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ABSTRACT 
Artificial intelligence (AI) has immense potential spanning 
research and industry. AI applications abound and are expanding 
rapidly, yet the methods, performance, and understanding of AI 
are in their infancy. Researchers face vexing issues such as how to 
improve performance, transferability, reliability, 
comprehensibility, and how better to train AI models with only 
limited data. Future progress depends on advances in hardware 
accelerators, software frameworks, system and architectures, and 
creating cross-cutting expertise between scientific and AI 
domains. Open Compass is an exploratory research project to 
conduct academic pilot studies on an advanced engineering 
testbed for artificial intelligence, the Compass Lab, culminating in 
the development and publication of best practices for the benefit 
of the broad scientific community. Open Compass includes the 
development of an ontology to describe the complex range of 
existing and emerging AI hardware technologies and the 
identification of benchmark problems that represent different 
challenges in training deep learning models. These benchmarks 
are then used to execute experiments in alternative advanced 
hardware solution architectures. Here we present the methodology 
of Open Compass and some preliminary results on analyzing the 
effects of different GPU types, memory, and topologies for 
popular deep learning models applicable to image processing. 

CCS CONCEPTS 
• Computing methodologies → Artificial 
intelligence • Computing methodologies → Knowledge 
representation and reasoning • Hardware → Analysis and 
design of emerging devices and systems 
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1 Introduction 
Artificial intelligence (AI) has immense potential spanning 

research and industry. Research initiatives, conferences, 
investment, and products based on AI abound and are expanding 
rapidly [1, 2], yet the methods, performance, and understanding of 
AI are actually in their infancy. The progress that has been made 
is impressive [3–6], for example the breakthrough of Libratus for 
decision-making with imperfect information [7, 8] enabled by 
converged high performance computing (HPC) and AI on the 
Bridges supercomputer [9, 10], but greater challenges lie ahead. 
Researchers face vexing issues such as how to improve 
performance, transferability, reliability, comprehensibility, and 
how better to train AI models when available data is quite limited 
[11]. Future progress depends on advances in hardware 
accelerators, software frameworks, system architectures, and 
creating cross-cutting expertise between scientific and AI 
domains. 

Recently, the combination of graphics processing units (GPUs) 
and AI have emerged as a disruptive technology, changing the 
way that we obtain insights and create value from data. Ongoing 
advances and forthcoming, qualitatively different technologies 
will open the door to faster, deeper, and more productive ways of 
analyzing and working with data. Advances in technology are 
outpacing traditional system acquisition cycles, creating an urgent 
need to deeply understand the potential of new kinds of 
accelerators, interconnects, volatile and nonvolatile memory, and 
other hardware components. The community needs to develop 
experience with new technologies as early as possible to build 
applications, develop software ecosystems around the most 
promising technologies, and inform future large-scale investment. 
Infrastructure alone is insufficient to develop this experience, and 
many existing benchmarks (e.g., training ImageNet [12, 13]) do 
not reflect the different requirements of research. A concerted 
effort between domain experts and AI experts is needed to create 
workloads representative of research and to understand the value 
of new technologies and to make the most of emerging hardware 
and new and platform-optimized software frameworks. Hands-on 
experience with new technologies is needed to establish and 
disseminate best practices and to evaluate the potential of diverse 
technologies. 



PEARC ’19, July 28 – August 1, 2019, Chicago, IL, USA P. Buitrago and N. Nystrom 
 

 
 

The Pittsburgh Supercomputing Center (PSC), a research 
center of Carnegie Mellon University and the University of 
Pittsburgh, launched the Compass Lab, an advanced engineering 
testbed for artificial intelligence research and pilot projects. The 
Compass Lab makes available emerging, continuously-refreshed 
hardware and software technologies, backed by human expertise 
and training, to help users “find their direction” in the complex AI 
landscape (Figure 1). Compass Lab is a unique collaboration 
between a national HPC center, academia, hardware and software 
vendors, and private-sector startups, accelerators, and incubators. 

Open Compass is an exploratory research project, focusing on 
academia, to conduct pilot projects on this advanced engineering 
testbed for artificial intelligence, culminating in the development 
and dissemination of best practices. Open Compass builds on the 
Compass Lab to make those advanced technologies available also 
to the open research community. 

1.2 Related Work 
Several other significant efforts are underway to correlate the 

performance of AI frameworks and models with various 
hardware. These initiatives fall into two categories: organized 
efforts to understand the relationship of performance to 
architecture in a more systematic way, and published benchmark 
specifications with periodic submissions by the community. 

Fathom [14] is a set of eight workloads (i.e., model plus data) 
consisting of specific seminal works in deep learning from 2012 
to 2015. Fathom’s coverage addresses speech, image 
classification, and game learning, using different model types 
(convolutional, recurrent, fully-connected, memory), learning 
types (supervised, unsupervised, reinforcement), and datasets. 
However, Fathom’s workloads are now dated, and they do not 
address many important learning tasks in research. 

 MLPerf  [15], driven by a broad industry consortium, aims to 
accelerate progress in machine learning by providing a set of 
benchmarks for image classification, object detection, speech-to-
text, translation, recommendation, sentiment analysis, and 
reinforcement learning. Like the Top500 list in high-performance 
computing (HPC), MLPerf quickly came to be a competition, with 
the top published results reflecting runs on impressively large-
scale AI infrastructure. DAWNBench [16] is similar to MLPerf, 
also providing a benchmark and competition around industry-
standard datasets (e.g., ImageNet) and models. 

The HPE Deep Learning Cookbook [17] takes a different 
approach, providing a benchmarking suite, performance guide, 
and reference designs to characterize workloads and recommend 
optimal hardware and software platforms for executing them. 

Of the projects summarized above, Fathom, MLPerf, and 
DAWNBench are narrowly focused on providing benchmarks for 
the community to execute, in some cases competitively. The HPE 
Deep Learning Cookbook is closest in spirit to Open Compass in 
its focus on providing insights to AI users. Their emphasis is on 
datasets relevant to widespread commercial applications, for 
example, classification of low-resolution images and speech 
recognition and translation. Their approach has great value, but it 
does not address complementary requirements of research data 
that pose qualitatively different challenges. 

For organizing knowledge of AI technologies, existing 
computer ontologies do not address computer hardware at the 
right level of detail, nor do they address AI software. Hwaitat et 
al. [18] focus on the formal defensible logic for a basic ontology 
that is not well-suited to characterizing hardware for AI 
workloads. They address a few aspects of CPU, memory, and I/O 
devices, but they do not address accelerators, interconnects, or 
object or data properties. Faheem et al. [19] propose an ontology 
for mapping applications onto heterogeneous architectures. Their 
focus is primarily on application mapping, so some ideas from 
their approach may eventually interface well with the AI hardware 
and software ontology developed in Open Compass. 

Open Compass differs and adds value in two vital ways. First, 
Open Compass focuses on developing and disseminating best 
practices for application of AI to research, which goes well 
beyond just measuring performance. Second, Open Compass 
explicitly addresses AI for research data, for example, volumetric 
medical imaging, genomic, and medical time-series data, as 
described in section 2.2.  

2 Methodology 
Open Compass leverages the PSC Compass Lab to execute 

pilot studies and address research questions relevant across 
scientific domains. Open Compass methodology includes the 
preliminary evaluation of alternative hardware solutions in terms 
of the produced training performance of different neural networks. 
The “Cambrian explosion” of architectural innovation makes 
Open Compass very timely, and it also requires careful attention 
to diversity of computer architectures, what they have in common, 
and how they differ. 

Figure 1. PSC’s Compass Lab integrates emerging hardware accelerators 
including processors, memory, and interconnects with advanced software 
frameworks and human expertise to let users make informed decisions for 
investment and implementation. 
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2.1 Some Relevant AI Concepts 
Artificial intelligence, particularly deep learning [20], is 

advancing very rapidly. It is beyond the scope of this paper to 
provide an in-depth introduction (the interested reader is referred 
to, for example, [21] and recent NeurIPS, ICML, and related 
conference proceedings); however, it is helpful to survey some 
directly relevant concepts. 

Deep neural networks (DNNs) have demonstrated great 
capacity for representation learning, which is the ability to learn 
features from data. Representation learning allowed DNNs to 
surpass prior machine learning techniques for many domains such 
as image classification [3], speech recognition and translation, and 
games of strategy [22]. 

DNNs are built on many (typically tens to hundreds) two-
dimensional layers of artificial “neurons” of several basic types, 
with different properties and connectivity between them. The 
connections are “weights”, which are optimized through an 
iterative process known as “training”. The specification of layers 
and how they are connected is a “network” or a “model”, and the 
model plus a set of weights optimized for a particular application 
(e.g., recognizing melanoma in photos of skin) is a “trained 
model”. The trained model may then be applied to new data, a 
process called “inferencing”, to classify, predict, or otherwise 
generate information. 

Different kinds of networks are suited to different kinds of 
learning. Examples of networks that are currently in widespread 
use are Convolutional Neural Networks (CNNs) [23] for image 
classification and segmentation; Recurrent Neural Networks 
(RNNs) [24] and Long Short-Term Memory (LSTM) [6] for time-
series data such as speech recognition, generation, and translation; 
Generative Adversarial Networks (GANs) [11] for combining 
other DNNs into generator and discriminator pairs that can 
augment limited raw data. Other networks are being devised, such 
as Capsule Networks [25] to model hierarchical relationships and 
3D CNNs for three-dimensional image data and also video data 
(2D images plus time). The performance of different DNNs 
depends strongly and in different ways on computation, memory 
capacity, bandwidth and latency to memory and storage, and other 
factors. 

Understanding of which hardware would be best – as defined 
by fastest, most cost-effective, lowest-power, or other some other 
measure – for a specific training or inference application is 
generally quite limited. Graphics processing units (GPUs) are 
generally regarded as a good choice for training, but often without 
understanding of which GPU would be optimal. Similarly, CPUs, 
differently-configured GPUs, and FPGA (field-programmable 
gate arrays) are often used for inferencing. But the real choice is 
far more complicated. For example, for a given application, is 
high-bandwidth memory (HBM2) beneficial, how much does it 
help, and what capacity is needed? Can the application effectively 
scale to multiple GPUs within a node, and if so, what internal 
topology is best? Need it be a full crossbar, or is a hybrid mesh 
cube or even a ring good enough? Can the application scale to 
multiple nodes, and if it can, how much internode bandwidth is 
needed to avoid a bottleneck? These are already hard questions for 

which researchers need answers. Many new architectural options 
are being developed, to be introduced over coming years. 
Researchers need understanding of their AI applications’ 
requirements relative to hardware architecture to make informed 
decisions about which hardware technologies to invest in or gain 
access to, as well as in which software frameworks they should 
invest their time. Open Compass is addressing that need for the 
research community. 

2.2 PSC Compass Program 
PSC’s Compass Program focuses on the application of AI 

technologies to address open challenges in research. It consists of 
four main components: the Compass Center, Compass Lab, 
Compass Consortium, and Open Compass. 

The Compass Center brings together faculty, staff, and 
members from industry, government, academic and nonprofit 
organizations to advance AI research and development and 
accelerate the adoption of AI across various fields, industries, and 
sectors of society. The Compass Lab (Figure 1) provides unique 
access through PSC to new hardware and software technologies 
for AI, backed by human expertise and partnering with faculty 
thought leaders to develop solutions. The Compass Consortium 
provides, depending on level of membership, access to seminars, 
meetings, presentations, publications, reports, case studies, 
technical briefings, and benchmark results; access to consortium 
projects; member-directed projects emphasizing the application of 
new AI technologies to derive value from data; networking with 
faculty, students, vendors, and other members; connections to 
domain experts; training; input through an advisory board to 
define consortium projects; and other benefits. 

Open Compass brings the benefits of the Compass Lab to the 
academic research community. This is important because quite 
often, research data differs significantly from the kinds of data 
that dominate commercial applications to date and that drove the 
development of today’s most popular deep learning frameworks 
and models. Examples of data that are not covered by standard 
benchmarks are segmentation of volumetric (3D) image data to 
indicate and identify structures in human organs (e.g., neurons in 
brains and nephrons in kidneys), analysis of large (e.g., 
100,000×100,000 pixels) whole-slide images that are routine in 
digital pathology, classification of anomalous patterns in medical 
time-series data (e.g., classification of different kinds of 
arrhythmia in electrocardiogram data), analysis of 4k and 8k video 
data, and imputation of extended genomic information from 
microarray data.  

Through a suite of pilot applications and working with leading 
domain researchers, Open Compass is expanding the community’s 
understanding of algorithmic requirements on hardware and 
software resources. This paper establishes the methodology, kinds 
of performance experiments, and performance measurement 
protocol, initially applying them to a set of well-known workloads 
to establish a strong foundation. 

The Open Compass project also provides expert assistance in 
applying Compass Lab resources and collaborative development 
of algorithms, models, and software; develops and disseminates 
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best practices; and provides training tailored to the open research 
community. 

2.3 Compass AI Hardware Ontology 
The proliferation of hardware technologies being developed 

presents a daunting combinatoric challenge if viewed from the 
perspective of planning to benchmark everything. Researchers are 
presented with a bewildering array of processors and accelerators, 
tiered memory and data management systems built on a mix of 
new and existing technologies, different interconnect technologies 
both between processors and between nodes, different multiples 
of the preceding components for scaling, different topologies, and 
different software layers optimized for particular hardware. 
Traditional factorial design on even one node can be prohibitive in 
the time that would be required for the resulting runs. To 
understand the impacts of emerging technologies on AI 
performance and how to apply specific technologies most 
effectively, a more carefully planned approach is needed. 

We therefore developed an ontology of AI architectures that 
has value in framing experiments and assessing performance in a 
useful, interpretable way. Over time, the Compass ontology will 
be expanded to factor in additional hardware architectures as they 
emerge. Software aspects are being added, and performance 
results are being integrated, thereby creating a knowledge base 
that can be queried, added to, and expanded. 

The Compass Ontology is developed in Protégé [26] and is 
available as an OWL specification [27]. Figure 2 illustrates the 
hardware class hierarchy, with (sub)classes of the most relevance 

to this discussion expanded. The hierarchy allows intuitive 
specification of object properties, each with specified ranges and 
domains to allow checking of axioms. For example, class 
Processor has object property (among others) of hasMemoryType 
to represent the type of memory that it supports. That property is 
inherited by subclasses CPU and GPU and instances (called 
“individuals” in Protégé) thereof. This hierarchical representation 
is helpful when thinking about how architectural components 
relate to each other and, for Open Compass, to AI tasks and 

Figure 4. Class hierarchy for the 
Compass Ontology, with hardware 
classes selectively expanded to 
illustrate key concepts. The relatively 
high level of detail is required to 
accurately represent and reason on the 
differences between architectures.  
Complementing the class hierarchy 
are object properties that describe 
attributes of class members, 
individuals that are instances of the 
classes, data properties that are 
attributes of individuals, and data 
types. 

Figure 3. Example visualization of the Compass Ontology, focusing on 
individual NVIDIA_DGX-2 of class Server. Solid arcs indicate has 
subclass relationships, and dashed arcs indicate object properties such as 
hasGPUType and hasInternalInterconnectType. 

Figure 3. Example of instance NVIDIA_DGX-2 of class Server. The URI 
is simply the Uniform Resource Identifier, used in OWL to build and 
integrate ontologies. “Different individuals” are mutually exclusive 
members of class Server (many more are in the full ontology). “Object 
property assertions” indicate attributes of classes, and “Data property 
assertions” indicate properties of individuals. 
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models such as training, inferencing, CNNs, and LSTMs. It also 
enables validating instantiated data, for example, confirming that 
NVIDIA_Tesla_V100_SXM2_32GB, an instance of class and 
domain GPU, hasMemoryType HBM2, an instance of class and 
range Memory. 

Figure 2 illustrates a sample of the hardware class hierarchy, 
Figure 3 shows an example of the graph associated with 
individual NVIDIA_DGX-2 and class Server, and Figure 4 shows 
some of the object and data properties of NVIDIA_DGX-2. In each 
node of the graph (Figure 3), maize circle indicates a class, and a 
dark purple diamond indicates an individual. Solid arcs (edges) 
indicate subclasses, and dashed arcs indicate object properties. 
Data properties, which represent instance-specific attributes, are 
not shown in this view. In Figure 4, an example of a data property 
is NVIDIA_DGX-2 (instance) hasGPUCount (data property) 
“16”^^units (value). Here, ^^ indicates that “16” has datatype 
units. 

The Compass Ontology defines data types such as GB, GB/s, 
Gf/s, W, and units for readability and to strongly encourage 
consistency, both of which reduce the potential for errors. At this 
time, capacities, data rates, and computational rates are expressed 
in gigabytes (GB), gigabytes per second (GB/s), and gigaflops per 
second (Gf/s) rather than mixing giga, tera, and peta. This tradeoff 
results in occasionally large numbers that can be converted, if 
desired, by tools returning the results of queries. These units 
greatly improve understandability of data properties, as illustrated 

by a display of the NVIDIA_DGX-2 individual (Figure 4). For 
example, consistent use of datatype GB/s for data rates is shown 
by NVIDIA_DGX-2 hasBisectionBandwidth “2400”^^GB/s, 
ensuring that there is no confusion for subsequent inferencing and 
calculations. 

Examples of questions the Compass Ontology is designed to 
support are as follows: “What are the differences between two 
architecture classes, for example, systems, servers, or GPUs?” 
“What minimal set of performance experiments will provide a 
reasonably complete set of insights?” “How do differences in 
performance correlate with differences in architecture?” 

2.4 Technologies Addressed 
The Compass Lab roadmap addresses a wide range of devices, 

including many of types that will only become available in 
coming years. Technology classes include processors (e.g., CPUs, 
GPUs, FPGAs, and neuromorphic and quantum processors), 
memory (e.g., new nonvolatile and volatile technologies, new 
form factors, and integration with interconnect fabrics and 
processors), and interconnects. 

These preliminary results address several important, current 
technologies to illustrate the approach and serve as a baseline. 
These technologies include two GPU architectures, (Volta and 
Pascal); two generations of high-bandwidth memory; Tensor 
Cores; different GPU interconnects (NVLink 2.0, PCI Express 

Table 1. Technologies included in this study, including types of servers in which they are implemented and relevant details regarding GPUs, GPU 
interconnects, CPUs, and local storage for training data. 

 Server Type 1 Server Type 2 Server Type 3 Server Type 4 
Server type NVIDIA DGX-2 HPE Apollo 2000 Gen10 NVIDIA DGX Station HPE Apollo 2000 Gen9 
GPU type NVIDIA Tesla V100 NVIDIA Tesla V100 NVIDIA Tesla V100 NVIDIA Tesla P100 
GPU architecture Volta Volta Volta Pascal 
GPU count 16 8 4 2 
CUDA cores 5120 5120 5120 3584 
Tensor cores 640 640 640 0 
GPU memory type HBM2 HBM2 HBM2 CoWoS HBM2 
GPU memory capacity, per GPU 32 GB 16 GB 32 GB 16 GB 
GPU memory bandwidth, per GPU 900 GB/s 900 GB/s 900 GB/s 732 GB/s 
GPU interconnect type NVLink 2.0 + NVSwitch NVLink 2.0 NVLink 2.0 PCIe3 ×16 
GPU interconnect bandwidth, per Link 50 GB/s 50 GB/s 50 GB/s 16 GB/s 
GPU interconnect bandwidth, aggregate 300 GB/s 300 GB/s 300 GB/s 16 GB/s 
GPU interconnect bisectional Bandwidth 2.4 TB/s 300 GB/s 200 GB/s 16 GB/s 
GPU interconnect topology Fully Connected Hybrid Cube-Mesh Fully Connected+ Link, through PCIe 
CPU type Xeon Platinum 8168 Intel Xeon Gold 6148 Intel Xeon E5-2698 v4 Intel E5-2683 v4 
CPU microarchitecture Skylake Skylake Broadwell Broadwell 
CPU cores 24 20 20 16 
CPU clock, base 2.7 GHz 2.4 GHz 2.2 GHz 2.1 GHz 
CPU count 2 2 2 2 
CPU memory type DDR4-2666 DDR4-2666 DDR4-2400 DDR4-2400 
CPU memory capacity 1.5 TB 192 GB 256 GB 128 GB 
CPU memory maximum bandwidth 128 GB/s 128 GB/s 76.8 GB/s 76.8 GB/s 
Persistent local storage type NVMe SSD NVMe SSD NVMe SSD HDD 
Persistent local storage capacity 8× 3.84 TB 4× 1.92 TB 3× 1.92 TB 4 TB 
Native operating system (OS) Ubuntu 18 CentOS 7.4 Ubuntu 18 CentOS 7.4 
 



PEARC ’19, July 28 – August 1, 2019, Chicago, IL, USA P. Buitrago and N. Nystrom 
 

 
 

Gen 3 (PCIe3)); different topologies connecting GPUs (fully 
connected, hybrid cube-mesh, indirect through PCIe3); different 
storage technologies to hold training data (NVM Express solid 
state disk (NVMe SSD) and hard disk drive (HDD)); different 
operating systems (Ubuntu and CentOS); and native vs. 
containerized execution. These technologies are implemented in 
four types of servers: 1) NVIDIA DGX-2, 2) NVIDIA DGX 
Station, 3) HPE Apollo 6500 Gen10 server with NVIDIA Tesla 
V100 SXM2 GPUs, and 4) HPE Apollo 2000 Gen9 server with 
NVIDIA Tesla P100 PCIe GPUs. Table 1 summarizes their 
technical characteristics that are relevant to performance 
measurements reported here. 

These technologies differ in several important ways. Larger 
GPU memory capacities allow larger batch sizes for deep learning 
training and potentially higher performance. Different GPU 
interconnects and topologies affect the rate at which information 
can be exchanged between GPUs. The effect on performance 
varies with algorithm, ranging from weak, for algorithms 
requiring low communication (e.g., communicating in a ring), to 
strong, for algorithms requiring intense communications (e.g., all-
to-all communications). Different storage technologies affect 
performance of training from large datasets, where the 
performance of the storage subsystem is expected to be more 
important for training involving non-sequential reads. Other 
factors are also salient. It is important to note that performance 
cannot be measured independently for all variables because 
servers cannot be configured with arbitrary combinations of 
technology. We therefore focus on carefully-selected experiments, 
for which the Compass Ontology will be increasingly important as 
the technology ecosystem becomes increasingly complex, and 
combine information from complementary experiments to infer 
relationships that cannot be directly measured. 

2.5 Performance Experiments 
Open Compass addresses both training and inferencing, 

initially focusing on training neural networks for image 
processing for its familiarity to the community and to document 
our methodology. Subsequent publications will address research 
networks for which there is no baseline and little or no community 
experience. 

Section 3 discusses performance results for training five neural 
networks: InceptionV3 [28], ResNet-50 [5], ResNet-152 [5], and 
VGG16 [29], and AlexNet [3], all using synthetic data. These 
networks differ significantly in their layers and topologies and 
therefore have different memory and computational requirements. 
In practice, each has proven valuable for image classification. 
Initially, we focus on training because training speed is of great 
importance to developing deep learning approaches to research 
data. 

Experiments reported here were executed on the four server 
types detailed in Table 1, allowing analysis of how training speed 
depends on GPU type, amount of GPU (HBM2) memory, batch 
size, interconnect topology, bandwidth to data storage, and 
containerized versus bare-metal execution. Due to space 

 

 

 

 

Figure 5. Training rates, measured in images per second, for TensorFlow 
1.10 running networks InceptionV3, VGG16, ResNet-50, and ResNet-151 
using NGC containers on Server Types 1-4 (as detailed in Table 1). Not 
shown are results for AlexNet, which are much higher and difficult to 
show on the same axes (e.g, 24,751 images per second for 8 GPUs 
running on Server Type 1). 
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limitations, here we report only a subset of the results, deferring 
others to a subsequent publication. 

2.6 Performance Measurement Protocol 
Open Compass performance measurements use a carefully-

designed workflow that systematically orchestrates the large 
volume of runs required for performance experiments, including 
repetition of runs to determine statistical variation. Up to five runs 
were conducted for each measurement, and then the times were 
averaged. For each test, the first 10 steps are used as warm-up and 
then the next 100 steps are sampled and averaged to produce the 
test result. Ensembles of runs are scripted to record all salient 
metadata together with the actual performance metrics. A batch 
system (e.g., Slurm) is used when possible to maximize use of 
resources. All performance experiments are conducted on 
otherwise quiet servers, i.e., without any other jobs running on 
them. 

For the image classification tasks, we measure performance in 
terms of the number of data items processed per second. 

3 Results and Discussion 
We start by considering two specific sets of correlations: 

training speeds for different architectures and numbers of GPUs 
(Figure 5), and training speeds as a function of batch size and 
GPU memory capacity (Figure 6). Figure 6 shows results for the 
network AlexNet. 

The results depicted in Figure 5 for P100 GPUs are in 
agreement with the numbers published by TensorFlow in their 
official site [30]. The results of this paper augment the 
TensorFlow benchmarks by providing speed values for NVIDIA 
Tesla V100 SXM2 GPUs with 16 GB and 32 GB of HBM2 
memory. We can observe that the ratio at which the speed 
increases is in some cases almost linearly proportional to the 
increase in number of GPUs. The ratio for the speed increase is 
influenced by the specific network architecture, the hardware 
architecture, and the value of hyperparameters such as the batch 
size. 

In Figure 6, it can be seen that parameters such as batch size 
are directly proportional to the training speed up to a certain point. 
For certain networks, like AlexNet, there is an optimal number for 
the batch size after which further increases in batch size result in 
decreases in training speed. Similar results were found for Server 
Type 1 and Server Type 3. It was not possible to evidence this 
effect in Server Type 2 given that its 16 GB GPU memory does 
support a batch size larger than 2048. 

Another interesting insight observed in Figure 6 is that at the 
optimal batch size (in this case, 2048), doubling the number of 
GPUs increases training speed by almost a factor of two. This 
clearly shows the importance of determining the optimal batch 
size when planning to scale up training by augmenting the number 
of GPUs. 

The results in Figure 6 also evidence the effect of the GPU 
interconnect topology in the increase (or decrease) of training 
speed when doubling the number of GPUs assigned to a specific 

task. It can be seen when comparing the upper and middle graphs 
for 4 and 8 GPUs that, for batch sizes of 512 or less, an increase 
from 4 to 8 GPUs in the Server Type 2 results in a decrease of 
training speed. This is an example of communication overhead 
decreasing the performance of a system, a subtle effect that 
reinforces the need for deep learning practitioners to understand 
how performance can depend on computer architecture. 

We explored the influence of the batch size and the number of 
GPUs on training performance. It was found that different 
hardware topologies and the specific batch size influence the 

 

 

 
Figure 6. Training speed increases significantly with batch size, reaching a 
maximum at batch size of 2048, as seen for 4, 8, and 16 GPUs (top, 
middle, and bottom). Training speed is also generally enhanced by larger 
HBM2 memory on the GPUs, reflected by performance shown in the top 
two graphs for 16GB (yellow) and 32GB (orange) HBM2 memory. 
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effect of adding more GPUs to a training task, in agreement with 
observations of Canziani et al. [31].  

We also examined the four server types in terms of the best 
performance each can produce when training the neural network 
AlexNet. We considered the optimal batch size for the network 
and the optimal number of GPUs. The results, shown in Figure 7, 
provide an estimate of the best performance in terms of training 
speed that each of these server types can provide when training 
AlexNet. As expected, Server Type 1 (16 V100 GPUs) leads, with 
a speed over two-fold greater than Server Type 2 (8 V100 GPUs). 
Server Type 3, with 4 V100 GPUS, is third and exhibits a training 
speed of over half that of the Server Type 2. Server Type 3 has a 
speed around three times that of Server Type 4 (2 P100 GPUs), 
clearly demonstrating the performance gains introduced in Volta 
through Tensor Cores and other architectural advances. 

4 Conclusion 
Open Compass is enabling exploratory research leveraging the 

Compass Lab, an advanced engineering testbed for artificial 
intelligence, to develop understanding of the benefits of emerging 
AI technologies for the open science community. The Compass 
Ontology provides a detailed knowledge base of AI hardware and 
will become increasingly important as many new architectures 
that are currently under development become available. Early 
results of Open Compass are encouraging, revealing important 
insights into the relationships between deep learning training 
speed, memory capacity, and batch size. 
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