Open Compass: Accelerating the Adoption of Al in
Open Research

Paola A. Buitrago
Pittsburgh Supercomputing Center
Carnegie Mellon University
Pittsburgh, PA, USA
paola@psc.edu

ABSTRACT

Artificial intelligence (AI) has immense potential spanning
research and industry. Al applications abound and are expanding
rapidly, yet the methods, performance, and understanding of Al
are in their infancy. Researchers face vexing issues such as how to
improve performance, transferability, reliability,
comprehensibility, and how better to train Al models with only
limited data. Future progress depends on advances in hardware
accelerators, software frameworks, system and architectures, and
creating cross-cutting expertise between scientific and Al
domains. Open Compass is an exploratory research project to
conduct academic pilot studies on an advanced engineering
testbed for artificial intelligence, the Compass Lab, culminating in
the development and publication of best practices for the benefit
of the broad scientific community. Open Compass includes the
development of an ontology to describe the complex range of
existing and emerging Al hardware technologies and the
identification of benchmark problems that represent different
challenges in training deep learning models. These benchmarks
are then used to execute experiments in alternative advanced
hardware solution architectures. Here we present the methodology
of Open Compass and some preliminary results on analyzing the
effects of different GPU types, memory, and topologies for
popular deep learning models applicable to image processing.

CCS CONCEPTS
* Computing methodologies - Artificial
intelligence » Computing methodologies = — Knowledge

representation and reasoning * Hardware — Analysis and
design of emerging devices and systems

KEYWORDS

Evaluation of emerging technologies, Artificial Intelligence, High
Performance Computing, Training, Education

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the Owner/Author. PEARC '19, July 28-August
1, 2019, Chicago, IL, USA © 2019 Copyright is held by the owner/author(s). ACM
ISBN 978-1-4503-7227-5/19/07. https://doi.org/10.1145/3332186.3332253

Nicholas A. Nystrom
Pittsburgh Supercomputing Center
Carnegie Mellon University
Pittsburgh, PA, USA
nystrom@psc.edu

1 Introduction

Artificial intelligence (AI) has immense potential spanning
research and industry. Research initiatives, conferences,
investment, and products based on Al abound and are expanding
rapidly [1, 2], yet the methods, performance, and understanding of
Al are actually in their infancy. The progress that has been made
is impressive [3—6], for example the breakthrough of Libratus for
decision-making with imperfect information [7, 8] enabled by
converged high performance computing (HPC) and Al on the
Bridges supercomputer [9, 10], but greater challenges lie ahead.
Researchers face vexing issues such as how to improve
performance, transferability, reliability, comprehensibility, and
how better to train Al models when available data is quite limited
[11]. Future progress depends on advances in hardware
accelerators, software frameworks, system architectures, and
creating cross-cutting expertise between scientific and Al
domains.

Recently, the combination of graphics processing units (GPUs)
and Al have emerged as a disruptive technology, changing the
way that we obtain insights and create value from data. Ongoing
advances and forthcoming, qualitatively different technologies
will open the door to faster, deeper, and more productive ways of
analyzing and working with data. Advances in technology are
outpacing traditional system acquisition cycles, creating an urgent
need to deeply understand the potential of new kinds of
accelerators, interconnects, volatile and nonvolatile memory, and
other hardware components. The community needs to develop
experience with new technologies as early as possible to build
applications, develop software ecosystems around the most
promising technologies, and inform future large-scale investment.
Infrastructure alone is insufficient to develop this experience, and
many existing benchmarks (e.g., training ImageNet [12, 13]) do
not reflect the different requirements of research. A concerted
effort between domain experts and Al experts is needed to create
workloads representative of research and to understand the value
of new technologies and to make the most of emerging hardware
and new and platform-optimized software frameworks. Hands-on
experience with new technologies is needed to establish and
disseminate best practices and to evaluate the potential of diverse
technologies.

PEARC ’19, July 28 — August 1, 2019, Chicago, IL, USA

Software
Frameworks

Accelerated
Computing
State-of-the-art

software for Al and
support tasks

Continuously refreshed
for early access to
new technologies

Human
Expertise

Expert guidance for
implementation and
deployment

Figure 1. PSC’s Compass Lab integrates emerging hardware accelerators
including processors, memory, and interconnects with advanced software
frameworks and human expertise to let users make informed decisions for
investment and implementation.

The Pittsburgh Supercomputing Center (PSC), a research
center of Carnegie Mellon University and the University of
Pittsburgh, launched the Compass Lab, an advanced engineering
testbed for artificial intelligence research and pilot projects. The
Compass Lab makes available emerging, continuously-refreshed
hardware and software technologies, backed by human expertise
and training, to help users “find their direction” in the complex Al
landscape (Figure 1). Compass Lab is a unique collaboration
between a national HPC center, academia, hardware and software
vendors, and private-sector startups, accelerators, and incubators.

Open Compass is an exploratory research project, focusing on
academia, to conduct pilot projects on this advanced engineering
testbed for artificial intelligence, culminating in the development
and dissemination of best practices. Open Compass builds on the
Compass Lab to make those advanced technologies available also
to the open research community.

1.2 Related Work

Several other significant efforts are underway to correlate the
performance of Al frameworks and models with various
hardware. These initiatives fall into two categories: organized
efforts to wunderstand the relationship of performance to
architecture in a more systematic way, and published benchmark
specifications with periodic submissions by the community.

Fathom [14] is a set of eight workloads (i.e., model plus data)
consisting of specific seminal works in deep learning from 2012
to 2015. Fathom’s coverage addresses speech, image
classification, and game learning, using different model types
(convolutional, recurrent, fully-connected, memory), learning
types (supervised, unsupervised, reinforcement), and datasets.
However, Fathom’s workloads are now dated, and they do not
address many important learning tasks in research.

P. Buitrago and N. Nystrom

MLPerf [15], driven by a broad industry consortium, aims to
accelerate progress in machine learning by providing a set of
benchmarks for image classification, object detection, speech-to-
text, translation, recommendation, sentiment analysis, and
reinforcement learning. Like the Top500 list in high-performance
computing (HPC), MLPerf quickly came to be a competition, with
the top published results reflecting runs on impressively large-
scale Al infrastructure. DAWNBench [16] is similar to MLPerf,
also providing a benchmark and competition around industry-
standard datasets (e.g., ImageNet) and models.

The HPE Deep Learning Cookbook [17] takes a different
approach, providing a benchmarking suite, performance guide,
and reference designs to characterize workloads and recommend
optimal hardware and software platforms for executing them.

Of the projects summarized above, Fathom, MLPerf, and
DAWNBench are narrowly focused on providing benchmarks for
the community to execute, in some cases competitively. The HPE
Deep Learning Cookbook is closest in spirit to Open Compass in
its focus on providing insights to Al users. Their emphasis is on
datasets relevant to widespread commercial applications, for
example, classification of low-resolution images and speech
recognition and translation. Their approach has great value, but it
does not address complementary requirements of research data
that pose qualitatively different challenges.

For organizing knowledge of Al technologies, existing
computer ontologies do not address computer hardware at the
right level of detail, nor do they address Al software. Hwaitat et
al. [18] focus on the formal defensible logic for a basic ontology
that is not well-suited to characterizing hardware for Al
workloads. They address a few aspects of CPU, memory, and I/O
devices, but they do not address accelerators, interconnects, or
object or data properties. Faheem et al. [19] propose an ontology
for mapping applications onto heterogeneous architectures. Their
focus is primarily on application mapping, so some ideas from
their approach may eventually interface well with the Al hardware
and software ontology developed in Open Compass.

Open Compass differs and adds value in two vital ways. First,
Open Compass focuses on developing and disseminating best
practices for application of Al to research, which goes well
beyond just measuring performance. Second, Open Compass
explicitly addresses Al for research data, for example, volumetric
medical imaging, genomic, and medical time-series data, as
described in section 2.2.

2 Methodology

Open Compass leverages the PSC Compass Lab to execute
pilot studies and address research questions relevant across
scientific domains. Open Compass methodology includes the
preliminary evaluation of alternative hardware solutions in terms
of the produced training performance of different neural networks.
The “Cambrian explosion” of architectural innovation makes
Open Compass very timely, and it also requires careful attention
to diversity of computer architectures, what they have in common,
and how they differ.

Open Compass: Accelerating the Adoption of Al in Open Research

2.1 Some Relevant AI Concepts

Artificial intelligence, particularly deep learning [20], is
advancing very rapidly. It is beyond the scope of this paper to
provide an in-depth introduction (the interested reader is referred
to, for example, [21] and recent NeurIPS, ICML, and related
conference proceedings); however, it is helpful to survey some
directly relevant concepts.

Deep neural networks (DNNs) have demonstrated great
capacity for representation learning, which is the ability to learn
features from data. Representation learning allowed DNNs to
surpass prior machine learning techniques for many domains such
as image classification [3], speech recognition and translation, and
games of strategy [22].

DNNs are built on many (typically tens to hundreds) two-
dimensional layers of artificial “neurons” of several basic types,
with different properties and connectivity between them. The
connections are “weights”, which are optimized through an
iterative process known as “training”. The specification of layers
and how they are connected is a “network™ or a “model”, and the
model plus a set of weights optimized for a particular application
(e.g., recognizing melanoma in photos of skin) is a “trained
model”. The trained model may then be applied to new data, a
process called “inferencing”, to classify, predict, or otherwise
generate information.

Different kinds of networks are suited to different kinds of
learning. Examples of networks that are currently in widespread
use are Convolutional Neural Networks (CNNs) [23] for image
classification and segmentation; Recurrent Neural Networks
(RNNs) [24] and Long Short-Term Memory (LSTM) [6] for time-
series data such as speech recognition, generation, and translation;
Generative Adversarial Networks (GANs) [11] for combining
other DNNs into generator and discriminator pairs that can
augment limited raw data. Other networks are being devised, such
as Capsule Networks [25] to model hierarchical relationships and
3D CNNs for three-dimensional image data and also video data
(2D images plus time). The performance of different DNNs
depends strongly and in different ways on computation, memory
capacity, bandwidth and latency to memory and storage, and other
factors.

Understanding of which hardware would be best — as defined
by fastest, most cost-effective, lowest-power, or other some other
measure — for a specific training or inference application is
generally quite limited. Graphics processing units (GPUs) are
generally regarded as a good choice for training, but often without
understanding of which GPU would be optimal. Similarly, CPUs,
differently-configured GPUs, and FPGA (field-programmable
gate arrays) are often used for inferencing. But the real choice is
far more complicated. For example, for a given application, is
high-bandwidth memory (HBM2) beneficial, how much does it
help, and what capacity is needed? Can the application effectively
scale to multiple GPUs within a node, and if so, what internal
topology is best? Need it be a full crossbar, or is a hybrid mesh
cube or even a ring good enough? Can the application scale to
multiple nodes, and if it can, how much internode bandwidth is
needed to avoid a bottleneck? These are already hard questions for

PEARC ’19, July 28 — August 1, 2019, Chicago, IL, USA

which researchers need answers. Many new architectural options
are being developed, to be introduced over coming years.
Researchers need understanding of their AI applications’
requirements relative to hardware architecture to make informed
decisions about which hardware technologies to invest in or gain
access to, as well as in which software frameworks they should
invest their time. Open Compass is addressing that need for the
research community.

2.2 PSC Compass Program

PSC’s Compass Program focuses on the application of Al
technologies to address open challenges in research. It consists of
four main components: the Compass Center, Compass Lab,
Compass Consortium, and Open Compass.

The Compass Center brings together faculty, staff, and
members from industry, government, academic and nonprofit
organizations to advance Al research and development and
accelerate the adoption of Al across various fields, industries, and
sectors of society. The Compass Lab (Figure 1) provides unique
access through PSC to new hardware and software technologies
for AL, backed by human expertise and partnering with faculty
thought leaders to develop solutions. The Compass Consortium
provides, depending on level of membership, access to seminars,
meetings, presentations, publications, reports, case studies,
technical briefings, and benchmark results; access to consortium
projects; member-directed projects emphasizing the application of
new Al technologies to derive value from data; networking with
faculty, students, vendors, and other members; connections to
domain experts; training; input through an advisory board to
define consortium projects; and other benefits.

Open Compass brings the benefits of the Compass Lab to the
academic research community. This is important because quite
often, research data differs significantly from the kinds of data
that dominate commercial applications to date and that drove the
development of today’s most popular deep learning frameworks
and models. Examples of data that are not covered by standard
benchmarks are segmentation of volumetric (3D) image data to
indicate and identify structures in human organs (e.g., neurons in
brains and nephrons in kidneys), analysis of large (e.g.,
100,000x100,000 pixels) whole-slide images that are routine in
digital pathology, classification of anomalous patterns in medical
time-series data (e.g., classification of different kinds of
arrhythmia in electrocardiogram data), analysis of 4k and 8k video
data, and imputation of extended genomic information from
microarray data.

Through a suite of pilot applications and working with leading
domain researchers, Open Compass is expanding the community’s
understanding of algorithmic requirements on hardware and
software resources. This paper establishes the methodology, kinds
of performance experiments, and performance measurement
protocol, initially applying them to a set of well-known workloads
to establish a strong foundation.

The Open Compass project also provides expert assistance in
applying Compass Lab resources and collaborative development
of algorithms, models, and software; develops and disseminates

PEARC ’19, July 28 — August 1, 2019, Chicago, IL, USA

best practices; and provides training tailored to the open research
community.

2.3 Compass Al Hardware Ontology

The proliferation of hardware technologies being developed
presents a daunting combinatoric challenge if viewed from the
perspective of planning to benchmark everything. Researchers are
presented with a bewildering array of processors and accelerators,
tiered memory and data management systems built on a mix of
new and existing technologies, different interconnect technologies
both between processors and between nodes, different multiples
of the preceding components for scaling, different topologies, and
different software layers optimized for particular hardware.
Traditional factorial design on even one node can be prohibitive in
the time that would be required for the resulting runs. To
understand the impacts of emerging technologies on Al
performance and how to apply specific technologies most
effectively, a more carefully planned approach is needed.

We therefore developed an ontology of Al architectures that
has value in framing experiments and assessing performance in a
useful, interpretable way. Over time, the Compass ontology will
be expanded to factor in additional hardware architectures as they
emerge. Software aspects are being added, and performance
results are being integrated, thereby creating a knowledge base
that can be queried, added to, and expanded.

The Compass Ontology is developed in Protégé [26] and is
available as an OWL specification [27]. Figure 2 illustrates the
hardware class hierarchy, with (sub)classes of the most relevance

Figure 4. Class hierarchy for the
. = Compass Ontology, with hardware
-~ owlThing .
Computer_Hardware classes selectively expanded to

¥ CPU_Components . .
¥-- @ GPU_Components illustrate key concepts. The relatively

CUDA Core high level of detail is required to
On-package_Memory
v @ Interconnect accurately represent and reason on the
v Internode_Interconnect . .
; InfiniBand differences between architectures.
i Omni-Path Complementing the class hierarchy
v Intranode_Interconnect . . .
NVLink are object properties that describe
PCI_Express .
P attributes of class members,
UPI individuals that are instances of the
L Interface)
v ® Memory classes, data properties that are
" Nonvolatile_Memory

! Apache_Pass attributes of individuals, and data
A Volatile_Memory

DDRA types.
HBM2
Module
T Processor
CPU
FPGA
V-0 GPU
NVIDIA_Ampere
NVIDIA_Kepler
NVIDIA_Pascal
NVIDIA_Volta
Neuromorphic_Processor
Quantum_Processor
----- Server
- Storage
Hard_Disk
y-- Solid_State_Disk
NVMe_SSD
SATA_SSD
Tape
System
B Computer_Software

B Developer
. Rate
Topology

P. Buitrago and N. Nystrom

to this discussion expanded. The hierarchy allows intuitive
specification of object properties, each with specified ranges and
domains to allow checking of axioms. For example, class
Processor has object property (among others) of hasMemoryType
to represent the type of memory that it supports. That property is
inherited by subclasses CPU and GPU and instances (called
“individuals” in Protégé) thereof. This hierarchical representation
is helpful when thinking about how architectural components
relate to each other and, for Open Compass, to Al tasks and

) - . # HBM2-32GB
Volatie_Memary J [oree |
NVIDIA Tesla_V1
= *'® DDR4 00_SXM2_32GB
Memory
NVIDIA_Volta |
Intel_Xeon_Plat
inum_8168
Foon | :
T *@cru |
*® Processor -
“4 NvIDIA
B) N S)
zomnuter_HﬁlWaa | Fose | [e]
NVLink_2.0
NVLink l
= ' | # Meotanox EDR B
IO e

I InfiniBand

Intemode_Inter
connect

Figure 3. Example visualization of the Compass Ontology, focusing on
individual NVIDIA_DGX-2 of class Server. Solid arcs indicate has
subclass relationships, and dashed arcs indicate object properties such as
hasGPUType and hasInternallnterconnectType.

NVIDIA_DGX-2
URI: hitp/ivwew.pscadufaibdionologies/Compass#NviD 1A_DGX-2
Different individuals:
NVIDIA_DGX-2
NVIDIA_DGX_Station
HFE_Apallo_6500_Gan10
Object property assertions:
NVIDIA_DGX-2 hasGPUTypa NVIDIA_Tasla V100_SXM2_32GB
NVIDIA_DGX-2 hasDevalapar NVIDA
NVIDIA_DGX-2 hasCPUTypa Intal_Xeon_Platinum_8 158
MVIDIA_DGX-2 hasinlemalintarconnact Typa NvLink_2.0
MVIDIA_DGX-2 hasExtarnalintarconnectType Mallanax_EDR_IB
Data property assertions:
NVIDIA_DGX-2 hasPaakSpasdFPE4 "TBOD Gi/s
NVIDIA_DGX-2 hasGPUCount " 168 " units
NVIDIA_DGX-2 hasCPUMeamaryCapacity " 1536" *GB
NVIDIA_DGX-2 hasTopalogyintranoda "Switch | Crosshar)™*xsd:string
NVIDIA_DGX-2 hasCPUCourt "2"*units
NVIDIA_DGX-2 hasStorageCapacityUsar "20820"*GB
NVIDIA_DGX-2 hasBisactionBandwidth " 2400.0"**GB/s
NVIDIA_DGX-2 hasPaakSpaed Tansor "2000000" A Gis
MVIDIA_DGX-2 hasExtarnallntarconnectlinkCount "8"*units
NVIDIA_DGX-2 hasStorageCapacitySystam " 1920 GB
NVIDIA_DGX-2 hasPeakSpasdFP32 261200 Glis

Figure 3. Example of instance NVIDIA_DGX-2 of class Server. The URI
is simply the Uniform Resource Identifier, used in OWL to build and
integrate ontologies. “Different individuals” are mutually exclusive
members of class Server (many more are in the full ontology). “Object
property assertions” indicate attributes of classes, and “Data property
assertions” indicate properties of individuals.

Open Compass: Accelerating the Adoption of Al in Open Research

models such as training, inferencing, CNNs, and LSTMs. It also
enables validating instantiated data, for example, confirming that
NVIDIA Tesla V100 SXM2 32GB, an instance of class and
domain GPU, hasMemoryType HBM?2, an instance of class and
range Memory.

Figure 2 illustrates a sample of the hardware class hierarchy,
Figure 3 shows an example of the graph associated with
individual NVIDIA_DGX-2 and class Server, and Figure 4 shows
some of the object and data properties of NVIDIA_DGX-2. In each
node of the graph (Figure 3), maize circle indicates a class, and a
dark purple diamond indicates an individual. Solid arcs (edges)
indicate subclasses, and dashed arcs indicate object properties.
Data properties, which represent instance-specific attributes, are
not shown in this view. In Figure 4, an example of a data property
is NVIDIA DGX-2 (instance) hasGPUCount (data property)
“16"wunits (value). Here, ™ indicates that “16” has datatype
units.

The Compass Ontology defines data types such as GB, GB/s,
Gf/s, W, and units for readability and to strongly encourage
consistency, both of which reduce the potential for errors. At this
time, capacities, data rates, and computational rates are expressed
in gigabytes (GB), gigabytes per second (GB/s), and gigaflops per
second (Gf/s) rather than mixing giga, tera, and peta. This tradeoff
results in occasionally large numbers that can be converted, if
desired, by tools returning the results of queries. These units
greatly improve understandability of data properties, as illustrated

PEARC ’19, July 28 — August 1, 2019, Chicago, IL, USA

by a display of the NVIDIA DGX-2 individual (Figure 4). For
example, consistent use of datatype GB/s for data rates is shown
by NVIDIA DGX-2 hasBisectionBandwidth ~ “2400""GB/s,
ensuring that there is no confusion for subsequent inferencing and
calculations.

Examples of questions the Compass Ontology is designed to
support are as follows: “What are the differences between two
architecture classes, for example, systems, servers, or GPUs?”
“What minimal set of performance experiments will provide a
reasonably complete set of insights?” “How do differences in
performance correlate with differences in architecture?”

2.4 Technologies Addressed

The Compass Lab roadmap addresses a wide range of devices,
including many of types that will only become available in
coming years. Technology classes include processors (e.g., CPUs,
GPUs, FPGAs, and neuromorphic and quantum processors),
memory (e.g., new nonvolatile and volatile technologies, new
form factors, and integration with interconnect fabrics and
processors), and interconnects.

These preliminary results address several important, current
technologies to illustrate the approach and serve as a baseline.
These technologies include two GPU architectures, (Volta and
Pascal); two generations of high-bandwidth memory; Tensor
Cores; different GPU interconnects (NVLink 2.0, PCI Express

Table 1. Technologies included in this study, including types of servers in which they are implemented and relevant details regarding GPUs, GPU

interconnects, CPUs, and local storage for training data.

Server Type 1 Server Type 2 Server Type 3 Server Type 4
Server type NVIDIA DGX-2 HPE Apollo 2000 Gen10 NVIDIA DGX Station HPE Apollo 2000 Gen9
GPU type NVIDIA Tesla V100 NVIDIA Tesla V100 NVIDIA Tesla V100 NVIDIA Tesla P100
GPU architecture Volta Volta Volta Pascal
GPU count 16 8 4 2
CUDA cores 5120 5120 5120 3584
Tensor cores 640 640 640 0
GPU memory type HBM2 HBM2 HBM2 CoWoS HBM2
GPU memory capacity, per GPU 32GB 16 GB 32GB 16 GB
GPU memory bandwidth, per GPU 900GB/s 900 GB/s 900 GB/s 732GB/s
GPU interconnect type NVLink 2.0 + NVSwitch NVLink 2.0 NVLink 2.0 PCle3 x16
GPU interconnect bandwidth, per Link 50GB/s 50GB/s 50GB/s 16 GB/s
GPU interconnect bandwidth, aggregate 300GB/s 300GB/s 300GB/s 16 GB/s
GPU interconnect bisectional Bandwidth 24TB/s 300GB/s 200GB/s 16 GB/s
GPU interconnect topology Fully Connected Hybrid Cube-Mesh Fully Connected+ Link, through PCle
CPU type Xeon Platinum 8168 Intel Xeon Gold 6148 Intel Xeon E5-2698 v4 Intel E5-2683 v4
CPU microarchitecture Skylake Skylake Broadwell Broadwell
CPU cores 24 20 20 16
CPU clock, base 2.7GHz 2.4GHz 2.2GHz 2.1GHz
CPU count 2 2 2 2
CPU memory type DDR4-2666 DDR4-2666 DDR4-2400 DDR4-2400
CPU memory capacity 1.5TB 192GB 256 GB 128GB
CPU memory maximum bandwidth 128 GB/s 128 GB/s 76.8 GB/s 76.8 GB/s
Persistent local storage type NVMe SSD NVMe SSD NVMe SSD HDD
Persistent local storage capacity 8% 3.84TB 4x 1.92TB 3x1.92TB 4TB
Native operating system (OS) Ubuntu 18 CentOS 7.4 Ubuntu 18 CentOS 7.4

PEARC ’19, July 28 — August 1, 2019, Chicago, IL, USA

Gen 3 (PCle3)); different topologies connecting GPUs (fully
connected, hybrid cube-mesh, indirect through PCle3); different
storage technologies to hold training data (NVM Express solid
state disk (NVMe SSD) and hard disk drive (HDD)); different
operating systems (Ubuntu and CentOS); and native vs.
containerized execution. These technologies are implemented in
four types of servers: 1) NVIDIA DGX-2, 2) NVIDIA DGX
Station, 3) HPE Apollo 6500 Gen10 server with NVIDIA Tesla
V100 SXM2 GPUs, and 4) HPE Apollo 2000 Gen9 server with
NVIDIA Tesla P100 PCle GPUs. Table 1 summarizes their
technical characteristics that are relevant to performance
measurements reported here.

These technologies differ in several important ways. Larger
GPU memory capacities allow larger batch sizes for deep learning
training and potentially higher performance. Different GPU
interconnects and topologies affect the rate at which information
can be exchanged between GPUs. The effect on performance
varies with algorithm, ranging from weak, for algorithms
requiring low communication (e.g., communicating in a ring), to
strong, for algorithms requiring intense communications (e.g., all-
to-all communications). Different storage technologies affect
performance of training from large datasets, where the
performance of the storage subsystem is expected to be more
important for training involving non-sequential reads. Other
factors are also salient. It is important to note that performance
cannot be measured independently for all variables because
servers cannot be configured with arbitrary combinations of
technology. We therefore focus on carefully-selected experiments,
for which the Compass Ontology will be increasingly important as
the technology ecosystem becomes increasingly complex, and
combine information from complementary experiments to infer
relationships that cannot be directly measured.

2.5 Performance Experiments

Open Compass addresses both training and inferencing,
initially focusing on training neural networks for image
processing for its familiarity to the community and to document
our methodology. Subsequent publications will address research
networks for which there is no baseline and little or no community
experience.

Section 3 discusses performance results for training five neural
networks: InceptionV3 [28], ResNet-50 [5], ResNet-152 [5], and
VGG16 [29], and AlexNet [3], all using synthetic data. These
networks differ significantly in their layers and topologies and
therefore have different memory and computational requirements.
In practice, each has proven valuable for image classification.
Initially, we focus on training because training speed is of great
importance to developing deep learning approaches to research
data.

Experiments reported here were executed on the four server
types detailed in Table 1, allowing analysis of how training speed
depends on GPU type, amount of GPU (HBM2) memory, batch
size, interconnect topology, bandwidth to data storage, and
containerized versus bare-metal execution. Due to space

P. Buitrago and N. Nystrom

Training with Server Type 1 (16x NVIDIA Tesla V100 SXM2 32GB)
Synthetic data, batch size=64 (1, 2, 4, 8, and 16 GPUs)
®1GPU m2GPUs = 4GPUs ® 8GPUs ® 16 GPUs

6000
5051

4000

2 3144
@
& 2581 2643
o
2 2027
2 1652 1670
E 2000 1344,
833 920 7354 553%1
2422 23460 78 15295
0 mil mi || -l
1ceptionV3 VGG16 ResNet-50 ResNet-152

Training with Server Type 2 (8x NVIDIA Tesla V100 SXM2 16GB)
Synthetic data, batch size=64 (1, 2, 4, and 8 GPUs)

= 1GPU

4GPUs = 8 GPUs

6000

4000

o
@
]
o
@
9, 2156
a
) 1
E 2000 530 il
437572 70843 714 w5
240 187 369 14891
0 mi 5 ml HS 5 mm 0
1ceptionVad VGG16 ResNet-50 ResNet-152

Training with Server Type 3 (4x NVIDIA Tesla V100 SXM2 32GB)
Training: synthetic data, batch size=64 (1, 2, and 4 GPUs)
= 1GPU = 2GPUs = 4GPUs

6000

4000

o
2
2
@
2
&
@
E 2000
= 1240
830 816
671
533
22898 2180 351 V27
0 mill mill | -
1ceptionV3 VGG16 ResNet-50 ResNet-152

Training with Server Type 4 (2x NVIDIA Tesla P100 PCle 16GB)
Synthetic data, batch size=64 (1 and 2 GPUs)

= 1GPU m2GPUs

6000

4000

images/sec

2000

A7

14267 15269 239 97188
0 =i =il mi —
1ceptionV3 VGG16 ResNet-50 ResNet-152

Figure 5. Training rates, measured in images per second, for TensorFlow
1.10 running networks InceptionV3, VGG16, ResNet-50, and ResNet-151
using NGC containers on Server Types 1-4 (as detailed in Table 1). Not
shown are results for AlexNet, which are much higher and difficult to
show on the same axes (e.g, 24,751 images per second for 8 GPUs
running on Server Type 1).

Open Compass: Accelerating the Adoption of Al in Open Research

limitations, here we report only a subset of the results, deferring
others to a subsequent publication.

2.6 Performance Measurement Protocol

Open Compass performance measurements use a carefully-
designed workflow that systematically orchestrates the large
volume of runs required for performance experiments, including
repetition of runs to determine statistical variation. Up to five runs
were conducted for each measurement, and then the times were
averaged. For each test, the first 10 steps are used as warm-up and
then the next 100 steps are sampled and averaged to produce the
test result. Ensembles of runs are scripted to record all salient
metadata together with the actual performance metrics. A batch
system (e.g., Slurm) is used when possible to maximize use of
resources. All performance experiments are conducted on
otherwise quiet servers, i.e., without any other jobs running on
them.

For the image classification tasks, we measure performance in
terms of the number of data items processed per second.

3 Results and Discussion

We start by considering two specific sets of correlations:
training speeds for different architectures and numbers of GPUs
(Figure 5), and training speeds as a function of batch size and
GPU memory capacity (Figure 6). Figure 6 shows results for the
network AlexNet.

The results depicted in Figure 5 for P100 GPUs are in
agreement with the numbers published by TensorFlow in their
official site [30]. The results of this paper augment the
TensorFlow benchmarks by providing speed values for NVIDIA
Tesla V100 SXM2 GPUs with 16GB and 32GB of HBM2
memory. We can observe that the ratio at which the speed
increases is in some cases almost linearly proportional to the
increase in number of GPUs. The ratio for the speed increase is
influenced by the specific network architecture, the hardware
architecture, and the value of hyperparameters such as the batch
size.

In Figure 6, it can be seen that parameters such as batch size
are directly proportional to the training speed up to a certain point.
For certain networks, like AlexNet, there is an optimal number for
the batch size after which further increases in batch size result in
decreases in training speed. Similar results were found for Server
Type 1 and Server Type 3. It was not possible to evidence this
effect in Server Type 2 given that its 16GB GPU memory does
support a batch size larger than 2048.

Another interesting insight observed in Figure 6 is that at the
optimal batch size (in this case, 2048), doubling the number of
GPUs increases training speed by almost a factor of two. This
clearly shows the importance of determining the optimal batch
size when planning to scale up training by augmenting the number
of GPUs.

The results in Figure 6 also evidence the effect of the GPU
interconnect topology in the increase (or decrease) of training
speed when doubling the number of GPUs assigned to a specific

PEARC °19, July 28 — August 1, 2019, Chicago, IL, USA

Dependence of Training Speed on Batch Size and GPU Memory Capacity
Synthetic data, 4 GPUs

V100-16GB (Server Type 2) ® V100-32GB (Server Type 1)
80000

60000

40000

images/sec

o 19153
20000 o7 gugier 1rdgese 1T T7enETs 1720

1 12255
452072 5414

32 64 128 256 512 1024 2048 4096

Batch Size

Dependence of Training Speed on Batch Size and GPU Memory Capacity
Synthetic data, 8 GPUs

V100-16GB (Server Type 2) ® V100-32GB (Server Type 1)
80000

60000

40000 30361 29544 32219
21693 23959 23503 24534

images/sec

20000 11859

32 64 128 256 512 1024 2048 4096

Batch Size

Dependence of Training Speed on Batch Size and GPU Memory Capacity
Synthetic data, 16 GPUs

= V100-32GB (Server Type 1)

80000 69482

55189
60000 49075
43716
arsaz
40000 33341

24751

images/sec

20000 14958

32 64 128 256 512 1024 2048 4096

Batch Size

Figure 6. Training speed increases significantly with batch size, reaching a
maximum at batch size of 2048, as seen for 4, 8, and 16 GPUs (top,
middle, and bottom). Training speed is also generally enhanced by larger
HBM2 memory on the GPUs, reflected by performance shown in the top
two graphs for 16GB (yellow) and 32GB (orange) HBM2 memory.

task. It can be seen when comparing the upper and middle graphs
for 4 and 8 GPUs that, for batch sizes of 512 or less, an increase
from 4 to 8 GPUs in the Server Type 2 results in a decrease of
training speed. This is an example of communication overhead
decreasing the performance of a system, a subtle effect that
reinforces the need for deep learning practitioners to understand
how performance can depend on computer architecture.

We explored the influence of the batch size and the number of
GPUs on training performance. It was found that different
hardware topologies and the specific batch size influence the

PEARC ’19, July 28 — August 1, 2019, Chicago, IL, USA

AlexNet Best Training Speed for each Server Type

80000
69482

60000

40000 PO
3219

images/sec

20000
6053

o — IR

Server Type 4 Server Type 3 Server Type 2 Server Type 1

Figure 7. AlexNet best training speed for each of the four server types.
The batch size is optimized to use each system in full.

effect of adding more GPUs to a training task, in agreement with
observations of Canziani et al. [31].

We also examined the four server types in terms of the best
performance each can produce when training the neural network
AlexNet. We considered the optimal batch size for the network
and the optimal number of GPUs. The results, shown in Figure 7,
provide an estimate of the best performance in terms of training
speed that each of these server types can provide when training
AlexNet. As expected, Server Type 1 (16 V100 GPUs) leads, with
a speed over two-fold greater than Server Type 2 (8 V100 GPUs).
Server Type 3, with 4 V100 GPUS, is third and exhibits a training
speed of over half that of the Server Type 2. Server Type 3 has a
speed around three times that of Server Type 4 (2 P100 GPUs),
clearly demonstrating the performance gains introduced in Volta
through Tensor Cores and other architectural advances.

4 Conclusion

Open Compass is enabling exploratory research leveraging the
Compass Lab, an advanced engineering testbed for artificial
intelligence, to develop understanding of the benefits of emerging
Al technologies for the open science community. The Compass
Ontology provides a detailed knowledge base of Al hardware and
will become increasingly important as many new architectures
that are currently under development become available. Early
results of Open Compass are encouraging, revealing important
insights into the relationships between deep learning training
speed, memory capacity, and batch size.

ACKNOWLEDGMENTS

Open Compass is supported by National Science Foundation
award OAC-1833317. We are thankful to Hewlett Packard
Enterprise and NVIDIA for their support of the Compass Lab.

REFERENCES

[1] Y. Shoham, R. Perrault, E. Brynjolfsson and J. Clark 2017. A/ Index 2017
Annual Report. Stanford University.

[2] Y. Shoham, R. Perrault, E. Brynjolfsson, J.C. Openai, J. Manyika, J.C. Niebles,
T. Lyons, J. Etchemendy, B. Grosz and Z. Bauer 2018. A/ Index 2018 Annual
Report.

P. Buitrago and N. Nystrom

[3] A. Krizhevsky, I. Sutskever and G.E. Hinton 2012. ImageNet Classification
with Deep Convolutional Neural Networks. Advances in Neural Information
Processing Systems 25 (2012), 1097-1105.

[4] C. Szegedy, L. Wei, J. Yangqing, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke and A. Rabinovich 2015. Going deeper with convolutions. 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015),
1-9.

[S] K. He, X. Zhang, S. Ren and J. Sun 2016. Deep Residual Learning for Image
Recognition. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2016), 770-778.

[6] H. Sak, A. Senior and F. Beaufays 2014. Long Short-Term Memory Based
Recurrent Neural Network Architectures for Large Vocabulary Speech
Recognition. arXiv:1402.1128. (2014).

[7] N. Brown and T. Sandholm 2017. Safe and Nested Subgame Solving for
Imperfect-Information Games. Advances in Neural Information Processing
Systems 30. 1. Guyon, U. V Luxburg, S. Bengio, H. Wallach, R. Fergus, S.
Vishwanathan, and R. Garnett, eds. Curran Associates, Inc. 689—699.

[8] N. Brown and T. Sandholm 2017. Superhuman Al for heads-up no-limit poker:
Libratus beats top professionals. Science. (2017).
DOL:https://doi.org/10.1126/science.aaol733.

[9] N.A. Nystrom, P.A. Buitrago and P.D. Blood 2019. Bridges: Converging HPC,
Al, and Big Data for Enabling Discovery. Contemporary High Performance
Computing: From Petascale toward Exascale, Vol. 3. J.S. Vetter, ed. CRC
Press.

[10] N.A. Nystrom, M.J. Levine, R.Z. Roskies and J.R. Scott 2015. Bridges: a
uniquely flexible HPC resource for new communities and data analytics.
Proceedings of the 2015 XSEDE Conference: Scientific Advancements Enabled
by Enhanced Cyberinfrastructure. ACM.

[11] IJ. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville and Y. Bengio 2014. Generative Adversarial Nets. Advances in
Neural Information Processing Systems 27 (2014), 2672-2680.

[12] J. Deng, W. Dong, R. Socher, L. Li, K. Li and L. Fei-Fei 2009. ImageNet: A
Large-Scale Hierarchical Image Database. 2009 [EEE Conference on Computer
Vision and Pattern Recognition (2009), 248-255.

[13] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.
Karpathy, A. Khosla, M. Bernstein, A.C. Berg and L. Fei-Fei 2015. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer
Vision. 115, 3 (2015), 211-252. DOL:https://doi.org/10.1007/s11263-015-0816-

y.

[14] R. Adolf, S. Rama, B. Reagen, G. Wei and D. Brooks 2016. Fathom: reference
workloads for modern deep learning methods. 2016 IEEE International
Symposium on Workload Characterization (IISWC) (2016), 1-10.

[15] MLPerf: A broad ML benchmark suite for measuring performance of ML
software frameworks, ML hardware accelerators, and ML cloud platforms:
2018. https://mlperf.org/. Accessed: 2019-04-06.

[16] C. Coleman, D. Narayanan, D. Kang, T. Zhao, J. Zhang, L. Nardi, P. Bailis, K.
Olukotun, C. Ré and M. Zaharia 2017. DAWNBench: An End-to-End Deep
Learning Benchmark and Competition. Thirty-first Annual Conference on
Neural Information Processing Systems (NIPS). Nips (2017).

[17] HPE Deep Learning Cookbook: 2018. https://developer.hpe.com/platform/hpe-
deep-learning-cookbook/home. Accessed: 2019-04-06.

[18] A.K. AL Hwaitat, A. Shaheen, K. Adhim, E.N. Arkebat and A.A. AL Hwiatat
2018. Computer Hardware Components Ontology. Modern Applied Science. 12,
3(2018), 35-40. DOIL:https://doi.org/10.5539/mas.v12n3p35.

[19] M.H. Faheem, B. Konig-Ries, A.M. Aslam, R.N. Aljohani and I. Katib 2018.
Ontology Design for Solving Computationally-Intensive Problems on
Heterogeneous Architectures. Sustainability.

[20] Y. LeCun, Y. Bengio and G. Hinton 2015. Deep learning. Nature. 521, 7553
(2015), 436-444.

[21] I. Goodfellow, Y. Bengio and A. Courville 2016. Deep Learning. The MIT
Press.

[22] D. Silver et al. 2016. Mastering the game of Go with deep neural networks and
tree search. Nature. 529, 7587 (Oct. 2016), 484-489.
DOI:https://doi.org/10.1038/nature16961.

[23] B. Le Cun, Y Boser, J.S. Denker, R.E. Howard, W. Habbard, L.D. Jackel and D.
Henderson 1990. Handwritten Digit Recognition with a Back-propagation
Network. D.S. Touretzky, ed. Morgan Kaufmann Publishers Inc. 396—404.

[24] M.1. Jordan 1986. Serial Order: A Parallel Distributed Processing Approach.

[25] S. Sabour, N. Frosst and G.E. Hinton 2017. Dynamic Routing Between
Capsules. Adv. in Neural Information Processing Systems 30 (NIPS 2017)
(2017).

[26] M.A. Musen 2015. The Protégé Project: A Look Back and a Look Forward. {4/}
Matters. 1, 4 (2015), 4-12. DOL:https://doi.org/10.1145/2757001.2757003.

[27] OWL Web Ontology Language Overview: 2004.
https://www.w3.0rg/TR/2004/REC-owl-features-20040210/.

[28] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna 2016. Rethinking
the Inception Architecture for Computer Vision. 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2016), 2818-2826.

Open Compass: Accelerating the Adoption of Al in Open Research PEARC ’19, July 28 — August 1, 2019, Chicago, IL, USA

[29] S. Liu and W. Deng 2015. Very deep convolutional neural network based image
classification using small training sample size. 2015 3rd IAPR Asian Conference
on Pattern Recognition (ACPR) (2015), 730-734.

[30] TensorFlow Benchmarks: 2018.
https.//www.tensorflow.org/guide/performance/benchmarkshtips://www.tensorfl
ow.org/guide/performance/benchmarks.

[31] A. Canziani, A. Paszke and E. Culurciello 2016. An Analysis of Deep Neural
Network Models for Practical Applications. (2016), 1-7.

