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Abstract. A monomial-Cartesian code is an evaluation code defined by evaluating
a set of monomials over a Cartesian product. It is a generalization of some families of
codes in the literature, for instance toric codes, affine Cartesian codes, and J -affine
variety codes. In this work we use the vanishing ideal of the Cartesian product to give a
description of the dual of a monomial-Cartesian code. Then we use such description of
the dual to prove the existence of quantum error correcting codes and MDS quantum
error correcting codes. Finally we show that the direct product of monomial-Cartesian
codes is a locally recoverable code with t -availability if at least t of the components
are locally recoverable codes.

1. Introduction

Let K = Fq be a finite field with q elements and R = K[x1, . . . , xm] the polynomial
ring over K in m variables. We write K∗ = K \ {0} for the multiplicative group of
K . Given a lattice point a ∈ Zm

≥0 we use xa to denote the corresponding monomial
in R , i.e. xa = xa11 · · · xamm for a = (a1, . . . , am). Given a positive integer `, we define
[`] := {1, . . . , `} .

A monomial-Cartesian code is defined as follows. Fix non-empty subsets S1, . . . , Sm

of K . Define their Cartesian product as

S := S1 × · · · × Sm ⊆ Km.

Furthermore, let A ⊆ Zm
≥0 be a finite lattice set and L(A) the subspace of polynomials

of R that are K -linear combinations of monomials with exponents in A :

L(A) = SpanK{xa : a ∈ A} ⊆ R.

Fix a linear order of the points in S = {s1, . . . , sn}, s1 ≺ · · · ≺ sn . This defines the
evaluation map

evS : L(A) → K |S|

f 7→ (f(s1), . . . , f(sn)) .

In what follows, ni := |Si| , the cardinality of Si for i ∈ [m]. From now on, we assume
that A ⊆ {0, . . . , n1 − 1} × · · · × {0, . . . , nm − 1}, that is the degree of each f ∈ L(A)
in xi is less than |Si| . In this case, the evaluation map evS is injective (see the proof of
Proposition 2.1).
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Definition 1.1. Let S ⊆ Km and A ⊆ Zm
≥0 be as above. The image evS(L(A)) ⊆ K |S| is

called the monomial-Cartesian code associated with S and A . We denote it by C(S, A).
By an abuse of notation, if a ∈ A then L(a) means L({a}) and C(S,a) denotes the
code C(S, {a}).

The monomial-Cartesian code has the following parameters (Proposition 2.1). Its
length and dimension are given by n = |S| and k = dimK C(S, A) = |A| , respectively.
Recall that the minimum weight of a code C is given by

δ(C) = min{| supp(c)| : 0 6= c ∈ C},
where supp(c) denotes the support of c , that is, the set of all non-zero entries of c .
Unlike the case of the length and the dimension, in general, there is no explicit formula
for δ(C(S, A)) in terms of S and A . For toric codes, some explicit formulas appear
in [35] and non-trivial bounds appear in [34] when m = 2. However, there is a simple
relation between the minimum weights of two monomial-Cartesian codes C(S1, A) and
C(S2, A) and of their Cartesian product C(S1×S2, A×B) (see Proposition 3.1), which
we make use of in Section 3.

The dual of the code C is defined by

C⊥ = {w ∈ Kn : w · c = 0 for all c ∈ C},
where w · c represents the Euclidean inner product. The code C is called a linear
complementary dual (LCD) [30] if C ∩ C⊥ = {0} and is called a self-orthogonal code if
C⊥ ⊆ C. In [10], Carlet, Mesnager, Tang, Qi, and Pellikaan show that any linear code
over Fq with q > 3 is equivalent to an LCD code; even so, explicit constructions can
be elusive. In this paper, we provide a characterization for monomial-Cartesian codes
which are LCD, thus providing explicit constructions of LCD codes.

Instances of monomial-Cartesian codes for particular families of lattice sets A and
Cartesian products S have been extensively studied in the literature. For example, a
Reed-Muller code of order r in the sense of [39, p. 37] is the monomial-Cartesian code
C(Km, Ar), where Ar = {(a1, . . . , am) ∈ Zm

≥0 : a1 + · · ·+am ≤ r} . Note that in this case
L(Ar) = R≤r , the set of all polynomials of degree at most r .

Another example of a monomial-Cartesian code is a toric code C((K∗)m , AP ), where
AP = P ∩ Zm is the set of lattice points of a convex lattice polytope P ⊆ Rm and
(K∗)m is the Cartesian product with S1 = · · · = Sm = K∗. Good references for toric
codes are [23, 25, 35].

An affine Cartesian code of order r is a monomial-Cartesian code C(S, Ar), where
Ar is as above and S is an arbitrary Cartesian set. This family of codes appeared
first time in [20] and then independently in [28]. In [20], the authors study the basic
parameters of Cartesian codes, they determine optimal weights for the case when Ar

is the Cartesian product of two sets, and then present two list decoding algorithms. In
[28] the authors study the vanishing ideal I(S). Using commutative algebra tools such
as regularity, degree, and Hilbert function, the authors determine the basic parameters
of Cartesian codes in terms of the size of the components of the Cartesian product. In
[11], the author shows some results on higher Hamming weights of Cartesian codes and
gives a different proof for the minimum distance using the concepts of Gröbner basis and
footprint of an ideal. In [12] the authors find several values for the second least weight of
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codewords, also known as the next-to-minimal Hamming weight. In [2] the authors find
the generalized Hamming weights and the dual of Cartesian codes. In [27] the authors
study the dual of a generalized Cartesian product and the property of being LCD, i.e.,
when the code and the dual have zero intersection.

Let S ⊆ Km and A ⊆ Zm
≥0 be as above. In this work we are interested in the

properties and applications of the monomial-Cartesian code C(S, A). In Section 2 we
give a nice description of the dual of the code C(S, A) in terms of the complement of
the set A and the vanishing ideal of the set of points S. Our main theorem generalizes
some results of [3, 19, 18] and [33], where the dual of toric codes, J -affine variety codes
and generalized toric codes are studied. The representation for the dual gives rise to a
Goppa representation for C(S, A), which may open the path for an efficiently decoding
algorithm, because such a representation is the key to decoding the well-known Reed-
Solomon codes. It is important to remark that there are decoding algorithms in the
literature that can be used to decode particular cases of monomial-Cartesian codes, but
the complexity is not as good as the one for the Reed-Solomon codes. For instance,
the decoding algorithm developed by [17] depends of finding a Gröbner basis for each
received codeword, and it would decode monomial-Cartesian codes in the case when S
is arbitrary and A ⊆ Zm

≥0 are the smallest elements for a fixed monomial order in Zm
≥0.

Excellent references about how to decode linear codes using Gröbner basis are [4, 5, 6]
and [7].

The monomial-Cartesian code construction provides the flexibility needed for some
applications, such as that of quantum error-correcting codes and locally recoverable
codes. Quantum codes support resilience of quantum information by correcting bit and
phase flip errors in qudits, quantum digits, which is fundamental to fault-tolerant quan-
tum computation. While the goal of quantum codes is similar to that of linear codes,
new techniques are needed for their construction due to the inability to duplicate quan-
tum information. Even so, there is a link between quantum codes and classical linear
codes, due to independent work of Calderbank and Shor [8] and Steane [37]. Indeed,
the CSS construction uses linear codes which contain their duals to construct quantum
codes. A family of codes called J -affine variety codes were introduced and studied in
[19] and [18], respectively. This family of codes can be seen as monomial-Cartesian codes
C(S, A) with the condition that ni−1 divides q−1. Inspired by those works, where the
authors use J -affine variety codes to prove the existence of quantum error correcting
codes, we use monomial-Cartesian codes in Section 3 to prove the existence of quantum
error correcting codes with certain parameters. An [[n, k, d]]q quantum code satisfies the
quantum Singleton bound [26]

k ≤ n− 2d+ 2.

If k = n−2d+2, then the quantum code is called quantum maximum-distance-separable
(MDS) code. We obtain quantum MDS codes from monomial-Cartesian codes, making
use of knowledge of the dual.

The idea of a locally recoverable code is that every coordinate depends on a few other
coordinates. By “depends” we mean that if one of the coordinates is erased, then that
coordinate can be recovered using some other coordinates. Of course, it is desirable that
“some” is small. The concept of t-availability means that for any coordinate there are
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t pair disjoint subsets of a few coordinates each in such a way that the each subset
can be used to recover such coordinate. Traditionally, for locality and availability it
is assumed that the received coordinates are correct, but it may happens in practice
that the received coordinates that are not erased contain also errors. Previous situation
with errors gives rise to the codes known as locally recoverable codes with local error
detection, which was introduced recently in [32]. Section 4 we study local properties for
direct product of monomial-Cartesian codes.

More information about basic theory for coding theory can be found in [24, 29, 40].
More constructions of evaluation codes can be seen in [13, 14, 21, 31]. Excellent references
for theory of vanishing ideals and its properties are [15, 16, 22, 41].

2. Dual of Monomial-Cartesian codes

Denote the variables x1, . . . , xm by x. An important characteristic for monomial-
Cartesian codes and evaluation codes in general is the fact that we can use commutative
algebra methods to study them. The kernel of the evaluation map evS is precisely
L (A) ∩ I(S), where I(S) is the vanishing ideal of S consisting of all polynomials of
R that vanish on S . Thus, algebraic properties of R/ (L (A) ∩ I(S)) are related to the
basic parameters of C(S, A). For each i ∈ [m], define the polynomial

(2.1) Li(xi) :=
∏
sj∈Si

(xi − sj) .

The vanishing ideal of the Cartesian product S is given by I(S) = (L1(x1), . . . , Lm(xm)) ,
[28, Lemma 2.3]. Moreover, let ≺ be the graded-lexicographic order on the set of mono-
mials of R. This order is defined in the following way: xa11 · · · xamm ≺ xb11 · · · xbmm if and
only if

∑m
i=1 ai <

∑m
i=1 bi or

∑m
i=1 ai =

∑m
i=1 bi and the leftmost nonzero entry in

(b1 − a1, . . . , bm − am) is positive. From now on, we fix the order ≺ . Then, according
to [15, Proposition 4], {L1(x1), . . . , Lm(xm)} is a Gröbner basis of I(S), relative to the
order ≺ .

Proposition 2.1. The dimension and the length of the monomial-Cartesian code
C(S, A) are given by |A| and |S|, respectively.

Proof. It is enough to show that the evaluation map evS : L (A) → K |S| is injective. By
above Ker(evS) = L (A)∩I(S). On one hand, by assumption degxi

(f) < ni for every f ∈
L(A) and i ∈ [m] . On the other hand, I(S) has a Gröbner basis {L1(x1), . . . , Lm(xm)}
with degxi

(Li) = ni for each i ∈ [m] . Therefore, L (A) ∩ I(S) is trivial. �

Definition 2.2. For s = (s1, . . . , sm) ∈ S and f ∈ R, define the residue of f at s as

(2.2) Ress f = f(s)

 m∏
i=1

∏
s′i∈Si\{si}

(si − s′i)

−1 .
For simplicity, we introduce the following notation for the residues vector

ResS f = (Ress1 f, . . . ,Ressn f) .



MONOMIAL-CARTESIAN CODES WITH APP. TO LCD, QUANTUM AND LRC CODES 5

Remark 2.3. Note that ResS : R → K |S| is a linear map which is injective on the
subspace of polynomials f satisfying degxi

(f) < ni . This follows from the definition of
the residue and the proof of Proposition 2.1.

By [2, Theorem 5.7] or [27, Theorem 2.3], the dual of the monomial-Cartesian code
C(S,0) ⊆ K |S|, where 0 is the zero vector in Zm

≥0, is given by

C(S,0)⊥ = SpanK

{
ResS f : deg(f) <

m∑
i=1

(ni − 1), degxi
(f) < ni

}
.

Thus

(2.3)
n∑

i=1

Ressi f = 0, for f ∈ R with deg(f) <
m∑
i=1

(ni − 1) and degxi
(f) < ni.

This follows since 1 ∈ L(0). By the division algorithm, there are polynomials qi,j and
ri,j in K[xi] for i ∈ [m] , such that

(2.4) Li = xjiqi,j−1 + ri,j−1,

and deg(ri,j−1) < j . For every b = (b1, . . . , bm) in Zm
≥0 , define the polynomial

(2.5) Qb(x) :=
m∏
i=1

qi,bi(xi).

These polynomials Qb ∈ R help to describe the dual of a monomial-Cartesian code.

Lemma 2.4. Let B = {0, . . . , n1 − 1} × · · · × {0, . . . , nm − 1}. For any a ∈ B , the
set {ResS Qb : b ∈ B, b 6= a} forms a basis for the dual C(S,a)⊥ of the monomial-
Cartesian code C(S,a).

Proof. By definition, degxi
(Qb) = ni− (bi +1). This implies that the Qb for b ∈ B have

pairwise distinct multidegrees (with respect to the graded-lexicographic order). Thus
the set {Qb : b ∈ B, b 6= a} is linearly independent. Furthermore, by Remark 2.3, its
image under the residue map {ResS Qb : b ∈ B, b 6= a} spans a subspace of dimension∑m

i=1(ni − 1)− 1 = dimC(a,S)⊥ .

Now we check the inner product. Let f denote the normal form of f with respect to
the Gröbner basis {L1(x1), . . . , Lm(xm)} . Note that Ressi f = Ressi f for any i ∈ [n]
and f ∈ R . Therefore,

(sa1 , . . . , s
a
n) · ResS Qb =

n∑
i=1

sai Ressi Qb =
n∑

i=1

Ressi x
aQb =

n∑
i=1

Ressi x
aQb.

It remains to be shown that
∑n

i=1 Ressi x
aQb = 0. For this we check the conditions in

Equation (2.3). We have

(2.6) degxi

(
xaQb(x)

)
≤
{
ai + ni − (bi + 1) if ai ≤ bi,

ai − 1 if ai > bi.

Indeed, the first inequality is clear. For the second one, when ai > bi the division
algorithm and Equation 2.4 provide

degxi

(
xaQb(x)

)
= degxi

(
xaii qi,bi(xi)

)
= degxi

(
x
ai−(bi+1)
i ri,bi(xi)

)
< ai.
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Now, since a 6= b , there is j ∈ [m] such that aj 6= bj. Then (2.6) implies

degxj

(
xaQb(x)

)
< nj − 1.

Also, (2.6) provides degxi

(
xaQb(x)

)
< ni for all i ∈ [m] \ {j} . Therefore, both condi-

tions of (2.3) are satisfied which shows that
∑n

i=1 Ressi x
aQb = 0. �

Example 2.5. Let K = F7 and assume S = {1, 3, 4, 5} ⊆ K. In this case, L1(x1) =
(x1 − 1)(x1 − 3)(x1 − 4)(x1 − 5) and

L1(x1) = x1
(
x31 + x21 + 3x1 + 5

)︸ ︷︷ ︸
q0(x1)

+ 4︸︷︷︸
r0(x1)

, L1(x1) = x21
(
x21 + x1 + 3

)︸ ︷︷ ︸
q1(x1)

+ 5x1 + 4︸ ︷︷ ︸
r1(x1)

,

L1(x1) = x31 (x1 + 1)︸ ︷︷ ︸
q2(x1)

+ 3x21 + 5x1 + 4︸ ︷︷ ︸
r2(x1)

, L1(x1) = x41 (1)︸︷︷︸
q3(x1)

+ x3 + 3x21 + 5x1 + 4︸ ︷︷ ︸
r3(x1)

.

Then we have the following duals of C(S, a) for a ∈ A :

C(S, 0)⊥ = SpanK {ResS q1,ResS q2,ResS q3} ,
C(S, 1)⊥ = SpanK {ResS q0,ResS q2,ResS q3} ,
C(S, 2)⊥ = SpanK {ResS q0,ResS q1,ResS q3} ,
C(S, 3)⊥ = SpanK {ResS q0,ResS q1,ResS q2} .

Example 2.6. Let K = F7 . Consider the Cartesian set: S = {0, 2, 3}× {0, 1, 3, 5, 6} ⊆
K2. In this case, L1(x1) = x1(x1 − 2)(x1 − 3) and L2(x2) = x2(x2 − 1)(x2 − 3)(x2 −
5)(x2 − 6). Then we have

L1(x1) = x1
(
x21 + 2x1 + 6

)︸ ︷︷ ︸
q1,0(x1)

+ 0︸︷︷︸
r1,0(x1)

, L2(x2) = x2
(
x42 + 6x32 + x2 + 6

)︸ ︷︷ ︸
q2,0(x2)

+ 0︸︷︷︸
r2,0(x2)

,

L1(x1) = x21 (x1 + 2)︸ ︷︷ ︸
q1,1(x1)

+ 6x1︸︷︷︸
r1,1(x1)

, L2(x2) = x22
(
x32 + 6x22 + 1

)︸ ︷︷ ︸
q2,1(x2)

+ 6x2︸︷︷︸
r2,1(x2)

,

L1(x1) = x31 (1)︸︷︷︸
q1,2(x1)

+ 2x21 + 6x1︸ ︷︷ ︸
r1,2(x1)

, L2(x2) = x32
(
x22 + 6x2

)︸ ︷︷ ︸
q2,2(x2)

+ x22 + 6x2︸ ︷︷ ︸
r2,2(x2)

,

L2(x2) = x42 (x2 + 6)︸ ︷︷ ︸
q2,3(x2)

+ x22 + 6x2︸ ︷︷ ︸
r2,3(x2)

,

L2(x2) = x52 (1)︸︷︷︸
q2,4(x2)

+ 6x42 + x22 + 6x2︸ ︷︷ ︸
r2,4(x2)

.

Then, the dual of C(S,a) for a = (2, 3) is given by

C(S, (2, 3))⊥ = SpanK {ResS Qb : b ∈ {0, 1, 2} × {0, 1, 2, 3, 4}, b 6= (2, 3)} .

In other words, we take the residue of all the products q1,iq2,j except when (i, j) is the
given point (2, 3).
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Theorem 2.7. Let S = S1×· · ·×Sm ⊆ Km and B = {0, . . . , n1−1}×· · ·×{0, . . . , nm−
1} ⊆ Zm . For any A ⊆ B , the set {ResS Qb : b ∈ B \ A} forms a basis for the dual
C(S, A)⊥ of the monomial-Cartesian code C(S, A).

Proof. As for any two points a1,a2 ∈ A we have that C(S, {a1,a2})⊥ = C(S,a1)
⊥ ∩

C(S,a2)
⊥, the result is a consequence of Lemma 2.4. �

Example 2.8. Let K = F7 and assume S = {1, 3, 4, 5} ⊆ K as in Example 2.5. As
before we have L1(x1) = (x1 − 1)(x1 − 3)(x1 − 4)(x1 − 5) and

L1(x1) = x1
(
x31 + x21 + 3x1 + 5

)︸ ︷︷ ︸
q0(x1)

+ 4︸︷︷︸
r0(x1)

, L1(x1) = x21
(
x21 + x1 + 3

)︸ ︷︷ ︸
q1(x1)

+ 5x1 + 4︸ ︷︷ ︸
r1(x1)

,

L1(x1) = x31 (x1 + 1)︸ ︷︷ ︸
q2(x1)

+ 3x21 + 5x1 + 4︸ ︷︷ ︸
r2(x1)

, L1(x1) = x41 (1)︸︷︷︸
q3(x1)

+ x3 + 3x21 + 5x1 + 4︸ ︷︷ ︸
r3(x1)

.

Then we obtain the following dual codes:

C(S, {2, 3})⊥ = SpanK {ResS q0,ResS q1} ,
C(S, {0, 2})⊥ = SpanK {ResS q1,ResS q3}
C(S, {1, 2, 3})⊥ = SpanK {ResS q0} .

Example 2.9. Let K = F7 . Consider the following Cartesian set: S = {0, 2, 3} ×
{0, 1, 3, 5, 6} ⊆ K2. On this case L1(x1) = x1(x1 − 2)(x1 − 3) and L2(x2) = x2(x2 −
1)(x2 − 3)(x2 − 5)(x2 − 6). We have

L1(x1) = x1
(
x21 + 2x1 + 6

)︸ ︷︷ ︸
q1,0(x1)

+ 0︸︷︷︸
r1,0(x1)

, L2(x2) = x2
(
x42 + 6x32 + x2 + 6

)︸ ︷︷ ︸
q2,0(x2)

+ 0︸︷︷︸
r2,0(x2)

,

L1(x1) = x21 (x1 + 2)︸ ︷︷ ︸
q1,1(x1)

+ 6x1︸︷︷︸
r1,1(x1)

, L2(x2) = x22
(
x32 + 6x22 + 1

)︸ ︷︷ ︸
q2,1(x2)

+ 6x2︸︷︷︸
r2,1(x2)

,

L1(x1) = x31 (1)︸︷︷︸
q1,2(x1)

+ 2x21 + 6x1︸ ︷︷ ︸
r1,2(x1)

, L2(x2) = x32
(
x22 + 6x2

)︸ ︷︷ ︸
q2,2(x2)

+ x22 + 6x2︸ ︷︷ ︸
r2,2(x2)

,

L2(x2) = x42 (x2 + 6)︸ ︷︷ ︸
q2,3(x2)

+ x22 + 6x2︸ ︷︷ ︸
r2,3(x2)

,

L2(x2) = x52 (1)︸︷︷︸
q2,4(x2)

+ 6x42 + x22 + 6x2︸ ︷︷ ︸
r2,4(x2)

.

Then, the dual of the code C(S, {(0, 1), (3, 5)}) is given by

C(S, {(0, 1), (3, 5)})⊥ = SpanK {ResS Qb : b ∈ {0, 1, 2} × {0, 1, 2, 3, 4}, b /∈ {(0, 1), (3, 5)}} .

In other words, we take the residue of all the products q1,iq2,j except when (i, j) is either
(0, 1) or (3, 5).
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3. Quantum error correcting codes

In this section, we give some applications of monomial-Cartesian codes to quantum
error correcting codes. Our main result shows how to use monomial-Cartesian codes
to find quantum error correction codes and MDS quantum error correction codes. We
continue using the same notation as in the previous sections, in particular S = S1 ×
· · · × Sm ⊆ Km, ni := |Si| , A ⊆ {0, . . . , n1 − 1} × · · · × {0, . . . , nm − 1}, and L(A) =
SpanK{xa : a ∈ A} ⊆ R.

We start by showing the multiplicative property of the minimum distance of a
monomial-Cartesian code. A particular case of this result appears in [35, Theorem 2.1].
Also, it can be derived from [42, Theorem 3 (c)]. We give a proof along the lines of the
proof of [35, Theorem 2.1].

Proposition 3.1. Let C(S1, A) and C(S2, B) be monomial-Cartesian codes and con-
sider their direct product C(S1 × S2, A× B). Then

δ (C(S1 × S2, A× B)) = δ (C(S1, A)) δ (C(S2, B)) .

Proof. We set R = K[x1, . . . , xm1 , y1, . . . , ym2 ] , A ⊆ Zm1 , B ⊆ Zm2 , and identify the
elements of L(A) and L(B) with polynomials in R depending only on x = (x1, . . . , xm1)
and y = (y1, . . . , ym2), respectively.

Let δ1 and δ2 denote the minimum weights of C(S1, A) and C(S2, B), respectively.
Furthermore, let f1 ∈ L(A) and f2 ∈ L(B) be polynomials such that the corresponding
codewords evS1(f1) and evS2(f2) have weights δ1 and δ2 , respectively. By definition,
the product f ′ = f1f2 lies in L(A× B). Also, for any (s1, s2) ∈ S1 × S2 we have

f ′(s1, s2) = f1(s1)f2(s2),

which is non-zero if and only if both f1(s1) and f2(s2) are non-zero. This implies that
evS1×S2(f

′) has weight δ1δ2 .
It remains to show that the weight of evS1×S2(f) is at least δ1δ2 for an arbitrary

non-zero f ∈ L(A× B). By definition, any non-zero f ∈ L(A× B) can be written as

f(x,y) =
∑
b∈B

fb(x)yb,

where fb are polynomials in L(A) at least one of which is non-zero. Let S ⊆ S1 be the
subset of those s for which fb(s) 6= 0 for at least one b ∈ B . Given s ∈ S , f(s,y)
is a non-zero polynomial in L(B) and, hence, the corresponding codeword evS2 f(s,y)
has weight at least δ2 . Therefore, the weight of evS1×S2 f(x,y) is at least |S| · δ2 . On
the other hand, the number of s ∈ S cannot be less than the weight of each evS1(fb).
Therefore, |S| ≥ δ1 , which completes the proof of the above statement.

�

We remark that there is also an inductive lower bound for δ (C(S, A)) in terms min-
imum weights of monomial-Cartesian codes corresponding to projections and fibers of
A along coordinate subspaces. It is stated in [36, Theorem 4.1] in the case of gener-
alized toric codes, but the statement and the proof can be easily adapted to arbitrary
monomial-Cartesian codes.
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Next, we provide a slightly different representation for the dual of a monomial-
Cartesian code.

Definition 3.2. Let F (x) be the unique element in R such that degxi
F (x) < ni and

F (s) =
(∏m

i=1

∏
s′i∈Si\{si} (si − s′i)

)−1
for every s = (s1, . . . , sm) ∈ S.

Observe that the polynomial F (x) can be found using interpolation:

F (x) =
∑

(s1,...,sm)∈S

∏m
i=1

∏
s′i∈Si\{si} (xi − s′i)(∏m

i=1

∏
s′i∈Si\{si} (si − s′i)

)2 .
Theorem 3.3. Let S = S1 × · · · × Sm ⊆ Km and B = {0, . . . , n1 − 1} × · · · ×
{0, . . . , nm − 1} ⊆ Zm . Let F (x) be as defined in Definition 3.2. For any A ⊆ B ,
the set {evS(FQb) : b ∈ B \ A} forms a basis for the dual C(S, A)⊥ of the monomial-
Cartesian code C(S, A).

Proof. Because the definition of F (x) and ResS Qb, it is clear that ResS Qb =
evS(FQb). �

Lemma 3.4. Let f1, . . . , fk, g1, . . . , g` ∈ L(A). Then SpanK{evS(f1), . . . , evS(fk)} ⊆
SpanK{evS(g1), . . . , evS(g`)} if and only if SpanK{f1, . . . , fk} ⊆ SpanK{g1, . . . , g`}.

Proof. This is a consequence of the fact that the evaluation function evS is injective. �

Using the previous result we can give conditions for when a monomial-Cartesian code
is self-orthogonal or LCD. An important application of LCD codes can be found in [9].

Theorem 3.5. Let S = S1 × · · · × Sm ⊆ Km and A ⊆ B = {0, . . . , n1 − 1} × · · · ×
{0, . . . , nm − 1} ⊆ Zm . Let F (x) be as defined in Definition 3.2. Then
(a) C(S, A)⊥ ⊆ C(S, A) if and only if SpanK

{
FQb : b ∈ B \ A

}
⊆ SpanK {xa : a ∈ A} .

(b) C(S, A) is LCD if and only if SpanK

{
FQb : b ∈ B \ A

}⋂
SpanK {xa : a ∈ A} = 0.

Here, FQb denotes the normal form of the polynomial FQb with respect to the Gröbner
basis {L1(x1), . . . , Lm(xm)} .

Proof. The result is a consequence of Lemma 3.4 and Theorem 3.3. �

Next, we describe some properties for the polynomial F (x) in order to find conditions
that satisfy part (a) from Theorem 3.5.

Proposition 3.6. If q > ni ≥ q/2 for all i ∈ [m], then degxi
(F (x)) ≤ q − ni.

Proof. Define

F ′(x) :=

∏m
i=1

∏
s′i∈K\Si

(xi − s′i)
(−1)m

.

Observe that if s = (s1, . . . , sm) ∈ S, then

F ′(s) =

∏
s′i∈K\Si

(s1 − s′i)
−1

· · ·
∏

s′i∈K\Si
(sm − s′i)
−1

=

 m∏
i=1

∏
s′i∈Si\{si}

(si − s′i)

−1 .
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The last equality is true because for every i ∈ [m] we have −1 =
∏

s′i∈K\{si}
(si − s′i) . If

ni > q/2, then degxi
F ′(x) = q−ni < ni. Thus F (x) = F ′(x), because F (x)−F ′(x) ∈

I(S). If ni = q/2, then defining F by interpolation we get degxi
F < ni = q − ni. �

The following theorem gives a path for constructing quantum and MDS quantum
codes.

Theorem 3.7. Let S = S1 × · · · × Sm ⊆ Km such that q > ni = |Si| ≥ q/2 for all
i ∈ [m]. For every t = (t1, . . . , tm) ∈ {0, . . . , n1 − d q2e} × · · · × {0, . . . , nm − d q2e} ⊆ Zm ,

define the set At = {0, . . . , n1− 1− t1}× · · ·× {0, . . . , nm− 1− tm}. Then C(S, At)
⊥ ⊆

C(S, At).

Proof. Define B = {0, . . . , n1−1}×· · ·×{0, . . . , nm−1} ⊆ Zm and take b ∈ B \At. By
Theorem 3.5 (a) we just need to check that FQb ∈ SpanK {xa : a ∈ At} . By definition,
Qb(x) =

∏m
i=1 qi,bi(xi), where Li(xi) = xbi+1

i qi,bi(xi) + ri,bi(xi). It means qi,bi(xi) ∈
SpanK

{
1, . . . , xni−bi−2

i

}
. As b ∈ B \At, ni − 1− ti < bi ; thus, ni − bi − 2 < ti − 1. We

obtain deg qi,bi(xi) < ti−1. By Proposition 3.6, degxi
(F (x)) ≤ q−ni. Thus degxi

FQb <
q − ni + ti − 1 ≤ ni − 1 − ti. The last inequality holds because ti ≤ ni − d q2e and it

follows that FQb = FQb ∈ SpanK {xa : a ∈ At} . �

Now we state an important result on constructing stabilizer codes. We recall that a
quantum code is pure to a natural number d if its stabilizer group does not contain non-
scalar matrices of weight less than d. A quantum code is called pure if it is pure to its
minimum distance. For more information about quantum codes see [26] and references
therein.

Lemma 3.8. [1, Lemma 17] If there exists a classical linear [n, k, d]q code C such that
C⊥ ⊆ C , then there exists an [[n, 2k − n,≥ d]]q stabilizer code that is pure to d. If the
minimum distance of C⊥ exceeds d, then the stabilizer code is pure and has minimum
distance d.

Theorem 3.9. Let S = S1 × · · · × Sm ⊆ Km such that q > ni = |Si| ≥ q/2 for all
i ∈ [m]. For every t = (t1, . . . , tm) ∈ {0, . . . , n1 − d q2e} × · · · × {0, . . . , nm − d q2e} ⊆ Zm

there exists an [[
∏m

i=1 ni, 2
∏m

i=1(ni − ti) − n,
∏m

i=1(ti + 1)]]q stabilizer code that is pure
to t1 · · · tm.
Proof. The idea is to apply Lemma 3.8 to Theorem 3.7. By Theorem 3.7 we have that
for At = {0, . . . , n1 − 1 − t1} × · · · × {0, . . . , nm − 1 − tm}, C(S, At)

⊥ ⊆ C(S, At). It
is clear that the length and dimension of C(S, At) are given by n and

∏m
i=1(ni − ti),

respectively. Finally, the minimum distance comes from Proposition 3.1. �

The previous result gives a very simple path to prove the existence of quantum error
correcting codes with certain parameters.

Example 3.10. Let K = F49 and take n1 = 35, n2 = 40, t1 = 5 and t2 = 8. By
Theorem 3.9 we have that there exist the following quantum error correcting codes:
[[35, 25, 6]]49 , [[40, 24, 9]]49 and [[1400, 520, 54]]49.

Observe that the first two of the previous examples are quantum MDS codes. Actually,
it is possible to prove the existence of more of them.
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Corollary 3.11. For every q > n ≥ q/2 and every 0 ≤ t ≤ n − d q
2
e there exists an

MDS quantum code [[n, n− 2t, t+ 1]]q.

Proof. This is the particular case of Theorem 3.9 when m = 1. �

Using Theorem 3.9 is straightforward to find quantum error correcting codes with
length larger than q.

Example 3.12. Let K = F121 and take n1 = 80, n2 = 90, t1 = 19 and t2 = 29. By
Theorem 3.9 we have that there exist the following quantum error correcting codes:
[[80, 42, 20]]121 , [[90, 32, 30]]121 and [[7200, 242, 600]]121.

4. Local properties of direct products

Local properties for linear codes have been studied extensively in the context of dis-
tributed storage. The idea is that every coordinate of a linear code can be used to save
the information of a server, so n servers store a linear code of length n. Informally
speaking, a linear code is said to have locality r if for all elements of the code, every
coordinate i is a function of other r coordinates. It is important to remark that the set
of these r coordinates depend on i, but not on the codeword. In terms of distributed
storage, locality r means that if one of the n servers fails, then the information of the
failed server can be recovered by accessing r other servers (rather than n − 1). If one
of these r servers also fails, local recovery might not be possible. For that reason it is
useful to have availability. A linear code with availability t means that every coordinate
can be recovered from t pairwise disjoint sets. Formal definitions follow.

Definition 4.1. A linear code C of length n over K is a locally recoverable code with
locality r if for every position i ∈ [n] there exist a set Ri ⊆ [n] \ {i} and a function
φi : Kr → K such that |Ri| = r and for all c = (c1, . . . , cn) in C, ci = φi(c |Ri

).
This definition represents that every coordinate ci for any codeword c can be recovered
by the coordinates cj, where j ∈ Ri. The set Ri is called a recovery set for the i-th
position.

Definition 4.2. A linear code C is said to have t-availability with locality (r1, . . . , rt) if
every position i ∈ [n] has t pairwise disjoint recovery sets Ri1, . . . ,Rit with |Rij| = rj,
for j ∈ [t].

Lemma 4.3. Let C(S1, A) and C(S2, B) be locally recoverable monomial-Cartesian
codes with localities r1 and r2, respectively. The direct product C(S1 × S2, A × B) has
2-availability with locality (r1, r2).

Proof. Observe that the coordinates of a monomial-Cartesian code are indexed by the
elements of the Cartesian product, for this reason every position will be given in terms
of the elements of the Cartesian product. Let s1 and s2 be elements of S1 and S2,
respectively. Let Rs1 be a recovery set for s1 of cardinality r1 and Rs2 a recovery
set for s2 of cardinality r2, which exist because C(S1, A) and C(S2, B) are locally
recoverable monomial-Cartesian codes with locality r1 and r2, respectively. In the code
C(S1 × S2, A × B), we claim the position (s1, s2) has recovery sets Rs1 × {s2} and
{s1} ×Rs2 .
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Let c be an element of C(S1 × S2, A × B). By definition of the direct product,
there is a polynomial f(x,y) ∈ L(A × B) ⊆ K[x1, . . . , xm1 , y1, . . . , ym2 ] such that
c = (f (s, s′)) |(s,s′)∈S1×S2 . As f(x, s2) ∈ L(A) ⊆ K[x1, . . . , xm1 ], we can use the set
{f(s, s2) | s ∈ Rs1} to recover the value f(s1, s2). Thus Rs1 × {s2} is a recovery set
for (s1, s2). In analogous way, {s1}×Rs2 is a second recovery set for the same position
(s1, s2). �

We come to the main result of this section, which shows how locally recoverable
monomial-Cartesian codes give rise to codes with availability.

Theorem 4.4. Let C(S1, A1), . . . , C(St, At) be locally recoverable monomial-Cartesian
codes with localities r1, . . . , rt, respectively. The direct product C(S1×· · ·×St, A1×· · ·×
At) has t-availability with locality (r1, . . . , rt).

Proof. This is a consequence of Lemma 4.3 because the product of two monomial-
Cartesian codes is again a monomial-Cartesian code. �

Remark 4.5. As a corollary of Theorem 4.4 we obtain the family of codes obtained in
[38, Construction 4], which are direct products of sub-codes of Reed-Solomon codes.
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(Hiram H. López) Department of Mathematics, Cleveland State University, Cleveland,
OH USA

E-mail address : h.lopezvaldez@csuohio.edu

(Gretchen L. Matthews) Department of Mathematics, Virginia Tech, Blacksburg, VA
USA

E-mail address : gmatthews@vt.edu

(Ivan Soprunov) Department of Mathematics, Cleveland State University, Cleveland,
OH USA

E-mail address : i.soprunov@csuohio.edu


	1. Introduction
	2. Dual of Monomial-Cartesian codes
	3. Quantum error correcting codes
	4. Local properties of direct products
	References

