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MSC:- where p > 1, backward self-similar solutions play an important role. These are
35K57 solutions of the form w(z,t) = (T — )~/ ®~Dy(y), where y == z/V/T —t, T is a
35C06 constant, and w is a solution of the equation Aw—y-Vw/2 —w/(p—1)+wP = 0.
35B44 We consider (classical) positive radial solutions w of this equation. Denoting by
35J61 ps, pJL, pr the Sobolev, Joseph-Lundgren, and Lepin exponents, respectively, we

show that for p € (ps,psr) there are only countably many solutions, and for
Semilinear heat equation p € (psrL,pr) there are only finitely many solutions. This result answers two basic
Self-similar solutions open questions regarding the multiplicity of the solutions.
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1. Introduction

In this paper, we consider positive radial self-similar solutions of the semilinear heat equation
uw=Au+uP, zeRY, t>0, (1.1)

where p > 1 is a real number. A radial (backward) self-similar solution w is a solution of the form
u(z,t) = (T — t)~Y®=Dw(|y|), where y := x/\/T —t, T is a constant, and w is a function in C[0, cc).
Such a function u is a (regular) positive solution of (1.1) if w is a solution of the following problem

N -1
wrr+<rg>wrl)1i)1+wp0, r >0, (1.2)

we(0) =0, w>0. (1.3)
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Self-similar solutions have an indispensable role in the theory of blowup of Eq. (1.1). They are examples
of solutions exhibiting type-I blowup at time T, by which we mean that the rate of blowup is (T —t)_l/ (p—1)
the same as in the ordinary differential equation u; = u?. In fact, they often serve as canonical examples in
the sense that general solutions with type-I blowup can be proved to approach in some way a self-similar
solution as t approaches the blowup time (see, for example, [2,9,10,17,18], or the monograph [26] for results
of this form). Moreover, self-similar solutions play an important role in the study of the asymptotic behavior
of global solutions (see [8] or [26, the proof of Theorem 22.4], for example), in the construction of interesting
solutions (like peaking or homoclinic solutions; see [8], [22] or [6], respectively), in the study of type-II
blow-up (see [16, Proposition 1.8(ii)]), etc.

Eq. (1.2) has been scrutinized by a number of authors. To recall known results, we introduce several critical
exponents (they are usually called the Sobolev, Joseph-Lundgren, and Lepin exponents, respectively):

bs M2 N > 2,
o if N <2,

N—442/N—-1 .
Py = ]. + 4m lf N > 107
if N <10,
1+ 55 N > 10,
PL = if N < 10.

Obviously, the constant x := (p — 1)~/®=1 is a solution of (1.2) for any p > 1. If 1 < p < pg, K
is the only positive solution [9,11]. For ps < p < pyr, there exist at least countably (infinitely) many
solutions; and for p;, < p < pr, the existence of a (positive) finite number of nonconstant solutions has been
established (see [3-5,8,14,22,29]). For p > pr, k is again the only positive solution. This was proved by [20]
(the nonexistence was indicated by numerical experiments in the previous paper [23]). The same seems to
be the case for p = py,, as claimed in [21], however the proof given in [21] is not complete.

A natural and rather basic question, which, despite its importance on several levels, has been open
until now is whether there may exist infinitely many solutions for some p € [p;L,pr), or uncountably
many solutions for some p € (pg,psr). In particular, it is of significance to clarify whether there might
be continua of solutions (1.2), (1.3) for some p € (ps,pr). For example, by ruling out the possibility that
such continua exist, one could substantially simplify the proofs of some results on self-similar asymptotics
of blowup solutions of (1.1), such as those in [17] or [15, Theorem 3.1]. Also, the problems of finiteness and
countability of the set of the radial self-similar solutions are of great importance in our study of entire and
ancient solutions of (1.1), which will appear in a forthcoming paper [24].

The goal of the present work is to address these problems. Our main results are stated in the following
theorem.

Theorem 1.1. Under the above notation, the following statements are valid.

(i) For any p € (ps,psr) the set of solutions of (1.2), (1.3) is infinite and countable. For p = pyr, the set of
solutions of (1.2), (1.3) is at most countable.
(ii) For any p € (psL,p1) the set of solutions of (1.2), (1.3) is finite.

Very likely, in the case p = pj; the set of solutions is finite, too, but our proof of the finiteness for
p € (psL,pr) does not cover the case p = pyr. On the other hand, if there exist solutions for p = py,, then
our proof guarantees that the set of solutions is finite. Statement (i) can be made a little more precise. We
will prove that the set formed by the values w(0) of the solutions of (1.2), (1.3) is discrete.

Our method relies on two kinds of shooting techniques; one from the origin, considering a standard initial-
value problem for (1.2) at » = 0, and another one where “initial conditions” are prescribed at r = oo. In the
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proof of statement (i), we employ the analyticity of the nonlinearity u — u? in (0, 00). We prove that the
solutions are isolated, hence there is at most countably many of them. Technical difficulties in this proof are
caused by the fact that as r — oo the nonconstant solutions of (1.2), (1.3) decay to 0, where we lose the
analyticity. For the proof of statement (ii), we show that the solutions cannot accumulate at the singular
solution. This involves a subtle analysis of how solutions of the initial value problems at »r = 0 and r = o
behave near the singular solution.

The paper is organized as follows. In the next section, we introduce some notation and recall several
technical results concerning solutions of (1.2). In Section 3, we use shooting arguments to show that the
solutions of (1.2) are in one-to-one correspondence with the zeros of a real analytic function. This is key to
showing that the solutions are isolated. In Section 4, we consider the set of solutions of (1.2) near a singular
solution and complete the proof of Theorem 1.1(ii).

2. Notation and preliminaries

In the remainder of the paper, it is always assumed that p > pg.

Although Eq. (1.2) has a singularity at » = 0, it is well known and easy to prove by an application of the
Banach fixed point theorem to an integral operator (see, for example, [12]) that for each a > 0 there is a
unique local solution of (1.2) satisfying the initial conditions

w,-(0) =0, w(0) = a. (2.1)

We denote this solution by w(r, @) and extend it to its maximal existence interval. If the solution changes
sign, then the nonlinearity in (1.2) is interpreted as w|w[?~'. Let

S={a>0:w(ra)>0 (re(0,00))} (2.2)

Obviously, for each solution w of (1.2)—(1.3) one has w = w(+, @) for some (unique) a € S. We further denote

_1

boo(z) = Lz 20D [ = <(p_21>2((zv —2)p— N)) " (2.3)

This is a singular solution of (1.2) (it is defined when p(N — 2) > N). In fact, this is a unique solution of
(1.2) with a singularity at » = 0 (see [21,25]).

We recall the following properties (as above, k = (p — 1)~/ (P=1):
Lemma 2.1. The following statements are valid (for each p > pg).

(i) One has o > k for all a € S, and & is isolated in S.
(ii) For each o € S\ {k} there exists a positive constant £(«) such that

w(r,a) = E(a)rip%l (1—cla)r=2+o(r ?)) asr— oo, (2.4)
where c(a) == (0(a))P~1 — LP~=1 (with L as in (2.3)). Moreover, one has

Ifu(goj) T (pi 2@ 4o ast o o0, (2.5)

(iii) With £(«) as in statement (i), the function o — £(c) is one-to-one on S\ {k}.

Proof. Statement (i) is proved in Lemmas 2.2 and 2.3 of [20]. Statements (ii), (iii) for regular bounded solu-
tions are proved in [17, Section 2[; the boundedness assumption can be removed due to [20, Lemma 2.1]. O
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We need two additional properties of the function « — £(«):

Lemma 2.2. Suppose oy, € S, k =1,2,..., and oy, — ag € (k,00] as k — oo. The following statements
are valid.

(i) If ap < o0, then ag € S and L(ax) — L(ayp).
(i) If g = 00 and p > pyr, then €(ay,) — L.

Proof. Statement (ii) is proved in [20, Lemma 2.7].

We prove statement (i). It is clearly sufficient to prove that the statement is valid if the sequence {ay }x
is replaced by a subsequence (and then use this conclusion for any subsequence of {ay } in place of the full
sequence {ag}r). We may in particular assume that a; # oy, if j # k (for a constant sequence the statement
is trivially true) and a; > & for any j.

The fact that ag € S, that is, the solution w(-, ag) is positive, follows easily from the continuity of solutions
with respect to initial data.

Consider now the function v(r, @) := w(r, a)r? =1 Tt solves the equation

N-1-4/(p-1) r 1
) T +

o ( r o)tz

(P — LP" ') =0, r>0. (2.6)

If o,a €S, a#aand h(r) = v(r,a) — v(r,a), then h solves the equation

N-1-4/(p—1)

r R Y S A
hrr + ( — 2>hr + 3 (pvy LP"Hh =0, r>0, (2.7)

where vy = vg(r) belongs to the interval with end points v(r, @) and v(r, @).

First we show that if 7 > v/2N, then for any k # j one has v(r, ar) # v(r,a;). We go by contradiction.
Assume 1 > V2N, k # j and w(ry, ag) = w(ry, o). Without loss of generality we may assume w, (1, o) >
wy (11, 0). Set

o(r) = w(r,ar) — K, ¢*(r) = w(r,o5) — K,
ro == sup{7 >ry : ¢*(r) < ¢(r) in (r1,7)} < oco.

Then [5, Proposition 2.3] implies ¢(r), ¢*(r) < 0 for 7 > v/2N, and we also have ¢(r), ¢*(r) — —r as r — co.
The arguments in the first paragraph of the proof of [5, Proposition 2.4] guarantee that [5, (16)] is true, that
is, .
o(r) > ¢*(r) (1 — Cl/ 817N€S2/4¢*(8)72 ds) > ¢*(r), r € (r1,72),
T1
where C7 > 0. This estimate shows that r = oo and also that ¢(r) > 0 for r large enough, which is a
contradiction.

Fix R > /2N; from now on we consider the solutions v on the interval [R,oc0) only. Passing to a
subsequence, we may assume that the sequence {v(R,a)}r>1 is strictly monotone. Assume that it is
decreasing (the other case is analogous), hence vy := v(-, o) satisfy v1 > vy > -+ > vg on [R, 00), v — ¥
in Cioc([R, 0)).

Set hy = vk, — Vk41, Kk =1,2,.... Then hy, is positive and it solves (2.7) with vgy1 < vg < vg. Moreover,
hiy = 0 in Cioe([R,00)) and >, by < v1 — vy < C, for some constant C' > 0.

First assume

pub~' > IP71 on [R,0). (2.8)

If b (o) < 0 for some ro > R then (2.7) guarantees by (1) < 0, hence hj, h} < 0 for r > rq which contradicts
the positivity of h. Consequently, k) > 0.
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Set hp® :=lim,_,o hi(r). Since

vi(r) —vo(r) =Y hi(r) /Y B as 1 o0, (2.9)
k=1 k=1

we have Y 7 | h® < oco. Fix ¢ > 0. Then there exists ko such that ZZO:,CO h® < e, hence vj(r) — vo(r) =
> hej hie(r) < e for any r € [R, 00) and j > ko. This implies £(ag) < ¢(;) < £(a) +¢, hence £(ay) — £(ap).
Next assume that (2.8) fails. Notice that there exist ¢1,c2 > 0 such that

N-1-4/(p—-1) r
r 2

< —cir and pvep_l — Pt > ¢y for r>R.

Set ¢z = ca/ci. If Wy (ro) < —ecshy(ro)ry® for some ro > R then (2.7) guarantees h}(ro) < 0, hence
hi(r) < —cshg(r)r= and hy(r) < 0 for r > 7o (since r — —c3hy(r)r=2 is increasing if2h§C < 0), which
contradicts the positivity of h. Consequently, él;v > —c3hy(r)r=3, or, equivalently, (e=3/(")p)" > 0.

Set A i=lim, o0 hp(r) = lim, o0 e~/ py (r). Now

e/ 0y (r) —vo(r) = 3 e/ C I (r) A3 R as 1 oo,
k=1 k=1

and similar arguments as above show that ¢(ay) — (o) again. O

We will also need the following information on the behavior of the solutions w(-, ) for large c. This result
— in fact, a stronger version of it — is proved in [20, Lemma 2.5].

Lemma 2.3. Assume that p > pjr. Then, as a / 00, one has
w(r,a) = ¢oo(r), wr(r,a) = oL (r), (2.10)

uniformly for r in any compact subinterval of (0,00).

In some comparison arguments below, we will employ radial eigenfunctions of the linearization of (1.2)
at the singular solution ¢.,. Specifically, we consider the following eigenvalue problem:

N -1 1 L1
¢7-7-+(—T>w7-+(—+p s +A>¢:o, r>0
r p— r

2 1 (2.11)
Y € H2(0,00).
Here H'(0,00) is the usual weighted Sobolev space with the weight
w(r) == rV"texp(—r?/4). (2.12)

The inclusion 1) € H!(0,00) means that if ¢) equals ¢ or ¢/, then

/OOO P2(r)w(r) dr < oo.

This eigenvalue problem is well understood. The following lemma summarizes some basic known results
(see [13,19]).

Lemma 2.4. Assume that p > py. The eigenvalues of (2.11) form a sequence explicitly given by

1
)\j:§+ﬁ+j, j=0,1,2,..., (2.13)
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where . -
—(N -2 N —2)2 —4pLr—

g — =2+ VA S Fowlr (2.14)

Forj=0,1,2,..., the eigenfunction corresponding to \;, which is unique up to scalar multiples, has exactly

J zeros, all of them simple, and satisfies the following asymptotic relations with some positive constants k;,
];j"
p;(r) k:jrﬁ +o(r?) asr—0,

. 2 . _ 2 oy,
Pi(r) = kyr 71T po(rm TP s — 0.

If pjr, <p<pr, then Ao <0 and if p=pr, then Ay = 0.

The following result, which is a part of analysis used in [13,19], will also be useful below. It can be easily
derived from well-known properties of Kummer’s equation (as shown in [13,19]). Consider the following
equation (the same equation as in (2.11), but with A = 0).

N—-1 r 1 Lr—t
¢TT+(—>¢T+(—+p 5 )1#:0, r>0 (2.15)
T 2 p—1 T

Lemma 2.5. Assume that p > pyr. Eq. (2.15) has (linearly independent) solutions 11, Vo satisfying the
following asymptotic relations with some positive constants k1, Ka:

V1(r) = ki +o(rP) asr — 0, (2.16)
Uo(r) = kor? 4+ 0(r?) asr — 0. (2.17)

Here 3 is as in (2.14) and

i ) ‘/(J;[ il Y (2.18)

Problem (2.11) has A = 0 as an eigenvalue precisely when 1y also satisfies the following asymptotic relation
with some positive constant kq

Y1(r) = /%17‘_% + 0(1"_%) as r — oo. (2.19)

Obviously, if (2.19) holds, then 1 is an eigenfunction corresponding to the eigenvalue A = 0. We remark
that 1o cannot be an eigenfunction of (2.11), for (2.17), (2.18) imply that it is not in H?.

We conclude this section with a monotonicity property of the function a — w(-, ). It will be useful to
note that on any interval (0, 7] where w(-, @) > 0, wq (-, &) satisfies the linear equation

Zrr + (N L T) Zr + (—1 + p(w(r, a))p_l) z=0, (2.20)

r 2 p—1

and it also satisfies the initial conditions w, (0, a) = 1, wq.(0,a) = 0.

Lemma 2.6. Assume p > pyr. There exist positive constants o, R, and Cy such that for all « > o and
r € [0, R] one has

we(r,a) >0 (rel0,R)]) (2.21)
w“((r’o‘)) <Cir? (rel0,R), ro € [R/2, R)), (2.22)
W \To, X

where (B is as in (2.14).
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Proof. All arguments needed for the proof of these estimates are essentially given in the proof of Lemma 2.8
of [20], although the estimates are not formulated there explicitly for the same functions. Nonetheless, the
arguments are easy to use, or adapt, in our case. We include the following details for the convenience of the
reader.

Let 71 () € (0, 00] be the first zero of w(-, ). We first use a Sturmian comparison to show that the first
zero of oo —w (-, ) is less than 1 (@). (Similar Sturm comparison arguments are used at several other places
in this proof.) We go by contradiction. Assume w = w(-, @) < ¢oo in (0,71 (). Multiplying (1.2) with wee
and integrating by parts over (0,r1(«)) we obtain

r1(a) o
0= / (ww") — ——w ww?) oo dr
0

r1(a) w
:1/ (Wehe) = ——= oo + WP g )w dr
0 p—1
+ ' fac ]! — gl J
r1(a@) W
< [y - b it dr =0
0 p—1

which is a contradiction (cf. [20, p. 2919, lines 1-4]).

Take an eigenfunction 1; of (2.11) corresponding to a positive eigenvalue \; and let r; > 0 be its first
zero. We will assume that ¢; > 0 in (0,71) (replace v; by —t; if necessary). Set R = r1/2. Considering
the linear equation for ¢, — w(-, @) and using a Sturmian comparison with 1);, it is shown in the proof of
Lemma 2.8 of [20] that the first zero of ¢oo — w(-, @) is greater than r, that is,

w(r,a) < ¢so(r) (r €[0,2R)). (2.23)

Now consider the linear equation (2.20) satisfied by wq (-, @). Due to (2.23), the zero order coefficient in this
equation is smaller on (0,2R] than the zero order coefficient in the equation for ¢;, see (2.11). Therefore, a
similar Sturmian comparison of we (-, &) with t; shows that wq(-, @) # 0 in [0,71]. Since wq(0,a) = 1, we
have wq (-, &) > 0 in [0, R], proving (2.21).

We now prove (2.22). Given an arbitrary ro € [R/2, R], set ¥(r, @) = wa (7, @) /wa (10, ). We claim that

for all large enough « one has

U(-,a) < Cytp; on [R/2, R], (2.24)
where (5 is a constant independent of « and ry. To prove this, we use the Harnack inequality for @/3(7’, a)—a
positive solution of (2.20). Note that the coefficients of (2.20) are bounded in [R/4, 2R] uniformly in «. This
follows from (2.23). Since t(ro, ) = 1, the Harnack inequality yields a uniform upper bound on (-, @) in
[R/2, R]. Property (2.24) follows from this and the positivity of ¢; on the interval (0,71) D [R/2, R].

To complete the proof of the lemma, assume for a contradiction that given any C7 > 0 and a*, one can
find a > o* and r¢ € [R/2, R] violating the estimate in (2.22). This, in conjunction with the asymptotics of
1; given in Lemma 2.4, implies that there exists o (and a corresponding 19 € [R/2, R]) such that estimate
(2.24) holds and at the same time ¥(-,a) > Catp; somewhere in (0, R/2). Consequently, as 9(r,a) stays
bounded as r — 0 while v,(r) — oo, there exist two points 71 < re in (0, R/2) such that the function
=, a) — Cyp; is positive in (r1,r2) and vanishes at 1 and 2. Egs. (2.20) and (2.11) with A= X; >0
yield an inequality satisfied by 1 in (0, R/2):

Brr + (Nl - T) br+ (1+pr1) 0
r 2 P 2

p—1 ~
= (PL2 — p(w(r, a))P—l) P(r, @) + Corjip;(r) > 0.

r
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Using this inequality, Eq. (2.11) with A = A; > 0, and a Sturmian comparison argument, we obtain that
¥, has a zero in (rq,72), a contradiction. This contradiction proves that (2.22) holds for all sufficiently
large a. O

3. Shooting techniques and the proof of Theorem 1.1(i)

In this section, we employ two kinds of shooting arguments. The first one is a standard shooting technique
for (1.2), (2.1) (shooting from r = 0). The second one is a kind of shooting from r = co, which becomes a
more standard shooting technique after Eq. (1.2) is transformed suitably. Shooting arguments of such sort
were already used in [14], cf. also [22].

3.1. Shooting fromr =0

We return to the initial-value problem (1.2), (2.1). As noted above, a local solution can be found in
a standard way by applying the Banach fixed point theorem to a suitable integral operator. Since the
nonlinearity w — w? is analytic in intervals not containing 0, the local solution depends analytically on «.
Away from r = 0, there are no singularities and standard theory of ordinary differential equations applies.
We thus obtain the following regularity property of the function w(r, ).

Lemma 3.1. Given any ag € S and g € (0,00), there is € > 0 with the following property. The solution
w(-, ) is (defined and) positive on [0, 2rq] for any o € (ap — €, a9 + €), and the function w is analytic on
(O, 27’0) X (O[O — €, + 6).

Clearly, if ag € S, then the function wq (-, o) solves on (0, c0) the linear equation

e+ (N —1 ;) Z+ (—1 + plw(r, ao))H) 2 =0, (3.1)

r p—1

and satisfies the initial conditions wq (0, 0) = 1, war(0,0) = 0. In particular, wa(-, o) is a nontrivial
solution of (3.1) and as such it has only simple zeros.

8.2. Shooting from r = oo

By Lemma 2.1, if u = w(-, ) for some a € S\ {x}, then, as  — oo, one has

u(r) = Erip%l(l +o(r7hy), = - r~t +o(r7?), (3.2)

for a suitable constant ¢ = £(«). The same is of course true, with ¢ = L, if u = ¢o. Conditions (3.2) can
be viewed as a kind of “initial conditions” at r = oco. We show that Eq. (1.2) with these conditions is well
posed and has analytic solutions. This is true in spite of the fact, pointed to us by one of the referees of this
paper, that the two conditions in (3.2) are not independent. In fact, as noted by the referee, the solutions
of (1.2) satisfying the first condition in (3.2) automatically satisfy the second one since the first condition

alone is sufficient to derive identity (3.8) below. We prove the following.

Lemma 3.2. Given any y € {L} U {{(a) : @ € S\ {k}} and 1o € (0,00), there is 6 > 0 and an analytic
function u : (r9/2,00) x (g — 0,4y + 0) — (0,00) with the following properties.

(i) For any £ € (bo—0,Lo+0), the function u(-,{) is a positive solution of (1.2) on [ro/2,00) satisfying (3.2),
and it is the only solution (up to extensions and restrictions) of (1.2) satisfying (3.2).
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(ii) The function ue(-,€o) can be extended to (0,00), where it satisfies the linear equation

Zpry + (NT__ ! - ;) Zr + (_pil +p¢p_1(T)> z = 0’ (33)

with ¢ = w(-,ap) if bo = llag) for some ay € S\ {k}, and ¢ = ¢ if bo = L. Moreover,
r2/ =Dy (r, o) — 1 as r — co.

We prepare the proof of this lemma by transforming the problem to one on a bounded interval. First,
setting v(r) := w(r)r?/ P~V we transform equations (1.2) to (2.6). Next, we set y(p) = v(r), p = 1/r. A
simple computation shows that w is a solution of (1.2) on (rg, 00) for some rq > 0 if and only if y is a solution
of the following equation on (0,1/r):

vy 1 1 _
Yop + ;yp + Q—pgyp + ?(yp —L? ly) = 0, (34)

with 7 :=3 — N 4+ 4/(p — 1). Moreover, if conditions (3.2) are satisfied by v = w, then, as p \, 0, one has
y(p) — £ and

2 2 !
R e e T ) RUE R
So y extends to a C! function on [0,1/rg) with
y(0)=+¢, ¢'(0)=0. (3:5)

Conversely, if y is C* on [0,1/r) and conditions (3.5) hold, then w is easily shown to satisfy (3.2).
To show that problem (3.4), (3.5) is well posed, we write it in an integral form. Define a function H on
[0, 00) by )
H(0)=0, H(p)=ple? /* ifp>0, (3.6)

so that H'(p) = vH(p)/p + H(p)/(2p?). Notice that H'(p) > 0 for all sufficiently small p > 0. Eq. (3.4) is
equivalent to the following equation

(H(p)y'(p)) +p > H(p)(y" (p) — L 'y(p)) = 0. (3.7)

Assuming y satisfies (3.5), we integrate (3.7) to obtain

V(o) = =5 | HOG @) = £ )
= ,%p) /Op((nH(n))/ = (v + DH0))(y"(n) — L y(n)) diy.

After an integration by parts this becomes

¥'(p) = —2p(y"(p) — L*y(p))

+ 2D [ o) - 1y an .
+ % /OP(UH(U))(pypl(n) — LP Yy (n) dn.

Conversely, noting that H(n)/H(p) < 1if 0 <n < p < 6 and ¢ > 0 is sufficiently small, one shows easily
that if y € C*[0, 6], y(0) = £ and (3.8) holds, then y'(0) = 0 and (3.4) is satisfied.

We can now set up a suitable fixed point argument. We work in the Banach space X := C([0, 6], R?) with
a usual norm, say |U| = |ly[lrec(0,5) + ||z]lLoc(0,6) for U = (y,2) € X. Let Uy € X stand for the constant
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function (£y,0). Fix any e € (0,£9/2) and let B stand for the open ball (B for the closed ball) in X with
center Uy and radius e. Note that the choice of € guarantees that for any (y, 2) € B one has y > £y/2. For
any / sufficiently close to £y, we consider the map ¥¢ : B — X defined by ¥*(y,z) = (¥, %), where, for
p € [0,4],

3o) = £+ / " 2nydn,

£(0) = <2007 (0) - 2~ (o) + 25 [T ) - 2y (39
b [ nH G 0) = st

Clearly, y is a C'[0, §]-solution of (3.4), (3.5) if and only if (y,y’) is a fixed point of the map ¥*.

Lemma 3.3. Ifd and 0 are sufficiently small positive numbers, then the map W* defined above is for each
0 € (b — 0,4y + 0) a 1/2-contraction on B. Denoting its unique fized point by U*, the map £ — U* is an
analytic X -valued map on (Lo — 6,4y + 0).

Before proving this lemma, we use it to complete the proof of Lemma 3.2.

Proof of Lemma 3.2. Lemma 3.3 and the notes preceding it yield a positive solution of (2.6), (3.5) on
some interval [r1,00) and also imply the uniqueness of the solution and its analytic dependence on ¢. Of
course, as the equation has no singularity in (0, c0), we can combine these results with standard results from
ordinary differential equations to prove the existence of an analytic function u on (rq/2, 00) X (o — 0, £y +6)
(with € possibly smaller than in Lemma 3.3) such that statement (i) of Lemma 3.2 holds.

Having proved that given any 7o > 0 the function u(r, ¢) is defined for r € [ry/2, 00) if £ is close enough
to £o, we see that wu(r, £y) is defined for any r € (0, 00). Differentiating the fixed point equation (3.9) with
respect to £ (using the smooth dependence of the fixed point on £) and reversing the transformations relating
y and w, we obtain that r%/®~Duy,(r £y) — 1 as r — oo. The regularity of the function u allows us to
differentiate equation (1.2), with w = w(-,£), with respect to £ to obtain the equation for w,(-,¢y). This
yields Eq. (3.3) with ¢ = u(+, ). The uniqueness property of the solution u implies that u(-,¢y) = w(-, ap)
if o = £(ap) for some ag € S\ {k}, and u(:,4y) = oo if ¢y = L. This completes the proof of Lemma 3.2. [

Remark 3.4. Clearly, we can differentiate equation (1.2) with w = (-, £) further to find equations for higher
derivatives of u(-,¢) with respect to £. For example, wuz(-, L) is a solution of the following nonhomogeneous
equation on (0, 00):

N -1 1
Zrr + ( r - ;) Zr + <_p_1 +p¢§ol(r)) Z = _p(p - 1)¢€g2(7ﬂ)u?(r, L) (310)
Note that the function 72/®P=Duy,(r, L) = yu(1/r, L) stays bounded as r — co. This observation will be
useful in the next section.

Proof of Lemma 3.3. As noted above, ¢ < £5/2 guarantees that for any (y,z) € B one has y > /2. It
follows that the maps
(y,2) = 9% (y,2) =y l2 (3.11)

are analytic C]0,d]-valued maps on B. Note also that the map sending v € C][0,0] to the function
Jy H(n)/H (p)u(n) dn is a bounded linear operator on C[0,4]. It follows that the map (¢,U) — ¥*(U) is
an analytic X-valued map on ({y — 6,4y + 0) x B (the smallness of 8, § is not needed here).
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Choose 6§ > 0 so small that H’ > 0 on (0, §). Clearly, the maps (3.11) are globally Lipschitz on B. This and
the relation H(n)/H(p) < 1 for 0 < n < p < 6 imply that, possibly after making § > 0 smaller, ¥: B — X
is a 1/2-contraction (for any /).

We now show that if 6 is sufficiently small and ¢ is made yet smaller, if needed, then for each £ €
(bo — 0,09 + ) one has ¥¥(B) C B, that is, ¥* is a 1/2-contraction on B.

To that aim, for any U € B we estimate

1&“(U) = Uoll = | & (Uo) — Ul + [ #“(U) — &*(Up)|
1
< || (Uo) - Uo| +§||U—U0|| (3.12)
€
< WZ(U()) — Ul + 3

Now
vt (Uo)(p) — Up = (ﬂfo,Co(2p+2(7+ 1)/0 gggm)) ;

where Cy = (5 — LP~14,. Clearly,
| &4(Us) — Upl| < € — bo| +C8 < 64 C6, (3.13)

where C' is determined by Cy and 7 (and is independent of § and ¢). Taking 0 < 6 < ¢/4 and making § > 0
smaller, if necessary, so that C§ < €/4, we obtain from (3.13), (3.12) that ||¥*(U) — Up| < € — that is,
vY(U) € B — for any U € B.

The uniform contraction theorem implies the existence of a unique fixed point U¢ of ¥*, and it also gives
the analyticity of the map £ — U®: (by — 0,40 +0) — X. O

Although not needed below, we add a remark on the dependence of the solutions on p. Clearly, when
dealing with solutions bounded below by a positive constant, one can view p as a parameter, with the
nonlinearity w? depending analytically on p. Therefore the uniform contraction arguments employed in the
shooting from 0 and co imply that the solutions w(-, @), u(-, £) given by Lemmas 3.1, 3.2 depend analytically
on p, too.

3.8. The discreteness of the set S

We now show that the set S is discrete, hence at most countable. This will prove statement (i) of
Theorem 1.1.
We go by contradiction. Suppose that S contains an element which is not isolated in S. Set

ap = inf{a € § : a is an accumulation point of S}. (3.14)

Clearly, «y itself is an accumulation point of S. By the continuity of the solutions w(-, &) with respect to «,
one has o € §. By Lemma 2.1(i), ag > k. Set €y = {(ap) (cp. Lemma 2.1(ii)).

Choose € > 0 and 6 > 0 such that the function w(-,a) is positive on (0,2) for all & € (ag — €, a0 + €)
and the function u(-,¢) is (defined and is) positive on (1,00) for all £ € (¢y — 6,4y + 6) (see Lemmas 3.1,
3.2). Recalling from Section 3.1 and Lemma 3.2 that the functions we, (-, ), we(-, £o) are nontrivial solutions
of the linear equation (3.1), we pick rg € (1,2) such that neither of these functions vanishes at ro. Then,
making € > 0 and 6 > 0 smaller if necessary, we may assume that

U}a(ro, a) 7é 0 (OZ S (Oé(] — €, + E)),

(3.15)
ug(ro, £) 0 (L € (bp— 0,40 +0)).
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Now, Lemma 2.2 guarantees that, possibly after making e > 0 yet smaller, one has ¢(«) € (by — 6, £y + 6)
for any a € (ap — €, 0 + €) N S. For any such «, Lemmas 2.1(iii) and 3.2 imply that w(-, @) = u(-,€(a)); in
particular,

(w(rg, @), wr(rg, @) = (u(ro, £(a)), ur(ro, £(a))) (€ (ap — €, 0 +€)NS). (3.16)

Consider the following two analytic curves

J1 = {(w(ro,a),w,(rg,@)) : a € (ag — €, 0 + €) },
Jy = {(u(ro, £), ur(ro, ) : £ € (bg — 6,40 + 0)}.

In view of (3.15), they can be reparameterized by the first component, namely,

J1={(G, F(Q): ¢ € In},
Jo = {((,G(() : ¢ € I},

where I; is the open interval with the end points w(rg, ag = €), I2 is the open interval with the end points
u(ro, o£0), and F and G are analytic functions: F(¢) = w, (19, &(¢)), where & is the inverse to a — w(rg, a);
and similarly for G. Since ¢y = £(), relation (3.16) implies that w(rg, ag) = u(re, o) =: (o € Iy N Iy and
F(¢p) — G(¢p) = 0. Further, using (3.16) in conjunction with the fact that ag is an accumulation point of
S, we obtain that (j is an accumulation point of the set of zeros of the function F — G. By the analyticity,
F — G vanishes identically on a neighborhood of (. From this and the relation w(-, @) = u(-,4(«a)), we
conclude that for « in a neighborhood of ag the solution w(-, a) is positive on (0, 00), that is, o € S. This
is a contradiction to the definition of ag (cp. (3.14)). With this contradiction, the discreteness of S and
statement (i) of Theorem 1.1 are proved.

4. Solutions near ¢o, and the proof of Theorem 1.1(ii)

In this section we assume that p;r, <p < pr.
Our goal is to show that there is a constant a* > 0 such that

SN (a*,00)=0. (4.1)

In conjunction with statement (i) of Lemma 2.1 and the discreteness of the set S proved in the previous
section, (4.1) implies that the set S is finite. Thus, once we prove (4.1), the proof of statement (ii) of
Theorem 1.1 will be complete.

To prove (4.1), we initially employ the functions w(r, ), u(r, £) in a very similar manner as in Section 3.3,
taking ¢ close to the constant L from the singular solution (cp. (2.3)).

First we choose a* > 0 and R > 0 such that

we(r,a) >0, w(r,a) >0 (r€][0,R], a>a"),

and (2.22) holds for some constant C' > 0 (cp. Lemmas 2.6, 2.3). Next we choose § > 0 such that the
function u(-, £) is (defined and) positive on (R/2,00) for all £ € (L — 6, L + §). Pick ro € (R/2, R) such that
ug(ro, L) # 0. Making 6 > 0 smaller if necessary, we have

ue(ro, £) #0 (e (L—06,L+0)). (4.2)

Further, by Lemma 2.2(ii), we have, possibly after making o* larger, that ¢(a) € (L — 0, L + 0) for any
a € (a*,00) N'S. For any such «, Lemmas 2.1(ii) and 3.2 imply that w(-, a) = u(-,€(a)); in particular,

(w(rg, @), wr(rg, @) = (u(ro, €(a)), ur(ro, £(a))) (a € (a*,00)NS). (4.3)
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Consider the following two analytic curves

J1 = {(w(re, @), w,(rg, ) : @ € (a™,00)},
Ja = {(u(ro,?), ur(ro,€)) : £ € (L—0,L+0)}.

In view of the relations w, (rg, ) > 0 and (4.2), using also the fact that w(rg, @) = doo(r0) =: {p as @ '
(cp. Lemma 2.6), we reparameterize the curves Jq, Jo as follows:

Ji:=A{(¢ F(Q) : ¢ € (w(ro, "), Co)}, (4.4)
J2 ={(¢,G(Q) : ¢ € I}. (4.5)

Here I is the open interval with the end points u(rg, L + 6), and F' and G are analytic functions: F(¢) =
w,(ro, &(C)), where & is the inverse to o — w(ro,@); and, similarly, G(¢) = u,(ro,2(¢)), where £ is the
inverse to £ — u(rg, £).

Since u(+, L) = ¢oo, we have {y € I and G((y) = ¢, (o). Also, from the fact that w,.(rg,a) = ¢, (ro)
as a@ — oo (cp. (2.10)), we infer that lim¢ ¢, F(¢) = ¢..(r0). Thus, we may define F'((y) := ¢, (ro) and F
becomes a continuous function on (w(rg, a*), (o].

If F were analytic on the interval (w(rg, a*), (o], we could use simple analyticity arguments, similar to
those in Section 3.3, to conclude the proof of (4.1). However, it turns out that in some cases F' is not even
of class C? at (p, and we thus need a different reasoning.

We will prove the following statements.

Proposition 4.1. Let F' and G be as above. Then the function F is of class Ct on (w(rg,a*), (o] and the
following statements hold:

(i) X =0 is an eigenvalue of problem (2.11) if and only if F' (o) = G'((o)-
(1t) If X =0 is an eigenvalue of problem (2.11), then lim¢_,¢, F"'(C) exists and is distinct from G"((o). More
specifically, the following statements are valid (with 8 as in (2.14)):

(a) If 2p—2)

_ Vi

N-1435— e < -1, (4.6)
then

F'(¢) = —c0 as ¢ /o (47)

(b) If (4.6) is not true, then F"(C) has a finite limit as ¢ — (o and
Jim F(Q) £ G(Go) (48)

Remark 4.2.

(i) It may be instructive — and will be useful below — to list the exponents p > p;r, for which A = 0 is an
eigenvalue of problem (2.11). These can be computed from (2.13), (2.14): assuming N > 10, for j > 2
we have \; = 0 if and only if p = p;, where

45— 2

=1 .
Pt NG =27 — 2 1 2

(4.9)

As already mentioned in Lemma 2.4, Ay = 0 for p = py, (in other words, ps = pr), and Ay < 0 for any
psr < p <pr. To have p; > pyr for some j > 3, NV has to be sufficiently large. Specifically, p; > p;, if
and only if N > (25 —1)2 + 1. Thus, for example, if N < 26, then A\ = 0 is not an eigenvalue of problem
(2.11) for any p € (psr,pr); if 26 < N < 50, it is an eigenvalue for exactly one p € (psr,pr), namely
p = ps3; and so on.



14 P. Polacik and P. Quittner / Nonlinear Analysis 191 (2020) 111639

(ii) Assume p € (psr,pr). As noted in the previous remark, the assumption of statement (ii) of
Proposition 4.1 (A = 0 being an eigenvalue of (2.11)) is void if N < 26. Also, if 26 < N < 50 and the
assumption is satisfied, then necessarily p = p3 (and j = 3). In this case, condition (4.6) is automatically
satisfied. This follows from the relations (4.9) and 8 = —2/(p — 1) — 6 (cp. (2.13)). However, for larger
dimensions, (4.6) is not always satisfied. For example, in the case of p = p3 (when A3 = 0), (4.6) is not
satisfied if V > 56.

Before proving Proposition 4.1 , we show how it implies (4.1).

Proof of (4.1). Recall that the function G is analytic in a neighborhood of (y. Proposition 4.1 implies that
either F'(p) # G’ ({o) or there exists (; < (p such that F”(¢) # G"(¢) for all ¢ € (¢1,p). In either case, (o
is clearly not an accumulation point of the set of zeros of the function F'— G. This is equivalent to (4.1). O

Remark 4.3. There is a strong indication (see Remark 4.4) that whenever A = 0 is an eigenvalue of problem
(2.11), then there is an integer k > 2 such that

IFE(Q)] =00 as ¢ 7 o (4.10)

If confirmed, this could be used — instead of statement (ii)(b) of Proposition 4.1 — as an alternative proof of
(4.1) (the arguments would be similar as with k¥ = 2 in the case (ii)(a)).

The rest of the section devoted to the proof of Proposition 4.1. We carry out the proof in several steps.
In some cases, we do the computations in greater generality than needed for the proof, as these may be of
some interest and do not require much extra work.

STEP 1: Computation of the derivatives F®)(¢), G (¢).
Recall that, assuming « is sufficiently large, we have F({) = w;(ro,&(()), where & is the inverse to
a — w(rg, @). Therefore, we have

Wy (7"0, Ot)

we (ro, @)

F'(¢) = . with a = &(¢). (4.11)

Similarly, for any integer k > 1, if F*)(¢) =: g(a) for a = &(¢), then

1
Fr+D () = ———9, .
(©) w0 a) 9(@)
Hence, by induction, for £k = 1,2,... we have
FW(Q) = (9a)*wr(ro, @), with a = a((), (4.12)
where 9, is a differential operator given by
A 1
Op = 0
“ T we(rg, @)
Set (r,a)
A We (7,
r,a) = 0w(r,a) = ———. 4.13
vlr.0) = d(r.o) = 2 (113)
Note that 9 (-, ) is a solution of the following problem with a homogeneous differential equation:
N-1 1
Zpr + ( P ;) Zr + <_p—1 + p(w(r, a))p1> z=0, re(0,R], (4.14)

z(ro) =1, z(r) is bounded as r \, 0. (4.15)
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A

Similarly, for & = 2,3,..., 0fw(r,a) is a solution of the following problem with a nonhomogeneous
differential equation:

- (NT_ L ;) ot (-pll + plw(r, a))p_1> 2= fu(ra), r€(0,R], (4.16)
z2(rg) =0, z(r) is bounded as r \, 0, (4.17)

where
fr(r,a) = p(w(r, a))p_lézw(r, a) — 55/1}”(7“, a). (4.18)

We remark that (4.18) is just a compact way of writing the right-hand side. The k-derivative actually cancels
out in (4.18) so fx depends on lower derivatives only. Obviously, for each fixed «, the function fi(r, @) is
bounded as r — 0.

For the function G and k = 1,2..., we have similarly as for F in (4.11), (4.12),

G®(Q) = (B)*ur(ro, 0), with £ =1(C), (4.19)
where i )
62 = Wag (420)

STEP 2: Relation of F'({y) to G'((o) and the proof of statement (i) of Proposition 4.1.
We find the (left) derivative F’((p) using the definition of F' and the L’Hospital rule:

. F(Q) —F(C) _ . welro,a) — ¢ (ro)
Cll/ng g - CO B all_}II;o ’LU(T07 O[) - QSOO(TO) (421)
= lim 710(”(7"0,0[) = lim v¥,(ro, @),

a—00 wa(ro7a) a—00

where ¢ is as in (4.13). Using Lemma 2.3, the uniform bound (2.22), and regularity properties of solutions
of linear differential equations, one shows easily that, as o — oo,

QZ)(',OZ) — 1/1007
¢T('7a) — 11[},007

(0,00), where 1o, is a positive solution of Eq. (2.15) satisfying the following

(4.22)

oo

with the convergence in L7S,

relations for some positive constant C;:

Yoolro) =1, thoo(r) <Cir”  (r € [0,m0)) (4.23)

(B is as in (2.14)). The solution 1, is uniquely determined. In fact, it follows from (4.23) that

1/}00 = Coﬂ)l with Co ‘= (424)

1
P1(ro)’
where 17 is as in Lemma 2.5.
Thus, the limit in (4.21) exists and we have F'({y) = ¥’ (ro). Now, by (4.12), (4.13), we also have
lim F'(¢) = lim ¥,(rg, @) = Y. (10), 4.25
lim F(Q) = lim r(r0,0) = v (ro) (1.25)

showing that F is of class C' on (w(rg, a*), (o).
The derivative G’((p) is obtained directly from (4.19), (4.20) using the relations u(rg, L) = ¢oo(10) = (o:

upe(ro, L)

G'(Co) = R COWIR
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By Lemma 3.2, §(r) := ug(r, L) Jug(ro, L) is a solution of (2.15) satisfying ¥ (ro) = 1 and

r2/ = (r) — m as r — oo. (4.26)

We now complete the proof of statement (i) of Proposition 4.1.The relation F’({y) = G'((p) is equivalent

to ¥/ _(ro) = ¥/(rg). Since also 1 (r9) = 1 = th(rg) and s, ¥ are solutions of (2.15), the relation

F'(¢o) = G'((o) is actually equivalent to the identity 1) = th. In view of (4.24) and (4.26), the identity

means that the solution v in Lemma 2.5 satisfies (2.19). By Lemma 2.5, this is equivalent to A = 0 being
an eigenvalue of (2.11). Statement (i) is proved.

STEP 3: Variation of constants and an integral formula for F*)(¢).

We find a tangible formula for the functions F(k)(C), k =2,3,.... For a while, we will consider o« > a*
fixed and write ¢ for ¥ (-, «), fx for fi(-,«). Remember that 1 is a solution of (4.14), (4.15). Let ¢ be the
solution of (4.14) with

1
T = O’ / T = — 5 4.27
QD( 0) SO( 0) W(TO) ( )
where w is defined in (2.12).
Obviously, ¥, ¢ are linearly independent. We claim that for some constant ¢ # 0 one has
o(r) =er~ =2 L o(r~ V=2 asr — 0. (4.28)

In fact, any solution ¢ linearly independent from ) has this property. One way to see this is by using
the Frobenius method. Observe that multiplying Eq. (4.14) by r?, we obtain an equation with analytic
coefficients (near r = 0) and a regular singular point at » = 0. We look for solutions in the form of a
convergent Frobenius series

’r‘) = 7‘19 Z Cj?”j7 (429)
j=0
where c; are real coeflicients, ¢y # 0, and ¥ is a root of the indicial equation
Y —-1)+(N-19=0.

The larger root ¥ = 0 always yields solutions of the form (4.29); such solutions are bounded near 0 and they
are all scalar multiples of ¥. Now, since the smaller root, ¥ := —(IN — 2), is also an integer, the linearly
independent solution ¢ is either given by (4.29) (with 9 = —(N — 2)), or by the formula

o(r) = Cy(r)logr + z(r) (4.30)
where z is as in (4.29) with ¢g # 0 and C' € R (possibly C' = 0), see [28, Theorem 4.5], for example. In either
case, (4.28) holds.

We use the linearly independent solutions v, ¢ in the variation of constants formula. The homogeneous
equation (4.14) can be written as

-1

@z, +wlr) (<15 i) =0

The Wronskian of the solutions 1, ¢, that is, the function

satisfies (w(r)W(r))" = 0 for all » > 0 (as long as w(-, «) stays positive) and w(ro)W(rg) = 1 (cp. (4.15),

(4.27)). So W(r) = 1/w(r) for all » > 0. A standard variation of constants formula (easily verified by direct
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differentiation) yields the general solution of (4.16):
) = (1= [ o) Rlore(s)ds) vt
+ (62 + /TU w(s) fr(s)(s) ds) o(r). (4.31)

Here ¢1,co € R are arbitrary parameters. For (4.31) to give a solution with z(rg) = 0, it is necessary and
sufficient that ¢; = 0. For this solution to also be bounded as » — 0, it is necessary that

co + /07“0 w(8) fr(s)¥(s)ds = 0.

This follows from the boundedness of ¥, fi, and formulas (4.28), (2.12). Thus, we get

o) = ~lr) [ WA (s)e(s)ds  o(r) [ wlo) o)) ds, (432

showing in particular that the solution of (4.16), (4.17) is unique. Using (4.28), (2.12), one verifies easily
that the function z given by (4.32) is bounded near r = 0, so it is the unique solution of (4.16), (4.17).
Differentiating (4.32) and using (4.27), we obtain

1 "o
)/0 w(s) fr(s)Y(s) ds. (4.33)

w(ro

2'(ro) =

We now summarize the above computations, bringing back the a-variable. Using (4.12), (4.16), (4.17),
and substituting from (2.12), we obtain that for k = 2,3, ...

FO(() = w(i" ) / " N1 (s, )5, 00 ds, with o = 6(0) (4.34)
0) Jo
where
fe(r,a) = pwpfl(r, a)é’;w(r, ) — 3§wp(r, Q). (4.35)

STEP J: Estimates of F"'(¢) as ¢ /* o and the proof of statement ()(a) of Proposition 4.1.
For k = 2, formulas (4.34), (4.35), (4.13) give
Q) = P [ e s, 0 s, 0) ds (o= (0), (4.36)
w(ro) Jo
Recall that ¢3(-,«) > 0 on [0, R) D [0, o] for all a > o*.
We have o — 0o as ( — (p. Also, for any s € (0, rq],
lim (w(s, @))P729%(s,0) = (Poo ()72 (Yo (5))°

e (4.37)
25 20-0 /-1 (4 ()

(see Step 1). Now, by (4.24), ¥ is a nonzero scalar multiple of the solution vy in Lemma 2.5. Moreover,
being the limit of (-, ), ¥ is nonnegative (hence positive) in (0, ro]. Therefore, by (2.16), there is a positive
constant ¢; such that
38 3 . —1_38
15" < (Yoo(8))” < €] s (s € (0,79)). (4.38)

Assume now that (4.6) is true. It follows from (4.36)—(4.38) and Fatou’s lemma that for some positive
constant ¢y one has

0
limsup F”(¢) < —62/ sN—1+36=2(p=2)/(p=1) g, (4.39)
¢.Co 0
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By (4.6), the integral is infinite, hence (4.8) holds. With this we have completed the proof statement (ii)(a)
of Proposition 4.1.
Returning to (4.36), we now find the limit of F”(() assuming (4.6) is not true, that is,

2(p —2)
(p—1)
Using the relations (2.22) and w(r, @) < ¢oo(r), we find an upper bound on the integrand in (4.36) in the

form ¢s7, where ¢ > 0 is a constant. By (4.40), this is an integrable function, hence (4.37) and the Lebesgue
dominated convergence theorem yield the finite limit

yi=N—-1+383— > —1. (4.40)

—1)Lp=2 [T0 2
lim F"(¢) = —p(pi/ sNT1=2= 2=l e=s" /4 (4 () ds. 4.41
lip F(0) = PR (e (5) (441
STEP 5: Fredholm alternative and the proof of statement (ii)(b) of Proposition 4.1.

We assume that A\ = 0 is an eigenvalue of (2.11) (that is, F'({o) = G’({o)) and (4.40) holds. Thus the
limit lime ¢, F”(C) is given by (4.41) and it is finite. We claim that for the relation

lim F"(() =G" 4.42
lm F'(0) = 6" (&) (1.42)

to hold it is necessary that -
sNﬁl*Q(pfz)/(pfl)6752/411220(s) ds = 0. (4.43)

0
We first prove this claim and then verify that (4.43) does not hold. This will prove statement (ii)(b) and
complete the proof of Proposition 4.1.
To prove the claim, assume (4.42). According to (4.12), the finite limit in (4.42) is also the limit of
(8a)2w, (9, ) as o — oo. Therefore, using the condition (9,)2w(re, ) = 0 (cp. (4.17)) and taking the
limit in Eq. (4.16) with k& = 2, we infer that, as o — oo,

Z2('7 a) = (éa)Qw('7 (LY) - Z2OO in Clloc(()? OO)

where 25° is the solution of the initial value problem

ot (S = ) ot (5 0 0) = 50 (1.49)
2(ro) =0, 2'(ro) = G"(¢o), (4.45)

with o
f52(r) = —p(p = V)@ (1), (r) = —p(p — DLP~2r~ 77T 43 (r) (4.46)

(oo s as in (4.22)). We can also take the limit in the variation of constants formula for z3(-, ), namely,
formula (4.32) with k = 2, fr = fr(,a), ¥ = ¥(-,a), and ¢ = (-, «)—the solution of the linear equation
(4.14) with the initial conditions (4.27). This gives

50 = —unr) [ " ()5 (5)pe(5) ds — 9o (1) / () 15 (5)hoe(s) ds, (4.47)

where @o is the solution of (2.15) with peo(19) = 0, ¢l (ro) = —1/w(rg). Note that 1, poo are linearly
independent solutions of the homogeneous equation (2.15) and (4.47) is a version of the variation of constant
formula for the solution 25°; it is valid for all r > 0.

We next use the relations F'(¢y) = G'(¢o) and (4.42) to show that the function 1%/ =1 25°(r) is bounded
as r — oo. By (4.19), (4.20),

G"(Go) = (00)*ur(ro, €) | ,_- (4.48)



P. Poldcik and P. Quittner / Nonlinear Analysis 191 (2020) 111639 19

Just like 25°, the function

. ~ 1 up(r, £)
= (9¢)?u(r, ¢ = ) : 4.49

2a(r) i= @07 ulr O]y u(ro, L) ’ <Ue(7“0,£) et (4.49)
is a solution of a nonhomogeneous linear equation, namely, Eq. (3.10) with the function w(r, L) on the
right-hand side replaced by the function

~uy(r, L)

ggu(?‘, g) |(=L = m

From Step 2 we know that this function is identical to 1¥o.. Thus z3° and Z5 both solve equation (4.44). Also,
since dpu(ro,€) = 1 for all £ ~ L, we have Zy(ro) = 0. Thus, (4.48) and (4.45) imply that Z, = 25°. The
boundedness of the function %/ =1 25°(r) as r — oo is now a consequence of (4.49), Remark 3.4 and the
fact that the function 2/(P=Dy,(r, L) is bounded as r — oo (cp. Lemma 3.2).

We now prove (4.43), making use of (4.47). (Alternatively, one could invoke the Fredholm alternative for
the nonhomogeneous equation (4.44) after estimating the solution 25° and its derivative near r = 0.) We
need some information on the asymptotics of the function ¢ () as r — co. Recall that the asymptotics of
1o 18 the same as the asymptotics of the function ; given in (2.19).

Similarly as for the functions v, ¢, the Wronskian of the functions ¢, 1, satisfies the following identity

B (P00 (1) — oo (PPl () = ﬁ (r > 0).

Therefore, for large enough r we have (1o (r) # 0 and)

i Poo(r) _ 1
dr Yoo(r) — w(r)y3(r)

Hence, for any R > 0 there is a constant ¢ such that

Poo(r) = eolr) (—/Rw();m()d)

Using this, the asymptotics of ¥, and expression (4.46), one shows via a simple computation that the

(4.50)

function wf$°p. is integrable on (rg,00). Also, the growth of ¢, and the boundedness of the function
r2/(P=1) 259(r) as 7 — oo imply that the coefficient of ¢ (r) in (4.47) approaches 0 as r — oo, that is, (4.43)
holds. This proves our claim.

It remains to prove that (4.43) does not hold. Recall, that we assume that A = 0 is an eigenvalue of (2.11),
or, in other words, that for some j > 2 we have

1
Aj=§+p—_1+j:0 (4.51)

(cp. Lemma 2.4). Also recall that ¢ is an eigenfunction associated with ;. As shown in [13,19], up to a
scalar multiple, 1o (1) = 7% M;(r? /4), where

M;(z) = M(*j,ﬂ + g Z) (4.52)

is the standard Kummer function. The assumption A; = 0 yields formula (4.9) for p = p; and b .= g + %

can be expressed as
b= (N —4(j — 1))/ (4) - 2). (4.53)

Note that (4.40) implies that b —j — 1 > 0.
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Using (4.52), (4.53) in the integral in (4.43) and making the substitution z = s%/4, we see that (4.43) is
equivalent to the following relation

/ 2I2e M3 () dz = 0. (4.54)
0

Since j is an integer, the Kummer function M; can be expressed in terms of a generalized Laguerre

polynomial of degree j:
r'(j+1)I()

'@+
(I" stands for the standard Gamma function). Thus we have the following relation equivalent to (4.43):

M(*jabvz): L(jabf]-az)

/ 271722 13(4,b— 1,2) dz = 0. (4.55)
0

Since B := b—j —1 is positive, Proposition A.1 in the Appendix shows that the integral in (4.55) is positive.
Thus (4.43) does not hold, and the proof of Proposition 4.1 is complete.

Remark 4.4. Returning to Remark 4.3, we comment on the validity of relations (4.10), which could be
used instead of Step 5 and the Appendix in the proof of (4.1). By (4.18) and the chain rule, the function
sN=Lfi(s,@)(s, ) in (4.34) contains in particular the term

plp=1) ... (p =k +1)s" " (w(s, a))" Y (s, a)

whose limit as o oo is

2(p—k)

P Rpp—1) .. (p—k+ 1)V T (ghao(s))F !

(cp. (4.37)). This term has the singularity of

2(p—k)
SN—l— (;fn +(k+1)B
at s = 0. Since S + p%l = —2j for some j > 2 (cp. (4.51)), this singularity is not integrable near 0 if k is
large enough. This makes it reasonable to expect that (4.10) holds for some k > 2. However, to make this
into a proof, one would need to account for all the other terms in s™¥ =1 f;(s, @)1 (s, @) obtained from (4.18).
It is difficult to keep track of possible cancellations of the singularities of these terms in the limit as o — oo.

Appendix. Integrals with Laguerre polynomials

Proposition A.1. Let -
1 B-1 — . .
Q;(B) = m/o 2P~ 1e L3 (4, B + j, ) de, (A1)
where B >0, j > 2 and ‘
J . i
. (] taNx
L ) &by = -1 l( . . )i A2
G =30 (1) (A2)
is the generalized Laguerre polynomial. Then Q; is a polynomial in B with positive coefficients; in particular,

Q(B) > 0 for any B > 0.

Positivity of similar integrals involving Laguerre polynomials has been established in a number of
combinatorics papers (see for example [7,27] and references therein). However, in these papers special
relations between the exponent of x and the second argument of L are needed, and we were not able to
make use of the integrals or techniques in these papers for proving Proposition A.1. Our proof is completely
independent.
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Proof of Proposition A.1. Given integers ni,no, set
no
172(B) = [[ B+n)  (Tp2(B)=1if ny > ny).
n=ni
Let 0 < i,m,n < j. The recurrence relation for the Laguerre polynomials and the orthogonality of these
polynomials (see [1, Chapter 22], for example) give

j .
. . 2] —i—m )
L(j,B+j,xz)= ( . )Lm,B—i—z—Lx, A3
( =3 (7w ) (A3)
and o
/ Pl L(m,B+i—1,z)L(n,B +i—1,z)dz
’ I'(B ; I'(B (A-4)
_ I +m+2)6nm _I( )T6n+i_1(B)6nm~
m! m/!
Using (A.2), (A.3), and (A.4), we obtain
1 ¢ i(BH2INL [ piin —arag -
G = g 0 (LY ) [ e G B
J N\ L2 —iemN2 1
_ i 7 m-+i—
= V()@ Y (YT e s),
i=0 m=0
hence ,
1, o 21
Qi(B) = ZTH(B) Y. 8(B),
m=0
where )
J . .
g 2] —7—m\2 1
Sim(B) =Y (-0 () (T
; ! J—m T;{:z(B)
We show that the polynomial TOQj (B)S;,m(B) has positive coefficients for each m =0,1,..., 7.
Given j > 0,0 < ky < ks and B > ko — j, set
J . . .
. (] Vi + kl — i\ 2 1
S(]Jﬁvk%B) = (_1)Z(~)( ) j+1 :
; L oy Tfjkﬁi(B)
Notice that S(j,j —m,j —m, B) = S, m(B).
Using the identities
J+1 J J j+1+i j+i
( i ) - (z) + (z - 1)’ T kys(B) = Tk (B +1)
and the induction in j, one easily obtains
i + ka)! 1
(5,0, ks, B) = U1 F2) . k>0, B>ko—j. (A.5)

5

ka! Tjikz (B)

Next assume j > 2, 0 < ky < ko, and B > ko — j. Using the identity
(G+k—i)2=(G +k)?—i(2) +2k — 1) +i(i — 1)

and denoting

41 j—14i—1 j—2+1—2
E = Tf*kg#»i(B) = Tjjflj_kgﬁﬁfl(B + 2) = T;727k2+’i72<B + 4)
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we obtain
S(j7k17k27B)
1 SN (TR — L= iN2[( 4 k1)? — (25 + 2Ky — 1) + (i — 1)]
_k?;(_l)(i)( k-1 ) T,
LGt R)AS, iyt k-1 —iy2 1
k2 ;(_1)(2')( ki—1 )i
(2]+2k1—1 )i G=1IN/j—1+k —1—(i—1)\21
T Z 1(i—1>( k1 —1 )i
3—1 J Jin J=2\(J—2+k —1—-(i—2)\21
,Z 2(@'—2)( ki —1 )1_;
G +k1) (2j + 2ky — 1)

S(j, k1 —1,ka, B) + ) S(j—1,k1 —1,k2, B+2)

K K

(i1
+%S(j—2,k1 —1,ko, B+4).
1

Repeating this argument finitely many times, we obtain

S(]v k17k2aB) = Z Cj7k15(57]%17k2a3+2(j _3))7 (A6)
(G,k1)eA

where

A={(,k1):0<7<j, 0<ky <k, either k; =0or j <1},

¢ gy = 0and 30, c57, > 0.

Fixj>20<m<j k =ky=j—m, B>0,andlet (j,k;) € A. Then (A.5) and the definition of
S(]7kl7k27 ) lmply

j ! 1 -
U 4]; 1:32) . - if by =0,
> T2, 5(B)
~ 7 . ~ 1 e
S(]7k1ak27B+2(.]_])): lf]:())

) 1, (B)

(k2 4 2k1)(B+2j) 4+ ko + 1 iy
- -
T2J 1— kQ(B>

This and (A.6) imply the desired conclusion. O
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