O% such that O% = Ox and H"(O%)

3A forthcoming book by Riehl and Verity [RV18] establishes the model-independence of (o0, 1)-categories and its foundational
properties, constructions, and theorems.

4In particular, by Remark 6.5 in [Lurlla], k-linear presentable categories are automatically stable. By the adjoint functor
theorem, left adjoint functors commute with filtered colimits.



are quasicoherent. In particular, a dg scheme Z = (X, O%) admits an embedding Z — X into the classical
scheme X = (X, Ox). Every derived scheme is locally modeled by a dg scheme.

A prestack is an co-functor Aff°? := DRng — S, and a (derived) stack is a prestack which is a sheaf
for the derived étale topology [GR17] [TV08]. We mean (derived) algebraic stack in the sense of [DG13]:
an (derived) Artin 1-stack whose diagonal is quasi-separated, quasi-compact, and representable by (derived)
schemes and admits an atlas by a (derived) scheme. We mean geometric stack in the sense of [BN12]: an
algebraic stack whose diagonal map is affine. We say an algebraic stack is quasi-compact if it admits a
quasi-compact atlas U (equivalently, if it admits an affine atlas). A map of prestacks X — Y is schematic
if for any scheme S and map S — Y, the base change X xy S to S is a scheme. A map of derived schemes
f: X — Y is a closed immersion if it is in the classical sense on my; a map of algebraic stacks is a closed
immersion if it is after base change to an atlas.
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2 Background

In this section we provide some basic exposition on Hochschild homology, loop spaces and derived algebraic
geometry. At parts it is an informal summary of the existing literature, and at parts we provide proofs of
some folklore likely known to experts.

2.1 Derived loop spaces and its variants

An in-depth discussion of derived loop spaces, which we often simply refer to as loop spaces, can be found in
[BN12]. We will summarize the main definitions and prove some foundational results in the case of the loop
space of an algebraic or geometric stack. These should probably be skipped on a first reading; the essential
statements for the main body of the paper are in Propositions 2.1.20 and 2.1.25, which provide an explicit
description of the formal and unipotent loops of a global quotient stack.

Definition 2.1.1. We consider the higher derived stack S* as the locally constant sheaf on Aff with value
the topological circle S'. Its affinization is the shifted affine line BG, = SpecC®(S';k) and the map
S! = BZ — BG, is induced by the map of abelian groups Z — G,.

Remark 2.1.2. The stack BG,, is not an affine scheme since C*(BS?; k) is not connective, but it still has a
well-defined functor of points; it is an example of a coaffine stack (in the language of [Lurllb]) or an affine
stack (in the language of [Toé06]). Explicitly, by Lemma 2.2.5 in [Toé06] or the introduction to Section 4 of
[Lurllb], it is the right Kan extension® of the classical stack® sending an affine scheme S = Spec(R) to the
Eilenberg-Maclane space K (R, 1) where R is considered as an abelian group under addition. The affinization
map S! — BG, is given on S-points by the map of Eilenberg-Maclane spaces K(1,Z) — K(1,S) where we
consider S as an abelian group under addition. We fix an isomorphism C*(S'; k) ~ k[n] where || = 1.

5That is, the (fully faithful) left adjoint to the restriction of a prestack (i.e. a functor DRng — S) to a classical prestack
(i.e. a functor Rng — S).
6In fact, coaffine stacks are always left Kan extensions of classical stacks.



Definition 2.1.3. Let X be a prestack. We define the derived loop space and its variants as follows.

e The (derived) loop space of X is the derived mapping stack
L(X):=Map(S', X) ~ X xxyx X.

The second presentation is a consequence of the presentation of S' via the homotopy pushout S! ~
pt]gopt = ¥.5°, and the property that derived mapping stacks take coproducts in the source to
products. The evaluation map p : LX — X realizes the loop space as a relative group stack over X.
The derived loop space has a canonical S'-action by loop rotation.

e The formal loop space L(X) is the completion of £(X) along constant loops X — £X. It inherits a
loop rotation S!'-action from £X.

e The unipotent loop space L*(X) is the derived mapping stack
LY(X) := Map(BG,, X)

and the affinization map S' — BG, defines a map £*X — L£X. There is a natural BG, x G,,-action
on L£*X arising from the natural G,,-action on BG,, compatible with the S'-action on £X.

e If X admits a cotangent complex, we define the odd tangent bundle, a linearized form of the loop space,
by
Tx[—1] := Specy Symy Lx[1]

i.e. the relative spectrum of the derived symmetric powers” of the cotangent complex. There is a
projection ¢ : Tx[—1] — X and a zero section ¢ : X — Tx[—1] induced by the structure and
augmentation maps respectively. We write T x[—1] for the odd tangent bundle completed at its zero
section. Both Tx[—1] and 'ﬁ‘x [—1] are equipped with a natural BG, x G,,-action, where the BG,-action
is encoded by the de Rham differential and the G,,-action is by scaling on the fibers.

Definition 2.1.4. Let X be a quasicompact geometric stack. There is an exponential map

~

exp : @X[*l] — LX

defined in Section 6 of [BN12]. In particular, L£X has a natural BG, x G,-action compatible with the
Sl-action.

Theorem 2.1.5 (Hochschild-Kostant-Rosenberg). The exponential map is an equivalence.

Proof. For the stacky case, see Section 6 of [BN12]; when X is a derived scheme, see the main theorem of
[BFO8]. O

Example 2.1.6. If X = Spec(A), then the derived loop space
L(X) = Spec(A ®ag,ao» A) = Spec(C*(A; A))

is the derived spectrum of the cyclic bar complex equipped with the shuffle product. The rotation S!-action
has a combinatorial realization via the cyclic structure on the cyclic bar complex [Lod92] [Jon87]. In this
example, we think of the bar resolution B*(A) — A as the A ® A°P-module obtained by tensoring A with

"We define the relative spectrum as follows: for an algebra object A € QCoh(X), we define the S-points for Specy .A as pairs
(n,8) where n € X(S) and § : S — Specn* A which are compatible under the projection; note that n*.4 is an algebra since
S is an affine derived scheme and pullback preserves the monoidal structure on quasicoherent sheaves. The symmetric algebra
functor Symy is left adjoint to the forgetful functor from the category of augmented commutative unital associative algebra
objects of QCoh(X), which exists by the adjoint functor theorem.



the map of simplicial complexes I — pt, where the unit interval I is presented by a simplicial set with two
0-simplices and one non-degenerate 1-simplex:

B*(A)=AQI— A X ~ Mappg,(I,X) = Spec(A®I).

The cyclic bar complex C*(A) = B*(A) ®aga-r A is obtained by gluing the two 0-simplices of I, i.e. it is
the chain complex associated to the tensor product of A with the presentation of S' by one 0-simplex and
one non-degenerate 1-simplex:

C*'(A)=A®S! L(X) = Mappg,(S*, Spec(A)) = Spec(A® S*).
This makes £X into a cocyclic scheme and O(LX) into a cyclic algebra.

Example 2.1.7. If X is a stack, then mo(£X) is the (classical) inertia stack of X, so LX can be thought of
as a derived inertia stack. In particular, let X = BG; then £(BG) = G/G is the stacky adjoint quotient (see
Proposition 2.1.8 below). Note that £L(BG) = BG xpaxpa BG is classical since the diagonal map is flat.
The S'-equivariant structure on O(G/G) has a description in terms of the a cyclic algebra arising from the
cyclic structure on the simplicial Cech nerve for the atlas G — G/G (see Section 7.3.3 of [Lod92]).

Proposition 2.1.8 (Loop space of a quotient stack). The loop space of a quotient stack L(X/G) can be
computed by the G-equivariant fiber product

L(X/G) —— (X x Q)/G

l laxp

X/G —5— (X x X)/G
where G acts on X x X and X x G diagonally.

Proof. Note that X/G x X/G ~ (X x X)/(G x G) with action (g1, g2) - (z1,22) = (g121, g2z2). We write

X X XxG X x G
X XxX

G oo E:GXGX%GXG

where the map X x G — X x X sends (z,¢9) — (x, gz) and the action of G x G on X x G is (¢1,92) - (x,9) =
(g1, 2997 "). The claim follows from the “two-out-of-three” lemma for pullback squares applied to

L(X/G) — (X x G))G —— (X x O)/(G % G)

l | |

X/G —— (X x X)/G —— (X x X)/(G x Q).

O

Remark 2.1.9. Forgetting G-equivariance, the geometric points of the loop space L(X/G) x g pt are given
by

(L(X/G) xpa pt)(k) = {(z,9) € X(k) x G(k) | g~ = z}.
The geometric fiber of the map £(X/G) — L(BG) = G/G over g € G(k) is the fixed points X9(k). The
geometric fiber of the evaluation map £(X/G) — X /G over x € X (k) is the stabilizer of z in G(k).

Example 2.1.10 (Odd tangent bundle of smooth quotient stacks). In the case of X/G where X is smooth,
we have that

Ly/c = (2% — g* ® Ox)



where the internal differential d is the Cartan differential:

Sym" (Lx/g[1]) = Sym"(Qx — ¢* ® Ox) ~ (A% — g* @0 ' — -+ — Sym"(¢*) ® Ox),

PxOh -1 = (hfn, Syt gr O xlild )

The resulting de Rham complex is called the Cartan model for equivariant cohomology; see Proposition 4.12
of [HP16] for more discussion. This example can also be carried out when X is not smooth, replacing QY
with ]Lx.

2.1.1 Loop spaces of algebraic and geometric stacks

We prove some technical facts which may be skipped on a first reading. Note that a quasi-compact geometric
stack is automatically QCA in the sense of [DG13].

Remark 2.1.11. The following principles are standard and will be used frequently. If X is an algebraic
stack then X admits a cover by a disjoint union of affine schemes; if X is quasi-compact this disjoint union
can be taken to be finite, so that X admits a cover by an affine scheme. If X is geometric (i.e. has affine
diagonal), then

SxxT=(%xT)xxxx X

is affine for any affine schemes S, T

Lemma 2.1.12. Let X be an algebraic stack. Then LX is an algebraic stack. If X is geometric, then LX
is geometric. If X is geometric and quasi-compact, then so is LX.

Proof. Assume X is algebraic. That £X is algebraic follows from the fact that £X = Map(S!, X) is a finite
limit, and any finite limit of algebraic stacks is algebraic. An algebraic stack X is geometric if and only if for

any map from an affine U — X, the stack U x x U is an affine scheme. In particular, U x x«x X is a cover
for £LX, and we have

(UXXxxX) Xﬁx(UXXxxX)IUXx([:XX£X (UXXX)(X))Z(UXXU) XXXXx

which is affine since U x x U is affine and the diagonal map is affine, so £LX is geometric. Assume X is also
quasi-compact; then it admits a cover by an affine U, and U X xxx X is also affine since the diagonal is
affine. 0

Lemma 2.1.13. Let X be an algebraic stack. Then the inclusion of constant loops X — L(X) is a
(schematic) closed immersion.

Proof. Since the diagonal map X — X x X is representable by schemes, so is the evaluation map £(X) — X.
Let U — X be an atlas for X with U a scheme; its base change along the evaluation map gives a cover by
a scheme U X xxx X — LX. In particular, by the two-out-of-three property of Cartesian squares, the left
square is Cartesian

U—U XXxX X —U

| ! |

X LX X

i.e. the base change of the inclusion of constant loops X — L£X along an atlas is a scheme, so it is schematic.
It is a closed embedding since any map of derived schemes which admits a retract is a closed embedding, and
U — U xxxx X admits a retract by universal property.

We provide a proof for the last claim. It suffices to assume all schemes are classical, since the the property
of being a closed immersion depends only on classical schemes and the property of admitting a retract is
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preserved by mg. Let f: Z — Y be a map of schemes admitting a retract. We can verify that f is a closed
immersion affine locally on Y, so assume Y is affine. It is a closed immersion if f#: Oy — f. Oy is surjective.
Since Y is affine, this is equivalent to O(Y) — O(Z) being surjective, which follows since the composition on
global functions O(Z) — O(Y) — O(Z) is the identity. O

We now introduce the notion of based loops of a stack. Namely, given a point of a stack, the based loop
space is the group of automorphisms of that point and the unipotent based loops consist of the unipotent
automorphisms. We use these characterizations in Propositions 2.1.20 and 2.1.25 to give explicit descriptions
of the formal and unipotent loop spaces of quotient stacks.

Definition 2.1.14. Let X be a prestack, and « : S — X be an S-point where S is an affine derived scheme.
The group of based loops at x, which we denote Q(X, x), is the oo-group object® in prestacks over S defined
to be the Cech nerve of the map z : S — X, i.e. its underlying derived stack is £LX x x S or equivalently the
pullback

Q

)

x

P

x) ——
e

N

If f: X —> Y is a map of prestacks, with € X(5), then there is a natural map of oo-groups Q(f,x) :
AUX,z) » QY, f(z)). We define the unipotent based loops of X, denoted Q*(X,z), by the fiber product
L%(X) xx S; there is a natural map Q%(X,z) — Q(X,x). Note that the unipotent based loops do not form
a group.

Remark 2.1.15. If X is algebraic, then based loops at z € X (S) form an co-group object in derived schemes
over S, and if X is geometric, the based loops form an oco-group object in affine derived schemes over S.

Example 2.1.16. Let X be an (affine) derived scheme and x € X (k) a geometric point. Then, Q(X,z) =
Tx .[—1] = Spec Symz*Lx[1] is the odd tangent space at x € X (k). The comultiplication on functions is
given by the natural comultiplication on the symmetric algebra and antipode map by the sign morphism.

Lemma 2.1.17. For any S-point x € X(S), we have a natural identification of prestacks over S
O%(X,z) = Homg,p 5(G, x S,Q(X, x))
where the natural map Q*(X, x) — Q(X, ) is identified with evaluation at 1 € G,.
Proof. Let f: 8 — S and v € Q%(X, z)(S’) with base point f*z. Note that
QX,z) xg 8" =QX, f*x) = Cech(S" — X x5 5).

We will also use v to denote its image in (£“X)(S’). Let ¢o : pt — BG, denote the inclusion of the (additive)
identity. The diagram

S’ id S’

J/L() X idsl J/ZE

BG, x 8 —15 X xg 5

commutes, and therefore we have a map of the corresponding Cech nerves as oo-groupoids, giving us a map

QU(X, :C)(Sl) - HOmng’S/(Ga X S,, Q(X,:I?) Xs Sl)

8The notion of an co-group can be found in Defintion 7.2.2.1 of [Lur09b], a useful characterization in Proposition 7.2.2.4 of
op. cit. . Proposition 6.1.2.11 of op. cit. shows that Cech nerves are o0-groupoid objects in any oo-category, so that Q(X,z) is a
groupoid object in derived stacks and therefore a group object in derived stacks over S. We use the notation Homg.p to denote
the space of group homomorphisms.
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for every S’, natural in f, inducing a map of stacks
O*(X,z) - Homg,p s(G, x S, Q(X, x)).

We now produce the inverse to this map. To do so, we need to produce a map Homg, s/(Gq x
S QX, f*x)) — (X, x)(S) naturalin f : 8" — S. First, note that Q" (X, z)(S) = Map(BG, xS’ X)x x(s)
Map(S’, S), so we only need to define a map

Homyg,p s/ (Go x S, Q(X, f*z)) —> Map(BG, x 5', X).

Taking geometric realizations of the co-groups over S considered as simplicial objects in derived stack, we
obtain a map BG, x S’ — BsQ(X, f*x). We compose with the map BsQ(X, f*x) — X induced by universal
property of geometric realizations applied to the augmentation map f*x : S’ — X. We leave the verification
that these two maps are inverses to the reader, and naturality with respect to evaluation at 1 € G, (essentially
since S! = BZ — BG, is induced by the inclusion of 1 € G,). O

The following notion of a contracting action will be used in Section 4.3.

Definition 2.1.18. Let X = Spec(R) be an affine scheme with a G,,-action. We say the G,,-action is
contracting if it acts by only non-positive weights on R. In this case, the fixed point locus is Y = Spec(R®™),
and we say the G,,-action contracts to Y. In particular, there are maps ¥ — X — Y. More generally,
let X be a prestack with a G,,-action, equipped with a G,,-equivariant affine map p : X — Y where Y
is given the trivial action. We say the G,,-action contracts to Y if for any affine S and map S — Y, the
induced G,,-action on S xy X contracts to S. In particular, this implies there is also a G,,-equivariant
section ¥ — X.

Lemma 2.1.19. Let X be a quasi-compact geometric stack. The G,,-actions on L*X and Tx[—1] contract
to the fixzed point locus of constant loops.

Proof. The claim for Tx[—1] is by definition. For the unipotent loop space, take x € X(S). It suffices to
show that the induced G,,-action on Q"(X, x) is contracting. This follows from the description of Q"(X,z) =
Homyg,p, 5(Gq, Q(X, x)), and the contracting G,,-action on G,. O

2.1.2 Formal and unipotent loops over schematic maps

In [BN12], it is shown that for X a scheme, £(X) = £*(X) = £(X). This is not true for stacks, but we will
now show that for a schematic map f : X — Y, the formal and unipotent loops of X are loops in X whose
images in Y are formal and unipotent respectively.

Proposition 2.1.20. Suppose that f : X — Y is a map of algebraic stacks representable by schemes. Then,

~

L(X)=L(Y) x (v £(X).

Proof. Tt suffices to show that the closed classical substack mo(Y" x £(y) £(X)) has the same reduced points as
X < L(X). To do this, it suffices to check on geometric points. Consider the diagram of classical pullbacks

QUX,z) —— QY, f(z)) —— Speck

! I [

Speck —*— f~(f(z)) —— X

! !

Speck L) Y.
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Since f is schematic, x : Speck — f~!(f(x)) is a closed embedding of schemes (since it as a map of schemes
admitting a retract; see Lemma 2.1.13). Since Y is an algebraic stack, Q(Y, f(z))) is a scheme, and so
QX,z) - QY, f(z)) is a closed embedding of schemes and a map of affine (classical) group schemes. The
preimage of the identity is thus the identity, so constant loops in LY are preimages of constant loops in
LX. O

Example 2.1.21 (Quotient stacks). In the case of quotient stacks, we have a map £(X/G) — L(BG) = G/G.
The above proposition says that £(X/G) is the completion of £L(X/G) at the closed substack of points lying
over {e}/G < G/G.

The following is well-known, but we provide a brief argument for the reader’s convenience.

Proposition 2.1.22. Let H,G be groups in affine derived schemes over k. There is a natural identification
Map(BH, BG) = Homg,,(H, G)/G

where G acts on Homgy,,(H,G) by the adjoint action.

Proof. Note that we assume k has characteristic zero. We define maps ® : Map(BH, BG) — Homg,,(H,G)/G
and ¥ : Homg,,(H,G)/G — Map(BH, BG) and leave the verification that they are strict inverses to the
reader. These are maps of sheaves; we will restrict our attention to defining their map on S-points ®g and
U

The map ®g of spaces is defined as follows. Let F' € Mapg(BH x S, BG x S) be the map of sheaves whose
value at S' — S is a functor Fs/ from (right) H-torsors over S’ to G-torsors over S’. We define

Fs/(H x 5) BN Homg_g,p(H x S,G x S)
(I)S(F)(S/) = J{Gftorsor
S’

where ¢ is defined as follows. There is a canonical identification of automorphisms of the trivial torsor
Autg (8" x H) = H(5), and for h € Autg(S x H), F(h) is an automorphism of F (S’ x G), which we
abusively write F'(h) € G as an section in G(S’). We define ¢(x)(h) = - F(h).

The map ¥ is defined as follows. The S-points of Homg,,(H,G)/G are G-torsors P over S with G-
equivariant maps ¢ : P — Homg,,(H, G). We define for S” — S and @ a H-torsor over S’

Us(P,¢)(5)(Q) = Q x" (P xs 5)
where H acts on P on the left via ¢. O

Definition 2.1.23. A map of prestacks X — Y is a monomorphism, i.e. X is a substack of Y, if for any
affine derived scheme S and y € Y'(S) the fiber product {y} xy(g) X(S) is contractible (in the category of
spaces).

Proposition 2.1.24. Let X be a geometric stack. The map L*X — LX is a monomorphism, i.e. unipotence
of a loop is a property and not a structure.

Proof. Let S = Spec(R). Consider an S-point v € (£LX)(S), which determines a base point z € X(S) and
a based loop g € Q(X,x)(S5). We wish to show that £“X(S) x,x(s) {(7)} is contractible. Equivalently,
we wish to show that Q"(X,z)(S) xq(x.)(s) 19} is contractible. Since X is geometric, Q(X,x) is derived
affine. By Lemma 2.1.17 it suffices to show that for a derived affine group G over S, the map of stacks
Homyg,p, 5(G, x S,G) — G is a monomorphism on S-points. Note that an co-group object is by definition an
oo-monoid object satisfying a condition; in particular, the map Homg,p, §(G4 x S, G) — Hompon, (G4 xS, G)
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is a monomorphism. Furthermore, the forgetful functor from Coalg(Alg(R)) to Coalg(R-mod) = Coalg(R)
is fully faithful, so the map Homyon,5(Ga x S, G) — Homcoalg(r) (P+On(x,2) Osxe,) 18 @ monomorphism.
It suffices to show that the map induced by evaluation at 1 € Gg:

HomCoalg(R) (p* OQ(X,m)a OSXG,;,) = HomCoalg(R—mod) (R[Q<X7 iL’)], R[:C]) - HomR(R[Q(Xa 33)], R)

is also a monomorphism. By the calculation in Lemma 1.12 of [GG99], Os ®i O(G,,) is the cofree coalgebra
object in Coalg(QCoh(S)), so this map is an equivalence. O

Proposition 2.1.25 (Unipotent loops of quotient stacks). Let G be a classical affine algebraic group over
k. Then,
LY(BG)=U/G

where U is the unipotent cone of G (i.e. the closed subvariety of unipotent elements of G). Furthermore, if
G acts on a scheme X, then L*(X/G) is computed by the pullback square

LYX/G) —— L(X/G)

! |

U/G ——— GJG.

Proof. Tt suffices to prove the statement on based loops at a given = € (X /G)(S) where S be an affine derived
scheme, say S = Spec(R). The based loops in X /G for any S-point x € X(S) can be computed via a fiber
product

AUX/G,z) —— Q(BG,p(z)) =G x S

| |

S - X.

Let Ug denote the unipotent cone of G, and let Ug(x/q,.) denote the closed reduced classical subscheme of
the inverse image of Ug x S < G x S. Let 0Q(X/G7x) the formal completion of Q(X /G, z) at Ug(x/c.z)- We
first claim that Q“(X /G, x) = UQ(X/G@).

Using Proposition 2.1.17, evaluation at 1 € G, provides a map @ : Q*(X/G,z) — Q(X/G, x), which is a
monomorphism by Proposition 2.1.24. Such a map factors through ﬁQ( X/G,z) if its (classical) set-theoretic
image lies in the inverse image of the unipotent cone U x S. This, we can check on k-points of S, and
in particular assume that S = k. The claim now follows from the classical result that for a map of linear
algebraic groups over k, the image of a unipotent element must also be unipotent (i.e. its eigenvalues are all
1 € k). In particular, Q*(X /G, z) c ﬁQ(X/GJ) c QX/G,x).

For surjectivity, we define the inverse map ¥ : (/jQ(X/G,x) — QX /G,x) = Homgrp s(Gq,s, UX /G, x))
via the adjoint to an exponential map G, s xg ﬁQ(X/G’I) — Q(X/G,x) which we will now construct. We
take as a given that such an exponential map is constructed for classical affine algebraic groups over k, i.e.
we have a map G, x ﬁG — G. To define an exponential map for Q(X /G, z), we use the universal property
of fiber products and the classical fact that if an S-point g € G(.9) fixes z € X (5), then so does g* € G(S) for
t € G,(S). More precisely, the following diagram commutes, inducing the desired exponential map

Ga,s x5 ﬁQ(X/G,z) —— G5 x Ug

14



2.2 Cyclic homology

In this section we give a brief overview of the basic definitions of Hochschild homology and cyclic homology,
as developed in Section 5.5 of [Lurl7]. Further discussion can be found in [BN13b] [BN13b] [Hoy18] [AMR17]
[AF17] [AFR18] [NS18]

Definition 2.2.1. Let Catg be a symmetric monoidal co-category with monoidal unit 1g, and X € Catg
a l-dualizable object with dual XV, coevaluation 7 : 1g — X ® XV and evaluation ¢ : XV @ X — 1g. We
define the dimension of X by

dim(X) = eon € Endcatg (1g)-

If F: X - Y is a morphism with a right dual (i.e. adjoint) G, then we can define
dim(F) : dim(X) —— tr(Go F) —— tr(F 0o G) —%— dim(Y).

Remark 2.2.2. More precisely, the a choice of dualizing structure for X € Catg determines an explicit
dimension dim(X). By Proposition 4.6.1.10 in [Lurl7], the space of dualizing structures on X is contractible;
therefore, dim(X) is defined uniquely up to unique isomorphism in the homotopy category Ho(Endcats (1g))-
This fact allows us to compute Hochschild homology in two different ways using different dualizing structures
on a category and know that they are equivalent without explicitly producing an equivalence.

Remark 2.2.3. Lurie’s proof of the Cobordism Hypothesis [Lur09¢c| allows for an equivalent formulation:
there is a bijection between 1-dualizable objects X € Catg and framed extended Catg-valued n-dimensional
topological field theories Zx; for a 1-dualizable object X we define the dimension by

dim(X) = Zx(S1).
By this definition, there is evidently an S'-action on dim(X). The relationship between S'-action and its
explicit realization via the cyclic structure is spelled out in Theorem 5.5.3.11 in [Lurl7].

We will define the Hochschild homology of a category to be its dimension; we first need to define a
monoidal structure on co-categories.

Definition 2.2.4 (Lurie tensor product). The category Pr’ is equipped with a monidal structure called the
Lurie tensor product in Proposition 4.8.1.15 of [Lurl7], which can be thought of as an oo-analogue of the
Deligne tensor product. It is equipped with a canonical functor

CxD->C®D (X,Y) > XK Y.

which is initial amongst functors out of C x D which preserve small colimits separately in each variable.

Remark 2.2.5. Proposition 4.8.1.17 of [Lurl7] provides an explicit realization C®D ~ Fun®(C°, D) which
is presentable by Lemma 4.8.1.16 of [Lurl7]. In particular, by [Lur09b] Proposition 5.5.3.8, the Lurie tensor
product makes Pr” into a closed monoidal category with internal mapping object Fun® (=, —). Furthermore,
by Propositions 4.8.2.10 and 4.8.2.18 in [Lur17], the Lurie tensor product induces a tensor product on k-linear
presentable categories Pré.

Definition 2.2.6. Let Pré’i’ be the oco-category of dualizable presentable stable k-linear co-categories, and
functors which preserve compact objects. We define the Hochschild homology functor by

HH := dim : Prﬁ"vU — Funﬁ(Vectk,Vect;g) ~ Vect,,.

By [AFR18], the Hochschild homology as defined above has an S!-action.
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Remark 2.2.7. The dimension of a dualizable k-linear category takes values in chain complexes under the
equivalence
Endcat, (lg) = Funﬁ(Vectk,Vect;g) ~ Vect,,.

That is, every such endofunctor F' commuting with colimits is determined by its value F(k). In particular,
a choice of dualizing structure determines an explicit Hochschild chain complex.

Remark 2.2.8. Note that the Lurie tensor product is defined on Pr’, and dimension is functorial only for
right dualizable maps, so Hochschild homology is only functorial for functors whose right adjoints also admit
right adjoints (equivalently, whose right adjoints are also continuous). By Proposition 5.5.7.2 of [Lur09b],
these are exactly the functors which preserve compact objects.

Traditionally, Hochschild homology is formulated in the setting of small stable k-linear dg categories.
In particular, in this setting it is possible to explicitly write out a bar complex computing the Hochschild
homology. We will see that the above “large” notion of Hochschild homology is a generalization of the “small”
version. The following is proven in Theorem D.7.0.7 in [Lurl8] and Proposition 4.6.15 in [Lurl7].

Proposition 2.2.9. I[fCe Pri is compactly generated, then it is dualizable. In particular, if C = Ind(C?),
then CV = Ind(C%°P), and the evaluation map is given by ind-completion via universal properties of the
Yoneda pairing Hom(—, —) : C%° x C — Vecty. Furthermore, there are natural isomorphisms

Fun’(C, C) ~ Funf (C, Vect;,) ® C ~ C¥ @ C

which realize the coevaluation via the identity functor in Funj (C,C).

Definition 2.2.10. Let st; be the co-category of small stable k-linear co-categories. We define the Hochschild
homology functor
HH = dimolInd : st;, — Funﬁ(Vectk,Vectk) ~ Vect,,

i.e. HH(C) is the image of k under the composition
Vect;, 2% Funl(C,C) —— C¥ ® C —— Vecty.

Remark 2.2.11. If C is compactly generated, then HH(C) = HH(C%), so the two definitions of Hochschild
homology given above are compatible.

We now seek to understand the S'-action on Hochschild homology. While there are purely categorical
ways to view S! actions, we model the concretely on chain complexes via a mixed differential.

Definition 2.2.12. A mized complez is a dg-module over the dg-algebra H,(S'; k) ~ k[e] where |¢| = —1.
Explicitly, it is a chain complex (V, d) with a mized differential € of cohomological degree —1 such that de = ed
and €2 = 0.

We are interested in the following operations on mixed complexes.

Definition 2.2.13. We define the S'-invariants and S*-coinvariants functors by
VS = RHomg, (g1 (Co(ES k), V) = (V[[u]], d + ue) € k[[u]]-mod,

Vei 1=V Qc,(s1.5) Co(ES'; k) ~ (V[u™"],d + ue) € k[[u]] -mod,—tors -

and the Tate construction by

yTate _ S ®rkru]) k((u)) = limu* Vg = (V((w)),d + ue) ~ (V((u)),d + ue) € k((u))-mod.
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Remark 2.2.14. The action of Cs(S; k) on Cy(ES'; k) comes from the sweep action of chains of [GKM9S].
Taking a presentation of ES' as a colimit of odd spheres with free S!-actions, the S'-invariants can be
expressed as a filtered limit

VS = lim R Homg, (g1 (Ca (S¥" 15 k), V) = lim (V [u]/u”, d + ue).

Remark 2.2.15. Note that the Sl-invariants operation (as well as the Tate construction) is not continuous
as defined above?, but can be made so by considering mixed complexes in the category Ind(k[e]-mody.,.)
instead.

Definition 2.2.16. We respectively define the negative cyclic homology, cyclic homology and periodic cyclic
homology by

HN(C):= HH(C)S', HC(C):= HH(C)s:, HP(C):= HH(C)™®

In this note we consider two different explicit models of Hochschild homology and its cyclic variants. One
is the usual cyclic bar construction on a small dg category, and the other is via S!-equivariant functions on
the derived loop space.

Example 2.2.17 (Algebraic model). Let A be a dg algebra (or more generally, a dg category) over k, and
C = A-mod the category of left dg-modules over A. For two dg categories A, B, an A°P? ®; B-module defines
a continuous functor A-mod — B-mod. By the dg Morita theory of [Toé07], this functor

A°? ® B-mod — Funj (A-mod, B-mod)

is an equivalence. Under this equvalence, the coevaluation k-mod — A® A°? -mod corresponds to the functor
A®y, —, where A is considered as a bimodule over itself, and the evaulation map corresponds to —®agaor A.
In particular, the Hochschild homology is given by the usual Hochschild homology

HH(A-mod) = HH(A; A) = A®agacr A.

Definition 2.2.18 (Cyclic bar complex). The cyclic nerve of a small k-linear dg category C is the cyclic
vector space whose n-simplices are given by

Cn(C) = H Home(Xo, X)) ® Home (X, Xp—1) ® - - - ® Home (X1, Xo)
X0y, Xn€O0b(C)

where the face maps are given by composition, the degeneracy maps by the identity homomorphism, and
the cyclic structure by rotation of the terms. Its associated chain complex, which also abusively denote by
C.(C), is the cyclic bar complex which is naturally a mixed complex with the mixed differential arising via
the Connes B-operator. This mixed differential exhibits the S!-action on Hochschild homology [Hoy18].

Remark 2.2.19. One can obtain smaller models by taking objects from a set of compact generators (see
Theorem 5.2 of [Kel06]) rather than all of Ob(C); for example, if C = A-perf, then the free module A is a
compact generator and one recovers the classical cyclic bar complex C*(A; A).

Example 2.2.20 (Geometric model). By [BFN10], when X is a perfect stack (e.g. a quotient stack of
a derived quasiprojective scheme by an affine group in characteristic zero), then QCoh(X) is compactly
generated by Perf(X) and we have isomorphisms

QCoh(X) ® QCoh(X) ~ QCoh(X x X) ~ Funt (QCoh(X), QCoh(X))

9For example, consider N = colimy, k[—2n]. Since N is acyclic, NS' = 0. On the other hand, (16[7271])31 = u k[[u]] so
that colim(k[—2n])S" = k((u)).
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where the functors on the right are given by integral transforms. Explicitly, we identify
QCoh(X) —— QCoh(X)V
on compact objects K € Perf(X) by
K—T(X,KQ®—) ~T(X,Homx(K",—)).

Letting p : X — Spec(k) be the map to a point and A : X — X x X the diagonal, the coevaluation is given
by the functor A.p* and the evaluation by p.A*. In particular, we find that the Hochschild homology is

HHPerf(X)) ~ pe A*Ayp™k = T(X,A*A,Ox) ~T(LX,0rx) = O(LX)

with the last isomorphism arising via base change. The S!-action on O(L£X) is the S'-equivariant structure
arising from loop rotation; for details see Remark 3.2 and Proposition 4.2 in [BN13b].

Remark 2.2.21. If X is QCA but not perfect, it is not currently known whether QCoh(X) is compactly
generated. On the other hand, by Theorem 4.3.1 of [DG13], QCoh(X) is dualizable, so that

HH(QCoh(X)) = O(LX)

by a similar argument. It does not appear to be known whether H H (Perf(X)) agrees with HH(QCoh(X)).

2.3 The equivariant cyclic bar construction
We now define an explicit model for the Hochschild homology of a quotient stack.

Proposition 2.3.1. Let X be a quasiprojective scheme with an action of a reductive group G, and let
p:X/G — BG and q : X — X /G be the natural maps of stacks. Let € € Perf(X/G) be a locally free sheaf
such that ¢*& is a compact generator of QCoh(X). Define

A =p.RHomx (£,E) € Alg(QCoh(BQ)).

Then, the functor
RHomx (€, ) : QCoh(X/G) — A-modqcon(Ba)

is an equivalence of dg categories.

Proof. Since X is quasiprojective, it admits an equivariant compact generator £ of Perf(X) (not Perf(X/G)).
The functor is fully faithful since ¢ is an atlas and ¢*& is a generator. It is essentially surjective, since
A-perfooon(pg) 18 generated by A® V for V e Irr(G), and RHomy/g(£,£@V) =A@ V. O

We need the following formula for G-representations.

Proposition 2.3.2. Let G be a reductive affine algebraic group, and V,W two rational representations of G
(i.e. V,W € QCoh(BG)). Then, there is a natural equivalence

P VRUH@UW)Y —=— (VeWw)C.
Uelrr(G)

More generally, for Vy,...,V, rational representations of G, there is a natural equivalence

P HUH@ULeVieUi ) ® @ U,®V,)% —— (VL& - ®V,)°.
Us,..., U, €lrr(G)
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Proof. Consider V [XIW € QCoh(BG x BG) as a G x G-representation. The projection formula defines an
equivalence
I'(BG x BG,AyOpc ® (VKIW)) — I'(BG, A*(VKIW)).

The result follows by unwinding this equivalence using the Peter-Weyl theorem for reductive algebraic groups
A,Opg = k[G] = @Udrr(g) U* ® U, and noting that taking global sections amounts to taking G or G x G-
invariants (note that there are no higher cohomology groups since G is reductive). The second claim results
from iterating the first, or by applying the projection formula to the diagonal BG — BG*™. O

Remark 2.3.3. The map above, which we now denote ¢, and its inverse 1 can be written out explicitly:

do@uf Qui Qv Qus @ Quy ®uy) = (uf(ur) - ul(up)) Vo ®- - vy

V(o ® - @up) =7 > V@M OV @12 ® - ®Np @ vy,

Uy,...,Up€lrr(G)

where 1; € U ® U; is the identity map, and 7 = (—)¢ ® -+ - ® (—)¢ is the tensor products of the projections
to the G-invariant isotypic component.

Definition 2.3.4. Let A € Alg(QCoh(BG)) be an associated algebra object with coaction map ¢ : A —
A® k[G]. The equivariant cyclic bar complexr Co(A,G), defined in [BG94], is the mixed complex associated
to the following cyclic vector space. We define the n-simplices by

Cu(A,G) = (AP @ K[G])C
with face and degeneracy maps
di(an® - ®a,®f) =a0® - ®a;0i11 Q- ®a,® f i=0,....,n—1,

dp(ap® - ®an® f) = clan)ao® - ® f,

and cyclic structure

Ha® ®an®f) =clan)®a® - Qan_1® f,
Sn41(00® - ®ap, ®f) =1®a® - Qa, ® f.

Remark 2.3.5. Note that it is essential to take G-invariants for C.(A, G) to admit a cyclic sructure. In
particular, if a9 ® - - - ® a,, ® f is G-invariant, then

c(a0) ®--Qclan) @ f =ar® - @an®f.

Proposition 2.3.6. The equivariant cyclic bar compler Co(G, A) computes H H(Perf(A-modgcon(sa)))-

Proof. Since A generates A-perf, the objects A ® V) generate A-perfqoon(pg) and we have the following
“small” model for HH (A -perfqeon(pey). The cyclic bar complex corresponding to the generating set {AQV |
V e Irr(G)} of A-perfqcon(pg) has terms

Dy(A,G)= @  Homu(A®Vp, AQVI)?@Homs(A®V:, A®VL)Y® - @Homa(AQV,—1, AQV,, ).
Vo, Vn€lrr(G)

Using the natural isomorphism Homs(A®V,AQ W)¢ = (AQ V* ®@ W)Y, we rewrite:
D,(A,G) = P (VFRARV)@(VF®A®K)® @ (VAR V)C.

Vo, Vn€lrr(G)
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Next, we can rewrite C" (A, G) using the Peter-Weyl theorem for reductive algebraic groups:

Cu(A,G)= D (V" A% V)¢
Voelrr(G)

Applying Proposition 2.3.2 to each summand (i.e. for fixed V) produces an equivalence D, (A,G) —
Cn(A, @); the claim that it defines a map of cyclic objects is left to the reader. O

Remark 2.3.7. The equivariant cyclic bar complex C,(X,G) provides us with an explicit model of the
Hochschild homology H H (Perf(X/G)) as a k[G]-linear mixed complex (i.e. both the internal and mixed
differentials are k[G]%-linear). Furthermore, since (—)¢ is a left adjoint functor whose right adjoint preserves
epimorphisms, the terms in Co(A, G) are also projective.

2.4 Formal and derived completions

We review the notion of formal completions of derived stacks and the notion of derived completion in the
derived category. This section is essentially a summary of the results in Chapter 4 of [Lurllc], Section 3.4 of
[BS15], Section 15.80 of the [Stal8], and Chapter 6 of [GR14].

Definition 2.4.1. Let f B X — Y be a map of derived stacks (or more generally, prestacks). The formal
completion of f, written Yx, is a prestack whose functor-of-points whose S-points are given by diagrams
mo(S)ed —— X
]
S —Y.
It can also be defined via the fiber product
}//)\( =Y xyar X9E,

Lemma 2.4.2. The formal completwn of a map X — Y only depends on mo(X)"*? — Y. In particular, if
Z —'Y is a closed embedding, then YZ xy X = XWO(ZXYX)red

Proof. This follows directly from the functor-of-points characterization of formal completions, and that
mo(X)"? is the universal stack that canonically factors any map from a classical reduced scheme 7o (S)"¢?. O

Definition 2.4.3. Let f : A — B be a map of derived rings. Following [Lur09al], we say that f is étale
if the induced map mo(A) — mo(B) is étale and for every n € Z, the map 7,(A) ®xya) To(B) — m,(B)
is an isomorphism of abelian groups. A map of derived schemes is étale if it is for a Zariski cover, and a
representable map of derived Atin stacks is étale if it is after base change to a cover.

Proposition 2.4.4. Let X,Y,Z be stacks admitting deformation theory'®. Suppose that f : X — Y is étale,
and let Z — X be any map. Then, the relative cotangent complex vanishes Lx y ~ 0. Furthermore, the map

on formal completions XZ — YZ s an equivalence.

Proof. The first sentence is Proposition 2.22 in [Lur09a]. For the second, by the exact triangle for cotangent
complexes we have a natural isomorphism L,y ~ L ,x under Lz, and note that the formal completion of
amap Z — X is a colimit of square-zero extensions controlled by the the map between cotangent complexes
Lz — Lz/x (see Chapter IV.5 in [GR1T]). O

We now discuss how to compute the derived completion of a quasicoherent complex in the derived category.
It is defined abstractly a the left adjoint to an inclusion functor of complete objects which we now define.

10This notion is defined in Chapter IV of [GR17] and is satisfied by quotient stacks.
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Definition 2.4.5. Let A be a connective dg ring, and fix an ideal I < 7(A). We define the full subcategory
A-mod,;; of I-nilpotent objects consisting of those modules on which I acts locally nilpotently, i.e. for each
cycle m € H*(M) there is some power of I which annihilates m. By Proposition 4.1.12 and 4.1.15 in [Lurllc],
the inclusion A -mod,;; — A-mod is continuous and preserves compact objects; therefore it has a continuous
right adjoint I'y, which we call the local cohomology functor. We define the full subcategory A-mod;,. of I-
local objects as the right orthogonal to A-mod,;;, and the full subcategory A-mod.p; of I-complete modules
to be the right orthogonal to A-mod;,.. The subcategory A-mod., has an equivalent characterization as
those modules such that the homotopy (derived) limit

I s M2 M2 M
is zero for all x € I. By Proposition 4.2.2 of [Lurllc], the inclusion of the complete objects has a left adjoint,
which we call the (derived) completion functor and denote (—).

The following is Proposition 4.2.5 in [Lurllc].

Proposition 2.4.6. The composition of left adjoints

A-mod,,;; —— A-mod Q A-mod.p

s an equivalence. Consequently, the composition of its right adjoints
A-modep —— A-mod S SN A-mod,;;

s also an equivalence.

Example 2.4.7. Let A = k[z] and I = (z), then k[[z]] is I-complete, k[z,z1]/k[x] is I-nilpotent, k[z] is
neither, and k[z]/2™ is both. Furthermore,

J——

Lr(k[[2]]) = Tr(k[z]) = klz, 27 )/k[2][-1]  klz,2= /K] = k[z][1] = K[[=]][1].

The derived completion and local cohomology functors can each be computed in two ways. The following
can be found as Propositions 15.80.10 and 15.80.17 in [Stal8] and in a global form as Proposition 3.5.1 in
[BS15] and Proposition 6.7.4 in [GR14]. The statements on local cohomology are well known (and which we
will not use).

Proposition 2.4.8. Assume mo(A) is a noetherian ring, and choose generators fi,..., fr of I c mo(A). We
define the complex

6 = ( mo(4) — [Im(AH] — Ty mlA) . F] — - —— mo(Ale #] )
The derived completion of an A-module M can be computed in two ways:
M = Rli}glM@ﬁo(A) A/ ) ~ RHomg, (4)(G*, M).
Likewise, we can compute the local cohomology of M by
T';(M) = colim R Homy, () (M/(ff',. . f1), M) ~ G ®F, 4y M.

The latter formula is the calculation of local cohomology via a Cech resolution with supports on an affine
scheme.
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Remark 2.4.9. A theory of formal completions is described in [GR14] with the following notation. Let X
be a dg scheme, and Z < X a classical closed subscheme. There is a functor i* : QCoh(X) — QCoh()A(Z)
with a fully faithful (continuous) left adjoint i whose essential image is the category of quasicoherent sheaves
supported on Z, and a fully faithful (non-continuous!) right adjoint i whose essential image is the category
of quasicoherent sheaves complete with respect to the ideal sheaf for Z. There is an exact triangle of functors
arising from the localization functor /Z\z/Z\* (whose essential image is cocomplete):

Tz =i2* — idqoon(x) = Jwd* = (-)|v-

In particular, the functor on the left is local cohomology, and the functor on the right is restriction to U.
The (non-continuous) functor i,i* is the (derived) completion.

The following lemma is likely well-known, but we could not find a reference.

Lemma 2.4.10. Let X be a derived scheme, © : Z < X a closed subscheme and j : U = X — Z — X its
complement. Let ¢ : F — G be a map of quasicoherent sheaves on X. If the derived completion ¢z and the
restriction ¢|y are isomorphisms, then ¢ is an isomorphism.

Proof. Using the above exact triangle, to show that ¢ is an isomorphism, it suffices to show that I'z(¢) is an

isomorphism, or equivalently, that 'z (cone(¢)) = 0. To this end, note that cone(¢) = Tyl cone(¢) = 0, and
that iy is fully faithful, so that ¢* cone(¢) = 0, so that I'z(cone(¢)) = i»i* cone(¢) = 0. O

Example 2.4.11. The above is not true for non-derived completions. For example, take X = Al, Z = {0},
and ¢ : 0 > M = k[x, 27 ']/k[x] (M is the module of distributions supported at zero). Since M is supported
at zero, M|y = 0, and since 2* M = M for all k, M\Z = 0, but ¢ is not an isomorphism. On the other hand,
the derived completion of M is k[[z]][1].

3 An equivariant localization theorem in derived loop spaces and
Hochschild homology

3.1 Equivariant localization for derived loop spaces

The following construction defines a notion of formal and unipotent loops near a semisimple orbit of G/G,
i.e. an adjoint closed G-orbit in G consisting of semisimple elements.

Definition 3.1.1 (z-formal and z-unipotent loops). Let X be a derived scheme, G a reductive group acting
on X, and z € G a semisimple element. We let G* denote the centralizer of z, i.e. the z-fixed points
under the adjoint action. We define Z = {gzg~! | g € G} to be the closed G-orbit containing » and
U. = {gzug™! | g € G,u € U n G#} to be its saturation (here, U is the unipotent cone of G' and G* is the
centralizer of z). We define the z-formal and z-unipotent loops in BG by

L.(BG) := Z)G — L(BG) = G/G, LY(BG) :=U.)G — L(BG) = G/G.

For a quotient stack X /G, we define the z-formal and z-unipotent loops by the pullback squares:

L.(X/G) — L(X/G) LUX/G) — L(X/G)
L.(BG) —— L(BG) L£Y(BG) —— L(BG).

This construction is functorial in representable maps over BG. Note that by Propositions 2.1.20 and
2.1.25, L(X/G) = L(X/G) and LY (X/G) = L*(X/G), where e € G is the identity.
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Proposition 3.1.2. Let G be a reductive group, and z € G a semisimple element. The map L(BG*) —
L(BG) is (Zariski) locally étale at z, i.e. there is a Zariski open neighborhood of Z/G < L(BG) = G/G, and
therefore a Zariski open neighborhood of U,/G < L(BG), on which the map is étale.

Proof. Let us recall the set-up of the étale slice theorem as in [Dré04]. Let G be a reductive group acting on
an affine variety X, and « € X a closed point such that the stabilizer Zg(x) is reductive. We define a map
¢ : X — T,(X) as follows. Let m be the maximal ideal for x € X; the quotient map to the cotangent space
has a Zg(z)-equivariant splitting m/m? — m since Zg(x) is reductive, defining a map Sym,,(m/m?) — k[X].
Geometrically, this means choosing functions fi,..., f, € k[X] vanishing at = whose differentials generate
the cotangent space at x, and defining the map ¢ : X — T,,(X) by evaluation

A

y > fiy) i,

’
y=z

in a Zg(x)-equivariant manner. The étale slice is the inverse image ¢~ (N) where N < T,(X) is any normal
subspace to T,(G - x) < T,(X), and the theorem tells us that the map G x%¢(*) =1 (N) — X is étale.

Specializing to our situation, where G acts on itself by the adjoint action, we produce the G*-equivariant
map ¢ : G — T,(G) as follows. Affine locally at z, we can choose generators f1,..., f, such that

k[GY/(f1s-- -, fr) = K[G],

and the vanishing of df, ..., df, cuts out g* < T,(G) ~ gz (i.e. the translation of T.(G) = g by central z).
Thus it suffices to show that g* is a normal subspace to T, (G - z), since ¢~1(g*) = G* by construction. On
the other hand, we have a natural isomorphism G - z ~ G/G?*, inducing T, (G - z) ~ gz/g*z, which produces a
splitting of T>.(G - z) < T,(G) whose kernel is g*. Explicitly, z is semisimple and acts on g, so g decomposes
into z-eigenspaces; g* is the trivial eigenspace and g/g* is isomorphic to the sum of all other eigenspaces.
Using the fact that the map G* x& G — G is G-equivariant, and since for any u € U, we have z € G - u,
it follows that every open set containing Z also contains U, . O

Example 3.1.3. Let G be a simple reductive algebraic group and choose z € G regular semisimple. Its
centralizer is a torus T and the map G xT T"¢9 — G"* is étale with fiber Wy = N(T)/T.

Corollary 3.1.4. Let X be a prestack equipped with the action of a reductive group G over k, and let z € G
be central. Then, L(X/G?) — L(X/G) is étale over a neighborhood of U,/G < G/G. In particular, the
natural maps L,(X/G?*) - L.(X/G) and LY(X/G*) — LY(X/G) are equivalences.

Proof. Loop spaces commute with fiber products, and X/G* = X /G xpg BG*. The second claim follows
since étale maps induces equivalences on formal completions along isomorphic closed subschemes. It is a
straightforward verification that the map

U.c- x¢ G={(huzh™t,9) | ge G,he G*,ue Ug n G*} — U.c = {guzg™' |ue Ug n G7}

is an isomorphism. O

We define two competing notions of z-invariants.

Definition 3.1.5. In the set-up above, we define the derived z-invariants X7 to be the derived fiber product
of the diagram
X — X

J Ir

X 25 (X x X)

where I', denotes the graph of the action by a closed point z € G. We define the classical z-invariants X?* to
be 7o (X*#)/G?, or equivalently, the above square considered as an underived fiber product.
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Given this notion of z-formal and z-unipotent loops, we are ready to define the localization map comparing
z-formal and unipotent loops with the formal and unipotent loops of the classical z-fixed points.

Definition 3.1.6 (Localization map and formal localization map). We define the following maps realizing
localizations from the most global to local.

e We define the global localization map via the composition
L, L(mo(X?)/G*) —— L(X/G?) —— L(X/G)

induced by the sequence of natural maps of quotient stacks mo(X?)/G* — X/G* — X /G where the
first map is the closed immeresion and the second map is the base change map along BG* — BG. For

U/G < G/G an open subscheme, we by ¢, iy the restriction of £, to U. The map lives over the natural
map L(BG*) — L(BG).

e The unipotent localization map €% : L%(mo(X?)/G?*) —— L¥(X/G) is the base change of ¢, along

£Y(BG*) —— L(BG?)

I |

LY(BG) —— L(BG)
where the isomorphism on the left arises via Corollary 3.1.4. Note that the map lives over £¥(BG).
e The formal localization map ©, : /;(WO(XZ)/GZ) — EZ(X/G) is the base change of ¢, along

~

£.(BG?) —— L(BG?)

L |

~

£.(BG) — L(BG)

where the isomorphism on the left arises via Corollary 3.1.4. Note that the map lives over L. (BG).

Remark 3.1.7. Applying the functor — X gg pt, £, can be identified with the map induced on fiber products
of the diagrams

G x& (mo(X?) x G?) X xG
G x% 1(X?) —— G xG (mo(X*) x m(X*)) X Xx X

where the top map sends (h,z,g) — (h -z, hgh™1).

We now investigate the map L(mo(X*)/G?)) — L(X/G#). For ease of notation, we can replace G* with
a reductive group G in which z is central. Our goal is to find an open G-closed neighborhood U/G < G/G
on which the above map is an equivalence. Let us first consider the case when G =T is a torus.

Lemma 3.1.8 (Finiteness of stabilizer subgroups). Let T' be a torus acting on a (quasicompact) variety X .
Only finitely many subgroups of T may appear as stabilizers of this action.

Proof. We can work affine locally, since X has a finite T-closed Zariski cover, and may also assume that X
is connected. If every point of X has stabilizer of equal dimension to T, the possible stabilizer subgroups are
in bijection with a subset of the set of subgroups of the (finite) component group 7/T°. If there is a point
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2 € X whose stabilizer 7% < T has strictly smaller dimension, then by the Luna slice theorem (note that the
stabilizer T* is reductive since every subgroup is) there is a locally closed subvariety V' < X such that the
map a : T xT" V — X is étale and dominant. Any stabilizer of a point in the image of @ must be a subgroup
of T% so the problem reduces to considering (a) the action of T on V along with (b) the action of T on
the compliment of V' < X (which is a closed subvariety, therefore affine, of strictly smaller dimension). Note
that in both cases, the dimension of either the variety or the group decreases, and that the claim is obviously
true for zero-dimensional varieties and discrete (finite) groups, so the lemma follows by induction. O

Corollary 3.1.9. In the above situation, let z € T and let U = T be the open neighborhood of z obtained by
deleting the finitely many stabilizers which do not contain z. Then, for w e U, we have X¥ < X7*.

We bootstrap this reuslt to prove an analogous result for general reductive G.

Proposition 3.1.10. Let G be a reductive group, z € G a central element and X a scheme with a G-action.
Then, there is an open neighborhood U of z in G that is closed under the adjoint action and such that w € U
implies that X" < X?.

Proof. We define U as follows. First, take a maximal torus T' < G containing z. By Proposition 3.1.8, there
is an open neighborhood U’ of T with the given property. We define

U={gtug |teU’ ge G ue Cg(t)""}

where Cg ()™ are the unipotent elements in the centralizer of . The set U is evidently G-closed. By Jordan
decomposition, G —U = G - (T' = U"), so U is open since T — U’ is closed. It remains to show that if w e U,
then X% < X*.

Every w € U has a Jordan decomposition w = su where s is semisimple and w is unipotent; in particular,
s = gtg~! for some t € U’ and g € G. First, note that X* = g- X! < g- X* = X7 (since X7 is G-closed for
central z). By the following lemma, it follows that X* < X* c X~. O

Lemma 3.1.11. Let w € G be an element of a reductive group acting on a scheme X, with Jordan decom-
position w = su for semisimple s and unipotent u. Then, X* < X°.

Proof. If u = e the claim is trivial, so suppose u # e. Take x € X™. There is a 1-parameter subgroup of G
containing s, and a choice of unipotent v # 1 uniquely defines an injective map of algebraic groups G, — G,
assembling into an injective map of group schemes G,, x G, — G. Then, H = (G,, x G,) n G* is a closed
group scheme of G which is at most two-dimensional and which contains w = su. The connected component
He is either the trivial group, G,, x {0}, {1} x G,, or the entire group G,, x G,. If it is the trivial group
then H is discrete, therefore finite, but this is impossible since the projection to G, is open and there are no
finite group subschemes of G,. For the same reason, H° cannot be G,, x {0}. In the remaining two cases,
wH® < H c G*, so w € G* as desired. O

Given this, we are now ready to prove our main theorem.

Theorem 3.1.12. Let X be a smooth variety with an action of a reductive group G, and z € G semisimple.
There is an open substack U/G < G/G containing z such that the S*-equivariant map

v L(mo(X?)/G?) xgzjq= (U N G%)/G* —— L(X/G) xq/q U/G

is étale. If z € G is central, then £, 7 is an equivalence. In particular, the S*-equivariant maps on z-unipotent
loops and z-formal loops are equivalences:

0 L (mg(X7)/G?) — LY(X)@), U, L.(mo(X?)/G?) —=> L.(X/G).
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Proof. Assuming the first statement holds, then the statement on z-unipotent and formal loops follows since
the global localization map is a composition L(mo(X?)/G*) — L(X/G?) — L(X/G). By the first statement
of the theorem, since z is central in GZ, there is an open substack U of G*/G* containing both Z = G - {z}
and its saturation U, over which the first map is an equivalence. By Proposition 3.1.2, the second map is
étale on U, inducing an equivalence on formal completions along Z and U, by the argument in Corollary
3.1.4.

We now prove the first statement. Let U” < G* be an open neighborhood of z € G* from Proposition
3.1.10, i.e. such that mo(X™) < mo(X*?) for w € U”. Let U’ < G be an open neighborhood of z on
which ¢ is étale, obtained via Proposition 3.1.2; note that this implies that ¢ is open over U’. Define
U =¢U")nU < G. By construction, the map £(X/G?*) — L(X/G) is étale over U. It remains to prove
that the map is an equivalence when z € G is central; in this case G* = G.

We proceed by base changing from BG to Spec(k) (i.e. forgetting equivariance). Take Y = mo(X?) for
shorthand, and recall that U < G is an open subscheme on which 7y(X®) < my(X?) for w € U. This means
we wish to show that the map of derived schemes

1Y xyxy (Y xU) > X xxux (X xU)

is an equivalence. Since i is a closed embedding (and therefore affine), we view the map of derived schemes
affine locally as a map of differential graded sheaves of algebras on U x G, which we abusively denote by
Orx/a) = Orvya) = 1xOr(v/q)- Since these sheaves have coherent cohomology on X x G and closed points
are dense in X x G (X x G is locally finite type over a field), it suffices to check the claim on local rings at
closed points (z,w) € mo(L(X/G)) € X x G where w e U” c G and = € mp(X™) < mp(X?) (via the defining
property of U").

Note that Y = mp(X*) is smooth when z € G is semisimple in reductive G by a standard argument
Consequently, the diagonal maps are local complete intersections, and Y = my(X?) < X is also a local
complete intersection. The z-action on the cotangent space T.¥(X) is semisimple, and determines a splitting

11

with identifications

T*

(X) :E()@El, E() = (—Dker(z—)\) ZN:(TF(](XZ)/X), E1 :ker(z—l) ZTI*(’]T()(XZ))
A#L

Let J denote the ideal such that Oy, = Ox 5/J. We aim to compute

OX’QC ®(Z§X><X,(w,w) OXXG,(:D,U}) - OY"T ®éY><Y,(w,w) OYXG’(sz)' (1)
Let v1,...,v, be a basis of Fy and v,,1,...,v, a basis of Ey. By Nakayama’s lemma we can lift this basis of
the cotangent space to generators z1,...,x, € mx , € Ox , such that J = (z1,...,2,). Furthermore, again

by Nakayama, {z; ® 1 —1®z; | i = 1,...,n} form a regular sequence for the diagonal!? X < X x X at
(z,z), and likewise the images of {#; ® 1 —1®z; | i =7+ 1,...,n} form a regular sequence for the diagonal
YcVY xY at (z,2).

Taking semi-free Koszul resolutions of the diagonal, as well as Oy x @, (z,w) a8 @ Ox x G, («,w)-module, Equa-
tion 1 can be rewritten

OXXG,(x,w)[elv"',En] — OYXG7(I,1U)[ET‘+13"'76H] A OXXG’,(:D,w)[EIl,"'a€;~7€T+17-"7€n] (2)

where |¢;| = —1, and the internal differentials are defined by d(e;) = ¢(z;) — z; ® 1 and d(€;) = z; ® 1. The
map on the right is a quasi-isomorphism. To show that Equation 2 is a quasi-isomorphism, it suffices to
produce the dotted map above making the diagram commute. Explicitly, we wish to show that the derived

1 Choose a torus T containing z and apply the étale slice theorem to a T-closed affine open cover.
12Since A and A/J are Cohen-Macaulay, any minimal generating set is automatically regular.
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equations imposed by d(e1),...,d(¢e.) and by d(€}),...,d(e.) differ by an (invertible) change of variables.
That is, we wish to find an element of GL,(Ox x,(x,w)) Which transforms

{x1®1,...;2,®1} into {c(z1)—21®1,...,¢c(x,) —x. ® 1}

The element z is central, so w fixes mo(X?), and in particular the coaction map ¢ preserves the ideal
J. Thus, we can write ¢(z;) = Z:,j:l eij(z; ® 1) for some e;; € Oxyq (s,uw)- Let E = (es5) denote the
corresponding matrix; the matrix E — I is invertible if its evaluation at w € G is invertible. The matrix E(w)
is the action of w on the conormal space Ey = N (mo(X*?)/X); in particular, (E — I)(w) is invertible if and
only if E(w) has no fixed vectors. But w cannot fix any vectors on a normal space of its fixed-point variety,
and since N, (mo(X?/X) < N,(mp(X™/X)), the claim follows. O

Corollary 3.1.13. Let X,Y, Z be smooth varieties, with maps f: X — Z and g:Y — Z. Then
L.(m0(X?) X gy 22y T0(Y?)) = L.(X x7Y)
where all fiber products are derived.

Proof. This follows immediately since loop spaces commute with fiber products. O

Remark 3.1.14. Note that in the case G = T is a torus, every element of T is central, so ¢,y is an
equivalence. Furthermore, Proposition 3.1.8 gives an explicit description of the open set U, which is maximal,
on which ¢, is an equivalence.

3.2 [Equivariant localization for Hochschild and cyclic homology

First, let us show that the completion over a closed point of the affinization [z] € G//G is the same as taking
z-unipotent loops.

Lemma 3.2.1. Let a: G/G — G//G be the affinization, and let a(z) = [z] € G//G. The map above induces
an isomorphism on completions -
LY(BG) ~a=1([2])/G < L(BG).

—

In particular, the map LY(BG) — L(BG) factors isomorphically through a=1([z])/G.

Proof. This follows from Proposition 2.1.25 and the observation that the classical reduced fiber over [z] € G
in G/G is isomorphic to Ug=/G*, where Ug- is the unipotent cone of G*. That is, if u € G* is unipotent, then
uz = zu € G has the same eigenvalues as z, so a(z) = a(zu), and by Jordan composition any y € u=1([2])
can be written uniquely in this way. Furthermore, G** < G7; letting U be the unipotent elements of G?, it
follows from Proposition 3.1.2 that the map G x& U — G is a closed embedding with image p~*([2]). O

As an application of the above geometric incarnations of equivariant localization, we obtain the following
equivariant localization results in Hochschild and cyclic homology.

Definition 3.2.2 (Completion and localization of Hochschild homology). Let G be a reductive group. Note
that HH (Perf(X/Q)) is naturally a HH(Perf(BG)) = k[G]%module. Let z € G be a reductive element
representing a closed point of Spec(k[G]%) = G//G. We denote by H H (Perf(X /G)). the localization at the
maximal defining z € G//G and HH (Perf(X/G))z the completion at z. We define the analgous notions for
HN,HC and HP, taking care to completed with respect to the ideals I,[[u]] and I, ((u)) where I, < k[G]¢
is the ideal defining z € G//G.

The following is an immediate corollary of the the localization theorem for unipotent loops.
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Theorem 3.2.3 (Equivariant localization for Hochschild homology). Let X be a smooth scheme, G a reduc-
tive group, and z € G semisimple. Then the natural map on completions induced by pullback is an equivalence:

HH(Perf(X/G))z —— HH(Perf(mo(X*)/G?))z = O(L(mo(X7)/G?)).
If z € G is central, the map on localizations is an equivalence:
HH(Perf(X/G)). —— HH(Perf(m(X?)/G)). = O(L(m(X?)/G)) ®04,,6 Oc//c,[21-

Proof. Via Lemma 3.2.1, we have a natural identification H H (Perf(mo(X?)/G?))s ~ O(L%(X/G)). The
first claim then follows directly from Theorem 3.1.12; and base change for derived completions along closed
embeddings. The second claim for localizations follows by Theorem 3.1.12, since in that case the map on
Hochschild homology is an equivalence for an open set containing z. O

Remark 3.2.4. For cyclic homology, the situation is a little more delicate. The formation of cyclic homology
HC involves a filtered colimit, the formation of negative cyclic homology HN involves a cofiltered limit, and
the formation of periodic cyclic homology involves both. On the other hand, localization commutes with
colimits and finite limits but not cofiltered limits, and completion commutes with limits but not colimits.

We first need to introduce a few technical notions regarding mixed complexes, with the aim of proving that
in our situation formal completions commute with the Tate construction on Hochschild homology. Analogous
results and arguments can be found in [Kall5].

Definition 3.2.5. Let (V,d, €) be a mixed complex. We define

VHTatc _ (H Vuk,d+U€) V@Tatc = (@ Vuk,d+ UG) = (V[U_lvu]ad+ ue)
L k

where |u| = 2. There are natural maps

V@ Tate _, y/Tate _, Vl_[ Tate

Remark 3.2.6. Lemma 2.6 of [Kall5] shows that the Tate construction preserves quasi-isomorphisms, es-
sentially because it is computed via the right spectral sequence. On the other hand, the other variants above
do not preserve quasi-isomorphisms. In particular, they are not well-behaved in the derived category.

Definition 3.2.7. We say a complex V is cohomologically bounded below (respectively, above) if H' (V) = 0
for all sufficiently small (respectively, large) i. We say V is strictly bounded below (respectively, above) if V
if V' = 0 for i sufficiently small (respectively, large).

Lemma 3.2.8. Let (V,d,€) be a mized complex. If V is strictly bounded below, then VOTate _ yTate g g
isomorphism. If V is strictly bounded above, then VTate — yIITate i o isomorphism.

Proof. The proof of the first statement appears as Corollary 2.7 in [Kall5], which we repeat for convenience.
The chain complex V®Ta% ig in the nth cohomological degree, the vector space @, u*V" =2k whereas VTt
is in the nth cohomological degree the vector space (B~ o uF V") x ([T, o uFV"™=2%. Since V"=2F = 0 for
large k, the product is finite and therefore a direct sum, so the map is an isomorphism. A similar argument
proves the second statement. O

Lemma 3.2.9. Let (V,,d,,€,) be a degree-wise Mittag-Leffler sequential diagram of mixzed complexes such
that the V are uniformly cohomologically bounded above (i.e. right t-bounded). Then, the functors (—)g:
and (=) commute with limits, i.e.

: Tate . 7; Tate
(hgl Va) ~ llén Vv, 2.
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Proof. First, since the limit is degree-wise Mittag-Leffler, R1lim = lim. Note that since the V,, are uniformly
cohomologically bounded above, so is their limit. Since we are only interested in computing the usual
Tate construction which respects quasi-isomorphisms, we can replace each of the V,, and lim V, with their
(strictly bounded above) truncations; the resulting complex is still Mittag-Leffler. Now, note that the | [ Tate
construction commutes with limits. O

Theorem 3.2.10 (Equivariant localization for cyclic homology). Let X be a smooth scheme, G a reductive
group, and z € G semisimple. Then the following maps on completions induced by pullback are equivalences

HN (Perf(X/G))s —=— HN(Perf(mo(X?)/G?))z = O(LY(m0(X7)/G7))S",

HC(Perf(X/G)): —= HC(Perf(mo(X?)/G?))z = O(LY(m0(X?)/G?)) g1,
HP(Perf(X/G)): —=— HP(Perf(mo(X?)/G?))z = O(LY(mo(X7?)/G?))Tote.

Proof. Via Lemma 3.2.1, we have a natural identification HH (Perf(mo(X?)/G?))z ~ O(L%(X/G)). If we can
show that the limit diagram in the formation of the derived completion satisfies the conditions of Lemma
3.2.9, then the claims would follow via Theorem 3.2.3.

Take A € Alg(QCoh(BG@)) to be as in Proposition 2.3.1. First, note that HH (Perf(X/G)) ~ Cs(A,G)
is cohomologically bounded above since A is cohomologically bounded. By Remark 2.3.7, its terms are
projective, so the terms in the limit computing its derived completion with respect to an ideal of k[G]¢ are
classical quotients. Therefore, the limit diagram satisfies the conditions of Lemma 3.2.9. O

Remark 3.2.11. While the statement in the above theorem for negative cyclic homology was more or less
automatic, the statements for cyclic homology and periodic cyclic homology are strongly dependent on the
cohomological right-boundedness of Hochschild homology, which we expect to fail for Coh(X /G) where X is
singular.

4 An Atiyah-Segal completion theorem for periodic cyclic homol-
ogy

4.1 Twisted circle actions on loop spaces

Definition 4.1.1. Let G be an affine algebraic group over k. A G-action on a prestack X is defined to
be a prestack Y over BG, along with an identification Y X gpg pt ~ X. We often abuse notation and write
Y = X/G and understand that the identification implicitly. Furthermore, if Z < G is a closed normal
subgroup, a trivialization of the action of Z on X is defined to be a G’ := G/Z-action on X along with an
identification X/G’ x per BG ~ X/G. If z € G is central, then it generates a normal closed subgroup Z; we
sometimes write z-trivialization to mean a Z-trivialization.

Furthemore, note that any X equipped with a z-trivialization is equipped with a shift map p, : X/G —
X /G defined as follows. It is defined on BG via the map of groups G — G taking g — zg = gz. It is defined
on X/G by transporting the map idx/q Xid,., Hz. across the trivialization X/G ~ X/G" xpg BG. 1t is
evidently an equivalence with inverse p,-1.

Example 4.1.2. If X is a classical scheme with a G-action, on which a normal subgroup Z < G acts trivially,
then there is a canonical trivialization of the action of Z on X.

Definition 4.1.3 (Twisted S'-actions). Let G a linear algebraic group over k and X a scheme over k with
an action of G. We define the following various circle actions on X/G. Let z € G be central.

e The loop rotation S'-action, denoted p, on the loop space L(X/G).
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e The z-twisting S*-action, denoted 7., on BG is induced via the map of groups Z x G — G defined by
(n,g) — z"g = gz". More generally, if X is equipped with a z-trivialization, then the corresponding
z-twisting S* action on X /G is defined via the identification X/G ~ X /G’ x e BG, where S* acts
on X/G'" and BG' trivially, but on BG via the z-twisting described above. It is evident that the maps
defining the fiber product diagram are S!-equivariant.

e The z-twisted rotation, denoted p., on £(X/G) is the diagonal of the S x S'-action p x L,. Note
that it makes sense to talk about the diagonal since p and L7, commute: p commutes with any group
action of the form Ly, where v is an S'-action on X/G.

Furthermore, for w € G central, the map ., : X/G — X/G is S'-equivariant with respect to 7., on the left
and 7, on the right. In particular, £(u.) : L(X/G) — L(X/G) is equivariant with respect to p.,, on the left
and p, on the right.

Remark 4.1.4. Using Proposition 2.1.8, we see that the shift map L(p,) : L(X/G) — L(X/G) has an
explicit realization as the multiplication by z map G/G — G/G on the upper-right term in the fiber product

L(X/G) x e pt —— (X x G)/G

l laxp

X/G —2— (X x X)/G.

Example 4.1.5. On Perf(G/G), the rotation p acts on fibers over g € G by g; the z-twisting L7, acts on
fibers over any g € G by z, and the twisted rotation p, acts on fibers over g € G by gz = zg.

Example 4.1.6. Let G =T be a torus (in particular, every ¢ € T is central). We can explicitly describe the
Sl-actions on linear categories

Perf(L(BT)) = Perf(T x BT) ~ () Perf(T
AEA

where A is the character lattice of 7. Let {z* | A € A} denote the natural basis of monomials for k[T]. The
rotation S'-action p acts on the A\-summand by z*. The t-twisting action 7, on BT acts on the A\-summand
by the scalar z*(t). The t-twisted rotation p; acts on the A-summand by 2*(t)2*.

Let us take the ¢-twisted rotation p;. We have, via the category'® PreMF in [Prell],

Perf(L(BT))* = P PreMF(T,1 -z At) - 2Y),
AEA
Perf(Z(BT))S = P PreMF(T,1—2").
AEA
A()=1
For the second identity, the zeros of 1 — 2*(¢)z* meet the constant loops if and only if z*(t) = 1. After

passing to the Tate category under the rotation action, we note that the zero locus of 1 — z* is smooth (it is
a subgroup of T) of codimension 1 unless A = 0 (in which case it has codimension zero and must be derived).

Therefore,
Perf(L(BT))™t = = (P MF(T,1-2 At) - 22) = Perf(T) @y k(u)),
AeA
Perf(L(BT))™° = @ MF(T,1 - 2*) = Perf(T) @ k((u)).
AEA

AB)=1

Note that the Tate categories do not depend on the twisting at all (but the S'-invariant categories do).

BFor M a scheme and f : M — Gy, the category PreMF (M, f) is the category Perf(M xg,, {1}) with an extra k[u]]-linear
structure acting by cohomological operators.
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Proposition 4.1.7. Suppose z € G is a central element of a reductive group and acts on a quasiprojective
scheme X trivially. Then, there is a k[[u]]-linear equivalence

Lip=)*: OL(X/G))S# —== O(L(X/G))5" +-.

The same holds for formal and unipotent loop spaces.

Proof. Since X is quasiprojective, it has a compact G-equivariant generator £ of QCoh(X). Let A =
RHomy (&,€), so that QCoh(X) ~ A-modqcon(pa). Let ¢ : A — A® Ek[G] be the coaction; note that
the z-twisted rotation is given by twisting the coaction by z, i.e. ¢.(a)(—,g) := c(a)(—,gz) = c(a)(—, z9).
Since z acts on X trivially, this is equal to the usual coaction ¢, inducing an equivalence of S'-invariants
under the untwisted and z-twisted rotations. O

4.2 Tate-equivariant functions on formal loop spaces compute analytic de Rham
cohomology

We now set out to prove the equivariant localization theorem for periodic cyclic homology. We first introduce
some technical notions needed to phrase the result in the 2-periodic setting. Recall the following notions for
vector spaces (not chain complexes) from [Bei08].

Definition 4.2.1. A linear topological vector space is a a vector space V' which admits a topology for which
the vector space operations are continuous, and such that there is a system of neighborhoods at 0 consisting
of subspaces. In this case, the topology is generated by this system at 0 and translations under addition.
The completion V of V is the limit over the system of neighborhoods U,:

~

V= lim V/U,.
0eU,

We say the topology is complete if the natural map V — Vis an isomorphism. Let V7, V4 be linear topological
vector spaces. We define a linear topological vector space, the !-tensor product V; ® Vs, via the naive tensor
product on underlying vector spaces equipped with topology by the basis consisting of open sets of the form
Ui @ Vo + Vi ®Us,, where Uy < V4 and Us < Vs, are opens. We define Vi ®' V5 to be V; ®' Vs completed with
respect to this topology.

These notions generalize immediately to chain complexes, where we replace the notion of subspace with
subcomplex. In this case, the complexes term-wise satisfy the Mittag-Leffler condition and therefore lim* = 0,
so Rlim = lim. Note that as in [Kall5]

Vi® Va = limlim Vi ® Va.
Vi Vs

Remark 4.2.2. It is unclear to us how the notion of a topological chain complex should interact with
quasi-isomorphisms.

We now review the constructions and results of [Bhal2] and [Har75].

Definition 4.2.3. Let X be a finite-type derived stack with affine diagonal over k, and Ly its cotangent
complex. The derived de Rham compler dRx is the sum-totalization of the complex (D, - A" Lx[-n],dar),
which comes equipped with a Hodge filtration F* dRx = (@®,,5), /\" Lx[—n],dar). The Hodge-completed
derived de Rham complex dRr x is the completion of dR x with respect to the Hodge filtration (see Construction
4.1 in [Bhal2]). We will denote the derived global sections of this complex to be the complex of derived de
Rham cochains Cyp(X; k).

We have two competing notions of Hodge filtrations in the negative cyclic homology of Perf(X/G). Both
play an essential role.
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Definition 4.2.4. Let (V,d, ¢) be a mixed complex. The noncommutative Hodge filtration on VS' and V' Tate

is the decreasing filtration defined by the subspaces u*V* "

Definition 4.2.5. The odd tangent complex Tx[—1] is affine over X, so we can consider Or,[_1] as an
algebra in the category QCoh(X). Furthermore, the ideal sheaf for the zero section defines an exhaustive
decreasing filtration on Or_1), which induces an exhaustive decreasing filtration on O(Tx[—1]) " whose
completion is O(Tx[—1])S". We call this the geometric Hodge filtration.

Proposition 4.2.6. Let X be a geometric stack with a smooth cover by a wvariety. There is a natural
quasi-isomorphism

O(L(X))Tote —=— C3L(X3 k) ® k((u)

where we consider the de Rham complex C3,(X; k) as a topological chain complex with respect to the derived
Hodge filtration, and k((u)) with respect to the noncommutative Hodge filtration.

Proof. By Theorem 6.9 of [BN12], the exponential map T x[-1] — EA(X ) is an filtration-preserving isomor-
phism, so we can compute O(Tx[—1])T* instead. Note that (—)S" commutes with totalization, so we first
compute

A~

O(Tx[-1])% = lim lim | @ RO(X,Qk[i)w!, u-dar

n—00 m—00 y
o<isn

0<j<m

Note that the filtration defined by the limit parameter n is the geometric Hodge filtration, and the filtration
defined by the limit parameter m is the non-commutative Hodge filtration. As we take the limit with respect
to both, it amounts to computing the direct sum complex (P, ; RT(X, Qx[i])u?, u-dar) with respect to
the opens

U = | @ RL(X,Q%[i)w!, u-dur
1=n or

j=m

There is a subcomplex (in fact, a direct summand) of the direct sum complex defined by taking the
summands where j > 4:

V= ( @ RI(X, %[, u-ddR> :

0<i<j

It is a subcomplex since the de Rham differential takes the (7, j)-summand to the (i + 1,7 + 1)-summand. Its
quotient

V' = < @ RI(X, %[, u-ddR>

0<j<i

is u-torsion. Note that k((u)) is flat as a (dg) k[[u]]-module, so — ®puy) k((u)) kills u-torsion modules, and
in particular we have an equivalence induced by the inclusion on completions

V @gpu) k((u) = O(Tx[-1])*.
Consider the alternative topology on V' defined by opens
ka = @ RF(Xa QlX [l])uj, u - ddR

i—j=k or
j=m

The parameter k in this topology defines the derived Hodge filtration in the derived de Rham complex, and
the parameter m in this filtration defines a u-adic filtration. In particular, the completion of V' with respect
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to the topology defined by the Wy, is T'(X, cﬁ\%x) @I E[[u]]-

We claim these two topologies defined by Uy, and Vi, are equivalent. Indeed, this is an easy verification
as all indices are bounded below. Explicitly, Wy, < Upm and Ug4m,m © Wi In particular, the completion
with respect to this topology is the limit under the usual Hodge filtration on each summand of V' defined by
letting ¢ — j be constant, and the limit under the noncommutative Hodge filtration. Thus, via the universal
property of the limit, we have a canonical equivalence

V ~ T(X,dRx)® k[[u]]
and in particular,
O(L(X)) ™ = V @y k() = T(X, dRx) & k(1) = Cia(X; k) @ k((u)).

O

Remark 4.2.7. The above proposition is false if we do not consider the topologies. For example, take X =
BG,,. Then, we have O(L(BG,,)) = k[[[t]] where |t| = 0, and in particular, H(O(L(BG,,))™*) = k[[t]].
On the other hand, H*(BG,,; k) ~ k[s] = k[[s]] where |s| = 2, so H'(H*(BG,,; k)((u))) = k[su™].

Finally, we discuss results relating derived de Rham cohomology to analytic (Betti) cohomology when
k = C. It is well-known by experts and is essentially a simple corollary of results in [Bhal2], [Har75]
and [BN12]. A general discussion can also be found in the introduction of [Kall5]. We first define a few
intermediate chain complexes.

Definition 4.2.8. For a choice of embedding of i : X — M for smooth M, the Hartshorne algebraic de
Rham complez Q4 is defined by

H 1. 1
Q% =170y ®i-10,, 1 Q5.

We define the term-wise Hodge-completed derived de Rham complez associated to a groupoid presentation

U —= Uy of a stack as above to be the totalization of the double complex &RUJ.. Since for schemes U,

the de Rham cohomology computes Betti cohomology, Lemma 32 of [Beh04] implies that the cohomology of
this complex is independent of choice of cover.

Corollary 4.27 in [Bhal2] and Theorem 1.1 in Chapter IV of [Har75] can be summarized in the following
statement, identifying the derived de Rham cohomology of a possibly singular scheme X over C with its Betti
cohomology. For details, see Construcion 4.25 in [Bhal2].

Theorem 4.2.9 (Bhatt, Hartshorne). Let X be a finite type scheme over k = C. There is a natural
map of sheaves of dg k-algebras cﬁ{X — Q on X which is a quasi-isomorphism. Letting j : X" — X
be the analytification map, and Q%a.. the analytic de Rham complex on X", the map of dg k-algebras
FTIOE — O%.. is a quasi-isomorphism. All together, the map j’l(ﬁ\{x — Q%an 15 @ quasi-isomorphism,
and Q%.an resolves the constant sheaf Cxan. Therefore, the hypercohomology of the derived de Rham complex
computes the Betti cohomology of X ™.

Corollary 4.2.10. Let X be a finite type stack over k = C presented as a groupoid Uy ——= Uy . Then,
Betti cohomology of X" is computed by the term-wise Hodge-completed derived de Rham complex associated
to U,.

Corollary 4.2.11. Let X be a finite type derived stack over k = C. Then, there is a natural quasi-
isomorphism

O(LX)Tate = C2 L (X4 C) @ k((u)).
Proof. By Proposition 6.4 of [BN12], the Hodge-completed graded algebra of differential forms is a graded

sheaf on the smooth site of X, i.e. the Hodge-completed derived de Rham complex for stacks is quasi-
isomorphic to the term-wise Hodge-completed derived de Rham complex associated to an atlas U — X of
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the stack X. This implies that the derived de Rham complex computes Betti cohomology and in particular,
using Proposition 4.2.6 there is an filtration-preserving equivalence in the derived category Cj,(X;C) ~
c* (X C). O

4.3 Comparing global functions on unipotent and formal loop spaces

We prove a completion theorem for periodic cyclic homology, assuming the following theorem, which is proven
as Theorem 4.3.22.

Theorem 4.3.1. Let X be a quasicompact algebraic space with an action of an affine algebraic group G.
The map on functions induced by pullback is an equivalence:

O(LY(X/G))Tte —=— O(L(X/G))™e .

Theorem 4.3.2 (Atiyah-Segal completion for periodic cyclic homology). Let G be a reductive group acting
on a smooth quasi-projective variety X. The periodic cyclic homology H P(Perf(X/QG)) is naturally a module
over HP(Perf(BG)) = k[G//G]((u)). For a closed point z € G//G, we have an identification of the formal
completion at z with a 2-periodicization of the singular cohomology of the fixed points

HP(Perf(X/G))s —= C35((X?)9/(GZ)™; k) &), k((u))

as a module over HP(Perf(BG)); ~ C3x(B(G*)*; k) ®}, k((u)), contravariantly functorial with respect to
X.

Proof. By Theorem 3.2.3 and Theorem 3.1.12,
HP(Perf(X/G))z ~ O(LL(X/G))T™ ~ O(L" (mo(X7)/G7)) o=,
By Proposition 4.1.7 and Theorem 4.3.1,
O(L" (mo(X7)/G?)) ™= = O(LY (mo(X7)/G7)) ™ = O(L(mo(X7)/G7)) ™.
Finally, by Theorem 4.2.6, we have
O(L(mo(X*)/G7)) ™' = Ol (mo(X7)™ /(G*)*"; k) ((w))-
O

It remains to prove Theorem 4.3.1. Central to our proof will be to use the fact that the map is a pro-
graded isomorphism; the following lemma establishes a general situation when this is true. Let us first clarify
what we mean by a pro-graded isomorphism, and why this notion is necessary.

Definition 4.3.3. A pro-graded chain complex V is an object of Pro(QCoh(BG,,)); that is, it is a fil-
tered limit of graded chain complexes'®. Letting £, denote the weight n twisted one-dimensional G,,-

representation, the nth homogeneous part functor is given by
(—)"*=" := ev o Pro(I')(BG,,, — ® L_,) : Pro(QCoh(BG,,)) — Vecty.

where the functor
Pro(T")(BG,, —) : Pro(QCoh(BG,,)) — Pro(Vecty,)

4By Proposition 1.1.3.6 of [Lurl7], this category is stable.

34



is the functor induced on pro-completions from I'(BG,,, —) : QCoh(BG,,) — QCoh(pt) and the functor
ev : Pro(Vecty) — Vecty

takes a limit diagram and evaluates it in Vecty (which has all limits); it is right adjoint to the inclusion.
The underlying chain complex is given by

ev o Pro(p*) : Pro(QCoh(BG,,)) — Vecty,

where p : pt — BG,, is the usual atlas so that p* is the forgetful functor. A map of graded chain complexes
is a pro-graded isomorphism if it is an isomorphism on nth graded parts for all n.

Remark 4.3.4. We require this formalism for the following reason. Let p : pt — BG,, be the standard
atlas; the pullback (forgetful functor) p* does not commute with limits since the category QCoh(BG,,)
cannot differentiate between direct sums and direct products across different weights. In particular, objects
of QCoh(BG,,) are Z-graded chain complexes, which are equal to the direct sum of their homogeneous

pieces™®.

Example 4.3.5. For example, completing {0} = Al/G,, (under the usual scaling action),

: n __ : n __
ot klz]/z" = k[[=]] nocm klz]/z" = k[z].
Remark 4.3.6. One way to remedy this is to keep track of the limit diagrams by working in the category
Pro(QCoh(BG,,)) and apply the evaluation functor in Vecty = QCoh(pt) rather than QCoh(BG,,). How-
ever, the category Pro(QCoh(BG,,)) contains more information than we need: we do not wish to track the
topologies on vector spaces as we only care about their completions. Instead, we consider a smaller category:
the category of k%-modules

Definition 4.3.7. We define a functor (morally, some kind of Cartier duality) D : QCoh(BG,,) — QCoh(Z)
as follows: it is a standard calculation that QCoh(BG,,) ~ @, ., QCoh(pt). For V € QCoh(BG,,), we
denote by V;, the summand corresponding to n € Z. Define D(PV,,) = @ in »V,, where i, : Spec(k) — Z is
the inclusion of the point {n}.
Letting r : Z — Spec(k?) denote the affinization map, we define a functor ¥ : Pro(QCoh(BG,,)) —
QCoh(Spec k%)) = k% -mod via the composition
Pro(QCoh(BG,,)) 72 Pro(QCoh(z)) "% Pro(QCoh(Spec(k?))) —— QCoh(Spec(k%)).

3

Definition 4.3.8. For any n € Z, there is a natural map ¢, : Spec k — Spec kZ defined by projection to the
nth coordinate. Denote by k,, = ¢, +k € QCoh(Spec k%), and note that k,, is projective since it is a summand
of the free module decomposed by k% = ky @ ([ 1, km). We define the n-stalk of a k%-complex M to be

L*M =k, ® M and the n-costalk to be ¢!\, M = Hom(k,, M); since k, is projective the underived functor is
the derived functor.

Remark 4.3.9. The notion of costalk and stalk are canonically equivalent. It is a direct verification that
in fact, i'(V) = i*(V) = Vj,. Let p, € k% denote the element with 0 in the nth component and 1 everywhere
else. Let e, denote the element with 1 in the nth component and 0 everywhere else. Then, p, + e, = 1, so
we find that V = p,V ®e,V, and i'(V) = ker(p,) while i*(V) = coker(p,).

Composing ¥ with the global sections functors recovers the underlying vector space, and composing with
the costalk at n € Spec k% recovers the nth homogeneous part. In particular, if we are interested in studying

15To see this, note that objects of QCoh(BG,) are chain complexes which are O(G,)-coalgebras, i.e. equipped with a map
V -V klz, z’l]. In particular, tensors have finite rank, so any vector can only have finitely many homogeneous parts.
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the underlying vector space of V' € Pro(QCoh(BG,,)) via its homogeneous components, it suffices to consider
it as an object of QCoh(Spec(k%)).

Proposition 4.3.10. We have commutative diagrams of functors

Pro(QCoh(BG,)) 2 k% -mod Pro(QCoh(BG,,) 2 k% -mod
evopm Aec kZ,f) evoPro(T")(BG, ,—®m %
Vect,, Vect,,

Proof. We factor the first diagram as follows

Pro(QCoh(BGm)fr&Di:’ro(kZ -mod) —~— k%-mod

Pm lpro(l‘) lr

Pro(k-mod) —=— k-mod

and the second in the analogous way. So, the proposition follows from two claims: (1) that the diagrams
above commute without the Pro, i.e. p* = I'(Spec k%, —) ory o D and T'(BG,,, —) = 1) or, 0o D, and (2) that
the evaluation functor Pro(k%-mod) — k%-mod commutes with global sections and taking costalks.

The first claim can be directly verified: it suffices to consider abelian categories since all functors are
exact. In particular, if V € QCoh(BG,,)", then it is a k[z, 27']-comodule, i.e. there is a map

V — V®kzz (—DVz

The functor D takes V' to the complex on Z whose value on open affine {n} € Z is V,,. The functor 7,
takes D(V) to @,, V,, where k% acts in the natural way. Finally, we see that the global sections are exactly
p*V = @YV, and the costalk i\, (D, Vy,) = Homyz(kn, ®,, Vi) = Van.

Since the evaluation functor is a right adjoint, we prove the second claim by showing that both the
global sections functor and the costalks functor are right adjoints, and then using the general fact that right
adjoints commute. The global sections functor is right adjoint to the restrictions of scalars functor (it is also
left adjoint to the “corestriction of scalars” functor R Homy(k%, —)). The costalks functor is right adjoint to
the pushforward (and in this case is equal to the stalks functor, which is a left adjoint). O

Remark 4.3.11. In fact, since the global sections and (co)stalk functors are both left and right adjoints in
the above situation, the above construction and proposition are valid for any iteration of taking Pro and Ind
categories.

Definition 4.3.12. Let V be a k%-module. The support of v € V is the closed subscheme defined by the
annihilator ideal of v.

Lemma 4.3.13. A pro-graded isomorphism is injective.

Proof. This is the easy fact that if a map of sheaves on Spec(k?) is zero on stalks at closed points, then it is
zero, and the observation that on Spec k%, costalks and stalks coincide. O

Lemma 4.3.14. Suppose that f : V — W 1is a pro-graded isomorphism of pro-graded vector spaces such
that either V- or W are supported at finitely many weights. Then f is an isomorphism on underlying vector
spaces. More generally, let A be a sheaf of algebras on Spec(k%), and f : V — W a pro-graded isomorphism
of sheaves of A-modules where W is generated by elements supported at finitely many weights. Then, f is an
isomorphism on underlying vector spaces.
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Proof. For the first claim, the assumptions of the proposition imply that V' and W have finite support, whose
points consist entirely of closed points of k%. A map being a pro-graded isomorphism means that it is an
isomorphism at stalks of closed points.

For the second more general claim, note that if W is an A-module, and w € W is an element of finitely
many weights, say w = w; + -+ + w, where the w; are homogeneous of weight ¢;, then w; € A - w since
ec, - w = w;, where e., € k% is the characteristic function at i € Z. In particular, W having a set of generators
supported at finitely many weights is equivalent to W having a set of homogeneous generators. Now, if
f:V — W is a pro-graded isomorphism, then it is injective by the previous lemma. For surjectivity, note
that for a given homogeneous w € W, since f is a pro-graded isomorphism, we have a homogeneous v € V
such that f(v) = w, and surjectivity follows since W is generated by homogeneous elements. O

The following lemma allows us to reduce statements in the derived category to statements in the abelian
category.

Lemma 4.3.15. A map f:V — W is a pro-graded quasi-isomorphism of pro-graded complexes if and only
if each of the H'(f) : H{(V) — H*(W) are pro-graded isomorphisms of modules.

Proof. We can take a map f : V — W of complexes of k“-modules. It is easy to verify that taking nth
homogeneous parts (i.e. talking stalks via localization) is exact, so that if H™(f) is a pro-graded isomorphism,
it is an isomorphism of modules and therefore f is a quasi-isomorphism. Conversely, the global sections functor
is clearly exact. O

Definition 4.3.16. A pro-graded dg-algebra is an object of Pro(Alg(QCoh(BG,,))). If A is a pro-graded
dg-algebra, then Spec(A) is naturally a dg-indscheme with a G,,-action in the sense of [GR14]. We will use
the word ind-stack to mean a prestack which can be written as an inductive limit of closed embeddings of
(derived) QCA stacks (in the sense of [DG13]); in practice we only need the case of a formal completion of a
closed substack of a quotient stack.

Recall the definition of a contracting G,,-action in Definition 2.1.18.

Lemma 4.3.17. Let A be a noetherian weight Z<° pro-graded connective dg-algebra, which is generated in
negative weights over its weight 0 part, and let I = mo(AV*<%) < mo(A) be the classical augmentation ideal.
The derived completion A — ;1\1 s a pro-graded quasi-isomorphism. Globally, if X is an ind-stack with a
representable contracting G,,-action with fized point locus Z < X, then Ox — (9)/(; is a pro-graded quasi-

isomorphism of quasicoherent sheaves on X. In particular, O(X) — O()/(;) s a pro-graded isomorphism.

Proof. Choose generators fi,..., f of I. By Proposition 2.4.8 we can compute the homotopy limit ;1\1 via
the limit
Ap = lim (A ®ry(a) K7)

where K is the Koszul complex for f{*,..., f?* € mo(A). Since f1,..., f, are of strictly negative weight, for
large n, (K2)"*>~% = (my(A))"*>~* for any k. Furthermore, homotopy limits can be computed in the derived
category of k-complexes, and in particular we can compute the homotopy limit on each graded piece. Thus,
(A7)"*=* is a computed by a limit which stabilizes at A¥*=*, proving the claim. For the global claim where
X is an ind-scheme, one can pass to an open affine G,,-closed cover (which exists since G, is a torus). For
the global claim where X is an ind-stack, one can check the equivalence on a cover of X. O

Recall that by Remark 6.11 of [BN12] that there are embeddings L(X/G)— LYX/G) — Tx [—1]. Thus,
formal loops and unipotent loops inherit compatible G,,-actions and their functions are Z<" pro-graded. We
have the following.

Lemma 4.3.18. Let X be a geometric stack. The map induced by pullback
O(LrX) —= O(LX)
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is a pro-graded (quasi-)isomorphism.

Proof. An argument is outlined in Corollary 2.7 of [BN13a]; we will repeat it for convenience. By Lemma
2.1.12, LX is geometric. The formal loops £LX are the completion of the unipotent loops £L"*X along constant
loops, and the action is contracting by Lemma 2.1.19. The statement follows by Lemma 4.3.17. O

Example 4.3.19. The pro-graded isomorphism of Lemma 4.3.18 may fail to be an isomorphism. For
example, take X = G/U where U is any unipotent subgroup of G; then we have that

L((G/U)/G) = L(BU) = UJU — L(BG) = G/G

has image inside the unipotent cone of G. In particular,

~

LY(BU)=L(BU)=U/U  L(BU)=u/U.
For example, if U = BG,, then the map is
O(L"(BG,)) = O(Ga x BG,) = k[z,n] — O(L(BG,)) = O(Gy x BG,) = k[[z]][n]
is a pro-graded isomorphism but not an isomorphism, where |z| = 0 is a generator for O(G,) and || =1 is

a generator for O(BG,).

Using the fact that the map is a pro-graded isomorphism, we can show in the case of a unipotent group
that the map on Tate-equivariant functions is an isomorphism by a finiteness argument. Essentially, we show
that applying the Tate construction collapses enough of the target to produce an isomorphism. We include
the following proposition as an easy precursor to the next one; it is not required in future arguments.

Corollary 4.3.20. Let U be a unipotent algebraic group, and X a quasicompact algebraic space with a
U-action. Then, the natural map induced by pullback

O(L™(X/U))Trte —=— O(L(X /1))
s an isomorphism. In particular, taking X = pt,
O(LY(BU))T™ = O(UJU) ™ —=— O(L(BU)) = k((u))

s an isomorphism.

Proof. By Lemma 4.3.18, the map is a pro-graded isomorphism. Furthermore, applying the Tate construction,
we have that O(L(X/U)) ~ H*(X;k)((u)) since U is contractible, where u has cohomological degree 2 and
weight 1. The statement follows from Lemma 4.3.14: for quasicompact algebraic spaces X, H*(X;k) is
finite-dimensional and therefore has has a homogeneous basis. 0

A tweaking of the above argument gives us the reductive case.

Corollary 4.3.21. Let G be a reductive algebraic group, and X a quasicompact algebraic space with a G-
action. Then, the natural map induced by pullback

O(L*(X/G)) ™t —=— O(L(X/G)) e

s an isomorphism.

Proof. Let h denote the universal Cartan of the Lie algebra g of GG, and W the universal Weyl group acting
on . By Proposition 4.2.6 we have

O(L(BG)™ =~ C3p(BG: k) @' ((w)) = K[[H]" ((u))
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where b is in cohomological degree zero and subcomplex H*(BG; k) is given by k[hu]"V. By Proposition 2.1.25,
and the identification G//G ~ T///W for reductive groups G, we have that £*(BG) = L(BG) x7/w {0}, and
in particular by base change,

O(L*(BG)) ~ O({0}
so that O(L*(BG))™° ~ O(L(BG))™* ~ k[[§]]" ((u)). In particular,

O(LY(X/G))™™ — O(L(X/G)) e

is a map of module objects over the algebra object k[[h]]" ((u)) in the category QCoh(Spec(k?)), where h has
weight -1 and cohomological degree 0, and its cohomology groups are linear over HO(k[[6]]" ((u))) = k[[p]]".
We claim that the cohomology groups of the target

HY(O(L(X/G))™") ~ H'(C3p(X /G k) ® k((u)))

are finitely generated over k[[h]]" by weight-homogeneous generators; assuming the claim, the result follows
from Lemma 4.3.17 and Lemma 4.3.14.

To see the claim, we trace through the identification of Proposition 4.2.6, keeping track of the weights.
The cotangent complex Lx has weight -1 and u has weight 1 by convention. Thus, we find that under the
identification of Proposition 4.2.6, C5 (X /G; k) has weight 0 and u has weight 1. Therefore, it suffices to show
that the ring H*(X/G; k) is finitely generated over H*(BG; k) by finitely many cohomologically homogeneous
generators. This can be observed via the derived Cartan model for equivariant cohomology, which computes
H*(X/G;k) via a double complex whose E; page is H*(X) ®y. k[[g]]¢, completing the claim. O

We can now prove Theorem 4.3.1, which we restate for convenience.

Theorem 4.3.22. Let X be a quasicompact algebraic space with an action of an affine algebraic group G.
The natural map induced by pullback

~ ~

O(L*(X/G)) ™ —=— O(L(X/G))"™"*

s an isomorphism.

Proof. Every affine algebraic group G embeds as a subgroup of a reductive group K. Apply the previous
corollary to (X x& K)/K. Note that X x& K is not guaranteed to be a scheme, but is always an algebraic
space. O
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