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ABSTRACT. We consider the semilinear heat equation u; = Au + u? on RN,
Assuming that N > 3 and p is greater than the Sobolev critical exponent
(N +2)/(N —2), we examine entire solutions (classical solutions defined for all
t € R) and ancient solutions (classical solutions defined on (—oo,T) for some
T < 00). We prove a new Liouville-type theorem saying that if p is greater than
the Lepin exponent py, := 1+6/(N —10) (pr, = oo if N < 10), then all positive
bounded radial entire solutions are steady states. The theorem is not valid
without the assumption of radial symmetry; in other ranges of supercritical
p it is known not to be valid even in the class of radial solutions. Our other
results include classification theorems for nonstationary entire solutions (when
they exist) and ancient solutions, as well as some applications in the theory of
blowup of solutions.

1. Introduction. Entire and ancient solutions play an important role in studies
of singularities and long-time behavior of solutions of many evolution problems.
In that vein, of prominent importance are entire and ancient solutions of some
specific equations which serve as scaling limits of many other equations with a
given structure.

In this paper, we consider the semilinear heat equation

up = Au + uP, (1.1)

where v = u(z,t) > 0, z € RY, and p > 1. We investigate positive classical
solutions of the problems

Uy = Au+ uP, z€RY, t € (—o0,00), (1.2)
(entire solutions of (1.1)), and
up = Au + uP, z RN, t € (—o0,T), (1.3)

where T < oo (ancient solutions of (1.1)).
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Note that equation (1.1) is invariant under the scaling
u(z,t) = AP~ Dy (Az, A2%t).

With respect to the same scaling, (1.1) can be considered as the scaling limit of a
large class of equation whose nonlinearities have polynomial growth, such as equa-
tions of the form

up = Au+u? +g(u), xRV, (1.4)
where g is a continuous function with lim, . v Pg(u) = 0. More specifically,
applying the above scaling to equation (1.4) and taking formally A — oo, one
obtains equation (1.1). Of course, the connection between (1.4) and (1.1) is not
just formal; it is well known that with good understanding of (1.1), in particular of
its entire and ancient solutions, one can draw interesting conclusions about solutions
of the Cauchy problem for (1.4) (Corollary 1.2 below is an example of this).

We are mainly interested in radially symmetric solutions of (1.2) and (1.3). If
no confusion seems likely, we will often consider a radial solution u as a function of
r:=|z| and ¢, i.e. u = u(r,t).

The simplest entire solutions are steady states. Positive steady states of (1.2)
exist if and only if p > pg, where

ps = % if N> 2,
400 N2

is the Sobolev exponent (see [13], [7] or [36]). If p > pg, then radial positive steady
states form a one-parameter family {¢q }a>0, Where ¢, (0) = . These solutions are
ordered—that is, ¢, < ¢p for a < f—if and only if p > p;,, where
N-dt2yN—1 .
pyL = 1 + 4m lf N > 10,
+00 if N < 10,

see [39] or [36]. Ordered or not, the family {@s}a>0 approaches as @ — oo the
singular steady state

Pl i M 0 e (ﬁ(w ~2)p - N)) .

which has a special role in this paper. It exists whenever p(N — 2) > N.
In regard to time-dependent entire solutions, denoting

o e {f(ﬁ(vff;“)? if N> 2,

+00 if N <2,
the following Liouville-type theorem is known (see [31, 5, 34]):

Theorem 1.1. If p < pg, then (1.2) does not possess positive radial solutions. If
p < p*, then (1.2) does not possess any positive solutions.

Nonexistence of positive (non-radial) solutions of (1.2) for p € [p*,pg) is still an
open problem. On the other hand, a nonexistence result for sign-changing radial
solutions has been obtained in [3].

Theorem 1.1 has a number of interesting applications in equations (1.1), (1.4),
and even more general problems [31]. As an illustration, we just state the following
optimal universal estimate for positive solutions of (1.4) on any time interval (7,7
(see [31, Theorem 3.1]).
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Corollary 1.2. Assume g is a continuous function such that u"Pg(u) — 0 as
u — 0o and let u be a positive solution of (1.4) on an interval (7,T). Assume that
either u is radial and p < pg, or p < p*. Then

lu(, oo < CAL+(E—7) VD (T - )"V V) forall te(r,T), (15)

where C = C(g,n) is a constant independent of u, 7, and T. If g = 0, then the
following stronger version of (1.5) holds:

lu(,t)]loo < C((t—7)" YD (T — )Y@V forall te(r,T). (1.6)

Since C is independent of 7, taking 7 — —oo, we obtain from (1.6) the following
estimates for ancient solutions of (1.1):

lu(,t)loo < C(T —t)"Y PV forall te (—oo,T). (1.7)

For ancient solutions satisfying (1.7) the following classification theorem has been
proved in [23]:

Theorem 1.3. Let p < ps and u be a positive solution of (1.3) satisfying
lu(,t)loo < C(T —t)"Y PV 45 t— —co. (1.8)
Then there exists T* > T such that u(z,t) = k(T* — )~ @1 where
k= (p— 1)—1/(p—1)_

(In this theorem and below, we use C, C; etc., to denote constants independent
of the solution in question.) Thus, Corollary 1.2 in conjunction with Theorem 1.3
shows that the only positive radial ancient solutions are the (spatially constant)
ancient solutions of the equation { = P (if p < p*, the word “radial” can be omitted
in this statement). Theorem 1.3 has other interesting and important consequences
in the study of the blowup behavior of solutions of (1.1), which can be found in
[23].

The above results are all concerned with the subcritical case p < pg. Of course,
in the critical or supercritical cases, the existence of positive radial steady states
has to be taken into account in the formulation of any Liouville-type theorems or
problems. A first natural question is whether there are any positive entire solutions
other than the steady states. In some cases, this question has been answered in the
negative, but only when rather severe extra bounds on the solutions are imposed.
Namely, the following Liouville-type results are known (see [12, Theorem 2.4] and
[33, Theorem 1.2]).

Theorem 1.4. Let u be a nonnegative solution of (1.3).
(i) Assume ps <p <pjr and u(-,t) < doo for allt <T. Then u = 0.
() Assume p > pyr and ¢o < u(-,t) < Poo for some o >0 and all t <T. Then
u(:,t) = ¢ for some vy > a.

Without the extra bounds, these results are not valid, at least in the range
ps < p < pr, where
. 1+ N%IO if N > 10,
PE oo if N < 10
is the critical exponent for the existence of positive bounded non-constant radial
steady states of a rescaled equation (see (1.10) below). Notice that pr > pyp if
N > 10. Positive radial bounded solutions of (1.2) which do depend on time are
provided by the following results of [12].
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Theorem 1.5. (i) If ps < p < pr, then there exists a positive radial bounded
solution u of (1.2) satisfying limy o ||u(-,t)||co = 0 (i.e. u is a homoclinic solution
to the trivial steady state). In addition, given T € R, u also satisfies (1.8).

(ii) If ps < p < pjr and ¢ is a positive radial steady state of (1.2), then there
exists a positive radial bounded solution of (1.2) satisfying

i lu(,2) - ¢lleo = Jim u, Ol = 0
(i.e. u connects ¢ to zero).

With the above results, the problem of the existence of positive radial entire
(nonstationary) solutions is settled for all p < pr. One of the primary objectives
of our present study is to address the problem in the range p > pr. We have the
following result, the main Liouville-type theorem of this paper.

Theorem 1.6. Assume p > pr,. Then any positive radial bounded solution of (1.2)
is a steady state.

The proof of this theorem is given in Section 3; as it is rather involved, we precede
it by an informal outline.

Theorem 1.6 is not valid without the assumption of radial symmetry. Indeed, as
indicated in a remark following Theorem 2.1 in [12], one can find nontrivial entire
solutions by extensions of solutions in lower dimensions. To make this remark more
precise, fix any p > pr. Then one can always find an integer j € {3,..., N —1} such
that p is between pg(j) and pr(j), the Sobolev and Lepin exponents in dimension
j. Take now an entire solution u(Z,t), # € R’, as provided by Theorem 1.5(i).
Viewing u as a function of ¢ and z, constant in the last N — j variables, we obtain
a positive bounded nonstationary entire solution of (1.1).

Similarly as in the subcritical case, the Liouville theorem for p > p; has impor-
tant applications. For example, we will show in Section 5 that Theorem 1.6 can be
used to prove the convergence of profiles of both global and blowing-up solutions.

When nonstationary entire solutions do exist, it is still an interesting question
if they can be classified in some way. Our next theorem gives a classification of
entire solutions satisfying (1.8). Its conclusion is, in a sense, complementary to
Theorem 1.5(i) in the case ps < p < pjr.

Theorem 1.7. Ifps < p < pjr and u is a positive radial bounded solution of (1.2)
satisfying (1.8), then tli)m (-, )]0 = O (hence, u is a homoclinic solution to the
o0

trivial steady state).

We believe that the same statement is valid if pyr, < p < pr, but presently we
can only prove this under an additional condition (see Remark 1.11 below).
‘We now consider ancient solutions. In order to describe our results, we introduce
the backward similarity variables
x

T—1

Y= , §:=—log(T —t),

and the rescaled function
v(y,s) = (T =)/ Du(z,1)
= e 3/ Vy(e=5/2y, T — ™).
Notice that if u solves (1.3), then v is an entire solution of the equation

vs=Av—%-Vv—p%l+vp, yeRY, s € (—00,00). (1.10)
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Problem (1.10) has a positive constant steady state v = k for all p > 1 and the
singular steady state ¢, whenever p(N — 2) > N. Positive bounded non-constant
radial steady states of (1.10) exist if p € (pg,pr), while such solutions do not exist
if p > pr, see [18, 24] and references therein. In the case p = pr, the nonexistence
is stated in the main result of [25], however the proof given there contains a gap,
which does not seem to have been fixed yet.

We have the following result concerning ancient solutions.

Theorem 1.8. Let either ps < p < pjp or p > pr. Let u be a positive radial
solution of (1.3), and let v denote the corresponding rescaled function.

If u satisfies (1.8), then v is either a positive bounded radial steady state of (1.10)
or connects a positive bounded radial steady state w of (1.10) to a nonnegative
bounded radial steady state W # w of (1.10):

sgr_noo v(-, 8) = w, 811)1210 v(-, 8) =0, (1.11)

with the convergence in C. (RY).

If (1.8) fails, then v connects the singular steady state ¢oo to a monnegative
bounded radial steady state w of (1.10), that is, (1.11) holds with w = ¢, where
the convergence is in CL (RN \ {0}) in the case of w and in CL (RN) in the case

of W.

Thus, if ps < p < pjr or p > pr, the positive radial ancient solutions can
be classified as heteroclinic connections in self-similar variables, possibly with the
singular backward limit. This statement in the regular backward limit case (the first
part of Theorem 1.8) can be viewed as a (radial) analogue of Theorem 1.3 in the
given supercritical ranges of p. Indeed, using the rescaled function v, Theorem 1.3
can be formulated as follows (see [23, Corollary 1.5]):

Remark 1.9. Let p < ps and u be a positive solution of (1.3) satisfying (1.8).
Then the rescaled function v is either equal to the constant « or there exists sg € R
such that v(y, s) = (s — s0), where (s) := k(1 4 e*)~/ (=1 (hence v connects &
to zero).

As an application of Theorem 1.8, we now examine the character of blowup of
ancient solutions. First we recall some terminology. Let u be a positive radial
solution of (1.1) defined on a time interval (0,7). This solution is said to blow up
at t = T if ||u(-,t)|lcc = 00 as t — T. The blowup is of type I if the function
(T — t)Y®=D|lu(-,t)||o stays bounded as t — T, otherwise it is of type II. As
proved in [14] (see also Corollary 1.2 above), type II blowup never occurs if p < pg
(this is also true with the assumption of radial symmetry dropped). The absence
of type II blowup is also known for some classes of radial solutions (for example,
radially nonincreasing solutions) if ps < p < pyr, [19, 20, 27]. On the other hand,
type II blowup is known to occur for some positive radial solutions if p > psr, (see
[16, 26, 21, 37]). Let us now add the assumption that « is an ancient solution. Our
question is whether from the fact that u has some “past” one can draw a definite
conclusion about the type of its blowup. If ps < p < pyr or p > pr, we can give a
positive answer:

Corollary 1.10. Let either ps < p < pjr or p > pr. Let u be a positive radial
solution of (1.3). If u blows up at t =T, then the blowup is of type L
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This result follows directly from Theorem 1.8, which gives a bound on (T —
t)1/(P=Dy(., t) in any compact set, and the universal estimate (2.3) proved in Propo-
sition 2.1 below, which yields a bound on this function away from the origin in RYV.

Remark 1.11. We conclude the introduction with a few remarks concerning ex-
ponents p not covered by the above results. As previously mentioned, we expect
Theorem 1.7 to hold in the range p;;, < p < pr, and can actually prove this (see Sec-
tion 5) under an additional condition. Specifically, the condition requires that each
classical positive radial steady state w of (1.10) satisfy the relation F(w) < E(dco),
where F is the standard energy functional for equation (1.10) (see Subsection 2.2).
In Section 5 we also give some heuristics as to why the energy condition is plausi-
ble, but it is not clear to us if it can be proved by any readily available tools. In
the borderline case p = pr, the statement of Theorem 1.7 is most likely void, for
we do not expect any positive radial bounded solution of (1.2) to exist—p = pr,
is not included in Theorem 1.6 for several technical reasons. In Theorem 1.8 (and
Corollary 1.10), we left out the range pyr < p < pr. Again, we believe that both
statements of Theorem 1.8 are valid in this range as well, but can only prove it
under the above energy condition (see Remark 5.3).

The rest of the paper is organized as follows. The next section contains several
preliminary results concerning the energy functional for (1.10), zero number for
differences of solutions of equations (1.2), (1.3) and their rescaled versions, and the
a- and w-limit sets of solutions of (1.10). In the same preliminary section, we also
give universal a priori estimates on radial entire and ancient solutions, and examine
the relation of two radial solutions of (1.10) for large values of p = |y|. The proof
of Theorem 1.6 and its informal outline are given in Section 3. Section 4 is devoted
to the proofs of Theorems 1.7, 1.8. In Section 5, we discuss some applications of
our results. In particular, we state and prove there a theorem on the convergence
of profiles of blowup solutions.

2. Preliminaries. In the rest of this paper, we consider radial solutions only, al-
though some of the results in this preliminary section, notably those concerning the
energy functional, hold for nonradial solutions. Notice that radial solutions of (1.2)
or (1.3), viewed as functions of r and ¢, satisfy the equation

-1
Ut = Uy + ur+uP  in (0,00) X (—00,T) (2.1)

with T' < oo, and the rescaled functions v = v(p,s) (where p := |y|) satisfy the
equation
N-1

Vs = Vpp + TU,, - gvp — p%l +o?  in (0,00) X (—00,00). (2.2)
2.1. Universal estimates. The following universal estimates for positive radial
solutions u of (1.2), (1.3) and the corresponding rescaled functions v will play an
important role in our analysis. Notice first that if v is any solution of (2.2) and
u is defined by (1.9), then u is a solution of (2.1), hence any solution v of (2.2)
corresponds to a solution w of (2.1).

Proposition 2.1. Assume p > 1. Then there exists C = C(N,p) > 0 with the
following properties: If u = u(r,t) is a positive solution of (2.1) in Q1 := (0,00) X
(=00, T) with T < oo, then

u(r, t) + [up (r, )7/ P - fup (r, )|V < Cr72/ 7D £ m(t)) in Qr,  (2.3)
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where m(t) = (T —t)~Y @1 f T < 0o and m(t) =0 if T = co. If T < oo, then
the corresponding rescaled function v = v(p, s) satisfies

v(p, 8) + [0 (p, )/ PHY + [, 8)[VP < C(p7>/ PV + Cr) in Qooy  (2.4)

where Cr = 1. If u is an entire solution and v is defined by (1.9) with T < oo, then
(2.4) is true with Cr = 0.

Proof. The proof is a straightforward modification of the doubling and rescaling
arguments in [31] and the Liouville theorem for positive solutions of (1.2) with
N = 1; cp. also [3]. First notice that (2.3) and (1.9) imply (2.4), hence it is
sufficient to prove (2.3). In addition, (2.3) with T = oo is a consequence of (2.3)
with T' < oo since the constant C' does not depend on 7. Consequently, we may
assume T' < oo.

Set

M (r,t) := u(r, t)P~D/2 4 |u, (r, £)| P~V Dy, ()| P D/2P,
Assume that (2.3) is not true. Then there exist T%, solutions uy of (2.1) in @, and
points (r,tx) € Q, such that

My .= Mug](re, tx) > 2k/dg(rg, te), k=1,2,..., (2.5)
where di(r,t) := min(r,/T; —t) denotes the parabolic distance of (r,t) to the
topological boundary of Qr,. Then [30, Lemma 5.1] guarantees that after possible
modification of (7, tx), (2.5) holds and, in addition, we may assume M [ug](r,t) <
2M}, whenever |r — ri| + /|t — tg| < k/Mj. Set

Us(p,8) = Xo/ P D (ri + Aep, ti + A2s),
where A := 1/My. Then Uy, satisfies the equation
N-1
TR/ Ak +p
Uk, (Uk)p, (Uk) pp are bounded in {(p, s) : |p|++/|s| < k} by a constant independent
of k, and Ug(0,0) + |(Ux),(0,0)| + |(Uk)pp(0,0)] > co > 0. Clearly, ri/Ap — o0.
Using standard parabolic estimates, we conclude that (a suitable subsequence of)

{Ux} converges to a positive solution of (1.2) with N = 1. But this contradicts the
corresponding Liouville theorem, see [31], for example. O

Us=U,p + U, +U?,

2.2. Lyapunov functional. Equation (1.10) can also be written in the form
1
%==EV-@vm-5§T+ww, y €RY, s € (~00,00), (2.6)
where g is the Gaussian weight defined by

o(y) = e,
It is known that this problem possesses the Lyapunov functional

— 1 2 1 21 o
E(w)—/RN(2|Vw| +2(p_1)w p+1w )gdy.

More precisely, we have the following proposition (see [36, Proposition 23.8] for
more details; note that the assumption v(-,s9) € BC*(RY) in [36] is satisfied for
radial solutions of (2.6) due to Proposition 2.1 and the fact that we consider classical
solutions).
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Proposition 2.2. Let p > 1 and let v be a positive radial solution of (2.6). Then
E(v(-,8)) >0 and

d

LE0G) = - [ v s)e) dy, (27)
S RN

for all s € R.
Notice also that
1 1
—(Z_ - p+1
E(w)—(2 p+1)/w edy >0 (2.8)

for any bounded positive radial steady state w of (2.6) (or (1.10)) and this also
remains true for the singular steady state ¢o, if p > pg since ¢oo € H} NLY Otl (RN)
for such p.

It is known that if p > pg and w is a positive radial non-constant steady state
of (2.6) or w = ¢oo, then E(w) > E(k), see [21, Remark 1.17]. In particular,

E(¢e0) > E(r). (2.9)

The proof of (2.9) in [21] is quite long and involved. In the proof of the following
proposition we use a simpler and more direct argument to prove (2.9) (cf. also the
beginning of Subsection 3.3 in [21]). This argument enables us also to show that
the ratio F(¢)/E(k) is monotone with respect to p.

Proposition 2.3. Let N > 2 and F : (ps,0) — R denote the function p —
E(éd)/E(K). Then F is decreasing, li)m F(p) =00 and li)m F(p)=1.
pb—ps P—>00

Proof. Set £ := (p+1)/(p —1). Then a straightforward calculation based on (2.8)
shows F(p) = f(£), where

IT(N/2-¢) (N - +£))f
T(N/2) 2 ’
and T stands for the standard gamma function. Since lim f(§) =1and lim f(¢) =
£—1 E—N/2

f:(,N/2) 5 R: {—

00, it is sufficient to prove f'(£) > 0 for £ € (1, N/2). This inequality is equivalent
to

N N-(1+49 3
¢(5 £) <log ; NTaT (2.10)
where I(2) )
z
= locz — — f
P(2) T(2) <logz 5, or=z >0,
see [1, 6.3.21]. Consequently, to prove (2.10) it is sufficient to show
N —2¢ 1 N—-(1+4¢) 3
1 - <1 —
%% N—2¢="%" N—(1+¢)’
which is equivalent to
£-1 § 1
> — .
log 1+ N—2§) SN-(1+§ N-2%
Setting 1 := (£ — 1)/(N — 2£), the last inequality is equivalent to
n Nn+1
log(1 >n— —— .
og(l+m) =n TrIN -2 (n>0)
Using the estimate (Nn+1)/(IN — 2) > n we see that it is sufficient to show
log(1+1) > —— (1> 0).

n+1
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The last inequality is easy to prove (consider the derivatives of the left and right
hand sides, for example). O

2.3. Zero number. Recall that radial solutions of (1.2) or (1.3) satisfy equation
(2.1) with T < oo, and the boundary condition u,(0,) = 0, and the rescaled
functions v = v(p, s) satisfy equation (2.2) and the boundary condition v,(0,s) =
0. The singular steady state ¢oo = @oo(r) satisfies both (2.1) and (2.2) and the
boundary condition ¢.(0) = oo.

If wi,us are radial solutions of (1.2) or (1.3) (or uy,us are radial solutions of
(1.10)), then U := u; — ugy solves the linear equation

U = Uy + yUr - cgU,. FfU in (0,00) X (—00,T)  (2.11)

and satisfies the boundary condition U,(0,t) = 0, where T' < oo, ¢ € {0,1} and
f=f(r,t)isin L>((0,00) X (¢1,t2)) whenever —co < t; < to < T (the boundedness
comes from Proposition 2.1 and the fact that we consider classical solutions). If u; =
oo and uy is as above, then U satisfies (2.11), the boundary condition U(0,t) = oo,
and f € L*°((§,00) x (t1,t2)) for any § > 0.

If I C [0,00) is an interval and g : I — R is a continuous function, we denote by
z1(g) the number of zeros of g in 1. We also set z(g) = 2(0,00)9-

The next proposition follows from zero number theorems of [8, 22].

Proposition 2.4. Let U be as above, U #£ 0, t; < ta < T. Then we have:
(i) The function t — z(U(-,t)) is nonincreasing. If z(U(-,t1)) < oo and

Ul(ro,to) = Ur(ro,t0) = 0 for some 1o > 0 and tg € (t1,t2), (2.12)

then
2(U( 1) > 2(U(+,8)) for allty <t <ty < s <ta. (2.13)
(ii) Assume R > 0, U(R,t) # 0 for all t € [t1,t2]. Then the function t —
2(0,r)(U(-t)) is nonincreasing and finite. If (2.12) is true for some o € [0, R),
then (2.13) is true with z replaced by z(o R)-

2.4. Steady states and limit sets of (2.2). In what follows we assume that v is a
positive solution of (2.2) and p > pg. Estimate (2.4) guarantees that the Lyapunov
functional E(v(-, s)) is uniformly bounded for s € R and E(v(-,t;)) — E(w) when-
ever v(-,t;) = w in C}(0,00). Consequently, standard arguments (see Appendix
G in [36], for example) show that the a- and w-limit sets

a(v) = {w € C*(0,00) : (Fty — —00) v(-,tx) = w in C}.(0,00)},

w(v) :={w € C*(0,00) : (It = o0) v(-,tx) —= w in CL,.(0,00)},
are nonempty connected sets consisting of nonnegative steady states of (2.2). In
addition, if v corresponds to an entire solution u (hence (2.4) is true with Cr = 0)
and v is bounded in (0,00) x (11,73) for some —oo0 < T} < Ty < o0, then the
convergence v(-,t;) = w in CL _(0,00) with t; € (T1,T,) implies the convergence
v(+, tx) = w in BC(0, c0).

We now summarize further useful properties of a(v) and w(v) reflecting the
structure of steady states of the present problem. In particular, we show that a(v)
and w(v) are singletons.

First note that estimate (2.4) with Cr = 0 implies k ¢ a(v). Our assumption

P > ps guarantees that ¢ is the only nonnegative steady state of (2.2) satisfying
limsup,_,, w(p) = oo, see [25, Theorem 1.2] or [35]. Notice also that 0 ¢ a(v) since
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E(0) = 0 < E(w) for any positive steady state of (2.2) (cp. (2.8)) and s — E(v(:, s))
is decreasing unless v is a steady state.

Any nonnegative steady state w of (2.2) satisfying limsup, ,qw(p) < oo is
uniquely determined by its value at p = 0. If w is nonconstant, then [24, Lem-
mas 2.2-2.3] and [4] yield the following relations

w(0) > kK, w' <0 on (0,00), 2(w — ¢oo) > 2. (2.14)

Denote by A the set of a € [0,00) for which there exists a steady state w, > 0 of
(2.2) satisfying w,(0) = a. By [22, Proposition 2.3 and the proof of Lemma, 2.4], for
any a € A\ {0,k} there exists ¢, := lim,_ o, w,(p)p? P~ € (0,00) \ {L}, and the
mapping a — ¢, : A\ {0,k} — (0,00) is injective. In particular, z(wg, — Poo) < 00
for any a € A. Set

Ap:={a € A: z(w, — do) = k}, k=0,1,2,....

By (2.14), Ap = {0} and A; = {x}. As proved in [29], the set A is discrete.
This—in conjunction with the uniqueness of the unbounded positive steady state
¢oo—shows that for any positive solution v of (2.2), the sets a(v) and w(v) are
singletons consisting of either ¢, or w, for some a € A.

As already mentioned in the introduction, if p > pr,, then A = {0, k}, i.e. wg =0
and w, = K are the only bounded nonnegative steady states of (2.2). In this case,
each of the sets a(v) and w(v) has to be one of the sets {¢}, {K}, or {0}. We also
know that a(v) # {0} (and a(v) # {k} if v corresponds to an entire solution ).
Proposition 2.3 guarantees w(v) # {¢oo }-

Let now pg < p < pyr. Then each of the sets A is nonempty (see [38, 17, 6, 11,
28] and references therein) and bounded (this follows from the first sentence in the
proof of [10, Lemma 2.2], for example), hence finite. On the other hand, an easy
contradiction argument shows inf A — oo as k — oo.

The arguments in the proof of [11, Proposition 2.4] show that if w;,wy are two
different positive steady states of (2.2) (possibly unbounded), then

w1 (p) = wa(p) for some p >0 implies wi(p) > k. (2.15)

Hence, w; and ws do not intersect for large values of p. This is also a consequence
of Proposition 2.5 below, where we examine similar intersection properties for time-
dependent solutions of (2.2).

2.5. Comparison arguments and intersections of solutions of (2.2) for large
p. Let v1,v2 be two positive solutions of (2.2). Then V := vy — vy satisfies

N-1
Ve=Vopt ——V, = LV, + 1V, (2.16)
where
F— fprs) = = pot i V(p,s) =0,
’ p—1 A2 otherwise.
By the Mean Value Theorem,
1
U1,V < C, = f < CO = —m +pC’5_1. (217)

In particular,

1 1/(p—1)
provided C, <c¢g:= (—) " (2.18)

f<~h== 2(p — 1)

1
2(p—1)



ENTIRE AND ANCIENT SOLUTIONS 11

Proposition 2.5. Let vy,vs,V, co, 09 be as above, sg € R, pg > 0 and V(po, sg) # 0.
Set

D :={(p,s) € (0,00) x (—00, s0] : V(p,s) # 0},

Dy := the connected component of D containing (po, So), (2.19)
Q(s) = {p: (p,s) € Do}
Assume
vo < c¢g in Dy, (2.20)
and
lim va(p,8) =0, locally uniformly in s. (2.21)
p—+00, pEN(s)

Then V (po, so) > 0.

In applications of this proposition, we verify condition (2.21) using an a priori
bound, such as (2.4) with Cr = 0. By the same a priori bound, we will have (2.20)
verified, provided p;(s) := inf (s) is large enough for all s.

Notice that if v; also satisfies such an a priori bound, then v; and vs can be
interchanged. In this case, Proposition 2.5 says in effect that p;(s) cannot be large
for all s. This in particular entails statement (2.15) for steady states, as noted at
the end of the previous subsection.

Proof of Proposition 2.5. Let
m(s) == sup [V (-, s),
0(s) (2.22)
S :=inf{s < s : Q(s) # 0},

The proof is by contradiction. Assume that V' (po, s9) < 0. Then
0<wv; <wvy<c¢ in Dy, (2.23)

hence m(s) < ¢g for all s < sg. The comparison principle used for equation (2.16)
together with estimate (2.18) give

m(sg) < e%E0=Im(s) for s € (S, s0). (2.24)

If S = —o0, then (2.24) and (2.23) yield m(sp) = 0. If S > —o0, then (2.21) and
the continuity of V' guarantee m(s) — 0 as s — S+, hence m(sg) = 0 again. But
m(sp) = 0 contradicts our assumption V (po, s9) # 0. O

3. Proof of Theorem 1.6. The proof of Theorem 1.6 is long and rather technical
at places. We first give an outline. Let u = u(r,t) be a positive solution of (1.2)
with p > pr. Fixing any T € R, let v be the corresponding rescaled solution of
(2.2). Using considerations in Subsection 2.4, we first show easily that a(v) = {¢o }-
Thus, formally, v can be viewed as a solution on the unstable manifold of the singular
steady state. (The term “manifold” is used loosely here; the manifold structure of
the solutions approaching ¢., backward in time is not actually established.) At the
same time, as observed in [33], the solutions of (2.2) corresponding to the radial
steady states of the original equation (1.2) form a one-dimensional manifold that
can be considered as the principal part of the unstable manifold of ¢.: As time
approaches —oo, these rescaled solutions approach ¢., monotonically and at an
exponential rate given by the principal eigenvalue of the linearization of the right-
hand side of (2.2) at ¢o,. Our main goal is to derive suitable estimates on ¢oo — v
in order to show that the entire solution v has to lie on the principal part of the
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unstable manifold, or, in other words, u is a steady state. This is achieved by careful
analysis of the abstract form of equation (2.2) and, in particular, of the remainder
on the right-hand side after the linearization has been subtracted from it. This
analysis, which is really the crux of our proof, is carried out in the next subsection.
We remark that the proof of Theorem 1.4(ii), as given in [33], follows a similar
general scenario. However, the bounds ¢, < u(-,t) < ¢, assumed there make
all the necessary estimates considerably simpler, even when nonradial solutions are
allowed; those estimates from [33] are of little help in our present analysis (we make
use of other technical results from [33]).

Another ingredient of the proof of Theorem 1.6 is the radial monotonicity of the
entire solutions, which we prove in Subsection 3.2 for any p > ps. We then complete
the proof of the theorem in Subsection 3.3.

3.1. Linearization of (2.2) at ¢, and estimates of the remainder. In this
subsection, we first assume assume p > p;r (some abstract results that we recall

are valid in this range), and then focus on the case p > py.
Set a(p) := pN~le=P"/4. We consider the weighted Lebesgue space
X := L*(0,00; a(p)dp)

endowed with the scalar product

(frg) = /0 ~ H0)a(p)alo) dp

and the corresponding norm || f||x = (f, f)'/2. Let
Y= {f € Hy.(0,00) : f, f' € X}

be endowed with the norm || f|ly = ||f|lx + || f'||x. It was shown in [16, Lemma
2.3] that the operator
N-1 »p pLP~1 1
-— 1 —_ / —_——
L G D (3.1)

with domain
D(A) :={f €Y : Af € X in the distributional sense}

can be extended in a unique way to a self-adjoint operator in X (still denoted by
A), with the following properties:
(A1) D(A) cY,
(A2) (3ea > 1)(Ve € D(A)) (¢, Ad) < (ca — 1){¢, ),
(A3) the spectrum o(A) consists of a sequence of simple eigenvalues
B

1 . )
NJ=_(§+E+])7 .7:071727-'-7

where

B = %(—(N —9)+ /(N —2)2 —4pIr1) <0,

and the corresponding eigenfunctions (normalized in X') have the form ¥;(p) =
éjpﬂMj(pQ/ll), where éj >0,

My(2) = M (5, 6+ 5 2)
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and M denotes the standard Kummer function (hence M; is a polynomial of
degree j). Also, for j = 0,1,..., the function ¥, has exactly j zeros, all of
them positive and simple.

The operator —A:= —A+cy is a positive self-adjoint operator and its fractional
powers (—A)* are well defined for all o € R (see [2, Section II1.4.6]). We denote by
{(Xa,—As) : a € [-1,1]} the corresponding fractional interpolation-extrapolation
scale of spaces and operators (see [2, Section V.1] for its definition and properties);
the norm in X, will be denoted by | - ||o. In particular, X, = X, A; = A,
X, = D(A), X_; = X| (where the duality is taken with respect to the duality
pairing (-,-)). Recall also that this scale is equivalent to the scale generated by
(X, —A) and the complex interpolation functor [-,-]s. The space X, /2 is isomorphic
to Y, see [16, Lemma 2.4]. By general result of [2, Section V.2], A, generates an

analytic semigroup e’ in X, and the following estimate is true for any o > 0
et gl < csT™e%%|| B, —1<y<a<l, s>0. (3.2)
If v is as in Proposition 2.1, w := ¢, — v,
h = @b, — vP — pgLs tw,

and f := v(-, s) for some s, then estimate (2.4) and formulas [16, (2.52), (2.59)]
show that (3.1) and the variation-of-constants formula

s
w(s) = els750) 4y (s0) +/ eCDAR( ) dr
S0
are true with A replaced by A_;/» + c4. Since no confusion seems likely, in what
follows we set A := A_;/5 + ca. In particular, estimate (3.2) implies

le*lla < s’ %e4%|Igll,,  —1/2<y<a<1, s>0. (33)
Henceforth we assume that p > pr.
Let v, w, h, A, uj, ¥, (Xa, || - ||«) be as above. Crucial for our proof of Theorem
1.6 is a good understanding of the behavior of v in the following case:
0<v(,8) <doo and  av) = {pol}- (3.4)

Here, the a-limit set a(v) is as in Subsection 2.4. In the following proposition we
prove, loosely speaking, that along a sequence of times the function v approaches
¢ in the direction of the eigenfunction ¥y and at the rate exp(uos).

Proposition 3.1. Under the above assumptions and notation, there exist a constant
¢ >0 and a sequence s — —oo such that

|lw(, sk) — cet**Fgllo = o(e**®*) as k — oo. (3.5)

Proof. Recall that p > pr, implies that o > pu1 > 0 > 2 (this can be easily checked
using the formulas in (A3)).
Let P be the orthogonal projection onto the orthogonal complement of {d¢, %}
in X. Let &, &1 be defined by
w(-,8) = &o(s)Po + &1(s)01 +w(+, 5), (3.6)
where w(-, s) := P(w(-, s)). Since E(v(:,s)) = E(¢) as s & —oo (see Section 2.4),
we have w(-,s) — 0 in X, hence

|l@w(-,8)|lo—0 and &(s) =0 (:=0,1) as s— —o0. (3.7
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Our first goal is to prove that
l@(s)llo = o(|&o(s)] + 161(s)]) as s — —oo. (3.8)
We start with some estimates of the function h.
By assumption, h < 0 < w, hence (h,w) < 0. In addition,
0< —h=p(¢h —vh w < p(¢h* —vP M w < p(p — 1)¢h *w?
for some vy € (v, P ), hence, given any § € [0, 1),
~h< fywtte, (3.9)
where fs = f5(p, s) is given by

fs = [p(ehs — o] 0 lp(p — )¢5 %)’
Note that
fs(p,s) >0 as s —> —oo,

P (3.10)

|fs(p,s)| < Cp~™"%, where vs:=2(1-0)+ Z;ié <2.

Choose ¢ € (1 — /2 — N/4,1/2), ¢ > 0. We will specifically take { = 0 when
1— /2 — N/4 < 0, which is the case if

N +2V/N —4

=14+4——.
ppri=lt i T N T 16
Clearly, there is z > 1 such that
E>£—2C and £>2—ﬁ,
z 2 2

where 2’ := z/(z — 1). Fixing such z, if §p > 0 is small enough, we have

N N N
201+ 9) > 5~ 2¢ and v —B>2 foranyé €0,d). (3.11)

Since |9;(p)| < CpP(1+ p*), i =0,1 (cp. (A3)), estimate (3.9) gives the following
relations (omitting the argument p of the indicated functions)

|ndsa| < Cfsp (1 + pP)w'*oa
_ [y a) " (i 07a) b1, (12)
= C((f,spﬁ+2)2/(1_6)a)(1_6)/2 (wza)(1+6)/2’ p>1.
Next, the embedding inequalities ||w|lo < Cllw||¢,
lwl0,1)ll L=+6) (0,15a(p)ap) < Cllwll¢

(the latter follows from (3.11)), and the Holder inequality imply

L CONVE [
(o1 < C[( [ so®) adn) "+ ([ (o rH000)
0 1
Now, using (3.10), (3.11), and the Lebesgue theorem, we obtain
[(h,¥;)| = o(||w||é+‘5) as s —» —oo, (i=0,1). (3.13)
Notice also that 19; € X1, hence
[w(,8) —@(, 8)lla < C(I€() + [€a(s)), <1 (3.14)

<1-<‘>/2] 145

[[wll¢
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With the above estimate of the function h at hand, we next examine differential
equations for &, &, and ||w]o. Multiplying the equation ws; = Aw + h by 9;a,
i = 0,1, and integrating over (0, 00), we obtain

& = pi& + (h,¥:), i=0,1,
hence (3.13) and (3.14) imply

d
Efzz =2 +g;, i=0,1, (3.15)
where s
gi = o||lwllc°1&1)
= o((ll@ll¢ + €0l + &1 *1€:l)
= o((l@? + & + €)% as s = —oo.
Similarly, multiplying the equation ws; = A®w + Ph by 2% and using (Aw, @) <
—co(||u?)||f/2 + ||l @||2), (h,w) <0, and (3.13) we obtain
d. L
251915 = 2(Ad, @) + 2(h, w — &0 — &11)
< =2¢co(|[B]l7/, + 15115) + 92,

(3.16)

where go = o((||@||2 + &8 + £3)1%/2) as s — —o0.
We are now ready to complete the proof of (3.8). Fix any
€o € (0,min(1, p1,¢0)/5).
Then there exists sy such that
lgil < e3(I@113 /o + &5 +€7) for s<so, i=0,1,2. (3.17)
Assume for a contradiction that there exists s; < sg such that
(-, s1)llo > 2e0(l60(s1)] + IEx (s1)).

Then (3.16) and the convergence [|%(-, s)||o — 0 as s & —oo guarantee the existence
of so < s1 such that

19(, 8)llo = €o(l€o(s)| + [€1(s)[) for s € [s2,s1],
lo(-, 52)ll0 = €o(|€o(s2)| + [€1(s2)])-
In addition, setting + := £2 + £2, (3.15) implies

d
2no¥ + 90+ g1 2 ¥ 2 2 + g0 + g1 (3.18)

Integrating (3.16) and the second inequality in (3.18) over (s2, s1) we obtain

4egyp(s1) < || (-, 51l

S1
< (-, 52)2 — 20 / 1512, ds + / g2 ds

S2 S2

S1 S1
< 2234 (52) — 2¢0 / 1512, ds + / g2 ds

S2 S2

S1
< 2:2(s1) — 260 / 152 5 ds

S2

S1 81
— 2e5m / Yds + / (92 — 263(90 + g1)) ds,
S2 82
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and (3.17) yields a contradiction. Thus, (3.8) is proved.
We now complete the proof of Proposition 3.1, first in the case p > pg, then in

the case p € (pr, pm]-
Assume p > py (notice that this assumption is automatically satisfied if N > 16
due to p > pr). As noted above, in this case ¢ := 0 is our (legitimate) choice. Set

£=¢6, n=¢&+al3
Then (3.15) and (3.16) imply

€ =2puo€ + o((§ +)'*/),

i < 2 + o((€ + 1) %)

Such differential inequalities are considered in [33]. According to [33, Proposition
4.4(i)], as s = —oo, we have either 7(s) = o(£(s)) or

&(s) =o(n(s)) as s— —oo. (3.19)
Assume that (3.19) is true. Then (3.8) implies
[€0(s)P0 + @ (-, s)llo = o(l[€1(s)P1l0) as s = —oo. (3.20)

Since ¥ (r) changes sign, (3.20) guarantees that w(-, s) = &y ()% +&1(s)d +w(-, s)
changes sign for some s, which is a contradiction. Consequently, (3.19) fails and
[33, Proposition 4.4(i)] implies

n(s) =0(&(s)) and £&(s) +n(s) = O(eH?) as s — —oo. (3.21)
The previous relations and [33, Proposition 4.4(ii)] further imply
£(s) = de*H0° + o(e*°%) as s — —o0, (3.22)

where ¢é is a constant. We have ¢ # 0 due to [33, (4.13)]. Consequently, there exists
a constant ¢ # 0 such that

|€o(s) — cek?| +|&1(s)| + [|w(-, 8)[lo = o(e®) as s — —oo. (3.23)
Since oy + £191 + W = w > 0, we have ¢ > 0 and estimate (3.23) yields
|lw(:, 8) — cet*®Fgllo = o(e#°®) as s — —oo.

This completes the proof of Proposition 3.1 in the case p > pg.
Next assume 11 < N < 15 and p € (pr, px] (hence ¢ € (0,1/2)). Taking s3 < 51
with s;7 — —o0, (3.16), (3.8) imply

o [ Wil s < s+ o [ ds) =o(wte) + [ wds). (20

2 2

Hence, choosing any small ¢ € (0, 1), (3.18) guarantees that

(1= eW(s) < $(s1) — / " pds < (s,

(14 etoa) 2 (o)~ [ 92 (1= 222 (51— 5))lo),

S2 -
provided s; is negative and sufficiently large. Consequently, there exists 7 € (0,1)
(independent of s3) such that for any sufficiently large negative s; we have

%1/)(32) < (s) < 20(53), 5 € (52,50 + 7). (3.25)
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Now (3.24) and (3.25) imply

s+ s+T
/ ||7IJ||§/2 = o(/ wds) as s — —oo. (3.26)
Set

s+T s+T
)= [ @@, we)= [ €0+ IatoRe. (2

Notice also that for § > 0 small enough, interpolation, inequality ||@|lo < C||@]|1/2
and (3.8) imply

~n2(1+6/2 ~ ~ ~
B2 < Cllwdll@l? . = o(w®/?)|D]13,- (3.28)

Integrating (3.15) with ¢ = 0 over the interval (s,s + 7) and using (3.25), (3.26),
and (3.28), we obtain

€ = 2p06 + o /:H(”@II? + )+ do )

= 206 + (' 0/?)
= 2406 +o((§ +n)'T0/2).
Similarly, integrating (3.15) with ¢ =1 and (3.16) we obtain

1 < 2pm +o((€ +n)'+/3).
Again, [33, Proposition 4.4] guarantees the existence of ¢ # 0 such that (3.21) and
(3.22) hold, this time with £ and 7 as in (3.27). Consequently, there exist ¢ # 0 and
s — —oo such that

|80 (sk) — ce®* | + [€1(sk)| + l0(-, sk)llo = o(e#*) as &k — oo.
In addition, similarly as in the case p > pgy we obtain ¢ > 0, hence (3.5) is true. O

3.2. Radial monotonicity of entire solutions. We next establish the radial
monotonicity of positive radial entire solutions.

Proposition 3.2. Assume p > ps. Let u be a positive radial solution of (1.2).
Then wu is radially decreasing.

Proof. Fix T € R and let v = v(p, s) be the rescaled function corresponding to u
and T'. Tt is sufficient to prove that v is radially decreasing. Due to Subsection 2.4,
the a-limit set a(v) is a singleton {w}, where either w = w, with a € Ag, k > 2,
Or W = ¢o. The derivative v, solves a linear parabolic equation whose zero order
coefficient is No1 1 1
ao(p, 8) = T2 T3 po1 +poP(p, s).

Estimate (2.4) with Cr = 0 guarantees the existence of Ry > 0 such that ag(p, s) <
—1/2 when p > Ry.

Since w, < 0 for p > 0 (cp. (2.14)), given € > 0 there exists s(e) such v,(p,s) <0
for p € [e, Ro] and s < s(e). Assume v,(po, So) > 0 for some py > Ry and s¢ < s(¢).
Set V := v, and let D, Dy, Q(s), m(s), S be defined by (2.19), (2.22) and pi(s) :=
inf Q(s). Then p;i(s) > Rp for s € (S, s¢] and the same arguments as in the proof
of Proposition 2.5 yield m(sg) = 0, which is a contradiction. Consequently, the
maximum principle shows that v(-, s) is decreasing on [, 00) for any s < s(e).

If w = w, for some a € Ay with k > 2, then v(-,s) = w, in BC[0,00) as
s — —00, hence there exist £ > 0 and 3y < s(g) such that ag(p,s) < —1if p € [0,¢]
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and s < 3¢. If we assume v,(po, So) > 0 for some py € (0,¢) and so < §p, then
the same arguments as above yield a contradiction. Consequently, v(-, s) is also
nonincreasing on [0,¢] for s < §, and the maximum principle guarantees that
v(+, s) is decreasing on [0, 00) for all s € R.
Finally consider the case w = ¢, and assume on the contrary that v(-, 39) is not
decreasing for some 5. Fix ¢ € (0,1) such that
Kk+1 Ce N-1

€
e h — i
p—1€< 3 where C. 5 5

(3.29)

and
boo(€) > K+ 1. (3.30)

Then we can find so < §p such that for any s < sg, v(-, s) is decreasing on [g, c0)
and v(-, s) attains a local minimum at some p(s) € [0,¢). Fix § € (0,1/2). For any
s < 89, if v(p(s),s) > k+ 6, then the relations v,(p(s),s) = 0 < v,,(p(s), s) and the
equation for v imply vs(p(s), s) > $ for some & > 0 (depending only on p and §). It
follows that there exists s; < sg such that

miI]lU(',S) <k+4d for s<s. (3.31)
On the other hand, by (3.30) there exist sy < s; such that v(e,s) > k+11if s < s5.

Let 2z be the solution of the linear equation
N-1 P z
Zs =zpp+sz— §zp—pT1

in (0,¢) x (0,00) satisfying the boundary conditions z,(0,s) = 0, z(e,s) = k + 1,
and the initial condition z(p,0) = 0. Then z is increasing in time and, since x + 1
is a supersolution to z, we obtain z,(e,s) > 0, hence z, > 0 by the maximum
principle. Also, z approaches a steady state Z as s — oo with Z, > 0, Z,(0) = 0,
and Z(e) = k + 1. We have

k+1 _ Z(p) N-1 »p
12y 1 Lt )4 2 2+ G
Integrating over p € (0,€) we obtain
Kk+1

—¢ 2 Zo(€) = Z,(0) + Cc(Z(e) — Z(0)) 2 Ce(k +1 - Z(0)),

hence (3.29) implies Z(0) > x + 2/3. Since 2z, > 0 and 2(0,s) — Z(0) as s = 00,
we have z(-,S) > k + 1/2 for some S large enough. Since v(-,s2 — S + s) > 2(-, )
on [0,¢] for s € [0,5] by the comparison principle, we obtain v(-,s3) > £+ 1/2 on
[0, €], which contradicts (3.31). O

3.3. Completion of the proof of Theorem 1.6. In this subsection we assume
p > pr. By ((+, &) we will denote the solution of
N-1

1
Goot =G = 5l = (=0 (3.32)

with ¢(0,a) = a. By [24], for each a > 0 there is p, such that ¢(-,a) > 0 on

[0, po) and ((pa, ) = 0. Also, the following property is proved in [24, Lemma 2.5]

(although it is not stressed in [24, Lemma 2.5], it can be checked that the constant

C there is independent of ¢):

(pl) For each compact interval I C (0,00) one has {(-, &) — ¢oo — 0 in C*(I) as
a — 0.
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We shall also need the following property of {(-, @).

Lemma 3.3. There is ag > 0 such that for each o > ag one has
2[0,00) (C(, @) — o) < 2. (3.33)

Proof. Assume that, to the contrary, there are arbitrarily large values a with
2[0,p.](C(-y@) — doo) > 3. Clearly, the zeros of ((,a) — oo are all simple and,
since ((pq, ) = 0, their number is even. Thus, there must be at least 4 of them.
We denote by & < --- < £ the first four zeros of {(-, @) — Poo-

Let now py be the third eigenvalue of the linearization at ¢, and ¥ a corre-
sponding eigenfunction (cp. (A3) in the Subsection 3.1). Then us < 0, 2(J2) = 2,
and both zeros of 1, are positive. Let 71 < 73 denote these zeros. As noted
in [24, Lemma 2.9], a Sturm comparison argument implies that 7; € (0,£¢) and
N2 € (£5,£€%). Using (pl) and taking « sufficiently large we obtain that

PP (p, @) < pgEst(p) — 2 (p € (m1,m2)).

This relation and the fact that m1 < £ < &5 < m2 make the Sturm comparison
argument applicable to the interval (£¢,£5) as well. We conclude that this interval
contains a third zero of ¥, which is a contradiction. O

Although it is not needed below, we remark that (3.33) in fact holds for all & > k.
This follows from the observation that the zero number in (3.33) does not change
as one varies a € (k,00) (the fact that for p > py one has p, < oo for all & > k is
important here). One can also turn the argument around and prove (3.33) by using
the independence of the zero number of a in conjunction with the fact that the zero
number is equal to 2 for o > & sufficiently close to k (see [24, Lemma 2.3]).

Proof of Theorem 1.6. Let u = wu(r,t) be a positive bounded (radial) solution of
(1.2) and p > pr. Fix T € R and let v be the corresponding rescaled solution of
(2.2). We know from Subsection 2.4 that each of the sets a(v) and w(v) has to be
one of the sets {0}, {«} and {dso}, and a(v) # {0}. Estimate (2.4) (with Cr = 0)
guarantees a(v) # {x}. Consequently, a(v) = {¢oo}

We prove that

z(v(,8) —do) <1 (s €R). (3.34)
In fact, assume there is sg such that z(v(,8) — doo) > 2 for s = 59 (hence for all
s < 89). Making sg smaller if needed we may assume that the first two zeros &1, &2
of (-, 80) — doo) are simple. Clearly, & being the second zero, there is £ > &, such
that v(€, 50) < ¢oo(€). Using (pl) and Lemma 3.3, we find « such that (3.33) holds
along with the following statements
(al) v(-,s0) — ¢(-, @) has zeros £, & (near &, &2, respectively) with & < & < £,
(a2) v(€,50) < ((§, ).
Relations v > 0, {(pq, @) = 0, and (a2) imply that v(-, sp) — {(-, @) has another zero
in (€, pa). Thus, 29 ,,](v(-,8) = ((-,@)) > 3 for all s < sq.

Let a be as above. Proposition 3.2 and the convergence v(-, s) = ¢ in C} (0, 00)
imply that there exist s; € R and J > 0 such that v(p, s) > {(p, @) for all p € [0, ]
and s € (—o00, s1). Using this relation (and the convergence again), we obtain that
for all sufficiently large negative s we have

200,041 (V(+5 8) = €, @) = 205,51 (v(+; 8) = C(-, @) < 2(5,p,) (P00 — ([ @) < 2
(cp. (3.33)). This contradiction completes the proof of (3.34).
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We now show that the case z(v(,s) — ¢oo) = 1 for some s is impossible. In-
deed, if this holds, then z(u(-,t9) — ¢o) = 1 for some t;. Setting ug(r) :=
min{u(r, ), poo(r)}, we have 0 < up < ¢oo and ¢oo — up has compact support.
By [32], the solution of @; = A4 + @P, u(-,t9) = ug is unbounded (it approaches
¢0), and the comparison principle then implies that the same it true of u(-,t), in
contradiction to our assumption.

Thus z(v(-, $) — doo) = 0, that is, v(-, s) < Poo, for all s € R.

To complete the proof, we now apply some results of [33]. Recall from Sub-
section 3.1 that 9o(p) = éop®, where & > 0, and || - ||o denotes the norm in
L2(0, 00; pN—1e=+"/4dp) The steady states ¢, satisfy

¢a(r) = Lr=2®=D _p(a)rP + O(rP=¢) as r — oo,

where € > 0, b(a) = b;a'T#®~1)/2 and b; > 0 is a constant; see [15, 39]. According
to [33, Lemma 2.2], the rescaled functions

Ya(p,s) = e~/ P D, (e7*/p)
(cf. (1.9)) satisfy
bla) , s s
lpoo — Yal-ss) — é—e”O Yollo = o(e”®) as s — —oo. (3.35)
0
Fix a such that b(c) = céy, where c is from (3.5). Then (3.35) and Proposition 3.1
imply
lv(-, sk) — Yal, sk)|lo = o(e*®*) as k — oo.

As shown in [33, Lemma 4.2], this estimate guarantees that v = 1, hence u =
Pa- O

4. Proofs of Theorems 1.7 and 1.8. In the proofs of Theorems 1.7, 1.8, we will
use the following result.

Proposition 4.1. Let p > ps and u be a positive radial solution of (1.3) satisfying
(1.8). Then there is a positive integer m such that z(u(-,t) — ¢o) < m for allt <T
and a € (0, 00].

Proof. Fix any a € (0,00] and set ¢ := ¢q,
v(p,s) = e~/ PVu(e™2p, T —e7%), ¢(p,s):=e P Vg(e*?p)  (4.1)

(in particular, ¥ = ¢, when a = 00). Then v, solve equation (2.2). By (1.8),
there is sp € R such that v is bounded for s < sq.

Remarks in Subsection 2.4 show that for the a-limit set of v in C}. [0, 00) we
have either a(v) = {w,} with a € A for some k > 0 or a(v) = {¢oo}. The latter
is ruled out by the boundedness of v for s < sy, so we have the former. We prove
that the conclusion of the proposition holds with m = k + 1 (which is independent
of ). Note that a(¢) = {¢s} in C.(0,00).

Since ¢(r) < Cr=2/(P=1 we also have 1(p,s) < Cp~2/(P=1) for all s and we can
fix Ry > ¢! (k) such that

P(p,8) < ¢y forall s and p> Ry, (4.2)

where ¢g is defined in (2.18).
Consider the function V := v — 1. The k zeros of w, — ¢, belong to the interval
(0,051 (k)] € (0,Rp) (cp. (2.15)). Also, since wg, Poo solve the same second order
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ODE, the zeros are simple. This fact and the convergence of v,1 as s — —o0
guarantee that, decreasing sq if necessary, we have

2(0,Ro)(V(,8)) =k forall s< so. (4.3)

Assume, for a contradiction, that z((V (-, s1)) > k+ 2 for some s; < s9. Decreas-
ing s¢ further if needed, we may assume s; = sg. Denoting by p* the (k+1)-th zero
of V(-, s0), we can choose pg > p* such that V(po, sg) < 0. Let D, Dy, Q(s), m(s), S
be as in (2.19), (2.22), and p;(s) := inf Q(s). Clearly, p1(s) is a zero of V (-, s) for
each s € (S, so], and, by the monotonicity of the zero number, p;(s) is at least
(k + 1)-th zero of V(-, s). Hence (4.3) implies p;(s) > Ry for s € (S, s9]. Now (4.2)
and Proposition 2.5 give V(pg, so) > 0, and we have a contradiction.

Consequently, z((V(-,s)) < k+1 for all s < sp and the monotonicity of the
zero number gives the same estimate for s > so. This gives the desired estimate
z(u(-,t) — ¢a) < k+1. O

Proof of Theorem 1.7. By standard results, since the solution w is bounded, its w-
limit set in C},([0,00)), w(u), is a nonempty compact set in this space and the
desired conclusion u(-,t) — 0 is equivalent to w(u) = {0}. Also, w(u) is invariant:
for any 4, € w(u) there is a radial solution of (1.2) satisfying u(+,0) = u%, and
Uoo(+, ) € w(u) for all t € R. Obviously, any such us, is nonnegative and bounded.
Set
¢~ :=liminfu(0,t) and £1 :=limsupu(0,t).
t—o0 t—o00
By the boundedness of u, these limits are finite. We first prove that ¢ = ¢~.
Assume not and fix @ € (£7,£%). Then u(0,t;) = a = ¢4(0) (and u,.(0,t;) =0 =
¢.,(0)) for an infinite sequence ¢t — oo. It follows that z(u(-,t) — ¢4) drops at
each t; (cp. Proposition 2.4), which is a contradiction to Proposition 4.1. Thus,

£+ = ¢~ =: o, which implies that u(0,t) — « as t — oo.
Consequently, any element ul, of w(u) has ul (0) = a = ¢,(0). We show
that actually u), = @,. Assume that, to the contrary, ul (ro) # @a(ro) for some

7o > 0. Let uq, be the entire solution of (1.2) corresponding to u?,, as above. Then
u(0,t) = a (and u,(0,t) = 0) for all ¢, and u(ro,t) # ¢a(ro) for t ~ 0. Hence
2(0,r0) (Uoo (+, t) — @) is finite for ¢ near 0 and drops at any such ¢, which is absurd.
Thus we have showed that w(u) = {¢4}

To conclude, assume o > 0 and fix 8 > 0, 8 # a. Then z(u(-,t) — ¢g) is bounded
by Proposition 4.1. However, in the considered range ps < p < pyr we have
2(¢pa — Pp) = 00 (see [39, 36]) and the zeros of ¢, — ¢ are simple. The convergence
of u(-,t) to ¢, therefore implies that z(u(-,t) —¢g) — 0o as t — oo, a contradiction.
Thus, o = 0 and we have proved the desired conclusion w(u) = {0}. O

Proof of Theorem 1.8. Assume that v is not a steady state of (1.10). We know from
Subsection 2.4 that each of the sets a(v), w(v) is a singleton consisting of either w,
for some a € A, or ¢oo. In addition, a(v) # {0} and monotonicity of the energy
functional (cp. Proposition 2.2) gives w(v) # a(v). Obviously, a(v) = {¢} if and
only if (1.8) fails; if (1.8) holds, we necessarily have a(v) = {w,} for some a € A.
We next prove that w(v) = {w} where @& = w, for some a € A (possibly a = 0).
For that, we just need to show that w(v) # {¢w}. If p > pr, this follows from
Proposition 2.3, as already noted in Subsection 2.4 (thus, w(v) = {0} or w(v) = {k}
in this case). If ps < p < pyr and (1.8) fails, then the relation follows from

{¢o} = (v) # w(v).
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If ps < p < pyr and (1.8) is true, Proposition 4.1 applies. Let m be as in the
proposition. Suppose w(v) = {@oo}- Since 2(Poo — Po) = 00 for any a > 0 (see [39]
or [36]), for all sufficiently large s, the function v(-, s) — ¢; has at least m + 1 zeros.
Pick any such s and set o := e%/(P~1). By the scaling invariance of equation (1.1),
we can write ¢1(p) = a 'po(a~P~1/2p). Using this and the relation between u
and v (cp. (4.1)), we obtain, for t =T — e~ %,

m+1 < 2(0(,8) — $1) = 2(v(-,8) — e T Vga(e7*/%p))) = 2(u(,t) — da),

and we have a contraction to Proposition 4.1.
To complete the proof of Theorem 1.8, it remains to show that w(v) = {o}
implies the convergence

3151010 v(-,8) = (4.4)

in C}_(RY) (and not just in C}_(RY \ {0}), the space used in the definition of
w(v)), and that a(v) = {w} in conjunction with (1.8) implies the convergence

lim v(-,s)=w (4.5)

S§—r—00

in CL .(RY). The latter is a simpler: (4.5) follows from the convergence in CL (R
{0}), the boundedness of v(:,s) as s — —oo (condition (1.8)), and parabolic esti-
mates.

The former can be proved similarly once we show that as s — oo the function
v(+, 8) stays bounded on a neighborhood of the origin. For this, we use a “no-needle”
lemma, Lemma 2.14 of [20]. Consider the functions v(-,k+-), ¥k = 1,2,.... Since the
sequence v(-, k) converges in CL (RN \ {0}) to @, a bounded function, [20, Lemma

2.14] yields positive constants § > 0, M; such that v(-,k + J) < M; on RY for

k=1,2,.... Making M; larger if necessary, we may also assume that @(0) < M;.
Take now any a > M; and let w, be the solution of
N-1 p

w
Pwy— Y +wP =0, p>0,
2% T p-1 P (4.6)

w(0) =a, w'(0)=0.

Wpp + Twp -

Then w, is defined (at least) on a small interval [0, R] and, making R > 0 smaller
if needed, we have w, > My > w on [0, R]. Since v(R,s) = W(R), v(R,s) < wq(R)
for all sufficiently large s. Since also v(r,k + 6) < My < w,(r) for all r € [0, R]
and k = 1,2, ..., we obtain from the comparison principle that v(r,s) < w,(r) for
all r € [0, R] if s is large enough. This is the desired estimate, from which (4.4) is
proved easily. O

We remark that the monotonicity of s — z(v(:, s) — ¢oo) implies that the steady
states w and @ in (1.11) satisfy z2(w — doo) > 2(W — Poo)-

5. Further results and applications. In the following theorem, we consider two
classes of positive radial solutions of (1.1) for p > pr. The first class consists of
solutions which exhibit a type II blowup and the second class of global solutions
which decay to 0 with rate slower than t=1/®=1_ or do not decay at all. As an
application of our new Liouville theorem, Theorem 1.6, we show that at least along
a sequence of times, the profiles of the solutions have a limit.
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Theorem 5.1. Letp > pr, and u be a positive radial solution of (1.1) in RN x(0,T).
Assume that
either T < oo, limsup(T — t)ﬁ lu(-, t)]loo = 00 (type II blowup),

t—T

or T = oo, limsuptplfl||u(-,t)||OO =00 (slow or no decay).
t—T

Then there exist tp, — T such that
1

APy (Ner, b)) — 1 (7), o —
¢ (-, )| &0/

(5.1)

uniformly in r € [0, 00).

In the blowup case, this theorem is known to hold for any p > ps under the
extra assumption that z(u:(-,t)) < oo: a long and technically involved proof can
be found in [19]. The convergence in (5.1) plays a key role in [19] in the study of
blowup rates and profiles.

Proof of Theorem 5.1. The proof is based on doubling, scaling, one-dimensional
Liouville theorem, and Theorem 1.6.

Considering equation (1.1) on the time interval (,7") instead of (0,T") (where
0 < § < T) we may assume that

|lw(-,t)|loo is bounded for ¢ € (0,7) whenever 7 < T (5.2)

Set
M(t) = ||u(-, )| B2,

Our assumptions imply that there exist t; — T such that My := M (t;) > 2k/d(t),
where d(t) := min(vt,v/T —t) (d(t) = v/t if T = 00). The Doubling Lemma
[30, Lemma 5.1] guarantees that, possibly after modifying the sequence {tx}, the
following additional condition is satisfied for k = 1,2,...: M(t) < 2M}; whenever
VIt —te| < k/Mj.

Set Ay := 1/M,. We claim that given any ¢y € (0,1) there exists Ry = Ro(go)
such that for a suitable subsequence of k we have u(r, tx) < eol|u(-, t)||co Whenever
r/Ar > Rp. Assume that no such Ry exist. Then we can find (a subsequence of k
still denoted by k and) 7y such that r /Ay — 0o and u(rg,tx) > €ol|u(-, tx)||oo- Set

Uk (p, 8) := )\i/(p_l)u(rk + Ao, tr + A2s).

Then for £k =1,2,..., Uy satisfies the equation
N -1

Tk/Ak +p

Uy, is bounded in {(p, s) : v/[s| < k, p > —r/Ai} by a constant independent of &,
and Ug(0,0) > &o. Since 7/Ap — 00, (a suitable subsequence of) {U} converges
to a positive solution of (1.2) with N = 1, which contradicts the corresponding
Liouville theorem (see the second part of Theorem 1.1). The claim is thus proved.

Take now a decreasing sequence ¢; — 0. Using a diagonalization argument, we
find a subsequence of k such that u(r,tx) < €;||u(-,tx)||cc Whenever r/A; > R; :=
Ry(e;) and k is large enough.

Next set

Us=U,p + U, +U?,

Vi(p, s) := A @Dy, t + AZs). (5.3)
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Then V), satisfies the equation

N-1
VS=Vpp+TVp+Vp,

Vi is bounded by 2 in {(p,s) : p > 0, /|s| < k}, and Vj(-,0) attains its maximum
1 in the compact set {p : |p| < Ro} (since Vi(p,0) < g for p > Rp). A suitable
subsequence of {Vj} converges (in Cj,., for example) to a positive solution of (1.2),
hence to a steady state ¢,. Since max Vi(-,0) = 1, we have o = 1. Since Vj(p,0) <
gj for p > R; and k large enough, we see that the convergence is uniform on
[0, 00). O

We now return to the classification problem for entire solutions satisfying (1.8)
(cp. Theorem 1.7). As mentioned in the introduction, we believe that the statement
of Theorem 1.7 holds also in the range p;jr < p < pr. We can actually prove this,
see Proposition 5.2 below, provided the following condition on the energies of steady
states of (2.2) is satisfied:

E(w,) < E(¢pso) forall ae€ A (5.4)

This looks plausible, although the proof may not be easy. One way (5.4) could be
verified is by proving the existence of a solution of (2.2) connecting @, t0 wg, for
any a € A. Then the monotonicity of the energy would give (5.4) immediately. The
question whether such connections indeed exist is of independent interest. A positive
answer would give an interesting information on the variety of entire solutions of
(2.2). What seems to be crucial for establishing the connections is a description of
the (global) bifurcation diagram for the steady states of (2.2) when p decreases from
pr, down to pyr. Optimally, one would prove that all classical steady states lie on
bifurcation branches emanating from the singular steady state at some bifurcation
values of p. If this could be proved, then there is hope that the connections can
first be established locally, near bifurcation points, then globally by continuation,
somewhat in the spirit of [9, Section 3].

Proposition 5.2. Let pjr < p < pr. Assume (5.4). If u is a positive radial
bounded solution of (1.2) satisfying (1.8), then 1tli)m lu(st)loo = 0 (Ge. u is a
o0

homoclinic solution to the trivial steady state).

Proof. Assume py;, < p < pr. Let u be a positive radial bounded solution of (1.2)
satisfying (1.8) and let C' be the constant from (1.8). Set A := AN[0,C]. As
proved in [29], the set A is finite. Using (5.4), we find € > 0 such that

€ < E(¢oo) — ;Ieli)é E(w,). (5.5)

Using Proposition 4.1 and the same arguments as in the proof of Theorem 1.7, one
shows that w(u) = {¢,} for some a € [0, 00). We need to prove that @ = 0. Suppose
for a contradiction that o > 0. Set uy(r,t) := k2/®P~Vy(kr, k2t). Then uy is a
positive radial bounded solution of (1.2) satisfying (1.8) and w(uk) = {Pr2/@-1)0}-
Notice that ¢r2/p-1)  Poo as k — co. Therefore, we can find k& and T such that
E(ux(-,T — 1)) > E(¢oo) — €. Let vy, be the rescaled function corresponding to uy
and T. Then vg(-,0) = ug(-,T — 1), hence E(vx(-,0)) > E(¢oo) — €. Assumption
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(1.8) guarantees that
[04(0, — log(T — £))| = (T — &)=/ =Dk *~Du(0, k)
<C(T - t)—l/(p—l)k2/(p—1)(k2t)—1/(p—1)
—C as t— —oo,

hence a(vx,) = {w,} for some a € A®, E(w,) > E(vk(-,0)) > E(¢s) — € and we
have a contradiction to (5.5). O

Remark 5.3. Condition (5.4) is also sufficient for the validity of Theorem 1.8 for
psr <p < pr (cp. Remark 1.11). Indeed, the proof of Theorem 1.8 as given above
applies in the case pyr < p < pr, with a single exception of the argument we used
for proving the relation w(v) # {¢oo} in the case that a(v) = {w,} for some a € A.
Obviously, if (5.4) holds, then instead of that argument one can simply refer to the
monotonicity of the energy functional.
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