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a b s t r a c t

In studies of superlinear parabolic equations

ut = ∆u + up, x ∈ R
N , t > 0,

where p > 1, backward self-similar solutions play an important role. These are
solutions of the form u(x, t) = (T − t)−1/(p−1)w(y), where y := x/

√
T − t, T is a

constant, and w is a solution of the equation ∆w − y · ∇w/2 − w/(p − 1) + wp = 0.
We consider (classical) positive radial solutions w of this equation. Denoting by
pS , pJL, pL the Sobolev, Joseph-Lundgren, and Lepin exponents, respectively, we
show that for p ∈ (pS , pJL) there are only countably many solutions, and for
p ∈ (pJL, pL) there are only finitely many solutions. This result answers two basic
open questions regarding the multiplicity of the solutions.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider positive radial self-similar solutions of the semilinear heat equation

ut = ∆u+ up, x ∈ R
N , t > 0, (1.1)

where p > 1 is a real number. A radial (backward) self-similar solution u is a solution of the form

u(x, t) = (T − t)−1/(p−1)w(♣y♣), where y := x/
√
T − t, T is a constant, and w is a function in C1[0,∞).

Such a function u is a (regular) positive solution of (1.1) if w is a solution of the following problem

wrr +

⎤

N − 1

r
− r

2

⎣

wr − w

p− 1
+ wp = 0, r > 0, (1.2)

wr(0) = 0, w > 0. (1.3)
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Self-similar solutions have an indispensable role in the theory of blowup of Eq. (1.1). They are examples

of solutions exhibiting type-I blowup at time T , by which we mean that the rate of blowup is (T−t)−1/(p−1),

the same as in the ordinary differential equation ut = up. In fact, they often serve as canonical examples in

the sense that general solutions with type-I blowup can be proved to approach in some way a self-similar

solution as t approaches the blowup time (see, for example, [2,9,10,17,18], or the monograph [26] for results

of this form). Moreover, self-similar solutions play an important role in the study of the asymptotic behavior

of global solutions (see [8] or [26, the proof of Theorem 22.4], for example), in the construction of interesting

solutions (like peaking or homoclinic solutions; see [8], [22] or [6], respectively), in the study of type-II

blow-up (see [16, Proposition 1.8(ii)]), etc.

Eq. (1.2) has been scrutinized by a number of authors. To recall known results, we introduce several critical

exponents (they are usually called the Sobolev, Joseph-Lundgren, and Lepin exponents, respectively):

pS :=

∮

N+2
N−2 if N > 2,

∞ if N ≤ 2,

pJL :=

∮

1 + 4 N−4+2
√

N−1
(N−2)(N−10) if N > 10,

∞ if N ≤ 10,

pL :=

∮

1 + 6
N−10 if N > 10,

∞ if N ≤ 10.

Obviously, the constant κ := (p − 1)−1/(p−1) is a solution of (1.2) for any p > 1. If 1 < p ≤ pS , κ

is the only positive solution [9,11]. For pS < p < pJL, there exist at least countably (infinitely) many

solutions; and for pJL ≤ p < pL the existence of a (positive) finite number of nonconstant solutions has been

established (see [3–5,8,14,22,29]). For p > pL, κ is again the only positive solution. This was proved by [20]

(the nonexistence was indicated by numerical experiments in the previous paper [23]). The same seems to

be the case for p = pL, as claimed in [21], however the proof given in [21] is not complete.

A natural and rather basic question, which, despite its importance on several levels, has been open

until now is whether there may exist infinitely many solutions for some p ∈ [pJL, pL), or uncountably

many solutions for some p ∈ (pS , pJL). In particular, it is of significance to clarify whether there might

be continua of solutions (1.2), (1.3) for some p ∈ (pS , pL). For example, by ruling out the possibility that

such continua exist, one could substantially simplify the proofs of some results on self-similar asymptotics

of blowup solutions of (1.1), such as those in [17] or [15, Theorem 3.1]. Also, the problems of finiteness and

countability of the set of the radial self-similar solutions are of great importance in our study of entire and

ancient solutions of (1.1), which will appear in a forthcoming paper [24].

The goal of the present work is to address these problems. Our main results are stated in the following

theorem.

Theorem 1.1. Under the above notation, the following statements are valid.

(i) For any p ∈ (pS , pJL) the set of solutions of (1.2), (1.3) is infinite and countable. For p = pJL the set of

solutions of (1.2), (1.3) is at most countable.

(ii) For any p ∈ (pJL, pL) the set of solutions of (1.2), (1.3) is finite.

Very likely, in the case p = pJL the set of solutions is finite, too, but our proof of the finiteness for

p ∈ (pJL, pL) does not cover the case p = pJL. On the other hand, if there exist solutions for p = pL, then

our proof guarantees that the set of solutions is finite. Statement (i) can be made a little more precise. We

will prove that the set formed by the values w(0) of the solutions of (1.2), (1.3) is discrete.

Our method relies on two kinds of shooting techniques; one from the origin, considering a standard initial-

value problem for (1.2) at r = 0, and another one where “initial conditions” are prescribed at r = ∞. In the
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proof of statement (i), we employ the analyticity of the nonlinearity u ↦→ up in (0,∞). We prove that the

solutions are isolated, hence there is at most countably many of them. Technical difficulties in this proof are

caused by the fact that as r → ∞ the nonconstant solutions of (1.2), (1.3) decay to 0, where we lose the

analyticity. For the proof of statement (ii), we show that the solutions cannot accumulate at the singular

solution. This involves a subtle analysis of how solutions of the initial value problems at r = 0 and r = ∞
behave near the singular solution.

The paper is organized as follows. In the next section, we introduce some notation and recall several

technical results concerning solutions of (1.2). In Section 3, we use shooting arguments to show that the

solutions of (1.2) are in one-to-one correspondence with the zeros of a real analytic function. This is key to

showing that the solutions are isolated. In Section 4, we consider the set of solutions of (1.2) near a singular

solution and complete the proof of Theorem 1.1(ii).

2. Notation and preliminaries

In the remainder of the paper, it is always assumed that p > pS .

Although Eq. (1.2) has a singularity at r = 0, it is well known and easy to prove by an application of the

Banach fixed point theorem to an integral operator (see, for example, [12]) that for each α > 0 there is a

unique local solution of (1.2) satisfying the initial conditions

wr(0) = 0, w(0) = α. (2.1)

We denote this solution by w(r, α) and extend it to its maximal existence interval. If the solution changes

sign, then the nonlinearity in (1.2) is interpreted as w♣w♣p−1
. Let

S := ¶α > 0 : w(r, α) > 0 (r ∈ (0,∞))♢. (2.2)

Obviously, for each solution w of (1.2)–(1.3) one has w = w(·, α) for some (unique) α ∈ S. We further denote

ϕ∞(x) := L♣x♣−2/(p−1)
, L :=

⎤

2

(p− 1)2
((N − 2)p−N)

⎣
1

p−1

. (2.3)

This is a singular solution of (1.2) (it is defined when p(N − 2) > N). In fact, this is a unique solution of

(1.2) with a singularity at r = 0 (see [21,25]).

We recall the following properties (as above, κ = (p− 1)−1/(p−1)):

Lemma 2.1. The following statements are valid (for each p > pS).

(i) One has α ≥ κ for all α ∈ S, and κ is isolated in S.

(ii) For each α ∈ S \ ¶κ♢ there exists a positive constant ℓ(α) such that

w(r, α) = ℓ(α)r− 2
p−1 (1 − c(α)r−2 + o(r−2)) as r → ∞, (2.4)

where c(α) := (ℓ(α))p−1 − Lp−1 (with L as in (2.3)). Moreover, one has

wr(r, α)

w(r, α)
= − 2

(p− 1)
r−1 + 2c(α)r−3 + o(r−3) as r → ∞. (2.5)

(iii) With ℓ(α) as in statement (ii), the function α ↦→ ℓ(α) is one-to-one on S \ ¶κ♢.

Proof. Statement (i) is proved in Lemmas 2.2 and 2.3 of [20]. Statements (ii), (iii) for regular bounded solu-

tions are proved in [17, Section 2]; the boundedness assumption can be removed due to [20, Lemma 2.1]. □
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We need two additional properties of the function α ↦→ ℓ(α):

Lemma 2.2. Suppose αk ∈ S, k = 1, 2, . . . , and αk → α0 ∈ (κ,∞] as k → ∞. The following statements

are valid.

(i) If α0 < ∞, then α0 ∈ S and ℓ(αk) → ℓ(α0).

(ii) If α0 = ∞ and p > pJL, then ℓ(αn) → L.

Proof. Statement (ii) is proved in [20, Lemma 2.7].

We prove statement (i). It is clearly sufficient to prove that the statement is valid if the sequence ¶αk♢k

is replaced by a subsequence (and then use this conclusion for any subsequence of ¶αk♢k in place of the full

sequence ¶αk♢k). We may in particular assume that αj ̸= αk if j ̸= k (for a constant sequence the statement

is trivially true) and αj > κ for any j.

The fact that α0 ∈ S, that is, the solution w(·, α0) is positive, follows easily from the continuity of solutions

with respect to initial data.

Consider now the function v(r, α) := w(r, α)r2/(p−1). It solves the equation

vrr +
⎞N − 1 − 4/(p− 1)

r
− r

2

⎡

vr +
1

r2
(vp − Lp−1v) = 0, r > 0. (2.6)

If α, ᾱ ∈ S, α ̸= ᾱ and h(r) := v(r, α) − v(r, ᾱ), then h solves the equation

hrr +
⎞N − 1 − 4/(p− 1)

r
− r

2

⎡

hr +
1

r2
(pvp−1

θ − Lp−1)h = 0, r > 0, (2.7)

where vθ = vθ(r) belongs to the interval with end points v(r, α) and v(r, ᾱ).

First we show that if r >
√

2N , then for any k ̸= j one has v(r, αk) ̸= v(r, αj). We go by contradiction.

Assume r1 >
√

2N , k ̸= j and w(r1, αk) = w(r1, αj). Without loss of generality we may assume wr(r1, αk) >

wr(r1, αj). Set
ϕ(r) := w(r, αk) − κ, ϕ∗(r) := w(r, αj) − κ,

r2 := sup¶r̃ > r1 : ϕ∗(r) < ϕ(r) in (r1, r̃)♢ ≤ ∞.

Then [5, Proposition 2.3] implies ϕ(r), ϕ∗(r) < 0 for r >
√

2N , and we also have ϕ(r), ϕ∗(r) → −κ as r → ∞.

The arguments in the first paragraph of the proof of [5, Proposition 2.4] guarantee that [5, (16)] is true, that

is,

ϕ(r) > ϕ∗(r)
⎞

1 − C1

∫ r

r1

s1−Nes2/4ϕ∗(s)−2 ds
⎡

> ϕ∗(r), r ∈ (r1, r2),

where C1 > 0. This estimate shows that r2 = ∞ and also that ϕ(r) > 0 for r large enough, which is a

contradiction.

Fix R >
√

2N ; from now on we consider the solutions v on the interval [R,∞) only. Passing to a

subsequence, we may assume that the sequence ¶v(R,αk)♢k≥1 is strictly monotone. Assume that it is

decreasing (the other case is analogous), hence vk := v(·, αk) satisfy v1 > v2 > · · · > v0 on [R,∞), vk → v0

in Cloc([R,∞)).

Set hk := vk − vk+1, k = 1, 2, . . . . Then hk is positive and it solves (2.7) with vk+1 < vθ < vk. Moreover,

hk → 0 in Cloc([R,∞)) and
√

k hk ≤ v1 − v0 ≤ C, for some constant C > 0.

First assume

pvp−1
0 > Lp−1 on [R,∞). (2.8)

If h′
k(r0) ≤ 0 for some r0 ≥ R then (2.7) guarantees h′′

k(r0) < 0, hence h′
k, h

′′
k < 0 for r > r0 which contradicts

the positivity of h. Consequently, h′
k ≥ 0.
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Set h∞
k := limr→∞ hk(r). Since

v1(r) − v0(r) =

∞
∑

k=1

hk(r) ↗
∞

∑

k=1

h∞
k as r → ∞, (2.9)

we have
√∞

k=1 h
∞
k < ∞. Fix ε > 0. Then there exists k0 such that

√∞
k=k0

h∞
k < ε, hence vj(r) − v0(r) =

√∞
k=j hk(r) < ε for any r ∈ [R,∞) and j ≥ k0. This implies ℓ(α0) < ℓ(αj) ≤ ℓ(α0)+ε, hence ℓ(αk) → ℓ(α0).

Next assume that (2.8) fails. Notice that there exist c1, c2 > 0 such that

N − 1 − 4/(p− 1)

r
− r

2
≤ −c1r and pvp−1

θ − Lp−1 ≥ −c2 for r ≥ R.

Set c3 := c2/c1. If h′
k(r0) < −c3hk(r0)r−3

0 for some r0 ≥ R then (2.7) guarantees h′′
k(r0) < 0, hence

h′
k(r) < −c3hk(r)r−3 and h′′

k(r) < 0 for r > r0 (since r ↦→ −c3hk(r)r−3 is increasing if h′
k < 0), which

contradicts the positivity of h. Consequently, h′
k ≥ −c3hk(r)r−3, or, equivalently, (e−c3/(2r2)hk)′ ≥ 0.

Set h∞
k := limr→∞ hk(r) = limr→∞ e−c3/(2r2)hk(r). Now

e−c3/(2r2)(v1(r) − v0(r)) =

∞
∑

k=1

e−c3/(2r2)hk(r) ↗
∞

∑

k=1

h∞
k as r → ∞,

and similar arguments as above show that ℓ(αk) → ℓ(α0) again. □

We will also need the following information on the behavior of the solutions w(·, α) for large α. This result

– in fact, a stronger version of it – is proved in [20, Lemma 2.5].

Lemma 2.3. Assume that p > pJL. Then, as α ↗ ∞, one has

w(r, α) → ϕ∞(r), wr(r, α) → ϕ′
∞(r), (2.10)

uniformly for r in any compact subinterval of (0,∞).

In some comparison arguments below, we will employ radial eigenfunctions of the linearization of (1.2)

at the singular solution ϕ∞. Specifically, we consider the following eigenvalue problem:

ψrr +

⎤

N − 1

r
− r

2

⎣

ψr +

⎤

− 1

p− 1
+
pLp−1

r2
+ λ

⎣

ψ = 0, r > 0

ψ ∈ H1
ω(0,∞).

(2.11)

Here H1
ω(0,∞) is the usual weighted Sobolev space with the weight

ω(r) := rN−1 exp(−r2/4). (2.12)

The inclusion ψ ∈ H1
ω(0,∞) means that if ψ̃ equals ψ or ψ′, then

∫ ∞

0

ψ̃2(r)ω(r) dr < ∞.

This eigenvalue problem is well understood. The following lemma summarizes some basic known results

(see [13,19]).

Lemma 2.4. Assume that p > pJL. The eigenvalues of (2.11) form a sequence explicitly given by

λj =
β

2
+

1

p− 1
+ j, j = 0, 1, 2, . . . , (2.13)
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where

β :=
−(N − 2) +

√

(N − 2)2 − 4pLp−1

2
< 0. (2.14)

For j = 0, 1, 2, . . . , the eigenfunction corresponding to λj, which is unique up to scalar multiples, has exactly

j zeros, all of them simple, and satisfies the following asymptotic relations with some positive constants kj,

k̃j:

ψj(r) = kjr
β + o(rβ) as r → 0,

ψj(r) = k̃jr
− 2

p−1 +2λj + o(r− 2
p−1 +2λj ) as r → ∞.

If pJL < p < pL, then λ2 < 0 and if p = pL, then λ2 = 0.

The following result, which is a part of analysis used in [13,19], will also be useful below. It can be easily

derived from well-known properties of Kummer’s equation (as shown in [13,19]). Consider the following

equation (the same equation as in (2.11), but with λ = 0).

ψrr +

⎤

N − 1

r
− r

2

⎣

ψr +

⎤

− 1

p− 1
+
pLp−1

r2

⎣

ψ = 0, r > 0 (2.15)

Lemma 2.5. Assume that p > pJL. Eq. (2.15) has (linearly independent) solutions ψ1, ψ2 satisfying the

following asymptotic relations with some positive constants κ1, κ2:

ψ1(r) = κ1r
β + o(rβ) as r → 0, (2.16)

ψ2(r) = κ2r
β−

+ o(rβ) as r → 0. (2.17)

Here β is as in (2.14) and

β− :=
−(N − 2) −

√

(N − 2)2 − 4pLp−1

2
< β < 0. (2.18)

Problem (2.11) has λ = 0 as an eigenvalue precisely when ψ1 also satisfies the following asymptotic relation

with some positive constant κ̃1

ψ1(r) = κ̃1r
− 2

p−1 + o(r− 2
p−1 ) as r → ∞. (2.19)

Obviously, if (2.19) holds, then ψ1 is an eigenfunction corresponding to the eigenvalue λ = 0. We remark

that ψ2 cannot be an eigenfunction of (2.11), for (2.17), (2.18) imply that it is not in H1
ω.

We conclude this section with a monotonicity property of the function α ↦→ w(·, α). It will be useful to

note that on any interval (0, r0] where w(·, α) > 0, wα(·, α) satisfies the linear equation

zrr +

⎤

N − 1

r
− r

2

⎣

zr +

⎤

− 1

p− 1
+ p(w(r, α))p−1

⎣

z = 0, (2.20)

and it also satisfies the initial conditions wα(0, α) = 1, wαr(0, α) = 0.

Lemma 2.6. Assume p > pJL. There exist positive constants α∗, R, and C1 such that for all α > α∗ and

r ∈ [0, R] one has

wα(r, α) > 0 (r ∈ [0, R]) (2.21)

wα(r, α)

wα(r0, α)
≤ C1r

β (r ∈ [0, R], r0 ∈ [R/2, R]), (2.22)

where β is as in (2.14).
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Proof. All arguments needed for the proof of these estimates are essentially given in the proof of Lemma 2.8

of [20], although the estimates are not formulated there explicitly for the same functions. Nonetheless, the

arguments are easy to use, or adapt, in our case. We include the following details for the convenience of the

reader.

Let r1(α) ∈ (0,∞] be the first zero of w(·, α). We first use a Sturmian comparison to show that the first

zero of ϕ∞ −w(·, α) is less than r1(α). (Similar Sturm comparison arguments are used at several other places

in this proof.) We go by contradiction. Assume w := w(·, α) < ϕ∞ in (0, r1(α)). Multiplying (1.2) with ωϕ∞
and integrating by parts over (0, r1(α)) we obtain

0 =

∫ r1(α)

0

((ωw′)′ − ω

p− 1
w + ωwp)ϕ∞ dr

=

∫ r1(α)

0

((ωϕ′
∞)′ − ω

p− 1
ϕ∞ + ωwp−1ϕ∞)w dr

+ [ωw′ϕ∞]
r1(α)
0 − [ωwϕ′

∞]
r1(α)
0

<

∫ r1(α)

0

((ωϕ′
∞)′ − ω

p− 1
ϕ∞ + ωϕp

∞)w dr = 0

which is a contradiction (cf. [20, p. 2919, lines 1–4]).

Take an eigenfunction ψj of (2.11) corresponding to a positive eigenvalue λj and let r1 > 0 be its first

zero. We will assume that ψj > 0 in (0, r1) (replace ψj by −ψj if necessary). Set R = r1/2. Considering

the linear equation for ϕ∞ − w(·, α) and using a Sturmian comparison with ψj , it is shown in the proof of

Lemma 2.8 of [20] that the first zero of ϕ∞ − w(·, α) is greater than r1, that is,

w(r, α) < ϕ∞(r) (r ∈ [0, 2R]). (2.23)

Now consider the linear equation (2.20) satisfied by wα(·, α). Due to (2.23), the zero order coefficient in this

equation is smaller on (0, 2R] than the zero order coefficient in the equation for ψj , see (2.11). Therefore, a

similar Sturmian comparison of wα(·, α) with ψj shows that wα(·, α) ̸= 0 in [0, r1]. Since wα(0, α) = 1, we

have wα(·, α) > 0 in [0, R], proving (2.21).

We now prove (2.22). Given an arbitrary r0 ∈ [R/2, R], set ψ̃(r, α) := wα(r, α)/wα(r0, α). We claim that

for all large enough α one has

ψ̃(·, α) < C2ψj on [R/2, R], (2.24)

where C2 is a constant independent of α and r0. To prove this, we use the Harnack inequality for ψ̃(r, α)—a

positive solution of (2.20). Note that the coefficients of (2.20) are bounded in [R/4, 2R] uniformly in α. This

follows from (2.23). Since ψ̃(r0, α) = 1, the Harnack inequality yields a uniform upper bound on ψ̃(·, α) in

[R/2, R]. Property (2.24) follows from this and the positivity of ψj on the interval (0, r1) ⊃ [R/2, R].

To complete the proof of the lemma, assume for a contradiction that given any C1 > 0 and α∗, one can

find α > α∗ and r0 ∈ [R/2, R] violating the estimate in (2.22). This, in conjunction with the asymptotics of

ψj given in Lemma 2.4, implies that there exists α (and a corresponding r0 ∈ [R/2, R]) such that estimate

(2.24) holds and at the same time ψ̃(·, α) > C2ψj somewhere in (0, R/2). Consequently, as ψ̃(r, α) stays

bounded as r → 0 while ψj(r) → ∞, there exist two points r1 < r2 in (0, R/2) such that the function

ψ̂ := ψ̃(·, α) − C2ψj is positive in (r1, r2) and vanishes at r1 and r2. Eqs. (2.20) and (2.11) with λ = λj > 0

yield an inequality satisfied by ψ̂ in (0, R/2):

ψ̂rr +

⎤

N − 1

r
− r

2

⎣

ψ̂r +

⎤

− 1

p− 1
+
pLp−1

r2

⎣

ψ̂

=

⎤

pLp−1

r2
− p(w(r, α))p−1

⎣

ψ̃(r, α) + C2λjψj(r) ≥ 0.
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Using this inequality, Eq. (2.11) with λ = λj > 0, and a Sturmian comparison argument, we obtain that

ψj has a zero in (r1, r2), a contradiction. This contradiction proves that (2.22) holds for all sufficiently

large α. □

3. Shooting techniques and the proof of Theorem 1.1(i)

In this section, we employ two kinds of shooting arguments. The first one is a standard shooting technique

for (1.2), (2.1) (shooting from r = 0). The second one is a kind of shooting from r = ∞, which becomes a

more standard shooting technique after Eq. (1.2) is transformed suitably. Shooting arguments of such sort

were already used in [14], cf. also [22].

3.1. Shooting from r = 0

We return to the initial-value problem (1.2), (2.1). As noted above, a local solution can be found in

a standard way by applying the Banach fixed point theorem to a suitable integral operator. Since the

nonlinearity w ↦→ wp is analytic in intervals not containing 0, the local solution depends analytically on α.

Away from r = 0, there are no singularities and standard theory of ordinary differential equations applies.

We thus obtain the following regularity property of the function w(r, α).

Lemma 3.1. Given any α0 ∈ S and r0 ∈ (0,∞), there is ϵ > 0 with the following property. The solution

w(·, α) is (defined and) positive on [0, 2r0] for any α ∈ (α0 − ϵ, α0 + ϵ), and the function w is analytic on

(0, 2r0) × (α0 − ϵ, α0 + ϵ).

Clearly, if α0 ∈ S, then the function wα(·, α0) solves on (0,∞) the linear equation

zrr +

⎤

N − 1

r
− r

2

⎣

zr +

⎤

− 1

p− 1
+ p(w(r, α0))p−1

⎣

z = 0, (3.1)

and satisfies the initial conditions wα(0, α0) = 1, wαr(0, α0) = 0. In particular, wα(·, α0) is a nontrivial

solution of (3.1) and as such it has only simple zeros.

3.2. Shooting from r = ∞

By Lemma 2.1, if u = w(·, α) for some α ∈ S \ ¶κ♢, then, as r → ∞, one has

u(r) = ℓr− 2
p−1 (1 + o(r−1)),

u′(r)

u(r)
= − 2

(p− 1)
r−1 + o(r−2), (3.2)

for a suitable constant ℓ = ℓ(α). The same is of course true, with ℓ = L, if u = ϕ∞. Conditions (3.2) can

be viewed as a kind of “initial conditions” at r = ∞. We show that Eq. (1.2) with these conditions is well

posed and has analytic solutions. This is true in spite of the fact, pointed to us by one of the referees of this

paper, that the two conditions in (3.2) are not independent. In fact, as noted by the referee, the solutions

of (1.2) satisfying the first condition in (3.2) automatically satisfy the second one since the first condition

alone is sufficient to derive identity (3.8) below. We prove the following.

Lemma 3.2. Given any ℓ0 ∈ ¶L♢ ∪ ¶ℓ(α) : α ∈ S \ ¶κ♢♢ and r0 ∈ (0,∞), there is θ > 0 and an analytic

function u : (r0/2,∞) × (ℓ0 − θ, ℓ0 + θ) → (0,∞) with the following properties.

(i) For any ℓ ∈ (ℓ0 −θ, ℓ0 +θ), the function u(·, ℓ) is a positive solution of (1.2) on [r0/2,∞) satisfying (3.2),

and it is the only solution (up to extensions and restrictions) of (1.2) satisfying (3.2).
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(ii) The function uℓ(·, ℓ0) can be extended to (0,∞), where it satisfies the linear equation

zrr +

⎤

N − 1

r
− r

2

⎣

zr +

⎤

− 1

p− 1
+ pϕp−1(r)

⎣

z = 0, (3.3)

with ϕ = w(·, α0) if ℓ0 = ℓ(α0) for some α0 ∈ S \ ¶κ♢, and ϕ = ϕ∞ if ℓ0 = L. Moreover,

r2/(p−1)uℓ(r, ℓ0) → 1 as r → ∞.

We prepare the proof of this lemma by transforming the problem to one on a bounded interval. First,

setting v(r) := w(r)r2/(p−1), we transform equations (1.2) to (2.6). Next, we set y(ρ) = v(r), ρ = 1/r. A

simple computation shows that w is a solution of (1.2) on (r0,∞) for some r0 > 0 if and only if y is a solution

of the following equation on (0, 1/r0):

yρρ +
γ

ρ
yρ +

1

2ρ3
yρ +

1

ρ2
(yp − Lp−1y) = 0, (3.4)

with γ := 3 − N + 4/(p − 1). Moreover, if conditions (3.2) are satisfied by u = w, then, as ρ ↘ 0, one has

y(ρ) → ℓ and

y′(ρ) = −v′(r)r2 = −r 2
p−1w(r)r2

⎤

2

p− 1
r−1 +

w′(r)

w(r)

⎣

→ 0 as r =
1

ρ
→ ∞.

So y extends to a C1 function on [0, 1/r0) with

y(0) = ℓ, y′(0) = 0. (3.5)

Conversely, if y is C1 on [0, 1/r0) and conditions (3.5) hold, then w is easily shown to satisfy (3.2).

To show that problem (3.4), (3.5) is well posed, we write it in an integral form. Define a function H on

[0,∞) by

H(0) = 0, H(ρ) = ργe−ρ−2/4 if ρ > 0, (3.6)

so that H ′(ρ) = γH(ρ)/ρ + H(ρ)/(2ρ3). Notice that H ′(ρ) > 0 for all sufficiently small ρ > 0. Eq. (3.4) is

equivalent to the following equation

(H(ρ)y′(ρ))′ + ρ−2H(ρ)(yp(ρ) − Lp−1y(ρ)) = 0. (3.7)

Assuming y satisfies (3.5), we integrate (3.7) to obtain

y′(ρ) = − 1

H(ρ)

∫ ρ

0

η−2H(η)(yp(η) − Lp−1y(η)) dη

= − 2

H(ρ)

∫ ρ

0

((ηH(η))′ − (γ + 1)H(η))(yp(η) − Lp−1y(η)) dη.

After an integration by parts this becomes

y′(ρ) = −2ρ(yp(ρ) − Lp−1y(ρ))

+
2(γ + 1)

H(ρ)

∫ ρ

0

H(η)(yp(η) − Lp−1y(η)) dη

+
2

H(ρ)

∫ ρ

0

(ηH(η))(pyp−1(η) − Lp−1)y′(η) dη.

(3.8)

Conversely, noting that H(η)/H(ρ) < 1 if 0 < η < ρ < δ and δ > 0 is sufficiently small, one shows easily

that if y ∈ C1[0, δ], y(0) = ℓ and (3.8) holds, then y′(0) = 0 and (3.4) is satisfied.

We can now set up a suitable fixed point argument. We work in the Banach space X := C([0, δ],R2) with

a usual norm, say ∥U∥ = ∥y∥L∞(0,δ) + ∥z∥L∞(0,δ) for U = (y, z) ∈ X. Let U0 ∈ X stand for the constant
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function (ℓ0, 0). Fix any ϵ ∈ (0, ℓ0/2) and let B stand for the open ball (B̄ for the closed ball) in X with

center U0 and radius ϵ. Note that the choice of ϵ guarantees that for any (y, z) ∈ B̄ one has y ≥ ℓ0/2. For

any ℓ sufficiently close to ℓ0, we consider the map Ψ
ℓ : B̄ → X defined by Ψ

ℓ(y, z) = (ỹ, z̃), where, for

ρ ∈ [0, δ],

ỹ(ρ) = ℓ+

∫ ρ

0

z(η) dη,

z̃(ρ) = −2ρ(yp(ρ) − Lp−1y(ρ)) +
2(γ + 1)

H(ρ)

∫ ρ

0

H(η)(yp(η) − Lp−1y(η)) dη

+
2

H(ρ)

∫ ρ

0

ηH(η)(pyp−1(η) − Lp−1)z(η) dη.

(3.9)

Clearly, y is a C1[0, δ]-solution of (3.4), (3.5) if and only if (y, y′) is a fixed point of the map Ψ
ℓ.

Lemma 3.3. If δ and θ are sufficiently small positive numbers, then the map Ψ
ℓ defined above is for each

ℓ ∈ (ℓ0 − θ, ℓ0 + θ) a 1/2-contraction on B̄. Denoting its unique fixed point by U ℓ, the map ℓ → U ℓ is an

analytic X-valued map on (ℓ0 − θ, ℓ0 + θ).

Before proving this lemma, we use it to complete the proof of Lemma 3.2.

Proof of Lemma 3.2. Lemma 3.3 and the notes preceding it yield a positive solution of (2.6), (3.5) on

some interval [r1,∞) and also imply the uniqueness of the solution and its analytic dependence on ℓ. Of

course, as the equation has no singularity in (0,∞), we can combine these results with standard results from

ordinary differential equations to prove the existence of an analytic function u on (r0/2,∞) × (ℓ0 − θ, ℓ0 + θ)

(with θ possibly smaller than in Lemma 3.3) such that statement (i) of Lemma 3.2 holds.

Having proved that given any r0 > 0 the function u(r, ℓ) is defined for r ∈ [r0/2,∞) if ℓ is close enough

to ℓ0, we see that uℓ(r, ℓ0) is defined for any r ∈ (0,∞). Differentiating the fixed point equation (3.9) with

respect to ℓ (using the smooth dependence of the fixed point on ℓ) and reversing the transformations relating

y and w, we obtain that r2/(p−1)uℓ(r, ℓ0) → 1 as r → ∞. The regularity of the function u allows us to

differentiate equation (1.2), with w = u(·, ℓ), with respect to ℓ to obtain the equation for uℓ(·, ℓ0). This

yields Eq. (3.3) with ϕ = u(·, ℓ0). The uniqueness property of the solution u implies that u(·, ℓ0) = w(·, α0)

if ℓ0 = ℓ(α0) for some α0 ∈ S \¶κ♢, and u(·, ℓ0) = ϕ∞ if ℓ0 = L. This completes the proof of Lemma 3.2. □

Remark 3.4. Clearly, we can differentiate equation (1.2) with w = u(·, ℓ) further to find equations for higher

derivatives of u(·, ℓ) with respect to ℓ. For example, uℓℓ(·, L) is a solution of the following nonhomogeneous

equation on (0,∞):

zrr +

⎤

N − 1

r
− r

2

⎣

zr +

⎤

− 1

p− 1
+ pϕp−1

∞ (r)

⎣

z = −p(p− 1)ϕp−2
∞ (r)u2

ℓ(r, L). (3.10)

Note that the function r2/(p−1)uℓℓ(r, L) = yℓℓ(1/r, L) stays bounded as r → ∞. This observation will be

useful in the next section.

Proof of Lemma 3.3. As noted above, ϵ < ℓ0/2 guarantees that for any (y, z) ∈ B̄ one has y ≥ ℓ0/2. It

follows that the maps

(y, z) ↦→ yp, (y, z) ↦→ yp−1z (3.11)

are analytic C[0, δ]-valued maps on B. Note also that the map sending u ∈ C[0, δ] to the function
√ ρ

0
H(η)/H(ρ)u(η) dη is a bounded linear operator on C[0, δ]. It follows that the map (ℓ, U) ↦→ Ψ

ℓ(U) is

an analytic X-valued map on (ℓ0 − θ, ℓ0 + θ) ×B (the smallness of θ, δ is not needed here).
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Choose δ > 0 so small that H ′ > 0 on (0, δ). Clearly, the maps (3.11) are globally Lipschitz on B̄. This and

the relation H(η)/H(ρ) < 1 for 0 < η < ρ ≤ δ imply that, possibly after making δ > 0 smaller, Ψ ℓ : B̄ → X

is a 1/2-contraction (for any ℓ).

We now show that if θ is sufficiently small and δ is made yet smaller, if needed, then for each ℓ ∈
(ℓ0 − θ, ℓ0 + θ) one has Ψ

ℓ(B̄) ⊂ B̄, that is, Ψ ℓ is a 1/2-contraction on B̄.

To that aim, for any U ∈ B̄ we estimate

∥Ψ ℓ(U) − U0∥ = ∥Ψ ℓ(U0) − U0∥ + ∥Ψ ℓ(U) − Ψ
ℓ(U0)∥

≤ ∥Ψ ℓ(U0) − U0∥ +
1

2
∥U − U0∥

≤ ∥Ψ ℓ(U0) − U0∥ +
ϵ

2
.

(3.12)

Now

Ψ
ℓ(U0)(ρ) − U0 =

⎤

ℓ− ℓ0, C0

)

−2ρ+ 2(γ + 1)

∫ ρ

0

H(η)

H(ρ)
dη

[

⎣

,

where C0 = ℓp
0 − Lp−1ℓ0. Clearly,

∥Ψ ℓ(U0) − U0∥ ≤ ♣ℓ− ℓ0♣ + Cδ ≤ θ + Cδ, (3.13)

where C is determined by C0 and γ (and is independent of θ and δ). Taking 0 < θ < ϵ/4 and making δ > 0

smaller, if necessary, so that Cδ < ϵ/4, we obtain from (3.13), (3.12) that ∥Ψ ℓ(U) − U0∥ < ϵ – that is,

Ψ
ℓ(U) ∈ B̄ – for any U ∈ B̄.

The uniform contraction theorem implies the existence of a unique fixed point U ℓ of Ψ ℓ, and it also gives

the analyticity of the map ℓ → U ℓ : (ℓ0 − θ, ℓ0 + θ) → X. □

Although not needed below, we add a remark on the dependence of the solutions on p. Clearly, when

dealing with solutions bounded below by a positive constant, one can view p as a parameter, with the

nonlinearity wp depending analytically on p. Therefore the uniform contraction arguments employed in the

shooting from 0 and ∞ imply that the solutions w(·, α), u(·, ℓ) given by Lemmas 3.1, 3.2 depend analytically

on p, too.

3.3. The discreteness of the set S

We now show that the set S is discrete, hence at most countable. This will prove statement (i) of

Theorem 1.1.

We go by contradiction. Suppose that S contains an element which is not isolated in S. Set

α0 := inf¶α ∈ S : α is an accumulation point of S♢. (3.14)

Clearly, α0 itself is an accumulation point of S. By the continuity of the solutions w(·, α) with respect to α,

one has α0 ∈ S. By Lemma 2.1(i), α0 > κ. Set ℓ0 := ℓ(α0) (cp. Lemma 2.1(ii)).

Choose ϵ > 0 and θ > 0 such that the function w(·, α) is positive on (0, 2) for all α ∈ (α0 − ϵ, α0 + ϵ)

and the function u(·, ℓ) is (defined and is) positive on (1,∞) for all ℓ ∈ (ℓ0 − θ, ℓ0 + θ) (see Lemmas 3.1,

3.2). Recalling from Section 3.1 and Lemma 3.2 that the functions wα(·, α0), uℓ(·, ℓ0) are nontrivial solutions

of the linear equation (3.1), we pick r0 ∈ (1, 2) such that neither of these functions vanishes at r0. Then,

making ϵ > 0 and θ > 0 smaller if necessary, we may assume that

wα(r0, α) ̸= 0 (α ∈ (α0 − ϵ, α0 + ϵ)),

uℓ(r0, ℓ) ̸= 0 (ℓ ∈ (ℓ0 − θ, ℓ0 + θ)).
(3.15)
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Now, Lemma 2.2 guarantees that, possibly after making ϵ > 0 yet smaller, one has ℓ(α) ∈ (ℓ0 − θ, ℓ0 + θ)

for any α ∈ (α0 − ϵ, α0 + ϵ) ∩ S. For any such α, Lemmas 2.1(iii) and 3.2 imply that w(·, α) ≡ u(·, ℓ(a)); in

particular,

(w(r0, α), wr(r0, α)) = (u(r0, ℓ(α)), ur(r0, ℓ(α))) (α ∈ (α0 − ϵ, α0 + ϵ) ∩ S). (3.16)

Consider the following two analytic curves

J1 := ¶(w(r0, α), wr(r0, α)) : α ∈ (α0 − ϵ, α0 + ϵ)♢,
J2 := ¶(u(r0, ℓ), ur(r0, ℓ)) : ℓ ∈ (ℓ0 − θ, ℓ0 + θ)♢.

In view of (3.15), they can be reparameterized by the first component, namely,

J1 := ¶(ζ, F (ζ)) : ζ ∈ I1♢,
J2 := ¶(ζ,G(ζ)) : ζ ∈ I2♢,

where I1 is the open interval with the end points w(r0, α0 ± ϵ), I2 is the open interval with the end points

u(r0, ℓ0±θ), and F and G are analytic functions: F (ζ) = wr(r0, α̂(ζ)), where α̂ is the inverse to α ↦→ w(r0, α);

and similarly for G. Since ℓ0 = ℓ(α0), relation (3.16) implies that w(r0, α0) = u(r0, ℓ0) =: ζ0 ∈ I1 ∩ I2 and

F (ζ0) − G(ζ0) = 0. Further, using (3.16) in conjunction with the fact that α0 is an accumulation point of

S, we obtain that ζ0 is an accumulation point of the set of zeros of the function F −G. By the analyticity,

F − G vanishes identically on a neighborhood of ζ0. From this and the relation w(·, α) ≡ u(·, ℓ(α)), we

conclude that for α in a neighborhood of α0 the solution w(·, α) is positive on (0,∞), that is, α ∈ S. This

is a contradiction to the definition of α0 (cp. (3.14)). With this contradiction, the discreteness of S and

statement (i) of Theorem 1.1 are proved.

4. Solutions near φ∞ and the proof of Theorem 1.1(ii)

In this section we assume that pJL < p ≤ pL.

Our goal is to show that there is a constant α∗ > 0 such that

S ∩ (α∗,∞) = ∅. (4.1)

In conjunction with statement (i) of Lemma 2.1 and the discreteness of the set S proved in the previous

section, (4.1) implies that the set S is finite. Thus, once we prove (4.1), the proof of statement (ii) of

Theorem 1.1 will be complete.

To prove (4.1), we initially employ the functions w(r, α), u(r, ℓ) in a very similar manner as in Section 3.3,

taking ℓ close to the constant L from the singular solution (cp. (2.3)).

First we choose α∗ > 0 and R > 0 such that

wα(r, α) > 0, w(r, α) > 0 (r ∈ [0, R], α > α∗),

and (2.22) holds for some constant C > 0 (cp. Lemmas 2.6, 2.3). Next we choose θ > 0 such that the

function u(·, ℓ) is (defined and) positive on (R/2,∞) for all ℓ ∈ (L− θ, L+ θ). Pick r0 ∈ (R/2, R) such that

uℓ(r0, L) ̸= 0. Making θ > 0 smaller if necessary, we have

uℓ(r0, ℓ) ̸= 0 (ℓ ∈ (L− θ, L+ θ)). (4.2)

Further, by Lemma 2.2(ii), we have, possibly after making α∗ larger, that ℓ(α) ∈ (L − θ, L + θ) for any

α ∈ (α∗,∞) ∩ S. For any such α, Lemmas 2.1(ii) and 3.2 imply that w(·, α) ≡ u(·, ℓ(a)); in particular,

(w(r0, α), wr(r0, α)) = (u(r0, ℓ(α)), ur(r0, ℓ(α))) (α ∈ (α∗,∞) ∩ S). (4.3)
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Consider the following two analytic curves

J1 := ¶(w(r0, α), wr(r0, α)) : α ∈ (α∗,∞)♢,
J2 := ¶(u(r0, ℓ), ur(r0, ℓ)) : ℓ ∈ (L− θ, L+ θ)♢.

In view of the relations wα(r0, α) > 0 and (4.2), using also the fact that w(r0, α) → ϕ∞(r0) =: ζ0 as α ↗ ∞
(cp. Lemma 2.6), we reparameterize the curves J1, J2 as follows:

J1 := ¶(ζ, F (ζ)) : ζ ∈ (w(r0, α
∗), ζ0)♢, (4.4)

J2 := ¶(ζ,G(ζ)) : ζ ∈ I♢. (4.5)

Here I is the open interval with the end points u(r0, L ± θ), and F and G are analytic functions: F (ζ) =

wr(r0, α̂(ζ)), where α̂ is the inverse to α ↦→ w(r0, α); and, similarly, G(ζ) = ur(r0, ℓ̂(ζ)), where ℓ̂ is the

inverse to ℓ ↦→ u(r0, ℓ).

Since u(·, L) = ϕ∞, we have ζ0 ∈ I and G(ζ0) = ϕ′
∞(r0). Also, from the fact that wr(r0, α) → ϕ′

∞(r0)

as α → ∞ (cp. (2.10)), we infer that limζ↗ζ0 F (ζ) = ϕ′
∞(r0). Thus, we may define F (ζ0) := ϕ′

∞(r0) and F

becomes a continuous function on (w(r0, α
∗), ζ0].

If F were analytic on the interval (w(r0, α
∗), ζ0], we could use simple analyticity arguments, similar to

those in Section 3.3, to conclude the proof of (4.1). However, it turns out that in some cases F is not even

of class C2 at ζ0, and we thus need a different reasoning.

We will prove the following statements.

Proposition 4.1. Let F and G be as above. Then the function F is of class C1 on (w(r0, α
∗), ζ0] and the

following statements hold:

(i) λ = 0 is an eigenvalue of problem (2.11) if and only if F ′(ζ0) = G′(ζ0).

(ii) If λ = 0 is an eigenvalue of problem (2.11), then limζ→ζ0 F
′′(ζ) exists and is distinct from G′′(ζ0). More

specifically, the following statements are valid (with β as in (2.14)):

(a) If

N − 1 + 3β − 2(p− 2)

(p− 1)
≤ −1, (4.6)

then

F ′′(ζ) → −∞ as ζ ↗ ζ0. (4.7)

(b) If (4.6) is not true, then F ′′(ζ) has a finite limit as ζ → ζ0 and

lim
ζ→ζ0

F ′′(ζ) ̸= G′′(ζ0). (4.8)

Remark 4.2.

(i) It may be instructive – and will be useful below – to list the exponents p > pJL for which λ = 0 is an

eigenvalue of problem (2.11). These can be computed from (2.13), (2.14): assuming N > 10, for j ≥ 2

we have λj = 0 if and only if p = pj , where

pj := 1 +
4j − 2

N(j − 1) − 2j2 − 2j + 2
. (4.9)

As already mentioned in Lemma 2.4, λ2 = 0 for p = pL (in other words, p2 = pL), and λ2 < 0 for any

pJL < p < pL. To have pj > pJL for some j ≥ 3, N has to be sufficiently large. Specifically, pj > pJL if

and only if N > (2j − 1)2 + 1. Thus, for example, if N ≤ 26, then λ = 0 is not an eigenvalue of problem

(2.11) for any p ∈ (pJL, pL); if 26 < N ≤ 50, it is an eigenvalue for exactly one p ∈ (pJL, pL), namely

p = p3; and so on.



14 P. Poláčik and P. Quittner / Nonlinear Analysis 191 (2020) 111639

(ii) Assume p ∈ (pJL, pL). As noted in the previous remark, the assumption of statement (ii) of

Proposition 4.1 (λ = 0 being an eigenvalue of (2.11)) is void if N ≤ 26. Also, if 26 < N ≤ 50 and the

assumption is satisfied, then necessarily p = p3 (and j = 3). In this case, condition (4.6) is automatically

satisfied. This follows from the relations (4.9) and β = −2/(p− 1) − 6 (cp. (2.13)). However, for larger

dimensions, (4.6) is not always satisfied. For example, in the case of p = p3 (when λ3 = 0), (4.6) is not

satisfied if N > 56.

Before proving Proposition 4.1 , we show how it implies (4.1).

Proof of (4.1). Recall that the function G is analytic in a neighborhood of ζ0. Proposition 4.1 implies that

either F ′(ζ0) ̸= G′(ζ0) or there exists ζ1 < ζ0 such that F ′′(ζ) ̸= G′′(ζ) for all ζ ∈ (ζ1, ζ0). In either case, ζ0

is clearly not an accumulation point of the set of zeros of the function F −G. This is equivalent to (4.1). □

Remark 4.3. There is a strong indication (see Remark 4.4) that whenever λ = 0 is an eigenvalue of problem

(2.11), then there is an integer k ≥ 2 such that

♣F (k)(ζ)♣ → ∞ as ζ ↗ ζ0. (4.10)

If confirmed, this could be used – instead of statement (ii)(b) of Proposition 4.1 – as an alternative proof of

(4.1) (the arguments would be similar as with k = 2 in the case (ii)(a)).

The rest of the section devoted to the proof of Proposition 4.1. We carry out the proof in several steps.

In some cases, we do the computations in greater generality than needed for the proof, as these may be of

some interest and do not require much extra work.

STEP 1: Computation of the derivatives F (k)(ζ), G(k)(ζ).

Recall that, assuming α is sufficiently large, we have F (ζ) = wr(r0, α̂(ζ)), where α̂ is the inverse to

α ↦→ w(r0, α). Therefore, we have

F ′(ζ) =
wrα(r0, α)

wα(r0, α)
, with α = α̂(ζ). (4.11)

Similarly, for any integer k > 1, if F (k)(ζ) =: g(α) for α = α̂(ζ), then

F (k+1)(ζ) =
1

wα(r0, α)
∂αg(α).

Hence, by induction, for k = 1, 2, . . . we have

F (k)(ζ) = (∂̂α)kwr(r0, α), with α = α̂(ζ), (4.12)

where ∂̂α is a differential operator given by

∂̂α :=
1

wα(r0, α)
∂α.

Set

ψ(r, α) := ∂̂αw(r, α) =
wα(r, α)

wα(r0, α)
. (4.13)

Note that ψ(·, α) is a solution of the following problem with a homogeneous differential equation:

zrr +

⎤

N − 1

r
− r

2

⎣

zr +

⎤

− 1

p− 1
+ p(w(r, α))p−1

⎣

z = 0, r ∈ (0, R], (4.14)

z(r0) = 1, z(r) is bounded as r ↘ 0. (4.15)
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Similarly, for k = 2, 3, . . . , ∂̂k
αw(r, α) is a solution of the following problem with a nonhomogeneous

differential equation:

zrr +

⎤

N − 1

r
− r

2

⎣

zr+

⎤

− 1

p− 1
+ p(w(r, α))p−1

⎣

z = fk(r, α), r ∈ (0, R], (4.16)

z(r0) = 0, z(r) is bounded as r ↘ 0, (4.17)

where

fk(r, α) = p(w(r, α))p−1∂̂k
αw(r, α) − ∂̂k

αw
p(r, α). (4.18)

We remark that (4.18) is just a compact way of writing the right-hand side. The k-derivative actually cancels

out in (4.18) so fk depends on lower derivatives only. Obviously, for each fixed α, the function fk(r, α) is

bounded as r → 0.

For the function G and k = 1, 2 . . . , we have similarly as for F in (4.11), (4.12),

G(k)(ζ) = (∂̃ℓ)
kur(r0, ℓ), with ℓ = ℓ̂(ζ), (4.19)

where

∂̃ℓ :=
1

uℓ(r0, ℓ)
∂ℓ. (4.20)

STEP 2: Relation of F ′(ζ0) to G′(ζ0) and the proof of statement (i) of Proposition 4.1.

We find the (left) derivative F ′(ζ0) using the definition of F and the L’Hospital rule:

lim
ζ↗ζ0

F (ζ) − F (ζ0)

ζ − ζ0
= lim

α→∞

wr(r0, α) − ϕ′
∞(r0)

w(r0, α) − ϕ∞(r0)

= lim
α→∞

wαr(r0, α)

wα(r0, α)
= lim

α→∞
ψr(r0, α),

(4.21)

where ψ is as in (4.13). Using Lemma 2.3, the uniform bound (2.22), and regularity properties of solutions

of linear differential equations, one shows easily that, as α → ∞,

ψ(·, α) → ψ∞,

ψr(·, α) → ψ′
∞,

(4.22)

with the convergence in L∞
loc(0,∞), where ψ∞ is a positive solution of Eq. (2.15) satisfying the following

relations for some positive constant C1:

ψ∞(r0) = 1, ψ∞(r) ≤ C1r
β (r ∈ [0, r0]) (4.23)

(β is as in (2.14)). The solution ψ∞ is uniquely determined. In fact, it follows from (4.23) that

ψ∞ ≡ c0ψ1 with c0 :=
1

ψ1(r0)
, (4.24)

where ψ1 is as in Lemma 2.5.

Thus, the limit in (4.21) exists and we have F ′(ζ0) = ψ′
∞(r0). Now, by (4.12), (4.13), we also have

lim
ζ↗ζ0

F ′(ζ) = lim
α→∞

ψr(r0, α) = ψ′
∞(r0), (4.25)

showing that F is of class C1 on (w(r0, α
∗), ζ0].

The derivative G′(ζ0) is obtained directly from (4.19), (4.20) using the relations u(r0, L) = ϕ∞(r0) = ζ0:

G′(ζ0) =
urℓ(r0, L)

uℓ(r0, L)
.
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By Lemma 3.2, ψ̂(r) := uℓ(r, L)/uℓ(r0, L) is a solution of (2.15) satisfying ψ̂(r0) = 1 and

r2/(p−1)ψ̂(r) → 1

uℓ(r0, L)
as r → ∞. (4.26)

We now complete the proof of statement (i) of Proposition 4.1.The relation F ′(ζ0) = G′(ζ0) is equivalent

to ψ′
∞(r0) = ψ̂′(r0). Since also ψ∞(r0) = 1 = ψ̂(r0) and ψ∞, ψ̂ are solutions of (2.15), the relation

F ′(ζ0) = G′(ζ0) is actually equivalent to the identity ψ̂ ≡ ψ∞. In view of (4.24) and (4.26), the identity

means that the solution ψ1 in Lemma 2.5 satisfies (2.19). By Lemma 2.5, this is equivalent to λ = 0 being

an eigenvalue of (2.11). Statement (i) is proved.

STEP 3: Variation of constants and an integral formula for F (k)(ζ).

We find a tangible formula for the functions F (k)(ζ), k = 2, 3, . . . . For a while, we will consider α > α∗

fixed and write ψ for ψ(·, α), fk for fk(·, α). Remember that ψ is a solution of (4.14), (4.15). Let φ be the

solution of (4.14) with

φ(r0) = 0, φ′(r0) = − 1

ω(r0)
, (4.27)

where ω is defined in (2.12).

Obviously, ψ, φ are linearly independent. We claim that for some constant c ̸= 0 one has

φ(r) = cr−(N−2) + o(r−(N−2)) as r → 0. (4.28)

In fact, any solution φ linearly independent from ψ has this property. One way to see this is by using

the Frobenius method. Observe that multiplying Eq. (4.14) by r2, we obtain an equation with analytic

coefficients (near r = 0) and a regular singular point at r = 0. We look for solutions in the form of a

convergent Frobenius series

z(r) = rϑ
∞

∑

j=0

cjr
j , (4.29)

where cj are real coefficients, c0 ̸= 0, and ϑ is a root of the indicial equation

ϑ(ϑ− 1) + (N − 1)ϑ = 0.

The larger root ϑ = 0 always yields solutions of the form (4.29); such solutions are bounded near 0 and they

are all scalar multiples of ψ. Now, since the smaller root, ϑ := −(N − 2), is also an integer, the linearly

independent solution φ is either given by (4.29) (with ϑ = −(N − 2)), or by the formula

φ(r) = Cψ(r) log r + z(r) (4.30)

where z is as in (4.29) with c0 ̸= 0 and C ∈ R (possibly C = 0), see [28, Theorem 4.5], for example. In either

case, (4.28) holds.

We use the linearly independent solutions ψ, φ in the variation of constants formula. The homogeneous

equation (4.14) can be written as

(ω(r)zr)r + ω(r)

⎤

− 1

p− 1
+ pwp−1(r, α)

⎣

z = 0.

The Wronskian of the solutions ψ, φ, that is, the function

W (r) := ψ′(r)φ(r) − ψ(r)φ′(r),

satisfies (ω(r)W (r))′ = 0 for all r > 0 (as long as w(·, α) stays positive) and ω(r0)W (r0) = 1 (cp. (4.15),

(4.27)). So W (r) = 1/ω(r) for all r > 0. A standard variation of constants formula (easily verified by direct
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differentiation) yields the general solution of (4.16):

z(r) =

⎤

c1 −
∫ r0

r

ω(s)fk(s)φ(s) ds

⎣

ψ(r)

+

⎤

c2 +

∫ r0

r

ω(s)fk(s)ψ(s) ds

⎣

φ(r). (4.31)

Here c1, c2 ∈ R are arbitrary parameters. For (4.31) to give a solution with z(r0) = 0, it is necessary and

sufficient that c1 = 0. For this solution to also be bounded as r → 0, it is necessary that

c2 +

∫ r0

0

ω(s)fk(s)ψ(s) ds = 0.

This follows from the boundedness of ψ, fk, and formulas (4.28), (2.12). Thus, we get

z(r) = −ψ(r)

∫ r0

r

ω(s)fk(s)φ(s) ds− φ(r)

∫ r

0

ω(s)fk(s)ψ(s) ds, (4.32)

showing in particular that the solution of (4.16), (4.17) is unique. Using (4.28), (2.12), one verifies easily

that the function z given by (4.32) is bounded near r = 0, so it is the unique solution of (4.16), (4.17).

Differentiating (4.32) and using (4.27), we obtain

z′(r0) =
1

ω(r0)

∫ r0

0

ω(s)fk(s)ψ(s) ds. (4.33)

We now summarize the above computations, bringing back the α-variable. Using (4.12), (4.16), (4.17),

and substituting from (2.12), we obtain that for k = 2, 3, . . .

F (k)(ζ) =
1

ω(r0)

∫ r0

0

sN−1e−s2/4fk(s, α)ψ(s, α) ds, with α = α̂(ζ), (4.34)

where

fk(r, α) = pwp−1(r, α)∂̂k
αw(r, α) − ∂̂k

αw
p(r, α). (4.35)

STEP 4: Estimates of F ′′(ζ) as ζ ↗ ζ0 and the proof of statement (ii)(a) of Proposition 4.1.

For k = 2, formulas (4.34), (4.35), (4.13) give

F ′′(ζ) = −p(p− 1)

ω(r0)

∫ r0

0

sN−1e−s2/4(w(s, α))p−2ψ3(s, α) ds (α = α̂(ζ)). (4.36)

Recall that ψ3(·, α) > 0 on [0, R) ⊃ [0, r0] for all α > α∗.

We have α → ∞ as ζ → ζ0. Also, for any s ∈ (0, r0],

lim
α→∞

(w(s, α))p−2ψ3(s, α) = (ϕ∞(s))p−2(ψ∞(s))3

= Lp−2s−2(p−2)/(p−1)(ψ∞(s))3
(4.37)

(see Step 1). Now, by (4.24), ψ∞ is a nonzero scalar multiple of the solution ψ1 in Lemma 2.5. Moreover,

being the limit of ψ(·, α), ψ∞ is nonnegative (hence positive) in (0, r0]. Therefore, by (2.16), there is a positive

constant c1 such that

c1s
3β ≤ (ψ∞(s))3 ≤ c−1

1 s3β (s ∈ (0, r0)). (4.38)

Assume now that (4.6) is true. It follows from (4.36)–(4.38) and Fatou’s lemma that for some positive

constant c2 one has

lim sup
ζ↗ζ0

F ′′(ζ) ≤ −c2

∫ r0

0

sN−1+3β−2(p−2)/(p−1) ds. (4.39)
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By (4.6), the integral is infinite, hence (4.8) holds. With this we have completed the proof statement (ii)(a)

of Proposition 4.1.

Returning to (4.36), we now find the limit of F ′′(ζ) assuming (4.6) is not true, that is,

γ := N − 1 + 3β − 2(p− 2)

(p− 1)
> −1. (4.40)

Using the relations (2.22) and w(r, α) < ϕ∞(r), we find an upper bound on the integrand in (4.36) in the

form csγ , where c > 0 is a constant. By (4.40), this is an integrable function, hence (4.37) and the Lebesgue

dominated convergence theorem yield the finite limit

lim
ζ↗ζ0

F ′′(ζ) = −p(p− 1)Lp−2

ω(r0)

∫ r0

0

sN−1−2(p−2)/(p−1)e−s2/4(ψ∞(s))3 ds. (4.41)

STEP 5: Fredholm alternative and the proof of statement (ii)(b) of Proposition 4.1.

We assume that λ = 0 is an eigenvalue of (2.11) (that is, F ′(ζ0) = G′(ζ0)) and (4.40) holds. Thus the

limit limζ↗ζ0 F
′′(ζ) is given by (4.41) and it is finite. We claim that for the relation

lim
ζ↗ζ0

F ′′(ζ) = G′′(ζ0) (4.42)

to hold it is necessary that
∫ ∞

0

sN−1−2(p−2)/(p−1)e−s2/4ψ3
∞(s) ds = 0. (4.43)

We first prove this claim and then verify that (4.43) does not hold. This will prove statement (ii)(b) and

complete the proof of Proposition 4.1.

To prove the claim, assume (4.42). According to (4.12), the finite limit in (4.42) is also the limit of

(∂̂α)2wr(r0, α) as α → ∞. Therefore, using the condition (∂̂α)2w(r0, α) = 0 (cp. (4.17)) and taking the

limit in Eq. (4.16) with k = 2, we infer that, as α → ∞,

z2(·, α) := (∂̂α)2w(·, α) → z∞
2 in C1

loc(0,∞)

where z∞
2 is the solution of the initial value problem

zrr +

⎤

N − 1

r
− r

2

⎣

zr+

⎤

− 1

p− 1
+ pϕp−1

∞ (r)

⎣

z = f∞
2 (r), (4.44)

z(r0) = 0, z′(r0) = G′′(ζ0), (4.45)

with

f∞
2 (r) := −p(p− 1)ϕp−2

∞ (r)ψ2
∞(r) = −p(p− 1)Lp−2r− 2(p−2)

p−1 ψ2
∞(r) (4.46)

(ψ∞ is as in (4.22)). We can also take the limit in the variation of constants formula for z2(·, α), namely,

formula (4.32) with k = 2, fk = fk(·, α), ψ = ψ(·, α), and φ = φ(·, α)—the solution of the linear equation

(4.14) with the initial conditions (4.27). This gives

z∞
2 (r) = −ψ∞(r)

∫ r0

r

ω(s)f∞
2 (s)φ∞(s) ds− φ∞(r)

∫ r

0

ω(s)f∞
2 (s)ψ∞(s) ds, (4.47)

where φ∞ is the solution of (2.15) with φ∞(r0) = 0, φ′
∞(r0) = −1/ω(r0). Note that ψ∞, φ∞ are linearly

independent solutions of the homogeneous equation (2.15) and (4.47) is a version of the variation of constant

formula for the solution z∞
2 ; it is valid for all r > 0.

We next use the relations F ′(ζ0) = G′(ζ0) and (4.42) to show that the function r2/(p−1)z∞
2 (r) is bounded

as r → ∞. By (4.19), (4.20),

G′′(ζ0) = (∂̃ℓ)
2ur(r0, ℓ)

∐

∐

ℓ=L
. (4.48)
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Just like z∞
2 , the function

z̃2(r) := (∂̃ℓ)
2u(r, ℓ)

∐

∐

ℓ=L
=

1

uℓ(r0, L)
∂ℓ

⎤

uℓ(r, ℓ)

uℓ(r0, ℓ)

⎣

∐

∐

ℓ=L
(4.49)

is a solution of a nonhomogeneous linear equation, namely, Eq. (3.10) with the function uℓ(r, L) on the

right-hand side replaced by the function

∂̃ℓu(r, ℓ)
∐

∐

ℓ=L
=

uℓ(r, L)

uℓ(r0, L)
.

From Step 2 we know that this function is identical to ψ∞. Thus z∞
2 and z̃2 both solve equation (4.44). Also,

since ∂̃ℓu(r0, ℓ) = 1 for all ℓ ≈ L, we have z̃2(r0) = 0. Thus, (4.48) and (4.45) imply that z̃2 ≡ z∞
2 . The

boundedness of the function r2/(p−1)z∞
2 (r) as r → ∞ is now a consequence of (4.49), Remark 3.4 and the

fact that the function r2/(p−1)uℓ(r, L) is bounded as r → ∞ (cp. Lemma 3.2).

We now prove (4.43), making use of (4.47). (Alternatively, one could invoke the Fredholm alternative for

the nonhomogeneous equation (4.44) after estimating the solution z∞
2 and its derivative near r = 0.) We

need some information on the asymptotics of the function φ∞(r) as r → ∞. Recall that the asymptotics of

ψ∞ is the same as the asymptotics of the function ψ1 given in (2.19).

Similarly as for the functions ψ, φ, the Wronskian of the functions φ∞, ψ∞ satisfies the following identity

ψ′
∞(r)φ∞(r) − ψ∞(r)φ′

∞(r) =
1

ω(r)
(r > 0).

Therefore, for large enough r we have (ψ∞(r) ̸= 0 and)

d

dr

φ∞(r)

ψ∞(r)
= − 1

ω(r)ψ2
∞(r)

. (4.50)

Hence, for any R > 0 there is a constant c such that

φ∞(r) = ψ∞(r)

⎤

c−
∫ r

R

1

ω(s)ψ2
∞(s)

ds

⎣

.

Using this, the asymptotics of ψ∞, and expression (4.46), one shows via a simple computation that the

function ωf∞
2 φ∞ is integrable on (r0,∞). Also, the growth of φ∞ and the boundedness of the function

r2/(p−1)z∞
2 (r) as r → ∞ imply that the coefficient of φ∞(r) in (4.47) approaches 0 as r → ∞, that is, (4.43)

holds. This proves our claim.

It remains to prove that (4.43) does not hold. Recall, that we assume that λ = 0 is an eigenvalue of (2.11),

or, in other words, that for some j ≥ 2 we have

λj =
β

2
+

1

p− 1
+ j = 0 (4.51)

(cp. Lemma 2.4). Also recall that ψ∞ is an eigenfunction associated with λj . As shown in [13,19], up to a

scalar multiple, ψ∞(r) = rβMj(r2/4), where

Mj(z) := M
⎞

−j, β +
N

2
, z

⎡

(4.52)

is the standard Kummer function. The assumption λj = 0 yields formula (4.9) for p = pj and b := β + N
2

can be expressed as

b = (N − 4(j − 1)2)/(4j − 2). (4.53)

Note that (4.40) implies that b− j − 1 > 0.
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Using (4.52), (4.53) in the integral in (4.43) and making the substitution z = s2/4, we see that (4.43) is

equivalent to the following relation
∫ ∞

0

zb−j−2e−zM3
j (z) dz = 0. (4.54)

Since j is an integer, the Kummer function Mj can be expressed in terms of a generalized Laguerre

polynomial of degree j:

M(−j, b, z) =
Γ (j + 1)Γ (b)

Γ (j + b)
L(j, b− 1, z)

(Γ stands for the standard Gamma function). Thus we have the following relation equivalent to (4.43):
∫ ∞

0

zb−j−2e−zL3(j, b− 1, z) dz = 0. (4.55)

Since B := b−j−1 is positive, Proposition A.1 in the Appendix shows that the integral in (4.55) is positive.

Thus (4.43) does not hold, and the proof of Proposition 4.1 is complete.

Remark 4.4. Returning to Remark 4.3, we comment on the validity of relations (4.10), which could be

used instead of Step 5 and the Appendix in the proof of (4.1). By (4.18) and the chain rule, the function

sN−1fk(s, α)ψ(s, α) in (4.34) contains in particular the term

p(p− 1) . . . (p− k + 1)sN−1(w(s, α))p−kψk+1(s, α)

whose limit as α ↗ ∞ is

Lp−kp(p− 1) . . . (p− k + 1)sN−1− 2(p−k)
p−1 (ψ∞(s))k+1

(cp. (4.37)). This term has the singularity of

s
N−1− 2(p−k)

(p−1)
+(k+1)β

at s = 0. Since β + 2
p−1 = −2j for some j ≥ 2 (cp. (4.51)), this singularity is not integrable near 0 if k is

large enough. This makes it reasonable to expect that (4.10) holds for some k ≥ 2. However, to make this

into a proof, one would need to account for all the other terms in sN−1fk(s, α)ψ(s, α) obtained from (4.18).

It is difficult to keep track of possible cancellations of the singularities of these terms in the limit as α → ∞.

Appendix. Integrals with Laguerre polynomials

Proposition A.1. Let

Qj(B) :=
1

Γ (B)

∫ ∞

0

xB−1e−xL3(j, B + j, x) dx, (A.1)

where B > 0, j ≥ 2 and

L(j, α, x) :=

j
∑

i=0

(−1)i
⎞j + α

j − i

⎡xi

i!
(A.2)

is the generalized Laguerre polynomial. Then Qj is a polynomial in B with positive coefficients; in particular,

Q(B) > 0 for any B > 0.

Positivity of similar integrals involving Laguerre polynomials has been established in a number of

combinatorics papers (see for example [7,27] and references therein). However, in these papers special

relations between the exponent of x and the second argument of L are needed, and we were not able to

make use of the integrals or techniques in these papers for proving Proposition A.1. Our proof is completely

independent.
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Proof of Proposition A.1. Given integers n1, n2, set

Tn2
n1

(B) :=

n2
∏

n=n1

(B + n) (Tn2
n1

(B) = 1 if n1 > n2).

Let 0 ≤ i,m, n ≤ j. The recurrence relation for the Laguerre polynomials and the orthogonality of these

polynomials (see [1, Chapter 22], for example) give

L(j, B + j, x) =

j
∑

m=0

⎞2j − i−m

j −m

⎡

L(m,B + i− 1, x), (A.3)

and
∫ ∞

0

xB+i−1e−xL(m,B + i− 1, x)L(n,B + i− 1, x) dx

=
Γ (B +m+ i)

m!
δnm =

Γ (B)

m!
Tm+i−1

0 (B)δnm.

(A.4)

Using (A.2), (A.3), and (A.4), we obtain

Qj(B) =
1

Γ (B)

j
∑

i=0

(−1)i
⎞B + 2j

j − i

⎡ 1

i!

∫ ∞

0

xB+i−1e−xL2(j, B + j, x) dx

=
1

j!

j
∑

i=0

(−1)i
⎞j

i

⎡

T 2j
j+i+1(B)

j
∑

m=0

⎞2j − i−m

j −m

⎡2 1

m!
Tm+i−1

0 (B),

hence

Qj(B) =
1

j!
T 2j

0 (B)

j
∑

m=0

1

m!
Sj,m(B),

where

Sj,m(B) :=

j
∑

i=0

(−1)i
⎞j

i

⎡⎞2j − i−m

j −m

⎡2 1

T j+i
m+i(B)

.

We show that the polynomial T 2j
0 (B)Sj,m(B) has positive coefficients for each m = 0, 1, . . . , j.

Given j ≥ 0, 0 ≤ k1 ≤ k2 and B > k2 − j, set

S(j, k1, k2, B) :=

j
∑

i=0

(−1)i
⎞j

i

⎡⎞j + k1 − i

k1

⎡2 1

T j+i
j−k2+i(B)

.

Notice that S(j, j −m, j −m,B) = Sj,m(B).

Using the identities

⎞j + 1

i

⎡

=
⎞j

i

⎡

+
⎞ j

i− 1

⎡

, T j+1+i
j+1−k+i(B) = T j+i

j−k+i(B + 1)

and the induction in j, one easily obtains

S(j, 0, k2, B) =
(j + k2)!

k2!

1

T 2j
j−k2

(B)
, j, k2 ≥ 0, B > k2 − j. (A.5)

Next assume j ≥ 2, 0 < k1 ≤ k2, and B > k2 − j. Using the identity

(j + k1 − i)2 = (j + k1)2 − i(2j + 2k1 − 1) + i(i− 1)

and denoting

Ti := T j+i
j−k2+i(B) = T j−1+i−1

j−1−k2+i−1(B + 2) = T j−2+i−2
j−2−k2+i−2(B + 4)
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we obtain
S(j, k1, k2, B)

=
1

k2
1

j
∑

i=0

(−1)i
⎞j

i

⎡⎞j + k1 − 1 − i

k1 − 1

⎡2 [(j + k1)2 − i(2j + 2k1 − 1) + i(i− 1)]

Ti

=
(j + k1)2

k2
1

j
∑

i=0

(−1)i
⎞j

i

⎡⎞j + k1 − 1 − i

k1 − 1

⎡2 1

Ti

+
(2j + 2k1 − 1)j

k2
1

j
∑

i=1

(−1)i−1
⎞j − 1

i− 1

⎡⎞j − 1 + k1 − 1 − (i− 1)

k1 − 1

⎡2 1

Ti

+
j(j − 1)

k2
1

j
∑

i=2

(−1)i−2
⎞j − 2

i− 2

⎡⎞j − 2 + k1 − 1 − (i− 2)

k1 − 1

⎡2 1

Ti

=
(j + k1)2

k2
1

S(j, k1 − 1, k2, B) +
(2j + 2k1 − 1)j

k2
1

S(j − 1, k1 − 1, k2, B + 2)

+
j(j − 1)

k2
1

S(j − 2, k1 − 1, k2, B + 4).

Repeating this argument finitely many times, we obtain

S(j, k1, k2, B) =
∑

(j̃,k̃1)∈A

cj̃,k̃1
S(j̃, k̃1, k2, B + 2(j − j̃)), (A.6)

where

A = ¶(j̃, k̃1) : 0 ≤ j̃ ≤ j, 0 ≤ k̃1 ≤ k, either k̃1 = 0 or j̃ ≤ 1♢,

cj̃,k̃1
≥ 0 and

√

A cj̃,k̃1
> 0.

Fix j ≥ 2, 0 ≤ m ≤ j, k1 = k2 = j − m, B > 0, and let (j̃, k̃1) ∈ A. Then (A.5) and the definition of

S(j, k1, k2, B) imply

S(j̃, k̃1, k2, B + 2(j − j̃)) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⨄

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⋃

(j̃ + k2)!

k2!

1

T 2j

j−k2+(j−j̃)
(B)

if k̃1 = 0,

1

T 2j
2j−k2

(B)
if j̃ = 0,

(k̃2
1 + 2k̃1)(B + 2j) + k2 + 1

T 2j
2j−1−k2

(B)
if j̃ = 1.

This and (A.6) imply the desired conclusion. □
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