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Abstract InOx films that are less disordered than those ex-
hibiting direct quantum superconductor-insulator transitions
feature quantum superconductor-metal transitions tuned by
magnetic field. Resistance data across this superconductor-
metal transition obey activated scaling, with critical expo-
nents suggesting that the transition is governed by an infi-
nite randomness critical point in the universality class of the
random transverse-field Ising model in two dimensions. The
transition is accompanied by quantum Griffiths effects. This
unusual behavior is expected for systems with quenched dis-
order in the presence of Ohmic dissipation. Disorder leads
to the formation of large rare regions which are locally or-
dered superconducting puddles dispersed in a metallic ma-
trix. Their dissipative dynamics causes the activated scaling,
as predicted by a renormalization group theory.
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1 Introduction

The effect of quenched random disorder on quantum super-
conductor to insulator transitions (SITs) in two dimensional
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(2D) and quasi-2D systems is usually addressed theoreti-
cally by studying how the average disorder strength evolves
under coarse graining, i.e., with increasing length scales. If
the disorder decreases, then the system will behave as if it
were clean at large length scales, and the critical behavior
will not be affected by the randomness [1]. If the disorder
strength remains finite at large length scales, the universal-
ity class of the phase transition differs from that of the cor-
responding clean transition. If the disorder increases with-
out limit under coarse graining, the transition features exotic
infinite-randomness critical behavior [2,3].

On the other hand, it has become clear that rare strong
disorder fluctuations and the rare spatial regions that sup-
port them can play a dominant role. This is especially im-
portant in the case of quantum phase transitions, because
quenched disorder is perfectly correlated in the imaginary
time direction. Imaginary time acts as an extra dimension
at quantum phase transitions. As the extension of this ex-
tra dimension, the inverse temperature, diverges as one ap-
proaches the quantum critical point, one effectively has an
infinitely large disorder fluctuation. Depending on the order
parameter symmetry and the character of the quantum dy-
namics, the rare regions can have no effect on the transition,
or they can change its universality class [4,5]. If the rare
regions order independently, they can even lead to the de-
struction of the global sharp phase transition and induce a
smeared transition [6].

Quantum SITs and superconductor to metal transitions
(SMTs) of 2D or quasi-2D films are studied experimentally
by changing an external control parameter of the system
such as the disorder strength, a perpendicular (also paral-
lel) magnetic field, or the carrier density. Since zero ab-
solute temperature is experimentally inaccessible, the pres-
ence of such a transition is inferred from changes in mea-
surable properties that are influenced by quantum fluctua-
tions present at nonzero temperature. In the case of SITs
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and SMTs, measurements of resistance as a function of the
control parameter and the temperature are often analyzed us-
ing power-law scaling [7,8]. For magnetic-field tuned tran-
sitions, this takes the form:

R(δ ,T ) = Φ

(
δT−1/νz

)
(1)

Here δ = |B−Bc|/Bc is the distance from the critical
field Bc and Φ is a scaling function. This scaling form im-
plies that the magnetoresistance isotherms (R vs. B curves
at fixed T ) all cross at the critical field Bc. Moreover, the
magnetoresistance isotherms are expected to collapse into
two branches when plotted as function of δT−1/νz for the
correct value of the exponent product νz. Here, ν is the cor-
relation length exponent and z is the dynamical critical ex-
ponent. In principle, knowledge of these exponents can be
used to identify the universality class of the transition.

The key to the scaling analysis is the fact that the magne-
toresistance isotherms cross at a single value of the control
parameter, which in the case of the present work is the per-
pendicular magnetic field. However there have been a num-
ber of investigations in which instead of a single value of
field, there is a continuum of crossing points, and there is no
well-defined crossing field. This was first reported in a de-
tailed fashion by Gantmakher and coworkers some twenty
years ago [9]. A potential explanation is that the apparently
broadened transition is caused by some sort of macroscopic
spatial inhomogeneity in the superconducting coupling strength,
resulting in different areas of the film ordering at differ-
ent values of magnetic field. However, in a number of re-
cent publications describing work on two-dimensional crys-
talline superconductors, it was realized that there was, within
a range of fields, a systematic variation of the crossing fields
with temperature [10–13]. An analysis using power law scal-
ing Eq. 1 at selected crossing fields within the range, em-
ploying nearby isotherms to determine an exponent product
νz, collapsed data around each selected field. This resulted
in a systematic variation with temperature of what might be
termed an effective exponent product. The values of νz ap-
peared to diverge in the zero temperature limit. This was in-
terpreted as evidence of a quantum Griffiths singularity [14–
16] associated with an infinite randomness critical point [2,
3]. This type of behavior has been predicted by a renormal-
ization group calculation for a quantum SMT [17,18]. The
universality class to which the transition would then belong
would be the random transverse-field Ising model [4,5]. The
authors of the above experimental papers then fit the diver-
gence of νz with the predicted expression C (B−Bc)

−νψ

where ν and ψ are the correlation length and tunneling ex-
ponents, respectively, and Bc is the field at which the diver-
gence occurs. The adjustable parameters are C, an arbitrary
constant, and νψ . The fact that the exponent product deter-
mined by the fit agrees with numerical work on the random
transverse field Ising model was taken by the authors as evi-

dence of an infinite randomness critical point governed by
activated scaling. There was no effort in these works di-
rected at collapsing the data actually employing the acti-
vated scaling form.

The activated scaling form of the resistance predicted for
a quantum SMT governed by an infinite randomness fixed
point differs from Eq. 1. It reads [19]

R
(

δ , ln
T0

T

)
= Φ

[
δ

(
ln

T0

T

)1/νψ
]
, (2)

where once again δ = |B−Bc|/Bc is the distance from the
critical field and T0 is a microscopic temperature scale, which
acts as an additional fitting parameter. Equation 2 predicts a
single crossing point in magnetic field. To account for the
range of crossing fields reported in recent papers, correc-
tions to the leading scaling behavior need to be included.
These corrections are required because the inverse disorder
strength acts as an irrelevant variable in the scaling analy-
sis. The corrections become less important as the temper-
ature is decreased towards absolute zero. This is shown in
Lewellyn et al. [20]. If a system is governed by activated
scaling with corrections to scaling, then R(δ ,T ) curves at
different temperatures do not cross at δ = 0. The crossing
shifts with temperature and approaches δ = 0 in the limit
T → 0. Furthermore, the effective value of νz obtained from
a power-law scaling analysis involving isotherms near the
chosen crossing points at different temperatures is given by(

1
νz

)
eff

=

(
1

νψ

)
eff

1
ln(T0/T )

. (3)

where (νψ)eff is the exponent product for the universality
class of the quantum phase transition exhibiting activated
scaling. Here again, ν is the correlation length exponent of
the transition and ψ is the tunneling exponent. In the zero
temperature limit

( 1
νz

)
will vanish, or (νz)eff will diverge.

Thus the conclusion that a divergence of (νz)eff is consistent
with an infinite randomness critical point is justified.

In this paper, we will first describe studies of amorphous
InOx, which lead to smeared crossing points similar to those
reported recently. We will then go beyond the considera-
tions of these earlier works by presenting an analysis which
leads to a collapse of the magnetoresistance isotherms into
two branches governed by activated scaling. This analysis
enables us to determine the critical exponents of the tran-
sition, and it provides stronger evidence for the quantum
SMT being governed by an infinite-randomness fixed point
in the universality class of the random transverse-field Ising
model. The present work is an elaboration of findings we
reported earlier [20].

2 Experiment

The InOx films which were studied were about 30 nm thick
and were grown by electron beam evaporation of In2O3.
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During deposition an O2 partial pressure between 2× 10−5

and 9×10−4 mbar was maintained in the chamber by bleed-
ing gas through a needle valve, while continuing to pump [21].
Amorphous films were produced when the substrate temper-
ature was kept below about 40◦C. After removal from the
deposition system, the films were annealed in air for many
hours at temperatures between 40◦C and 60◦C. The anneal-
ing process does not alter the carrier concentration, but re-
duces the disorder. Usually such films, when cooled down
to low temperatures and subjected to magnetic fields per-
pendicular to the plane, exhibit SITs. However, the films re-
ported on in the present paper were not used for about three
years. Subsequent transport measurements, which were car-
ried out initially using a Quantum Design physical property
measurement system and then with an Oxford Kelvinox 25
dilution refrigerator, exhibited superconductor-metal transi-
tions. This suggests that during the long-term storage further
annealing towards metallic behavior occurred.

The temperature range over which transport measure-
ments are reliable is limited by factors such as electromag-
netic noise, self-heating due to the measurement current, and
the limitations of the cooling power of the dilution refriger-
ator [22]. The electrical leads to the sample and the ther-
mometers were filtered only at room temperature, so that
some noise at 300 K was delivered to the low temperature
environment. Measurements of resistance were confined to
currents and temperatures at which the I-V characteristics
were linear, eliminating the possibility of heating due to the
measurement current.

The InOx films studied exhibited zero-field transition tem-
peratures of approximately 2.8K. Curves of resistance R vs.
temperature T of one of the films at various perpendicular
magnetic fields B are shown in Fig. 1.

At a field, B ≈ 7T, the temperature derivative of resis-
tance dR/dT changes sign. This change occurs at a resis-
tance that is much lower than the quantum resistance h/4e2

for Cooper pairs, which is the typical value found for di-
rect quantum SITs. The films exhibited metallic behavior at
fields in excess of 8 T as exemplified by the linear depen-
dencies of their conductances on the natural logarithm of
temperature. This is shown in Fig. 2

In addition, there was what might be termed an anoma-
lous metallic regime at magnetic fields intermediate between
those in which the films were obviously superconducting,
and those which were clearly metallic. In this regime the
values of dR/dT were positive, suggesting the onset of su-
perconductivity at lower temperatures. However, their resis-
tances did not fall to zero at the lowest temperatures deemed
to yield reliable data. In subsequent analysis we will assume
that a film in this field range would at sufficiently lower tem-
peratures become superconducting, but it could be what is
referred to as a failed superconductor [23].
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Fig. 1 Resistance versus temperature at magnetic fields of 0.0, 3.0, 4.0,
5.0, 6.0, 6.2, 6.5, 6.7, 6.8, 6.9, 7.0, 7.050, 7.125, 7.150, 7.175, 7.225,
7.250, 7.275, 7.300, 7.325, 7.4, 8.0, 9.0, 10.0, 11.0, and 12.0 T
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Fig. 2 Conductance versus the natural logarithm of the temperature
at magnetic fields of 7.225, 7.325, 7.400, and 8.000 T (top to bottom)
with an offset of 0.01 kΩ−1. As the applied magnetic field increases the
linear fits to the data hold to lower temperatures indicating a crossover
to a quantum corrected quasi-2D metal

The minimum temperature at which data are considered
to be reliable was determined from the behavior in the high-
field metallic regime at fields well above the quantum SMT.
The conductance in this regime corresponds to that of a two-
dimensional quantum corrected metal and should be a lin-
ear function of the natural logarithm of temperature down to
very-low temperatures [24,25]. The deviation of the data in
this regime was taken as the minimum temperature at which
reliable measurements and analysis could be carried out. A
plot of the conductance vs. temperature in high magnetic
fields is shown in Fig. 2 .
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Fig. 3 Resistance versus magnetic field isotherms at temperatures
ranging from 110 mK to 1650 mK. The crossover region indicated by
the dashed box is shown in more detail in the inset. Crossings between
neighboring isotherms are indicated with a black square

3 Analysis

Magnetoresistance isotherms were generated using the mea-
sured R(T,B) curves by carrying out a matrix inversion of
the temperature-swept data. Initially, it seemed that there
was a single crossing point, which would be typical of a di-
rect quantum phase transition. See Fig. 3 .

However, a detailed examination of the crossing region
revealed a range of temperatures and magnetic fields over
which isotherms crossed as shown in the inset of Fig. 3 . The
crossing fields were increasing with decreasing temperature
and appeared to saturate in the limit of zero temperature.
This unusual behavior is not compatible with the standard
scaling analysis in which there is a single crossing point.
In the earlier experimental papers mentioned above, similar
behavior was found, and the smeared crossing and its field
and temperature dependence were interpreted as evidence of
the quantum Griffiths effect.

To analyze our data, we first follow the approach of Xing
et al. in which power-law scaling was applied to arbitrarily
chosen crossings of magnetoresistance isotherms within the
smeared crossing regime [10]. We then successfully apply
activated scaling to our data, providing much stronger evi-
dence than that presented in earlier work for the existence of
the quantum Griffiths effect in quenched disordered super-
conductors.

To find the effective values of νz vs. T , one considers
a sequence crossing points over very narrow temperature
intervals such that the magnetoresistance isotherms within
each interval have a well-defined crossing field Bx(T ). Then
for each interval, a power law scaling analysis is performed,
collapsing the isotherms around each crossing field accord-
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Fig. 4 Effective exponent (νz)eff vs. temperature. The solid line is a
two-parameter fit to the data of Eq. 3 with (νψ)eff = 0.62 and T0 =
1.21 K
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Fig. 5 Collapse of the magnetoresistance data using the activated scal-
ing form described in Eq. 2. The data collapse around critical field
Bc = 7.21 T, with νψ = 0.62 and T0 = 1.21 K which were determined
from the fit in Fig. 4

ing to Eq. (1). The result of this analysis is an effective, tem-
perature dependent νz which is shown in Fig. 4. In a conven-
tional quantum phase transition analyzed in this way there
would be a single crossing point and νz would be a constant
(or, at least, it would approach a constant with decreasing
temperature). In the present case νz strongly increases as
the temperature is lowered, which suggests highly uncon-
ventional behavior.

According to the renormalization group theory, the tem-
perature dependence of (νz)eff is given by Eq. 3. The ex-
pression on the right-hand side of Eq. 3 vanishes in the zero-
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Fig. 6 Crossing field of neighboring isotherms versus temperature.
The solid line is a fit of Eq. 4 to the data with νψ and T0 determined
from the fit in Fig. 4

temperature limit so that (νz)eff is expected to diverge. Equa-
tion 3 can then be used to determine the parameter (νψ)eff
of the activated scaling form. The solid line in Fig. 4 is the
result of a two-parameter fit of Eq. 3 to the data. The pa-
rameters are (νψ)eff and T0 . The resultant (νψ)eff = 0.62
is in good agreement with numerical predictions for a two-
dimensional infinite-randomness critical point in the random
transverse field Ising universality class. The range of tem-
peratures spanned in Fig. 4 does not extend to low enough
values to unequivocally determine that (νz)eff diverges in
the zero-temperature limit, but fits by a curve that diverges
support its likely divergence.

To make the case even stronger that the quantum SMT
belongs to a universality class governed by activated scaling,
we scaled the full set of magnetoresistance isotherms using
Eq. 2. Having determined (νψ)eff and T0 from power law
scaling at the selected crossing points, the only unknown
parameter is the critical field of the quantum phase transi-
tion. Determining Bc can be accomplished by employing a
numerical method used by Skinner, Ruhman and Nahum in
which the variance of the magnetoresistance isotherms plot-
ted against the scaling parameter is minimized [26]. A value
of Bc = 7.21 T, was found to produce the best collapse. The
scaling is shown in Fig. 5 . Similar results were found in
another sample that was studied.

This method produced a well-defined best value for Bc,
but the variance as a function of νψ and T0 did not have
a well-defined minimum. Instead the variance was roughly
minimized over an extended region of values. The values of

these quantities determined from the fit by Eq. 3 as shown
in Fig.4, fell within this region and when used in the numer-
ical analysis of the magnetoresistance isotherms yielded a
reasonable scaling collapse. It is not a surprise that a unique
value of νψ could not be determined employing this method.
Equation 2, the activated scaling function assumes νψ to be
a constant. However, corrections to scaling result in a weak
temperature dependence, which was not considered.

The use of Eq. 2 to collapse the data ignores the cor-
rections to scaling which are essential to the temperature
dependence of the crossing fields. These corrections van-
ish in the T → 0, limit, with the crossing field converging to
a fixed value. The temperature dependence of the crossing
fields can be used as a further check on the consistency of
the analysis leading to Fig. 5. In Ref. [20] we showed that
the shift in crossing fields is given by

δx(T )∼ u
(

ln
T0

T

)− 1
νψ
−ω

ψ

, (4)

where u is the leading irrelevant variable responsible for the
corrections, and ω is the associated exponent. Here δx(T ) =
(Bc−Bx(T ))/Bc which is the shift in the crossing fields with
temperature. The crossing fields shown in the inset of Fig. 3
are plotted as a function of temperature in Fig. 6.

The line is a fit of Eq. 4 to the data. As T → 0, δx → 0
and the crossing fields approach Bc. The extrapolated zero-
temperature limit of the crossing fields in Fig. 6 is slightly
higher than, but within 0.3%, of the Bc used for best collapse
of the data shown in Fig. 5. Examining Fig. 5, we note that
the scaling fails at large values of the scaling parameter for
both the upper and lower branches. The disconnect regions
in the upper branch correspond to fields of 8, 9, 10, 11, and
12 T. There is a similar breakdown in the lower branch at
6.7 T. We believe that the range of magnetic fields between
6.7 and 8 T corresponds to the regime of quantum critical-
ity governed by quantum fluctuations, where scaling should
work. At low fields and at sufficiently low temperatures the
film is in a superconducting state not influenced by quan-
tum fluctuations of the order parameter. Correspondingly, at
high fields at low temperatures it is in a quantum-corrected
metallic state that is also not influenced by quantum fluctu-
ations of the order parameter. The breakdown of scaling at
high fields in the upper branch corresponds to the magnetic
field at which the conductance becomes a linear function of
the logarithm of the temperature, which is the signature of a
quantum corrected metal.

4 Discussion

The properties of InOx films depend upon the interplay be-
tween carrier concentration and quenched disorder. The for-
mer is set by the film deposition process. Annealing can re-
duce the level of disorder transforming a film from a highly
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disordered, as prepared state, to a somewhat less disordered
more metallic state. Sufficiently disordered, low mobility
InOx films are known to exhibit direct quantum SITs. In
contrast, annealed films that are still disordered but have
higher mobilities, have been shown in this work to exhibit
quantum SMTs governed by an infinite randomness fixed
point. The difference between these behaviors lies in the
dynamics of rare, locally superconducting regions, close to
the quantum critical point. These rare regions are in effect
superconducting puddles immersed in an insulating matrix
for the low mobility films, and in a metallic matrix for the
higher mobility films. According to a classification put for-
ward in Refs. [27,28], the rare region dimensionality needs
to be at the lower critical dimension d−c of the problem to
yield quantum Griffiths singularities. Rare superconducting
regions immersed in an insulating matrix are below d−c and
thus produce only exponentially small corrections to con-
ventional critical behavior. On the other hand, rare regions
imbedded in a metallic matrix are right at d−c because the
coupling to gapless electronic excitations causes Ohmic dis-
sipation that slows down their dynamics. As a consequence,
a superconductor-metal transition of a disordered system is
expected to exhibit effects due to Griffiths singularities.

It is essential to these arguments that the electrons which
cause dissipation penetrate the entire superconducting pud-
dle. Spivak and co-workers [29,23] pointed out that in the
limit of large rare-region sizes that the dissipation will scale
with the surface of the rare region rather than its volume.
This would cut off the quantum Griffiths physics at the low-
est temperatures. However, because of the exponential de-
pendence of the rare-region energy scales with its size, this
cutoff temperature is expected to be extremely low, leav-
ing a wide temperature range governed by quantum Griffiths
physics [30,27].

One must also address the conditions under which quan-
tum Griffiths singularities lead to activated scaling. The an-
swer depends upon whether the Harris criterion is satisfied
or not. If the transition in the absence of disorder fulfills
the Harris criterion, dν > 2, then even if Griffiths singulari-
ties are present, activated scaling would not be expected. In
the case of a clean superconductor-metal transition tuned by
magnetic field, ν = 1

2 and d = 2. As a consequence, the Har-
ris criterion is violated and with the introduction of disorder,
activated scaling would be expected [28,31].

These scaling arguments have been confirmed by ex-
plicit model calculations. Hoyos et al. studied the effects of
dissipation on a disordered quantum phase transition with
O(N) order parameter symmetry through the use of a strong
disorder renormalization-group theory applied to the Landau-
Ginzburg-Wilson field theory appropriate to the problem [17,
18]. With Ohmic dissipation the quantum phase transition
was found to be controlled by an infinite randomness fixed
point in the universality class of the random transverse field

Ising model. The dynamical scaling between the characteris-
tic length scale ξ and the corresponding time scale ξτ is not
of power-law type, ξτ ∼ ξ z, but activated, ξτ ∼ exp(const×ξ ψ),
leading to Eq. 2.

The films used in this work, which exhibit magnetic field
tuned SMTs have higher mobilities than those that exhibit
direct quantum-SITs. When the mobility increases, the high-
field state becomes more metallic. Ohmic dissipation increases
and the quantum critical point changes from that of a con-
ventional SIT to that of a SMT, which is an infinite random-
ness critical point.

There has been considerable attention paid to the quan-
tum or Bose metal or the so-called failed superconductors [23]
in the various discussions of SMTs and SITs. One might ask
where this behavior would be found in this data. Films in
magnetic fields for which dR/dT > 0, with their resistances
never falling to zero over the accessible temperature range
have been assumed to be superconducting. They could be
the regime of failed superconductors or Bose metals. Addi-
tional measurements down to lower temperatures could re-
solve the uncertainty.

In summary, the magnetic-field-tuned quantum SMTs
of InOx films which are less disordered than those exhibit-
ing direct quantum SITs, exhibit quantum Griffiths effects
which lead to an infinite-randomness quantum critical point.
This is expected for systems with quenched disorder in the
presence of Ohmic dissipation and is caused by the forma-
tion of large rare regions which are locally ordered super-
conducting puddles.
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