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Rashba and Weyl spin-orbit coupling in an optical lattice clock
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Recent experimental realization of one-dimensional spin-orbit coupling (SOC) for ultracold alkaline-earth(-
like) atoms in optical lattice clocks opens a new avenue for exploring exotic quantum matter because of the
strongly suppressed heating of atoms from lasers comparing with alkaline-earth atoms. Here we propose a
scheme to realize two-dimensional (2D) Rashba and three-dimensional (3D) Weyl types of SOC in a 3D optical
lattice clock and explore their topological phases. With 3D Weyl SOC, the system can support topological
phases with various numbers as well as types (I or II) of Weyl points. The spin distributions of such topological
bands for 2D Rashba and 3D Weyl SOCs can be detected using suitably designed spectroscopic sequences. Our
proposal may pave the way for the experimental realization of robust topological quantum matters and their
exotic quasiparticle excitations in ultracold atomic gases.
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I. INTRODUCTION

Spin-orbit coupling (SOC) plays a key role for many
condensed-matter phenomena, such as anomalous and spin
Hall effects [1], topological insulators and superconduc-
tors [2–4], etc. The recent experimental realization of one-
dimensional (1D) [5–12] and two-dimensional (2D) [13–15]
SOCs in ultracold alkaline-earth atoms provides a highly
controllable and disorder-free platform for exploring non-
trivial topological physics induced by SOC, such as Majo-
rana fermions with non-Abelian exchange statistics [16–19]
and Weyl fermions [20–24] carrying topological monopole
charges [25]. The magnetic coupling schemes are also ex-
plored to generate 2D SOC [26–28]. However, the experi-
mental observation of these topological phenomena is greatly
hindered by the heating of atoms, particularly fermions,
originating from the Raman process where lasers couple
hyperfine ground states with high-lying excited states. The
single-photon detuning for Raman lasers is limited by the
fine-structure splitting [5–15,29–31] for the generation of
SOC, which is usually small for alkaline-earth atoms, yielding
large spontaneous emission of photons that heat the atomic
gas.

The heating issue may be overcome by choosing atomic
species with large fine-structure splitting such as Dy and Er
[32,33] or using alkaline-earth(-like) atoms [34,35] with long-
lived excited states [e.g., the lifetime for 87Sr (173Yb) is ≈160
( ≈20) s [36,37]]. For alkaline-earth(-like) atoms, 1D SOC has
been theoretically proposed [35] and experimentally realized
[36–38] recently through directly coupling the ground 1S0
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(referred to as |g〉) and excited metastable 3P0 (referred to
as |e〉) clock states in 1D optical lattice clocks, which does
not involve any Raman process. With the recent experimental
success in realizing 2D and three-dimensional (3D) optical
lattice clocks for both Bose and Fermi atoms [39–42], a
natural question is whether 2D and 3D SOCs can also be
realized without any Raman process.

Here, we address this important question by proposing a
scheme for realizing both 2D Rashba and 3D Weyl types of
SOC for alkaline-earth(-like) atoms in a 3D optical lattice
clock [43] using Rabi process without involving Raman pro-
cess. The experimental realization of the proposed scheme
should pave the way for the eventual experimental generation
of stable topological superfluids without heating induced by
spontaneous emission and the observation of topological Ma-
jorana [18,19] and Weyl fermions [20–22] in ultracold atomic
gases. Our main results are as follows.

(i) Beside the 3D optical lattice potential generated with
magic wavelength lasers, the folded (bow-tie) geometry
beams are used to generate 3D Weyl (2D Rashba) types
of SOC (see Fig. 1). Three-dimensional Weyl (2D Rashba)
types of SOC are realized when the wave vectors of the
clock laser do (not) possess z components. Rashba SOC
represents the interaction between the spin and momentum of
a particle in two dimensions [28], which can be described by
a momentum-dependent Zeeman interaction μBk ∝ σxky −
σykx [29] . Weyl-type SOC [30] ∝σxkx + σyky + σzkz repre-
sents a Weyl point, which was initially conceived to describe
neutrinos in particle physics and has been widely examined in
a class of solid-state materials dubbed Weyl semimetals.

(ii) In the presence of 3D Weyl types of SOC, there
exists a rich phase diagram containing topological phases with
various number of Weyl points as well as a fully gapped 3D
Chern insulator phase. The Weyl points can be type I or type
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FIG. 1. Schematics of the proposed experimental setup for gen-
erating 2D Rashba and 3D Weyl SOCs. (a) Optical transitions. With
a magnetic field B applied along the z direction, two nuclear-spin-
polarized states can be isolated and chosen as two spin states |g〉
and |e〉 for the SOC. The blue arrow represents the clock laser
transition, with the single-photon detuning δ. Red arrows represent
magic wavelength lasers for 3D optical lattices. (b) Laser setup for
2D Rashba SOC. (c) Clock laser setup for 3D Weyl SOC. Optical
lattice lasers are the same as (b). Here EOAM represents an electro-
optic amplitude modulator which is used to turn on and off relevant
laser beams for the experimental detection.

II [21,44]. Different Weyl points with opposite topological
charges are connected by gapless Fermi arcs on the surface.

(iii) A spectroscopic sequence scheme is proposed to ac-
curately measure the spin textures, i.e., the expectation of the
spin vector in the momentum space, of the topological bands
for 2D Rashba and 3D Weyl SOCs using a combination of
Rabi spectroscopy and time-of-flight images.

II. EXPERIMENTAL SCHEME

Our proposed experimental scheme for generating SOC
of alkaline-earth(-like) atomic gases 87Sr (173Yb) [35–38] is
illustrated in Fig. 1. A large magnetic field is applied along
the z direction so that only two nuclear-spin-polarized states
(|g〉 and |e〉 that form an effective spin-1/2) in ground 1S0 and
metastable excited 3P0 manifolds are populated and coupled
by a clock laser [see Fig. 1(a)]. The state-independent 3D opti-
cal lattice potential Vlat (r) = −V0[cos2 (kLx) + cos2 (kLy)] −
Vz cos2 (kz

Lz) is implemented using six plane-wave lasers [see
red arrows in Fig. 1(b)]. The lasers have the magic wavelength
λm (813 nm for 87Sr and 759 nm for 173Yb) [43], thus |g〉 and
|e〉 suffer the same lattice potential. Here kL = 2π cos (κ )/λm

and kz
L = 2π cos (κz )/λm are the wave vectors in the x-y plane

and z direction, with κ and κz corresponding laser incident
angles. To avoid interference effects, the magic lasers along
different directions are slightly detuned by 101 MHz, which
would lead to a difference in the lattice potential for the
two clock states. The difference is about 10−17V0 and can
be entirely neglected. Therefore, the two clock states still
experience the same lattice potential.

The two states |g〉 and |e〉 are coupled by a clock laser
with wavelength λc (698 nm for 87Sr and 578 nm for 173Yb).

In the rotating frame, the single-particle Hamiltonian can be
written as

H =
[

p2

2m
+ Vlat (r)

]
I + mzσz + h̄(Mσ+ + H.c.), (1)

where p is the momentum operator, m is the mass of
atoms, mz = h̄δ is the effective Zeeman field determined
by the clock laser detuning, and σ j (I) is the Pauli
(identity) matrix on the {|g〉, |e〉} basis. For the genera-
tion of 2D and 3D SOCs, the spatial distribution of the
Rabi coupling of the clock laser is designed to be M =
M0e−ikz

Rz[sin(kcx) cos(kcy) + i cos(kcx) sin(kcy)], which can
be realized through suitable interference of the clock laser
beams.

Figure 1(b) shows the experimental setup for realizing
2D Rashba SOC (kz

R = 0), where the clock laser (linearly
polarized along the z direction) is split into two lasers by
a beam splitter (BS) and reflected by mirrors M1, M2, M3,
and M4, and propagates along the (x ± y ) directions in the
intersecting area with corresponding Rabi frequencies �1 =
�0eikc(x+y), �2 = �0eikc(x−y)+iϕ2 , �3 = �0e−ikc (x−y)+i(ϕ2+ϕ3 ),
and �4 = �0e−ikc (x+y)+iϕ4 . Here kc = 2π/(

√
2λc). Without

loss of generality, we set �0 to be real because its overall
phase originating from the initial phase of the incident laser
can be gauged out without affecting the SOC. ϕ2 (ϕ3 or ϕ4)
is the phase acquired by the beam when it propagates along
the optical path from the atom cloud over mirrors M1,2 (M3

or M4) then back to the atom cloud. The total Rabi coupling
strength M = ∑4

	=1 �	 has the above-designed form by
choosing ϕ2 = −π/2, ϕ3 = π , ϕ4 = π , and M0 = 2

√
2�0.

We choose kc = kL for the generation of desired 2D Rashba
SOC, yielding cos (κ ) = λm/(

√
2λc) ≈ 0.8 for 87Sr (0.9 for

173Yb).
The generation of 3D SOC requires the phase factor

e−ikz
Rz in the Rabi coupling M, which can be realized by

tilting the four clock laser beams �	 by an angle η with
respect to the x − y plane with kz

R = 2π sin(η)/λc. In the x-y
plane, kL = kc = 2π cos(η)/(

√
2λc) yields cos (κ )/ cos (η) =

λm/(
√

2λc). Such 3D �	 can be realized with a similar opti-
cal setup with mirrors and a beam splitter [see Fig. 1(c)]. Note
that the electric field of the clock laser has a component in
the x-y plane, which, however, does not induce the transition
to other nuclear-spin states due to the large Zeeman split-
ting [see Fig. 1(a)]. Such direct Rabi coupling between two
pseudospin states using clock lasers for alkaline-earth atoms
does not involve the two-photon Raman transition process that
was used for alkaline-earth atoms. In the two-photon Raman
process, lasers couple hyperfine ground states with high-lying
excited states, which induce large spontaneous emission of
photons. Furthermore, the Raman transition between different
Zeeman states requires careful design of laser polarizations of
Raman beams, which is not necessary for the Rabi transition
here. Note that the gravity of the Earth has to be considered
for the 3D geometry. The gravity would tilt the lattice by
introducing a neighboring-site (z-direction) detuning ≈1 kHz
[45–48] which may lead to Bloch oscillations and Wannier-
Stark states, and the system ends up in the continuum in
the long-time limit because there are no true bound states.
To avoid such gravity effect, one might apply a gradient
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ac-Stark shift [49,50]. Alternatively, one can introduce addi-
tional harmonic traps to confine the atoms (usually the case in
realistic experiments), where the gravity potential only shifts
the minimum of the harmonic traps [51,52].

III. THEORETICAL MODELING

With typical optical lattice potential depths, atoms are
confined in the lowest band of the lattice and tight-binding
approximation can be applied. After the single-band approx-
imation and the unitary transformation U = e−ikz

Rz/2|g〉〈g| +
eikz

Rz/2|e〉〈e|, we obtain the tight-binding Hamiltonian from
Eq. (1), which can be written as

HTI = −t
∑
〈�j, �j′〉

ĉ†
�jsĉ �j′s + mz

∑
�j

(n̂�jg − n̂�je)

+
∑
〈�j, �j′〉

[
t
�j, �j′

SO ĉ†
�jgĉ �j′e + H.c.

]

− tz
∑

jz

(eiφξs/2ĉ†
jzsĉ jz+1s + H.c.), (2)

where 〈 〉 denotes the sum over nearest-neighbor sites with x-y
plane lattice-site index �j = ( jx, jy), particle number operators
n̂�js = ĉ†

�jsĉ�js, and effective Zeeman field mz = h̄δ. t is the

spin-preserved hopping amplitude along the x (y) direction,

and t
�j, �j′

SO = ∫
d2rWg(r − r j )MWe(r − r j′ ) is the spin-flipped

hopping parameter along the x (y) direction with Wg,e(r − r j )
the Wannier function at site j. Notice that the spatial period of
M (in both x and y directions) is twice that of the period of the

optical lattice. As a result, we have t
�j,�j±�eμ

SO = ±(−1) jx+ jy tμ
SO,

with μ = x, y. For the aforementioned clock transition M, we
have t x

SO = −it y
SO = tSO. tSO can be tuned by changing the

amplitude of the clock laser’s Rabi coupling �0. The last term
in Eq. (2) corresponds to spin conserved hopping along the
z direction, where tz is the hopping amplitude, φ = πkz

R/kz
L

is the hopping phase (it can be tuned by the angle between
the plane-wave laser pair that forms the z-direction lattice),
and ξg,e = ±1. Due to the spatial dependence of the SOC, the
Hamiltonian on the xy plane has a period 2a, which can be
restored to a by applying the unitary transformation ĉ�je −→
eiπ (x j+y j )/aĉ�je with a the optical lattice constants in the x-y
plane. With the lattice translational symmetry, the momentum
is a good quantum number and the single-particle Hamiltonian
can be exactly diagonalized in the momentum space. Physical
results such as energy spectrum, topological charge of the
Weyl point, and phase boundary can be calculated analyti-
cally. Fourier transformation of the real-space Hamiltonian to
the momentum space yields the effective Hamiltonian

HE =
∑
k,ss′

ĉ†
k,sHkĉk,s′ , (3)

where s = (g, e), and ĉ†
k,s (ĉk,s) is the creation (annihi-

lation) operator for state s at momentum k = (kx, ky, kz ).
Hk = h0kI + hk · σ , where h0k = −2tz cos (kzaz ) cos (φ/2),
hxk = −2tSO sin(kya), hyk = −2tSO sin(kxa), and hzk = mz −
2t cos(kxa) − 2t cos(kya) + 2tz sin (kzaz ) sin (φ/2). az are the
optical lattice constants in the z direction. The energy

spectrum of the Hamiltonian can be easily obtained through
diagonalizing the Hk, yielding Ek = h0k ± |hk|.

When kz
R = 0 (i.e., the clock laser is in the x-y plane), φ =

0 and hzk = mz − 2t cos(kxa) − 2t cos(kya), therefore there
is no coupling between momentum kz and spin, leaving 2D
Rashba-type SOC in the x-y plane in the Hamiltonian Eq.
(3). In this case, the single-particle physics is described by
a topological phase transition between a trivial insulator for
|mz| > 4t and a topological insulator for |mz| < 4t , with the
phase boundary |mz| = 4t determined by |hk| = 0 [14,53].
Such 2D Rashba SOC not only mixes states |g〉 and |e〉, but
also lifts the band degeneracy with a single Fermi surface. In
the presence of s-wave pairing interaction between two states,
the fermionic superfluid pairing supports Majorana fermions
inside vortex cores [18,19], which possess non-Abelian ex-
change statistics and are a building block for fault-tolerant
topological quantum computation [16,17].

IV. TOPOLOGICAL PHASES WITH 3D SOC

When kz
R 
= 0, φ = πkz

R/kz
L 
= 0, and the Hamiltonian

Eq. (3) contains the coupling 2tz sin (kzaz ) sin (φ/2)σz along
the kz direction, leaving 3D Weyl SOC. We first consider φ =
π (i.e., kz

R = kz
L), which leads to h0k = 0. From the energy

dispersion Ek = ±|hk|, we see the spectrum is gapless only
when |hk| = 0, with hxk = hyk = 0 occurring at kxa, kya = 0
or π . Each band-gap closing point with Ek = 0 represents a
Weyl point [see Fig. 2(a)], the topological charge of which
can be determined by Chern number C = 1

2π

∮
S B(k)dS of

the lowest energy band. Here S is a surface enclosing the

FIG. 2. Topological phases in three dimensions with φ = π . In
all panels tSO/t = 0.6, tz/t = 0.6. (a) Energy spectrum Ek with
four Weyl points in the kxa + kya = π plane, with their topological
charges ±1. mz/t = 1. (b) The phase diagram with different mz.
(2,4,2) indicates the number of Weyl points. Blue and red lines
represent two slopes ±2tz cos (γ ) of the energy dispersions along the
kz direction near a Weyl point. The Chern number C is defined in
the kx − ky plane for fixed kzaz. (c, d) Positions and charges of Weyl
points as well as the Chern numbers for cases i and iii, respectively.
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Weyl point, and B(k) = i〈∇k�(k)| × |∇k�(k)〉 is the Berry
curvature [1] with �(k) the lower band wave function.

For tz < t , at (kxa, kya) = (0, π ) or (π, 0), hzk = mz +
2tz sin (kzaz ) becomes zero in the region |mz| � 2tz at kzaz =
γ or −π − γ with γ = arcsin [−mz

2tz
], while, at (kxa, kya) =

(0, 0) or (π, π ), hzk = mz ∓ 4t + 2tz sin (kzaz ) becomes zero
only in the region 4t − 2tz � ±mz � 4t + 2tz at kzaz = ζ or
π − ζ with ζ = arcsin [±4t−mz

2tz
], where the top and bottom

signs are for (0, 0) and (π, π ), respectively. Outside these
two regions (2tz < |mz| < 4t − 2tz and |mz| > 4t + 2tz), the
spectrum is fully gapped. Based on the above gap closing
conditions, there exist four different phases in different mz

regions [see Fig. 2(b)].
(i) When |mz| � 2tz, we have four Weyl points at kW =

(kxa, kya, kzaz ) = (0, π, γ ), (0, π,−π − γ ), (π, 0, γ ), and
(π, 0,−π − γ ) with different topological charges ±1 [see
Fig. 2(c)]. The Chern number in the kx-ky plane changes
±2, when the varying kzaz crosses the two Weyl points (A,
C) with topological charge +1 at kW1

z . For instance, around
kW = (0, π, γ ), hk ≈ 2tSOa(k̄yσx − k̄xσy) + 2tzaz cos (γ )k̄zσz

with the linear dispersion, where k̄ = k − kW . The energy
dispersions along the kz direction near a Weyl point repre-
sent two slopes ±2tz cos (γ ) [see Fig. 2(b)]. The two slopes
±2tz cos (γ ) have opposite signs, with the corresponding
Weyl point type I.

(ii) When 2tz < |mz| < 4t − 2tz, we have a fully gapped
topological phase with Chern number C = 1 in the kx-ky

plane for any fixed kz, corresponding to a stacking 2D Chern
insulator.

(iii) When 4t − 2tz � ±mz � 4t + 2tz, we have two Weyl
points at kW = (0, 0, ζ ) and (0, 0, π − ζ ) for mz > 0 [see
Fig. 2(d)] or (π, π, ζ ) and (π, π, π − ζ ) for mz < 0. When
kzaz crosses one Weyl point (A) with topological charge +1
at kW1

z , the Chern number in the kx-ky plane changes ±1. Two
slopes ±2tz cos (γ ) have opposite signs, corresponding to the
type-I Weyl point [see Fig. 2(b)].

(iv) When |mz| >4t + 2tz, we have a trivial insulator phase.
For tz > t , there are two cases that are different from tz < t .
(i) When t < tz � 2t , we have six Weyl points. The region

|mz| � 2tz [middle cycle of Fig. 2(b)] overlaps with regions
4t − 2tz � mz < 4t + 2tz [right cycle of Fig. 2(b)] and −4t −
2tz < mz � −4t + 2tz [left cycle of Fig. 2(b)], leading to six
Weyl points in the regions 4t − 2tz � mz � 2tz and −2tz �
mz � 2tz − 4t .

(ii) When tz > 2t , we have eight Weyl points. All three
regions above overlap near mz = 0, leading to a new region
4t − 2tz � mz � 2tz − 4t with eight Weyl points.

For a general φ 
= π , there is a nonzero h0k =
−2tz cos (kzaz ) cos (φ/2) and tz in hzk is also replaced by
tz sin (φ/2). h0k does not change the eigenstates of the Hamil-
tonian Eq. (3), therefore the phase boundaries between the
above four cases are only changed by the replacement tz →
tz sin (φ/2). However, nonzero h0k rotates the slopes of the
linear dispersions near the Weyl point such that two slopes
along the kz direction may have the same sign in certain
parameter regions, which correspond to type-II Weyl points
(the traditional one with opposite signs of slopes is called
type I). For instance, around the Weyl point kW = (0, π, γ )
for case i |mz| � 2tz sin (φ/2), the Hamiltonian can be

-6 -3 0 3 6
mz/t

-7

0

7

Sl
op
e

(a)

C = 0 0,1 1 �1 1 0,1 0

II I II II I II II I II

2 4 2

-1 0 1
kzaz/π

-6

0

6

E

(b)

- -

FIG. 3. Type-I and type-II Weyl points for φ 
= π . (a) Phase
diagram. The notations and parameters are the same as those in
Fig. 2(b) except φ = 2π/5. Regions I (blue shaded region) and II
(green shaded region) indicate the types of the Weyl points. Two
slopes are ν0 ± νz. (b) Energy spectrum Ek under open boundary
condition along the x direction with φ = 2π/5 and mz/t = 0.0. The
black line represents the surface state connecting two Weyl points.

expanded as hk = ν0k̄z + 2tSOa(k̄yσx − k̄xσy) + νzk̄zσz with
ν0 = 2tzaz sin (γ ) cos (φ/2), νz = 2tzaz cos (γ ) sin (φ/2), and
γ = arcsin [ −mz

2tz sin (φ/2) ]. The Lifshitz transition [54] between
type I and type II occurs at |ν0| = |νz| [i.e., |mc

z | =
2tz sin2 (φ/2)]. The phase diagram and corresponding types
of Weyl points are shown in Fig. 3(a).

The bulk topological Weyl points yield interesting surface
states [55] under open boundary conditions. The Fermi arc is a
curve in the energy spectrum on the surface Brillouin zone that
connects Weyl points with opposite charges. Because Weyl
points do not stay at the Ek = 0 plane due to nonzero h0k,
the surface states are now embedded in the bulk spectrum
[see Fig. 3(b)], instead of the straight Fermi arc at Ek = 0
connecting two Weyl points with opposite charges for φ = π .

V. EXPERIMENTAL MEASUREMENT OF SPIN TEXTURES

The topological properties of 2D Rashba and 3D Weyl
SOC can be characterized by their spin textures in the mo-
mentum space, which are shown in Figs. 4(a) and 4(b). The
spin texture S(k) is the expectation value of the Pauli matrix σ

I
Measure
Sg

τ

Time-of-
flight

(c)

SOCπ-pulse
x

II
Measure
Sg

τ

Time-of-
flightSOCπ-pulse

-x

III
Measure
Sg

τ

Time-of-
flightSOC

Initial

Initial

Initial

FIG. 4. Detection of spin textures. (a) Spin textures in the kx-ky

plane with 2D Rashba SOC. tSO/t = 0.6, mz/t = 0. (b) Spin textures
around a Weyl point with +1 topological charge. tSO/t = 0.6, tz/t =
0.6, mz/t = 0, and φ = π . (c) Three spectroscopic sequences I, II,
and III for the detection of spin parameters θk and ϕk.
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under the pseudospin |g〉 and |e〉 basis, and can be defined as
〈S(k)〉 = 〈c†

ksσss′cks′ 〉/2. These spin textures are determined
by the effective field hk in the Hamiltonian Eq. (3) and can
be parametrized by angles θk = arctan (

√
h2

xk + h2
yk/hzk ) and

ϕk = arctan (hyk/hxk ) at each momentum k. Here we propose
a spectroscopic procedure to determine the parameter (θk, ϕk )
by measuring the time dynamics of spin textures 〈S(k)〉,
which are obtained through a combination of momentum-
resolved Rabi spectroscopy [35] and time-of-flight imaging
(see the Appendix). The spectroscopic sequences, as shown in
Fig. 4(c), are used to eliminate various side effects and obtain
accurate results. In all sequences, atoms are initially prepared
in state |g〉 at half filling without SOC.

(I) First a π pulse along σx is applied using the clock
laser, which excites atoms from |g〉 to |e〉 with a momentum
transfer Q = (kc, kc, kz

R ) that is the same as that of the SOC.
Therefore the π pulse couples two pseudospin states with the
same quasimomentum |g, k〉 ↔ |e, k〉. Such a π pulse can
be implemented using one of the four SOC beams, with the
other three turned off by electro-optic amplitude modulators
[56], as shown in Figs. 1(b) and 1(c). In the quasimomentum
space, the tight-binding dispersion of state |e〉 is inverted with
respect to state |g〉, therefore the energy splittings at different
k are different. With suitably chosen clock laser frequency,
we can selectively excite atoms at certain k∗ using a weak
pulse (comparing to the tight-binding bandwidth), such that
only atoms near k∗ are excited and atoms away from k∗ are
off resonance and remain in state |g〉. For the 87Sr system,
one could use a typical lattice with lattice depth V0 ∼ 4ER

(ER denotes the single-photon recoil energy) such that the
tunneling rate t can be up to a few 102 Hz (∼0.1ER), which
leads to a bandwidth of the order of 1 kHz. Therefore tens-
of-Hertz resolution would be enough, and the corresponding
pulse duration is about tens of milliseconds. Notice that the
resonance momentum k∗ is not single valued, which forms a
circle in two dimensions and a surface (spherical for type-I or
ellipsoidlike for type-II Weyl points) in three dimensions. We
can select a different k∗ by slightly changing the frequency of
the π pulse, thus covering the whole momentum space.

After the π pulse, we turn on the 2D (3D) SOC and
the system evolves under the Hamiltonian Eq. (3) for an
interval τ . Then the SOC and lattice potentials are turned
off and the time-of-flight images are taken to determine the
spin polarization 〈S(k)〉 at each k on the k∗ ring or surface
as a function of τ . Our proposed detection scheme usually
separately detects the occupations of two states |e〉 and |g〉,
which give the z component of the pseudospin. Suitable spin
rotations using pulses along different spin axes with clock
lasers may be needed before the time of flight to measure dif-
ferent components of 〈S(k)〉. For example, in order to detect
the x component of the pseudospin, a π/2 pulse is applied,
which transfers the wave function |�〉 to |� ′〉 with |� ′〉 =
U |�〉 and U = exp(iπ/4σ x ). The final detection 〈�|Sx|�〉
becomes 〈� ′|Sz|� ′〉 = 〈�|U †SzU |�〉. The detection of the y
component of the pseudospin is the same as the x component,
except U = exp(iπ/4σ y).

(II) Sequence II is the same as I except that the π pulse is
along −σx, which is used to eliminate effects caused by atoms
near resonance momenta k∗ that may be partially pumped

to |e〉 (with amplitude fk). Because of the partial excita-
tion amplitude fk, the spin polarizations 〈S(k)〉I,II obtained
from sequences I or II become complicated functionals of
fk, θk, ϕk, and τ . However, fk appears as a simple overall
factor in their average (see the Appendix):

〈S(k)〉I + 〈S(k)〉II

2
=

(
1

2
− | fk|2

)
T(θk, ϕk, τ ), (4)

with T(θk, ϕk, τ ) a simple dynamical function which can be
used to determine θk, ϕk.

(III) Sequence III is the same as I without the π pulse,
which is used to filter the dynamics of the excited atoms
from the remaining |g〉 atoms by canceling the 1/2 in Eq. (4).
As a result, signals for atoms with momenta far away from
k∗ are eliminated because fk is nonzero only in a narrow
interval around the k∗ ring or surface. This process isolates
the dynamics of atoms near k∗, and we can then replace θk, ϕk
by θk∗ , ϕk∗ in Eq. (4), from which we can extract their values
(see the Appendix).

VI. DISCUSSIONS AND CONCLUSIONS

Our proposed scheme requires high accuracy control for
phases and alignments of coupling and lattice laser beams.
The relative phase between �1 and �2 is ϕ2 = −π

2 and a small
deviation in ϕ2 would slightly change the relative phase of
the spin-flip tunnelings between neighboring sites tSO, which
only slightly modifies the form of SOC and does not affect
the topological physics. On the other hand, the relative phase
between �2 and �3 (�1 and �4) is ϕ3 = π (ϕ4 = π ), and a
deviation in ϕ3 or ϕ4 would induce a small displacement of
the coupling potential M with respect to the optical lattice.
Such a displacement would induce on-site spin flips, yielding
an additional Zeeman field along σx. When the Zeeman field
is too large, the bands become topologically trivial, although
the spin-orbit coupling still exists. The Zeeman field is pro-
portional to the on-site integral of the Wannier function, thus
a small phase deviation may lead to a sizable Zeeman field
comparing to the neighbor-site tunneling tSO. Using Wannier
functions of a typical trap depth with V0 ∼ 4ER, we find the
error in phase ϕ3 and ϕ3 should be �3 × 10−2π to ensure a
Zeeman field smaller than tSO, so that the topological phases
survive. Such an error upper bound corresponds to a relative
displacement of 15 nm between the coupling and lattice laser
potential minima. Using active phase locking, the relative
displacement �2 nm has been demonstrated experimentally
for 2D Kagome lattices formed by two different wavelength
lasers [57–59]. Such active phase locking can be applied to
the lattices formed by clock and magic wavelength lasers.
Moreover, the periods of the coupling and lattice potentials
should be aligned with high accuracy, which are determined
by the incident angles of the beams. Such incident angles
can be controlled with 10−4 accuracy [57–59], which allows
the total displacement over ≈100 lattice sites (enough for
observing topological physics) to be ≈5 nm, which is much
smaller than the upper bound 15 nm required for topological
phases.

In summary, we proposed a scheme for realizing and
detecting 2D Rashba and 3D Weyl types of SOC for
alkaline-earth(-like) atoms in optical lattice clocks without
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involving two-photon Raman process, therefore the heating
of atoms due to lasers is strongly suppressed. In combina-
tion with s-wave scattering interaction between atoms, our
scheme provides a powerful platform for realizing stable
topological superfluids and observing associated topological
excitations, such as Majorana fermions, which may have
potential applications in fault-tolerant topological quantum
computation.
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APPENDIX: EXPERIMENTAL MEASUREMENT
OF SPIN TEXTURES

Before introducing the details of our detection scheme, we
first show how the spin polarization evolves under the SOC
Hamiltonian. Consider an atom in an arbitrary initial state
|ψ0(k)〉 = α|gk〉 + β|ek〉 with momentum k . Under the SOC
Hamiltonian, the state becomes

|ψτ (k)〉 =
[(

α
cos θk + 1

2
+ β

sin θk

2
e−iϕk

)
e−iEk,−τ

+
(

α
1 − cos θk

2
− β

sin θk

2
e−iϕk

)
e−iEk,+τ

]
|gk〉

+
[(

α
sin θk

2
eiϕk + β

1 − cos θk

2

)
e−iEk,−τ

−
(

α
sin θk

2
eiϕk − β

cos θk + 1

2

)
e−iEk,+τ

]
|ek〉,

(A1)

after time τ with Ek,± = h0k ± |hk|.
Due to the Rabi oscillation, the time dynamics of all

components’ spin polarizations can be characterized as

〈Sz〉 = Pz(α, β, τ, k)

= 1
2 (|α|2 − |β|2)[cos2 θk + sin2 θk cos(2|hk|τ )]

+ 1
2 (αβ∗ + α∗β ) cos θk sin θk cos ϕk[1 − cos (2|hk|τ )]

+ (−i) 1
2 (αβ∗ − α∗β ) sin θk cos ϕk sin (2|hk|τ ), (A2)

〈Sy〉 = Py(α, β, τ, k)

= 1
4 (−i)(α∗β − αβ∗)[sin2 θk + cos2 θk cos (2|hk|τ )]

+ 1
2 (|α|2 − |β|2) cos θk sin θk sin ϕk[1 − cos (2|hk|τ )]

+ 1
4 (−i)(αβ∗ − α∗β ) sin2 θk cos 2ϕk[1− cos (2|hk|τ )]

+ 1
4 (αβ∗ + α∗β ) sin2 θk sin 2ϕk[1 − cos (2|hk|τ )]

+ 1
4 (−i)α∗β cos(2|hk|τ )

+ 1
4 [2(|α|2 − |β|2) sin θk cos ϕk

− 2(α∗β + αβ∗) cos θk − αβ∗] sin(2|hk|τ ), (A3)

and

〈Sx〉 = Px(α, β, τ, k)

= 1
4 (α∗β + αβ∗)[sin2 θk + cos2 θk cos(2|hk|τ )]

+ 1
2 (|α|2 − |β|2) cos θk sin θk cos ϕk[1 − cos(2|hk|τ )]

+ 1
4 (αβ∗ + α∗β ) sin2 θk cos 2ϕk[1 − cos(2|hk|τ )]

+ 1
4 i(αβ∗ − α∗β ) sin2 θk sin 2ϕk[1 − cos(2|hk|τ )]

+ 1
4α∗β cos(2|hk|τ )

+ 1
4 [2(|α|2 − |β|2) sin θki sin ϕk

− 2(α∗β − αβ∗) cos θk + αβ∗]i sin(2|hk|τ ). (A4)

These equations show the relations between the angles
(ϕk, θk ) and the dynamics of spin polarization. In the fol-
lowing, we show that these relations can used to determine
(ϕk, θk ) through three spectroscopic sequences (I, II, and III),
as shown in Fig. 4(c) in the main text. In all sequences, atoms
are initially prepared in the state |g〉 at half filling without
SOC.

In sequence I, a π pulse along σx is applied using the
clock laser to induce the |g〉 → |e〉 transition at the same
quasimomentum. Such a π pulse can be implemented using
one of the four SOC beams, with the other three turned off
by electro-optic amplitude modulators. We can selectively
excite atoms at certain k∗ using a weak pulse (compared
to the tight-binding bandwidth), such that only atoms near
k∗ are excited to |e〉 and atoms away from k∗ are off res-
onance and remain in state |g〉. Then we turn on the 2D
(3D) SOC for an interval τ and let the system evolve under
the Hamiltonian Eq. (2) in the main text. Even for a weak
pulse, atoms near resonance momenta k∗ may still be partially
pumped to |e〉 (with amplitude fk). Because of the partial
excitation amplitude fk, the spin polarization becomes a com-
plex function of

√
1 − | fk|2,−i fk, τ, k, which is 〈S(k)〉I =

P(
√

1 − | fk|2,−i fk, τ, k).
To eliminate the effects of partial excitation, we in-

troduce sequence II, which is the same as I except that
the π pulse is along −σx, leading to the spin polar-
ization 〈S(k)〉II = P(

√
1 − | fk|2, i fk, τ, k). The average be-

tween these two sequences gives a simple form of the spin
polarization as
1
2 [〈S(k)〉I + 〈S(k)〉II]

= 1
2 [P(

√
1 − | fk|2,−i fk, τ, k) + P(

√
1 − | fk|2, i fk, τ, k)]

= (
1
2 − | fk|2

)
T(θk, ϕk, τ ). (A5)

Here T is given as

Tz(θk, ϕk, τ ) = cos2 θk + sin2 θk cos (2|hk|τ ),

Ty(θk, ϕk, τ ) = cos θk sin θk sin ϕk

−� sin [2|hk|τ + arctan (− cos θk tan ϕk )],
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FIG. 5. The resonance momenta k∗ induced by a narrow π pulse
is a circle in two dimensions (a) and a spherical surface in three
dimensions (b) which surrounds a Weyl point.

Tx(θk, ϕk, τ ) = cos θk sin θk cos ϕk

−� sin

[
2|hk|τ + arctan

(
cos θk

tan ϕk

)]
,

with � =
√

(cos θ|k| sin θ|k| sin ϕ|k|)2 + (sin θ|k| cos ϕ|k|)2 and
� =

√
(cos θ|k| sin θ|k| cos ϕ|k|)2 + (sin θ|k| sin ϕ|k|)2.

Finally, we use sequence III (which is the same as I without
the π pulse) to filter the dynamics of the excited atoms from
the remaining |g〉 atoms by canceling the 1/2 in Eq. (A5),
yielding

〈S(k)〉I + 〈S(k)〉II

2
− 〈S(k)〉III = | fk|2T(θk, ϕk, τ ). (A6)

Without the time-of-flight imaging, the experimentally
measured spin polarization should be summed over the mo-
mentum space. We notice that fk in Eq. (A6) is only nonzero
around the k∗ ring or surface (see Fig. 5). As a result, time-of-
flight images are taken to determine the spin polarization 〈S〉
at each k only on the k∗ ring or surface, rather than the whole
momentum space. That is to say, we use the time of flight to
resolve the azimuthal direction of momentum, and the final
observable for a certain point k∗ is

O(k∗, τ ) =
∫

| fk|2T(θk, ϕk, τ )d|k| � cT(θk∗ , ϕk∗ , τ ).

(A7)
Here c = ∫ | fk|2d|k| is a constant (which is integrated in the
radial direction) and we have taken into account that fk is
only nonzero around the k∗. The angles |θk∗ | and |ϕk∗ | can

be inferred from the oscillations of O(k∗, τ ):

Oz(k∗, τ )max − Oz(k∗, τ )min
2Oz(k∗, τ )mean

= tan2 θk∗ ,

Oy(k∗, τ )max − Oy(k∗, τ )min
2Oy(k∗, τ )mean

=
√

1 + 1

cos2 θk∗ tan2 ϕk∗
,

Ox(k∗, τ )max − Ox(k∗, τ )min
2Ox(k∗, τ )mean

=
√

1 + tan2 ϕk∗

sin2 θk∗
. (A8)

θk∗ and ϕk∗ are determined using the principle of continuity in
the momentum space, as shown in Fig. 6.

For 2D Rashba SOC, there are eight momentum sub-
spaces with different principles [see Figs. 6(a) and 6(b)]:
(i) when kx > 0, ky > 0, and kxa/π + kya/π > 1, principles
are |θk| = θk and |ϕk| + π = ϕk; (ii) when kx > 0, ky > 0,
and kxa/π + kya/π < 1, principles are −|θk| + π = θk and
|ϕk| + π = ϕk; (iii) when kx < 0, ky > 0, and kxa/π + 1 >

kya/π , principles are |θk| = θk and −|ϕk| + π = ϕk; (iv)
when kx < 0, ky > 0, and kxa/π + 1 < kya/π , principles are
−|θk| + π = θk and −|ϕk| + π = ϕk; (v) when kx < 0, ky <

0, and kxa/π + kya/π < −1, principles are |θk| = θk and
|ϕk| = ϕk; (vi) when kx < 0, ky < 0, and kxa/π + kya/π >

−1, principles are −|θk| + π = θk and |ϕk| = ϕk; (vii)
when kx > 0, ky < 0, and kxa/π > kya/π − 1, principles are
|θk| = θk and −|ϕk| + 2π = ϕk; (viii) when kx > 0, ky < 0,
and kxa/π < kya/π − 1, principles are −|θk| + π = θk and
−|ϕk| + 2π = ϕk.

For 3D Weyl SOC, there also are eight momentum sub-
spaces with different principles [see Figs. 6(c) and 6(d)]: (i)
when kx > 0, ky > 0, and kz > 0, principles are |θk| = θk and
|ϕk| = ϕk; (ii) when kx < 0, ky > 0, and kz > 0, principles
are |θk| = θk and −|ϕk| + π = ϕk; (iii) when kx < 0, ky < 0,
and kz > 0, principles are |θk| = θk and |ϕk| + π = ϕk; (iv)
when kx > 0, ky < 0, and kz > 0, principles are |θk| = θk
and −|ϕk| + 2π = ϕk; (v) when kx > 0, ky > 0, and kz <

0, principles are −|θk| + π = θk and |ϕk| = ϕk; (vi) when
kx < 0, ky > 0, and kz < 0, principles are −|θk| + π = θk
and −|ϕk| + π = ϕk; (vii) when kx < 0, ky < 0, and kz < 0,
principles are −|θk| + π = θk and |ϕk| + π = ϕk; (viii) when
kx > 0, ky < 0, and kz < 0, principles are −|θk| + π = θk and
−|ϕk| + 2π = ϕk. Changing the frequency of the π pulse, we
can obtain θk and φk in the whole momentum space.

kxa/π

k y
a/
π

1

0

-1-1 0 1

|φk|+π=φk

-|φk|+2π=φk

-|φk|+π=φk

|φk|=φk

kxa/π

k y
a/
π

1

0

-1
-1 0 1

-|θk|+π=θk

|θk|=θk |θk|=θk

|θk|=θk |θk|=θk

(a) (b)

FIG. 6. (a, b) The relations between |θk| and θk, and |ϕk| and ϕk, in two dimensions. (c, d) The relations between |θk| and θk, and |ϕk| and
ϕk, near +1 Weyl points in three dimensions. (c) In the red area |θk| = θk, and in the blue area −|θk| + π = θk. (d) In the red area |ϕk| = ϕk,
in the yellow area −|ϕk| + π = ϕk, in the blue area |ϕk| + π = ϕk, and in the green area −|ϕk| + 2π = ϕk.
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