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THE BRAUER GROUP OF .#,; OVER ALGEBRAICALLY CLOSED
FIELDS OF CHARACTERISTIC 2

MINSEON SHIN

ABSTRACT. We prove that the Brauer group of the moduli stack of elliptic curves .# 1, over
an algebraically closed field k of characteristic 2 is isomorphic to Z/(2). We also compute
the Brauer group of .# 1 where k is a finite field of characteristic 2.

1. INTRODUCTION

Let 17 denote the moduli stack of elliptic curves over Z. For any scheme S, we denote
by A 1,5 := S Xz M1 17 the restriction of .# 1 7 to the category of schemes over S.

Antieau and Meier [AM16, 11.2] computed the Brauer group Br.#) s for various base
schemes S, and in particular proved that for any algebraically closed field k of characteristic
not 2 the Brauer group Br .# 1, is trivial. The purpose of this note is to compute Br . 1 5, in
the characteristic 2 case. This then completes the calculation of Br . ; , over algebraically
closed fields k. We summarize the result in the following theorem.

Theorem 1.1 ([AM16, 11.2] in chark # 2). Let k be an algebraically closed field. Then
Br 4, 1 is 0 unless char k = 2, in which case Br 41 1, =7Z/(2).

To prove the theorem, we calculate the cohomology groups H% (.4 1k, it,) for varying n.
There are essentially two ways to approach this calculation: (1) using the coarse moduli
space; (2) using a presentation of .Z; ) as a quotient stack. In this paper we give a new
proof of the Antieau-Meier result using approach (1), and calculate in characteristic 2 using
approach (2).

We also compute the Brauer group of .# 1, where k is a finite field of characteristic 2:

Theorem 1.2. Let k be a finite field of characteristic 2. Then

Z/(12)®Z/(2) ifx®+x+1 has a root in k

Br #11% =
AL {Z/(24) otherwise.

An outline of the paper is as follows.

In Section 2 we state definitions and recall general facts about the Brauer group of algebraic
stacks.

In Section 3 we record some general remarks regarding Br .#) ; 5. We show that if S is a
quasi-compact scheme admitting an ample line bundle and if at least one prime is invertible
on S, then Br.#) ;s ~ Br' .#15. The restriction of .#, 7 to the dense open substack of
elliptic curves E/S with j-invariant j(F) € T'(S,Og) for which j(E) and j(E) — 1728 are
invertible is a trivial Z/(2)-gerbe over the coarse space A} \ {0,1728}, and we use this fact
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to conclude that Br.# 1 is a subgroup of Z/(2) & Z/(2) for an algebraically closed field k
of arbitrary characteristic.

In Section 4 we give a second proof of Antieau and Meier’s result above (that Br .#; 1, = 0
if k = k and char k # 2). Using a dévissage argument, we study the relationship between the
cohomology of i, on the stack .#; 1 and on A}, in terms of the stabilizer groups of elliptic
curves with j-invariant 0,1728 € Al. This may be of independent interest for computing the
Brauer groups of other separated Deligne-Mumford stacks whose coarse moduli space is a
smooth curve over an algebraically closed field with vanishing Picard group.

In Section 5 we prove Theorem 1.1 and Theorem 1.2. Antieau and Meier suggest in [AM16,
11.3] that the characteristic 2 case can be settled using the GLo(Z/(3))-cover Y (3) — 411k,
where Y (3) denotes the moduli stack of elliptic curves with full level 3 structure, and indeed
we use this presentation .1, ~ [Y(3)/GL2(Z/(3))] as a global quotient stack to show
that its Brauer group is in fact nonzero. We use the “Hesse presentation” of Y(3) as in
[FO10]; it is shown in Appendix A that this presentation coincides with the usual Weierstrass
presentation as in [KM85]. The cohomological descent spectral sequence associated to the
covering Y (3) — .#1 1 reduces our task to a computation of the first group cohomology of
a 6-dimensional representation of GLo(Z/(3)) over Fs.

1.3 (Acknowledgements). I thank my advisor Martin Olsson for suggesting this research topic
and for his generosity in sharing his ideas. I am also grateful to Benjamin Antieau, Siddharth
Mathur, and Lennart Meier for helpful discussions. During this project, I received support
from the Raymond H. Sciobereti Fellowship.

2. THE BRAUER GROUP OF ALGEBRAIC STACKS

Let (X, Ox) be a locally ringed site [Gir71, V, §4], [Stal8, 04EU]. For any quasi-coherent
Ox-module &, we set GL(&) = Auty, _,0,q(€) and let PGL(&) be the sheaf quotient
of GL(&) by G,, x via the diagonal embedding. We denote GL,(Ox) := GL(O%") and
PGL,(Ox) := PGL(O%"). A basic fact about these groups is the Skolem-Noether theorem,
which states that the morphism

PGLL(Ox) = Attty (Mat(Ox)
is an isomorphism (see [Gir71, V.4.1]).

Definition 2.1 (Azumaya algebras). [Gro68a, §2], [Gir71, V, §4] Let (X,Ox) be a locally
ringed site. An Azumaya Ox-algebra is a quasi-coherent (non-commutative, unital) Ox-
algebra &7 such that there exists a covering {X; — X};c;, positive integers n;, and Oy;-
algebra isomorphisms | x, >~ Mat,,, «xn, (Oy,).

Two Azumaya algebras o) and % are Morita equivalent if there exist finite type locally
free Ox-modules & and &, everywhere of positive rank, and an isomorphism

”Q{l ®OX E—ndox—mod(gl) = ’% ®OX E—ndox—mod(82)

of Ox-algebras. Under tensor product of Azumaya algebras, Morita equivalence classes of
Azumaya algebras form an abelian group Br X called the (Azumaya) Brauer group of X
in which [«/]7' = [&/°P] and the identity element is the class of trivial Azumaya algebras

[E—ndox—mod (8)] :
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Definition 2.2 (Gerbe of trivializations). [Gir71, IV, §4.2], [Ols16, 12.3.5] There is a natural
way to associate, to every Azumaya Ox-algebra o7, a G,, x-gerbe G, called the gerbe of
trivializations of </. An object of G, is a triple

(U,&,0)

consisting of an object U € X, a finite type locally free Op-module € (necessarily everywhere
positive rank), and an isomorphism o : End, _.,q4(€) — &[v of Op-algebras. A morphism

(f, fﬁ) D (U, €1,00) = (Us, &2, 09)

consists of a morphism f € Morx (Uy, Us) and an isomorphism i &y — & of Oy,-modules
such that o2 = 01 0 psz where py: denotes conjugation by f*. For any object (U, €,0) € G,
there is a canonical injection

Lugo) t Gmu — Aut e o

of sheaves on X /U, sending u + (idy, u); this is in fact an isomorphism, since if (idy, f*) €
Autg, @ (U, E,0)) then f* € Z(Endoy,-mod(£)), which coincides with Oy since Z(Mat,x,(A)) =
A for any commutative, unital ring A.

By the Skolem-Noether theorem, any two local trivializations of o7 are locally related by
an automorphism of the trivializing vector bundle &£, i.e. any two objects of G, are locally
isomorphic. Furthermore, according to the definition, an Azumaya algebra is locally trivial,
i.e. for any U € X there exists a covering {U; — U} such that the fiber category G (U;) is
nonempty. These considerations show that G, is a G,, x-gerbe.

The assignment o/ — G, induces a group homomorphism
(2.2.1) oy BrX — H(X,G,, x)

which is injective since a G, x-gerbe G is trivial if and only if G(X') is nonempty.
For a morphism
(f, /%) : (X,0x) = (Y, Oy)
of locally ringed sites, the diagram

/

BrX —5 H2(X, Gp.x)
(2.2.2) fﬁ T e
BrY —— H(Y,G,,y)
Qy

1S commutative.

Lemma 2.3. Let 2" be a G,, x-gerbe over a locally ringed site X. The class [Z] €
H?*(X, Gy, x) is in the image of oy if and only if 2 admits a 1-twisted finite locally free
sheaf of everywhere positive rank.

The usual proof (c.f. [dJ03, 2.14], [Lie08, 3.1.2.1], [Ols16, 12.3.11]) of Lemma 2.3 applies
more generally to the case of G,,-gerbes over an arbitrary locally ringed site.

We will only consider locally ringed sites (X, Ox ) whose underlying site X is quasi-compact
[Stal8, 090G]. For such X, the Brauer group Br X is a torsion group.
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Definition 2.4. The torsion subgroup of H*(X, G, x), denoted Br’ X is called the cohomo-
logical Brauer group and the restriction

(2.4.1) ax :BrX — Br' X

of oy to Br’' X is called the Brauer map.

We will consider algebraic stacks using the étale topology except in Section 5 (the case of
characteristic 2) in which we will require the flat topology.

Surjectivity of the Brauer map may be checked on a finite flat surjective covering (c.f.
[Gab78, II, Lemma 4], [dJ03, 2.15], [Lie08, 3.1.3.5]):

Proposition 2.5. Let f : X — Y be a finitely presented, finite, flat, surjective morphism of
algebraic stacks. A class B € HX(Y,G,,y) is in the image of ol if and only if its pullback
f*B € H3(X,G,, x) is in the image of oy.

Proof. Let % be the G,, y-gerbe corresponding to 8. Set 2 := X xy % and let F': Z" = %
be the induced morphism of algebraic stacks. If 2 is in the image of o'y, then there exists
a 1-twisted finite locally free O4-module & of everywhere positive rank. The pushforward
F.& is a 1-twisted, finite locally free Oz-module of everywhere positive rank. Hence % is in
the image of o, .

The other direction follows from commutativity of the diagram (2.2.2). O

Corollary 2.6. Let f : X — Y be a finitely presented, finite, flat, surjective morphism of
algebraic stacks. If ax is an isomorphism, then ay is an isomorphism.

Corollary 2.7. Let X be a smooth separated generically tame Deligne-Mumford stack over
a field k with quasi-projective coarse moduli space. Then the Brauer map ax is surjective.

Proof. By Kresch-Vistoli [KV04, 2.1,2.2], such X has a finite flat surjection Z — X where
Z is a quasi-projective k-scheme. By Gabber’s theorem (see [dJ03, 1.1]), the Brauer map is
surjective for Z. Thus the Brauer map is surjective for X by Proposition 2.5. U

Remark 2.8. If char k # 2, the stack .# 1 is generically tame and so Corollary 2.7 implies
surjectivity of the Brauer map « 4, , . For the case char k = 2, see Lemma 3.1.

3. PRELIMINARY OBSERVATIONS

The purpose of this section is to prove Lemma 3.4 below. Let us start, however, with a
few preliminary observations about the stack .#; ; and its Brauer group.

The stack .#, 17 is a Deligne-Mumford stack smooth and separated over Z [Ols16, 13.1.2];
hence if S is a regular Noetherian scheme then .# ; s is a regular Noetherian stack. For any
locally Noetherian scheme S, the morphism

[ e%1’175 — A}g
sending an elliptic curve to its j-invariant identifies A§ with the coarse moduli space of .4 1 g
[FO10, 4.4].
In general, if 2" is a separated Deligne-Mumford stack and 7 : 2~ — X is its coarse moduli

space, then 7 is initial among maps from 2~ to an algebraic space, so the map X (G) — 27(G)
is an isomorphism for any group scheme G; moreover if U — X is an etale morphism, then 7y :
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2 xxU — U is a coarse moduli space. Applying these observations to G = G, G,,, i, implies
that the canonical maps Ox — 7,04, Gy x — TGy 27, o, x — Tifin 2 are isomorphisms;
thus we will omit subscripts and denote f,, G,, for the corresponding sheaves on either . ; s
or Ag.

Lemma 3.1. Let S be a quasi-compact scheme admitting an ample line bundle, and suppose
that at least one prime p is invertible in S. Then the Brauer map o 4, , 4 : Br Mg —
Br' 15 is an isomorphism.

Proof. By [KM85, 4.7.2], for N > 3 the moduli stack of full level N structures is representable
by an affine Z[+]-scheme Y (N). Set Y/(N)g := Y (N) X711 S5 the projection Y(N)s — S'is
an affine morphism, hence Y (N)g is quasi-compact and admits an ample line bundle, hence
the Brauer map ay(n)y is surjective by Gabber’s theorem (see [dJ03]), and, since the map
Y(N)s — A1, is finite locally free, we have by Corollary 2.6 that a4, , ¢ is surjective. [

Lemma 3.2. Let U := Spec Z[t, (t(t — 1728)) "] C Ay and let MY, 7 := U X M1 17. Then
the restriction 7° : My, 5 — U of w to U is a trivial Z/(2)-gerbe, i.e. M7, 5~ B(Z/(2))y.

Proof. Let S be a scheme and let Ey, Ey be two elliptic curves over S. If j(E,) = j(E) €
I'(S,Os) and j(E;),j(E;) — 1728 are units of I'(S, Og), then by [Del75, 5.3] one can find a
finite étale cover S’ — S such that there is an isomorphism S’ xg E; ~ S5’ xg Fs of elliptic
curves over S’. For any connected scheme S and an elliptic curve E/S for which j(£) and
Jj(E) — 1728 are invertible, we have Aut(F/S) ~ Z/(2) by [KM85, (8.4.2)]. It suffices now to
show that there is an elliptic curve Ey over U with j-invariant ¢. For this we may take the
elliptic curve Ey defined by the Weierstrass equation

Y2Z+XYZ:X3 pa 1728XZ2 = 1728

73
which satisfies A(Ey) = = 1728 — = and j(Ey) =t (see [Sil09, Proposition III.1.4(c)]). O

Lemma 3.3. Let k be an algebraically closed field and let U be a smooth curve over k. If
Pic(U) = 0, then Br' B(Z/(2))y ~ (G,,(U))/(2).

Proof. The cohomological descent spectral sequence associated to the cover U — B(Z/(2))v
is of the form

(3.3.1) By = HP(Z/(2), H4 (U, Gw)) = HE(B(Z/(2))v,Gum)
with differentials E5? — E5T>9"'. We have by [Mil80, 111.2.22 (d)] that H% (U, G,,) = 0 for
all ¢ > 2. Moreover, we have H, (U, G,,) = Pic(U) = 0 by assumption. Thus the only row of
the Eo-page of (3.3.1) containing nonzero entries is ¢ = 0, which gives an isomorphism

H& (B(Z/(2))v, Gn) = HA(Z/(2), Hy (U, G)) = (G (U))/(2)
of abelian groups. O

Lemma 3.4. Let k be an algebraically closed field. If chark # 2,3, then Br' #11y is a
subgroup of Z/(2) ® Z/(2). If chark is 2 or 3, then Br' M1 is a subgroup of Z/(2).

Proof. We have that .# 1 is regular Noetherian and that .#7, ; := 47, 7 Xz k is a dense
open substack; thus by [AM16, 2.5(iv)] the map

/ / o
Bl" %LLk — Bl" %Llyk
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induced by restriction is an injection. Here Lemma 3.2 implies Br' .Z7, , = Br' B(Z/(2))u
for U = Specklt, (t(t — 1728))7!], and Lemma 3.3 implies Br' B(Z/(2))v is Z/(2) & Z/(2)
if chark # 2,3 and Z/(2) otherwise (here we use that k% = (k*)? since k is algebraically
closed). O

4. THE CASE char k IS NOT 2

Antieau and Meier [AM16] compute the Brauer group Br.# ; s for various base schemes S,
including algebraically closed fields k of odd characteristic [AM16, 11.2] (the case char k # 2
in Theorem 1.1). In this section we give a proof via a dévissage argument, using the fact
that the coarse moduli space morphism 7 : .# — Al is a trivial Z/(2)-gerbe away from
0,1728 € A} (see Lemma 3.2). Our proof is divided into two cases, depending on whether
char k = 3 or char k # 3 (this will determine whether we puncture A} at one or two points,
respectively). We first fix notation and record some observations that apply to both cases.

4.1. We abbreviate .# := .#1 1. By Lemma 3.1, the Brauer map « 4 : Br.# — Br' A is
an isomorphism. By Lemma 3.4, the main task is to show that the 2-torsion in Br.# is 0.

For any integer n > 1, the étale Kummer sequence
1—>,u2n—>GmX—2;Gm—>1
gives an exact sequence
(4.1.1) 0 — (Pic.#)/(2") — H*(M , ppn) — B*( M ,G,,)[2"] — O

of abelian groups. Since we have Pic.#Z ~ Z/(12) by [FO10], we wish to compute H?(.Z, pion).
Set
U := Specklt, (t(t — 1728))7'] = A} \ {0,1728}

with inclusion j : U — A} and let i : Z — A} be the complement with reduced induced
closed subscheme structure. (Thus, if chark is 2 or 3 then Z ~ Speck, otherwise Z ~

Spec k II Speck.) Set

MC ::UXA}@%
%Z ::ZXAi%

with projections 7° : #° — U and ny : M, — Z. We have a commutative diagram

M ——> M —— My

(4.1.2) ”ol lw Jﬂz

U—— A7

(3

with cartesian squares.

We have a distinguished triangle

(4.1.3) G R i — Rifrufion — 140" Ry fign
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in the derived category of bounded-below complexes of abelian sheaves on the étale site of
A}, whose associated long exact sequence has the form

HO(AL, jiR7pugn) — HY (A, pion) — HY(Z, i*Rimupion)
e 00 Al s

(4.1.4) T HY(AL, iR pgn ) — HY( A pign) — HY(Z, 7" Rimpign)

(A}, jR o) — H (A pign) — H?(Z, 7" R pizn)

since j*R,pign >~ Rl pgn and
HE (AL Rirapize) = HE (A, )
He (A}, i, R, pign) ~ H¥(Z, i* R, pign)
for all s. We will first compute the groups H*(A}, jij*Rm, 20 ) in the left column of (4.1.4).

Lemma 4.2. Let k be an algebraically closed field, let xy, ...,z € A} be r distinct k-points,
set

Z = Speck(zy) I - - - 1T Spec k(x,.)

and let U = A} \ Z be the complement with inclusion j : U — A}. For any positive integer {
wnvertible in k, we have

S y 0 ° % 1
H (Allga]!,uf) = {(Me(k))ﬁa(r—l) s=1"

Proof. Let i : Z — A} be the inclusion. We have a distinguished triangle

. .. +1
ibtelo — e —> 150" g =

in the derived category of bounded-below complexes of abelian sheaves on the big étale site
of A}, which gives a long exact sequence

HO (AL, jipteler) — HO(Ag, pe) —— H(Z, p1g) —

O HY AL yelv) — HY (A, o) —— HY(Z, pe)

ey T e T

\Q7H2(A;1€>j!,ue|U) — H2(A}, ) —— H*(Z, He) —

ey TR

\giHs(A}gJ!MdU) —

in cohomology. The map H(A}, 1us) — H°(Z, 1) is identified with the diagonal map p,(k) —
(pe(k))®r. Since k is algebraically closed, the etale site of Z is trivial, hence H*(Z, uy) = 0
for s > 1. By [Del77, Exp. 1, III, (3.6)] we have H*(A} us) = 0 for s > 2. We have
Gn(A}) =~ G,,(k) and the multiplication-by-¢ map x/ : G,,(k) — G,,(k) is surjective; thus
HY (A}, ) = HY (A}, G,,)[(] = (Pic A)[(] = 0 by the Kummer sequence. O
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Lemma 4.3. In the setup of Lemma 4.2, let n be any positive integer and let m° : B(Z/(n))y —
U be the trivial Z/(n)-gerbe over U. Then
0 ifs=0,
H (A, jR7 ) = q (pe(k)) =0 ifs=1,
(Hged(n,g) (k)20 if s =2.

Proof. We set
C = jRmp

for convenience. We will compute the groups H*(A} C) using the fact that the canonical
truncations 7<,C satisfy

(4.3.1) H* (A}, 7<,C) ~ H*(A;,C)
for s <t. For any s € Z, the distinguished triangle
(4.3.2) 7o 1C = 72,C — (R*C)[—s] 5
gives a long exact sequence
HO(A}, 7<s1C) — HY(A}, 7<,C) — H (A}, R m ) —
///////,
(4.3.3) — HY(A}, <o 1C) — HY (AL 7<.C) — HI™(AL iR 7o) —
//////,
— H2 (A}, Tes1C) — H2(AL, 7<,C) — H25(AL, JR 72 )
where
h°C = R e
since 7 is exact.
Since 7° : B(Z/(n))y — U is a trivial Z/(n)-gerbe, by Lemma B.1 we have
He s=0
(4.3.4) Romipe ~ ¢ weln]  s=1,3,5,...
pe/(n) s=2,4,6,...

where p,[n] and p,/(n) are defined by the exact sequence
1= pagn] — e =3 pug — pae/(n) — 1

of abelian sheaves. Since k is algebraically closed of characteristic prime to ¢, the sheaves
pe[n] and pg/(n) are both isomorphic to figed(n,e), but for us the difference is important for
reasons of functoriality (as ¢ is allowed to vary). More precisely, if ¢; divides ¢, then the
inclusion pp, — ptg, induces an inclusion

ey [n] — My [n]

whereas

(4.3.5) pe [ (n) = pae, / (n)
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is not necessarily injective since an element x € i, which is not an nth power of any y; € 1,
may be an nth power of some yy € py, (in particular, if ¢5 = nf;, then (4.3.5) is the zero
morphism).
We have
7<oC = h°C =~ IR Wy =~ jimlpue = Jipse
since 7° is a coarse moduli space morphism and R'7u, ~ Pecd(n,e) Dy (4.3.4). Applying
Lemma 4.2 to the case s = 1 in (4.3.3) implies H°(A}, 7<;C) = 0 and gives isomorphisms
HY (AL, jipe) 2= HY (A, 7<1C) and H2(AL, 7<1C) o= HY (AL, jipteean.o))-
Since R*To e = figea(n,e) by (4.3.4) and H¥ (A}, jiptged(n,e)) = 0 for s = —2,—1,0, the case
s = 2 in (4.3.3) gives isomorphisms H*(A}, 7<;C) ~ H*(A}, 7<»C) for s = 0, 1,2, which implies
the desired result. d

4.4 (Proof of Theorem 1.1 for chark = 3). If chark = 3, then Z consists of one point, so
taking r = 1 in Lemma 4.3 implies

(4.4.1) He(Ay, jR7pign) = 0

for s = 0,1, 2. Therefore, to compute H*(.#, jion ), it now remains to compute H*(Z, :* R, ign)
in (4.1.4). The stabilizer of any object of .# of lying over i : Z — A} is the automorphism
group of an elliptic curve with j-invariant 0, which is the semidirect product I' = Z/(3) xZ/(4)
since k has characteristic 3. The underlying reduced stack (.#7)eq is the residual gerbe as-
sociated to the unique point of [.#| and is isomorphic to the classifying stack BI'y. We have
natural isomorphisms

-k % 1 2 3
H2(Z, iRy pign ) ~ i* R, pion ~ H2 (M g, pign) = H*(BLy,, pign) ~ HA(T, paon (k)

where isomorphism 1 follows from proper base change [Ols05, 1.3], isomorphism 2 is by
invariance of étale site for nilpotent thickenings and the fact that 2" is invertible on .#, and
isomorphism 3 is by the cohomological descent spectral sequence for the covering Spec k —
BT, (and the fact that H'(Speck, pgn) = 0 for @ > 0 since k is algebraically closed). The
Hochschild-Serre spectral sequence for the exact sequence

1-2Z/3)—-T—-2Z/(4) =1
gives an isomorphism

H2(T, pizn (k) o= H(Z/ (4), pzn (k) = o2 (k) /(4)

where H*(Z/(3), pan (k)) = 0 for i > 0 since 3 is coprime to the order of g (k). Since the first
term in the last row of the diagram (4.1.4) is zero by (4.4.1), the above observations imply
that we have natural inclusions

H2 (A i) — pizn (k) /(4)

compatible with the inclusions pign C pign+1 for all n. The inclusion pon C pign+2 induces the
zero map fugn (k) /(4) = pon+2(k)/(4), so H2 (A , pion) — H2( M , piyn+2) is the zero map as well,
hence

h—n}neN HA (A s pizn) = 0
which by (4.1.1) gives H*(#,G,,)[2"] = 0 for all n.
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4.5 (Proof of Theorem 1.1, for char k # 2,3). We describe the terms in (4.1.4). For the right
column, we have

H*(Z, iR, pion) ~ HY(Z/(4), pan (k) & H(Z/(6), pan (k)
by [ACV03, A.0.7]. For the middle column, we have
HO(%, ,ugn) ~ HO(A}W ,LLQn) ~ Iugn(]{?)
since A} is the coarse moduli space of ., and we have
1 2 3
H' (A, i) ~ HY (A, G)[2"] = (Z/(12))[27] = Z/(4)

where isomorphism 1 follows since k% = (k*)?", isomorphism 2 is by [Mum65], and isomor-
phism 3 holds for n > 0. For the left column, we have

0 s=0
H*(r<ijiRmpgn) = q pan s =1
K2 §=
by Lemma 4.3.
To summarize, (4.1.4) simplifies to
O /I,Qn /,L2n EB IUQn —
—

g ————— H2( M, pign) — pian /(4) @ pian /(6)

for n > 0, and counting the number of elements in each group in (4.5.1) implies that the last
morphism

H? (M, pion) — pion [ (4) @ pon /(6)

is injective. Furthermore, the inclusion

Han C fhgn+2

induces the zero map

pian [ (4) @ pan /(6) — pgn+2 /(4) @ pign+2/(6)

so the map H?( A, pon) — H2( M , pign+2) is the zero map as well, hence
liﬂneN H2(%7 :u2”) =0

which by (4.1.1) gives H*(A,G,,)[2"] = 0 for all n.
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5. THE CASE chark 18 2

In this section we prove Theorem 1.1 (in case chark = 2) and Theorem 1.2. For conve-
nience, we denote GL,, , := GL,(Z/(p)) and SL,, , := SL,,(Z/(p)). We denote by e the identity
element of GL,, .

5.1 (Hesse presentation of .# ;). By [FO10, 6.2] (and explained in more detail in A.6),
there is a left action of GLy3 on the Z[1]-algebra

An = Z[}, p,w, Hgl_l]/(cu2 +w+1)

sending
10
0 —1 * (,u,w) = (,u,w2)
1 0]
(5.1.1) 1] ww) = (wp,w)

1 0 *(Na(")):(mvw)

for which the corresponding right action of GLy3 on the Z[3]-scheme
Su := Spec Ay

gives a presentation

(5.1.2) My zpy) ™ [St/ GLo 3]

of A 1 4 1 as a global quotient stack. The morphism

(5.1.3) Sy — //1,1,2[%]

is given by the elliptic curve
X34+ Y3+ 73 =3uXYZ
over Sy.

5.2 (Cohomological descent). Let k be an algebraically closed field of characteristic 2. The
Brauer map .4, , , : Br.# 1 — Br' .#1,1 is an isomorphism by Lemma 3.1. By Lemma 3.4,
there is only 2-torsion in Br.# ;. By Grothendieck’s fppf-étale comparison theorem for
smooth commutative group schemes [Gro68b, (11.7)], it suffices to compute the 2-torsion in
H?ppf(///171,k, Gy,). Since Spec k is a reduced scheme, we have

H (M1, Gr) = Pic( ) = Z/(12)
by [FO10, 1.1]. Thus, for any integer n, the fppf Kummer sequence
(5.2.1) 1= o = Gp B3G, — 1
gives an exact sequence
(5.2.2) 1 Z/(2) 5 B2 (M1 gy p12) — B2 (M1, G [2] — 1

of abelian groups. It remains to compute the middle term H?ppf(///171,k, 2).
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The cohomological descent spectral sequence associated to the cover (5.1.3) is of the form

(523) E127,q = Hp(GLZg, H?ppf(Ska, ,ug)) — Hp+q(%1717k, ,UQ)

fppf
with differentials B3¢ — B2
Let
ek

be a fixed primitive 3rd root of unity. By the Chinese Remainder Theorem, there is a k-
algebra isomorphism

(5.2.4) A = kw0, 2]/ (@2 w4+ 1) = ko, 7] x ke, 7]

sending p — (v1,10) and w — (£,£?). Since Sy is a smooth curve over an algebraically
closed field, we have by [Mil80, I11.2.22 (d)] that Hf (Sux, G,,) = 0 for all ¢ > 2; since
S, is a disjoint union of two copies of a distinguished affine open subset of A}, we have
Helt(SHJf, Gm) = PIC(SH’k) =0. By [Gl"068b, (117)] we have Hq (SH,ka Gm) = Hgt(SH,ka Gm)

fppf
for all ¢ > 0; thus the fppf Kummer sequence implies H?ppf(SH,k, pz) = 0 for all ¢ > 2.
Furthermore, we have H?ppf(SHvk, p2) = 0 since Sy is the product of two integral domains of
characteristic 2. Thus the only nonzero terms on the Es-page of (5.2.3) occur on the ¢ = 1

row, so we have an isomorphism
(5.2.5) HEe e (M0 1 ks 1) ~ HP(GLoyg, Hiy (S, p12))
for all p > 0. We are interested in the case p = 1.

5.3 (Description of the GLys-action on Hy ¢(Su, f12)). We describe the abelian group

M = Hflppf(SHJm :U“Q)

and the left GLg 3-module structure it inherits from (5.1.1). Since k[u, (u*—1)7!] is a principal
localization of the polynomial ring k[u] by a polynomial p3—1 = (u—1)(u—&)(1n—E&?) splitting
into three distinct irreducible factors, we have an isomorphism

(5.3.1) (klp, ) = b (= 1)% - (= )% (u — )"

’/1/3

—1
of abelian groups. Thus (5.2.4) and the Kummer sequence (5.2.1) gives an isomorphism
(5.3.2) M ~ (7/(2))%°
of abelian groups, with generators given by the classes of v; — &’ for i = 1,2 and j = 0, 1, 2.

The isomorphism (5.2.4) is given by the map

(5.3.3) s1(p)w + so(p) = (s1(11)€ + s0(11), 51(1)€% + 50(112) )

1
pu3—1

for sg, s1 € k[u, ]. The inverse of (5.2.4) is given by the map

_'_
e-e g1 —e -1
where fi(v;) € k[v;, ﬁ] (Note that, if we set A(t) = <& + gf_l and Ay(t) == =5 + —,
then A;(&7) is the Kronecker delta function.)

B34 (Bl f0n) o 0 (2 o5 )+ 00 (b ey )
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A computation with (5.1.1), (5.3.3), (5.3.4) shows that the action of GLg3 on the right
hand side of (5.2.4) is given by
10

0 —1 * (fi(n), fo(r)) = (fo(rn), f1(12))

(535 O (). ) = (). fa(0)

[0 —1] V142 vat2
10 * (fi(n), f2(12)) = ([1(85F), fo(215))

for fi(vi) € klvi, 5 5 ——=]. A computatlon with (5.3.5) (and using that char k = 2) shows that

the action of GL2,3 on (5.3.2) is given by (5.3.6), where every element is considered up to
multiplication by £*.

m—-1]n-—¢|n-&ln-1] n-¢|n-¢
1 0] 2 2
Mi=1, || e 1| -8 |- n-1n-¢|n-¢
(5.3.6) 3 .
My := _11 (i n=—&|lumn-1|nm-—E¢|m—¢|mn-&&|mn-1
- (0 —1] 1 V1—§2 I/l—f 1 I/2—§2 1/2—5
.__1 0_ 1/1—1 1/1—1 V1—1 1/2—1 V2—1 V2—1

5.4. We compute H'(GLy 3, M). (In Appendix C we provide MAGMA code that can be used
to verify this computation.) We have a filtration of groups

(5.4.1) Qs I SLy3 9 GLy

where each is a normal subgroup of the next. Here Qg denotes the quaternion group
Qs = {#e, +i, £j, £k : ik=1*=j> =k = —¢}

and is identified with the subgroup of GLj 3 as follows:

SR

The quotient GLy 3 / SLy 3 is cyclic of order 2 and is generated by M; in (5.3.6). The quotient
SLy 3 /Qs is cyclic of order 3 and is generated by My in (5.3.6). For ¢ = 1,2, let (M;) denote
the subgroup of GLy 3 generated by M;. We note that SLy 3 is generated by i and M.

Let
F . (Z[GLQQ,] -MOd) — (Z[SLQ:,] —MOd)

be the forgetful functor. An inspection of (5.3.6) implies that F'(M) is the direct sum Ny & Ny
where N; is the SLy3-submodule of F(M) generated by the classes of v; — 1,1, — &, v — &2,
and moreover My switches the summands N; and N,. Under the adjunction

Homgt, , (F(M), Ny) ~ Homgr, , (M, Indg; > (Ny))
the projection map F(M) ~ N; & Ny — N; onto the first factor corresponds to a morphism
(5.4.2) M — Indg 27 (V)
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of GLys-modules. Given m € M, write m = n; + ng for n, € N;; then the image of m
under (5.4.2) is the function ¢, € Homggy, ,)(Z[GLy 3], N1) such that ¢,,([e]) = n; and
©m([M1]) = My - ny; thus (5.4.2) is an isomorphism.

A computation using (5.3.6) and the identities

k=M;'-i M,
(5.4.3) =Myt )My
j=My1 k- M,

shows that the action of an element g € SLy 3 on N; is by left multiplication by the matrix
T, as in (5.4.4), with elements of N; being viewed as vertical vectors. We note T_ = T? =

T7? = T¢ = idy,, i.e. —e acts trivially on M.

(5.4.4) 010 111 010 0 01
T, | {0 0 1 0 01 100 1 11
100 010 111 100
Since M is an induced module, the restriction map
(5.4.5) H'(GLg3, M) — H'(SLy3, Ny)

is an isomorphism so we reduce to computing H'(SLg 3, Ny).

The Hochschild-Serre spectral sequence for the inclusion Qg < SLs 3 degenerates on the E,
page since the order of the quotient group (Ms) is coprime to the order of Nj. In particular
the restriction map

(5.4.6) H'(SLy3, N1) — H°((My), HY(Qg, Ny))
is an isomorphism.

Let C'(Qs, N1) := Fun((Qg)?, N1) denote the group of inhomogeneous i-cochains. By
Remark 5.5, the group SLg3 has a natural left action on C*(Qg, N7) (by entrywise conju-
gation on the source (Qg)” and by its usual action on Nj) such that the differentials in the
inhomogeneous cochain complex

CO(Qs, N1) B C1(Qs, N1) B C2(Qs, NY) — - -

M,) is coprime to the orders of C*(Qg, Ny),
M2 is isomorphic to the middle cohomology

are SLg s-linear. Since the order of the subgroup
we have that H0(<M2>, Hl(Qg, Nl)) ~ (Hl(Qg, Nl)
of the sequence

~—

d1)M2

(CO(Qs, MM 57 (€ (Qu, )M B (CP(Qs, V)M
i.e. cohomology commutes with taking Ms-invariants.
We now describe ker((d;)™?) and im((dy)M?).
An element f € (C1(Qg, N1))M? is a function f : Qg — N; satisfying
(5.4.7) f(g) =My - f(M;lgMg)
for all g € Qg. We have that f € kerd; if

(5.4.8) f(g1-82) =81 f(g2)+ f(g1)
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for all g1, g2 € Qs.

Suppose f € ker((di)M?) = (kerd;) N (CY(Qg, N1))M2; taking (g1,82) = (e,e) in (5.4.8)
implies f(e) = 0; taking g = —e in (5.4.7) implies that
fl—e) = (5,5,5)
for some s € Z/(2); taking (g1,g82) = (—e, —e) in (5.4.8) and using the fact that —e acts
trivially on N; implies that 2f(—e) = 0, which imposes no condition on s. We note that

g f(—e) = f(—e)
for any g € SLy 3.
Setting g =i, j, k in (5.4.7) and using (5.4.3) gives
(i) =My - f(k)
(5.4.9) f(3) =My - f(i

&.‘

respectively; thus we have

f() = (52,583, 51)
f(k) = (83,51, 52)

for some s1, s2, 53 € Z/(2).
Setting either g; = —e or go = —e in (5.4.8) implies

(5.4.10) f(—g) = f(g) + f(—e)

for any g € Qs.
Setting (g1,82) = (i, 1)), (], £k), (£k, %i) in (5.4.8) (where the signs can vary indepen-
dently of each other) all impose the condition

(5.4.11) 59 =0

for s, s (check the case (g1, g2) = (i, ), then use (5.4.10) to show that changing the signs don’t
give new relations, then use (5.4.9) to show that one can permute using left multiplication

Setting (g1,82) = (&), £i), (£k, £j), (£i, £k) in (5.4.8) (where the signs can vary indepen-
dently of each other) all impose the condition

(5.4.12) s =53

for s3 (check the case (g1,82) = (j, i), then use (5.4.10) to show that changing the signs don’t
give new relations, then use (5.4.9) to show that one can permute using left multiplication

Setting (g1, g2) = (£g, £g) for g = i,j, k (where the signs can vary independently of each
other) all impose the condition

(5.4.13) 5 =57+ 83
on s, S9, 83 (check the case g =i, then use (5.4.10) to show that changing the signs don’t give

new relations, then use (5.4.9) to show that one can permute using left multiplication by M),
but (5.4.13) is implied by (5.4.11) and (5.4.12).
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These are the only relations satisfied by the s, s1, 2, s3. Thus we have
ker((d))M?) ~ Z/(2) ® Z/(2)
since there are no relations on s, s; € Z/(2).

An element of (C°(Qg, N1))M2 corresponds to an element (¢,t,t) € Ny; since every element
of SLy 3 fixes elements of this form (see (5.4.4)), the image of (¢, ¢,t) under (do)M? corresponds
to the function f : Qs — N; sending every element to (0,0,0), in other words

im((dl)M2) =0

which implies

(5.4.14) H((My), H'(Qs, 1)) ~ Z/(2) © 2/ (2)

and so

(5.4.15) Br a1 = H?ppf(///l,l,ka Gn)[2] =Z/(2)

by combining (5.4.14) with (5.4.6), (5.4.5), (5.2.5), and (5.2.2). O

Remark 5.5 (The inhomogeneous cochain complex admits a left G-action). Let G be a
group, let H < G be a normal subgroup, and let M be a left G-module. Set P, := Z[H"™!];
we denote by [hy, ..., h;] the canonical Z-basis of P;. We view P; as a left H-module via the
diagonal action h - [hg, ..., h;] = [hhg, ..., hh;]; then P is a free left Z[H]-module with basis
consisting of elements of the form [e, hy, ..., h;]. Applying the functor Hompy(—, M) to the
bar resolution

o= Ph—=P =P —=7Z—0

gives the usual homogeneous cochain complex
Homy sy (Po, M) 2% Homysy(Pr, M) 2 Homy (P, M) — - - -
whose cohomology gives H'(H, M).

We note that there is a natural left G-action on Homg (P, M) for which the differential
0; + Homym (P, M) — Homgy)(Piy1, M) is G-linear. Namely, the action of g € G on
@; € Homgyy) (P, M) is described by

(gg01>([h0, SR hl]) =8 ((pi([g_lhog, R 7g_1h2g]>>
for all hg,...,h; € H. Let
CY(H,M) := Fun(H", M)
denote the abelian group of functions H* — M. Via the usual abelian group isomorphism
Homg s (P, M) ~ C'(H, M)
sending ; — {(h1,...,h;) — p;(e,h1,hihy, ... hy---h;)}, the abelian group C'(H, M) inher-
its a left action of GG described by

for g € G and f; € C'(H, M). The inhomogeneous cochain complex
CO(H, M) CY(H, M) S C2(H, M) — - -

is G-linear as well.
For fo € C°(H, M), we have (dofo)(h1) =hy - fo(e) — fole).
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For fi € C'(H, M), we have (dy fi)(hi,ha) = hy - fi(h) — fi(hihg) + fi(hy).
Let ¥ := G/ H be the quotient; then there is an induced left action of ¥ on the cohomology
h'(C*(H, M)). In case G — X has a section, in which case G is the semi-direct product

G ~ H x X, then this ¥-action coincides with the one obtained by restricting the G-action
on C*(H, M) to X.

Remark 5.6. The arguments used in 5.3 and 5.4 are similar to those of Mathew and Sto-
janoska [MS16, Appendix B|, who show H'(GLy 3, (TMF(3)0)*) = Z/(12) where GLy 3 acts
on

(5.6.1) TMF(3)o = Z[3,¢ t 1, 2 ) (C+ C+ 1)
as in [Stol4, §4.3].

Note 5.7 (Explicit description of inhomogeneous 1-cocycles). We describe the 1-cocycles
GLs3 — M obtained via the compositions (5.4.6) and (5.4.5). By our computation in 5.4,
the 1-cocycles

fas 1 Qs =& Ny
are of the form
— (0,0,0) —e > (s,8,9)
— (1,0, ) —i (s1+s,s,0)
_]l—>(0881) —j(s,0,81+8)
k — (s,s1,0) —k — (0,51 + s, 5)

for some s,s; € Z/(2). Suppose
fSL2,3 : SL2,3 — N

is a 1-cocycle such that fsp,, is fixed by the action of My (see (5.5.1)) and which satisfies
fSL2,3 (g) = st (g> for g c Qg. We have

M - fSL2,3(M2_1 g M2) = fSL2,3 (g)

for all g c SL273; takmg g = M2 gives M2 . fSL2,3(M2) = fSLQ’g(MQ)' Taklng g1 — g2 = M2 in
the 1-cocycle condition (5.4.8) then gives fsr,,(M2) = 0. Thus we have

(571) fSL2,3 (g ’ M2) = fSL2,3(g)
for any g € SLo 3, again by (5.4.8).
By Shapiro’s lemma (5.4.5), there is a 1-cocycle
fGL2 3 GL2 3 IIldSLL:;:(Nl)

such that precomposing with the inclusion SLy 3 C GL3 3 and postcomposing with the projec-
tion IndG > 3(Nl) — N gives fsr,,. After altering far,, by a 1-coboundary, we may assume
by Note 5.8 that fqr,, is given by the formula (5.8.1), namely

(5.7.2) foras (8- MD(IM]]) = for,s(M] - g- M)
for any 4, j € {0,1} and g € SLo 3. Any element g € GLy 3 may be expressed in the form

h-MZ - M}
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where i1 € {0,1} and iy € {0,1,2} and h € Qg. We have formulas
M- My M, = M;?

My -i-Mit = —i

My - ML= —k

My k- M= —j

(5.7.3)

and so

faras(h - M5 MP)(IM]]) = fora, (M- h- M3 - M)
= fsLas ((M “h- M—J) (M- MZ - M)
—fSL23( )
= fou(M{ - h- M)

where equality 1 is by (5.7.2) and equality 2 is by (5.7.1) and (5.7.3) and equality 3 is since
M7 -h-M? € Qg (see (5.7.3)). This is summarized in (5.7.4) below.

fars,(e) = (fas(e), fas(e)) = ((0,0,0),(0,0,0))
(5.7.4) fara, (1) = (fas(0); fas(=1)) = ((51,0,8), (s1 + s, 5,0))

far,5(0) = (fas(): fas(—k)) = ((0, 8, 51), (0,81 + 5, 5))

fars5(k) = (fas(k), fas (=) = ((s,51,0), (5,0, 51 + 5))

Note 5.8 (The Shapiro isomorphism and inhomogeneous 1-cocycles). ' Let G be a group, let
H C G be a normal subgroup of finite index such that the projection G — G/H has a section
G/H — G whose image corresponds to a subgroup % of G. Let N be a left H-module and
let Ind$; N := Homyy(Z[G], N) denote the associated induced left G-module. We recall that

the left G-action on Ind% N sends ¢ — gy where (gp)(z) = ¢(zg).

We describe the inverse of the Shapiro isomorphism H'(G,Ind%N) — H'(H, N) in terms
of inhomogeneous cochains. Suppose given a function

f:H—N
which satisfies

f(hihg) =hy - f(ha) + f(h1)

for all hy,hy € H. We construct a 1-cocycle
s: G — Ind$(N)

which restricts to f, i.e. satisfies s(h)(1 - [e]) = f(h) for all h € H. Note that every element
of g € G may be written uniquely in the form

g =ho

for h € H and o € ¥, hence the collection {[o]},ex forms a basis for Z|G] as a left Z[H]-
module. We set

(5.8.1) s(ho)([¢]) := f(ghe™)

'Ehud Meir’s MathOverflow post [Meil6] was helpful in working out the details of this section.
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for h € H and 0,¢ € ¥ and extend Z[H]-linearly. Given gy,g2 € G where g; = h;o; with
h, € H and o; € X, for any £ € ¥ we have

s(g182)([¢]) = s(hio1haoa)([€])
= s(hy(o1hyoy M)oro2)([€])
= f(&hi(orhao )ET)

and
(81 - 5(82))([¢]) = s(h202)([Eh101])
= s(ha02)([(EM &1 E0n])
= (€hig™") - s(haoz)([€0n])
= (Eh&™Y) - f((Eo)ha(Eon) ™)
and

s(g1)([€]) = s(ha)([€]) = f(EmE™)
which implies
s(g182) = g1 - 5(g2) + s(g1)
by Z[H]-linearity and since f is a 1-cocycle; hence s is a 1-cocycle. 0

5.9 (Proof of Theorem 1.2). Let k°P be a fixed separable closure of k and let Gy, := Gal(k*P /k) ~

7 be the absolute Calois group. Set A = M1y and AP = M1 pser. We have
Br.# = Br' .# by Lemma 3.1. The Leray spectral sequence for the map .# — Speck
is of the form

qu — Hp(Gka Hgt(%sepa Gm)) = Hi:_q(%’ Gm)

with differentials E5? — E5™>7" Here we have I'(#Z°?,G,,) = I'(Ake,G,n) = (k)%
since AP — Al., is the coarse moduli space map. Since k is a finite field, we have that
HY (#5P,G,,) is a torsion group. Moreover H (4P G,,) ~ Pic(.#*P) ~ Z/(12) is a
torsion group by [FO10]. Thus by e.g. [Full, 4.3.7] or [GS06, 6.1.3] we have EY? = 0 for
(p,q) € Z>o x {0,1}. This means there is an exact sequence

(5.9.1) 0— Ey' — H4(A#,G,,) — EY* =0

of abelian groups.

By [FO10], we have that Pic(.#*P) ~ 7Z/(12) is generated by the class of the Hodge
bundle; since Gy, acts trivially on invariant differentials of elliptic curves £ — S where S is
a k-scheme, the action of Gy on Pic(.Z*%P) is trivial. Hence we have

Ey' = H'(Gy, HY (4, G,p)) = Homeon (G, Pic(#£*7)) 2 Z/(12)
where equality 1 is by [Full, 4.3.7] and equality 2 is since Gy ~ Z. We have
BY? = HO(Gy, B3 (47, G,n)) £ (2/(2))% 2 Z/(2)

where equality 1 is by the computation for an algebraically closed field (Theorem 1.1) and
also the fact that H (.#°?,G,,) is a torsion group (see [AM16, Proposition 2.5 (iii)]) and
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equality 2 is because any group action on the group of order 2 is necessarily trivial. Thus
(5.9.1) reduces to a natural extension

(5.9.2) 0—Z/(12) = Br.# — Z/(2) = 0

and it remains to see whether (5.9.2) is split. It suffices to compute the size of (Br.Z)[2],
since (Br.#)[2] has 4 or 2 elements depending on whether (5.9.2) is split or not, respectively.

As in 5.2, the fppf Kummer sequence
(5.9.3) 1= o = Gp 3G, — 1

gives an exact sequence

(5.9.4) 1= Z/(2) % H2 (A, 112) = Br.a)[2] — 1
of abelian groups. We compute H?ppf(/// , i2) using the Leray spectral sequence which is of
the form
EYY = HP(Gy, HY (AP, p12)) == HEH(A  p12)
with differentials E5? — E5>77" We have
0 itp=0
Y (A7, 12) = 3 2/(2) itp=1

Z)2)®ZL)(2) ifp=2

from the fppf Kummer sequence on .Z°?P, where the p = 0 case follows since we are in
characteristic 2 and ['(AZ5P,G,,) = T(Ahwp, Gp) = (K5P)%, the p = 1 case is since the
multiplication-by-2 map on I'(.Z5P,G,,) = (k*P)* is an isomorphism, and the p = 2 case is
by the computation in the algebraically closed case (combine (5.2.5), (5.4.5), (5.4.6), (5.4.14)).

Since k has characteristic 2, the 2-cohomological dimension of k satisfies cda(k) < 1 by e.g.
[GS06, 6.1.9]; hence EB'? = 0 for p > 2 and any ¢. Hence there is an exact sequence

(5.95) 0= H Gy, HL (A5, 115)) — B2 (M, 1) — HO(Gop, HE (AP 115)) — 0

fppf
of abelian groups. As above, the Gy-action on Hi o(.#5%P, p15) is necessarily trivial so we have
an isomorphism H'(Gy, Hy i (.45, i3)) o~ Homeont (G, Z/(2)) ~ Z/(2).
To describe H(Gy, HE (.4, 1)), we describe the Gy-action on HE (.#Z°%, j15). Let
£ € kP

be a fixed root of 22 + z + 1 (i.e. a primitive 3rd root of unity).
If £ € k, then Gy acts trivially on HE (.#°P, ji5); hence HO(Gy, Hf (AP, 112)) has 4

fppf

elements, hence Hi (.7, j15) has 8 elements by (5.9.5), hence (Br.#)[2] has 4 elements by
(5.9.4), hence Br.# ~7./(2) & Z/(12).

Suppose ¢ € k. The k-algebra map

ki, w, ﬁ]/(w2 +w+ 1) = k5P, u'fl—

1] % ksop[lj%ﬁ]

sending 1 — (v1, 1) and w — (€, €?) induces an isomorphism

(5:96) ki, w, 751/ (WP + w 1) @ B — B,

] X Rl
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of k*P-algebras. The inverse to (5.9.6) sends

1 & 1 1
(fi(n), fa(12)) = fi(n) <w ® ) +1® gj) + fa (1) ((—w) ® e +(-1)® gi)
for fi(vi) € klwi, ﬁ]
Let
A€ Gk

be an automorphism of k%P such that A\(§) = &2 Then the k-algebra automorphism of
EsPuy, —1—] x k°P[vy, ——] induced by (5.9.6) sends (14,0) — (0,15) and (0,25) + (v1,0)

l/f—l v3—1
and (£,0) — (0,£?) and (0,€) — (£2,0). We see that the action of A on M (see (5.3.2)) is
given by (5.9.7).

m-1lm—&|ln—-&lrn-1|wn-£§|r-¢
(5:9.7) Mum—1 -8 |mn-€|n-1{n-8|n-¢
A computation with (5.9.7) and (5.3.6) shows that
(5.9.8) At m=g-m

for any m € M and g € GLg3.

Let far,, : GLg3 — M be an inhomogeneous 1-cocycle as in Note 5.7. Multiplying the
1-cocycle condition (5.4.8) on the left by A gives

A fGLz,B (gl : gz) = \gi - fGLz,B (gz) +A- fGLz,B(gl)

= g1 (A farss(82)) + A+ fav,, (&)

where equality 1 follows from (5.9.8). Hence the function A - far,, : GLgs — M sending
g+ A far,,(g) is a 1-cocycle as well. Using (5.9.7) and (5.7.4), we have that

()‘ ' fGLz,s)(e> = ((Ov 07 O)v (07 Ov 0))

()‘ ’ fGL2,3)(i) = ((81 +5,0, S)? (317 S5, 0))

599 (A Fotas)() = (0.5, +5). (0, 51,5)

()‘ : fGL2,3)(k) = ((Sa s1+ s, 0)7 (37 0, ‘91))

and so

fGLQ,S(e> - (>‘ ’ fGL2,3>(e) = ((Ov 0, O)v (07 0, 0))
fGLz,g(i) - ()‘ ) fGL2,3)(i) = ((‘97 0, 0)7 (‘97 0, 0))
(910 oas0) = - Foa)G) = ((0.0.5).(0,5,0))
fGL2,3(k) - ()‘ ) fGLz,g)(k) = ((07 5, 0)? (07 0, ‘9))

for the same s,s1 € Z/(2) as in (5.7.4).

Suppose faqr,, and A- fqr, , differ by a 1-coboundary, in other words there exists an element
m = ((my,my, mg), (mi, m3, m3)) € M
such that
(5.9.11) fars,(8) — (A far,,)(g) =g-m—m
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for all g € GLas. By (5.9.10), taking g = My in (5.9.11) gives m’ := m} = m} = m} for

i = 1,2; then taking g = M; gives m! = m?; then taking g = i gives m = 0. We see that
Jar,; and A - far,, differ by a 1-coboundary if and only if s = 0.

Hence we have that H°(Gy, Hf (4P, 112)) ~ Z/(2), hence Hf (.4, i) has 4 elements

fppf

by (5.9.5), hence (Br.#)[2] has 2 elements by (5.9.4), hence Br.#Z ~ 7Z/(24). O

APPENDIX A. THE WEIERSTRASS AND HESSE PRESENTATIONS OF [['(3)]

The purpose of this section is to prove Proposition A.4 below, which we could not find
proved in the literature. For completeness of exposition, we first recall the definition of a full
level N structure on an elliptic curve E/S.

A.1 (Full level N structure). [KM85, Ch. 3] Let NV be a positive integer. We define [I'(N)]
to be the category of pairs

(E/5,¢)
where
E/S=(f:E— Sje:S— E)
is an elliptic curve and
§:(Z/(N)g— E
is a morphism of S-group schemes inducing an isomorphism (Z/(N))% ~ E[N]. A morphism
(E1/51,&1) = (E2/S2,&2)
is a pair
(:Ey — Ey, f:51 — Ss)

of morphisms of schemes such that the diagram

E; = E,
(A.1.1) (Z/(N))%, 3 (Z/(N))3, fa
\ f \
Sl 3 S2

commutes, where the morphism id x 3 is the one induced by the identity on (Z/(3))% and §,
and such that o induces an isomorphism of S;-group schemes Ey ~ S} X35, Es.

There is a functor
[D(N)] = A1 12

sending (E/S,€) — E/S on objects and (a, ) — (a, ) on morphisms. If E/S admits a
full level N structure, then N is invertible on S by [KM85, 2.3.2], hence the above functor
factors through .7, , 5y 1). If N > 3, then for any scheme S the fiber category [C(N)(S) is

equivalent to a set by [KM85, 2.7.2], so [I'(N)] is fibered in sets over the category of schemes.
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A.2 (The GL2(Z/(N))-action on [I'(IV)]). Fix a scheme S. For any element
o= [011 012}
021 022

o (Z)(N)§ = (Z/(N))§
be the S-group scheme automorphism of (Z/(N))% corresponding to the abelian group ho-
momorphism (Z/(N))? — (Z/(N))? defined by

1 O11 O12| |T1| _ |011ZT1 + 01222
H =
T2 021 O22| X2 02171 + 022%2
for zy, 75 € Z/(N), i.e. acting by multiplication on the left on (Z/(N))? viewed as vertical
vectors. We have

in GLy(Z/(N)), let

Po1Pos = Poroa
for oy, 090 € GLo(Z/(N)).
Fix an object (E/S,€) € [I'(N)](E/S); then (E/S,£op,) is another object of [['(N)](E/S),
i.e. corresponds to another full level N structure on E/S. This implies that there is a natural

action of GLo(Z/(N)) on each fiber category [I'(N)](E/S); the action is a right action since
it is defined by precomposition.

Theorem A.3. [KMS85, 4.7.2] If N > 3, the category [I'(N)] is representable by a smooth
affine curve Y (N) over Z[].

We are primarily interested in the case N = 3. The 3-torsion points of an elliptic curve
correspond to its inflection points (also “flex points”). In [KM85, (2.2.11)] it is shown that
Y (3) ~ Spec Aw where

Aw :=2[3,B,C, &, o5 w=sia)/(B° = (B + C)?)

> C oag? af—27a3

and the universal elliptic curve over Aw with full level 3 structure is the pair

(A.3.1) Bw = Proj Aw[X, Y, Z]/(Y?Z + a\ XY Z + a5Y Z* = X?)
- 0:0:1,[C:B+C:1]

where

(A.3.2) 0 =3C 1

The formulas (A.3.2) and (A.3.3) are obtained by imposing the condition that the line Y =
X + BZ is a flex tangent to Ew at [C' : B+ C : 1]. The ring Aw is isomorphic to 7'M F(3),
(5.6.1), with mutually inverse ring isomorphisms TMF(3)y — Aw and Aw — TMF(3),

given by (¢,t) — (2, L) and (B,C) — (m, 5;) respectively.
In this paper, however, we use the “Hesse presentation” of Y (3) as in [FO10, 5.1]. The

following is claimed without proof in the Introduction to [DR73] and [Harll, 5.2.30].
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Proposition A.4. There is an isomorphism Y (3) ~ Spec Ay where

AH = Z[%nua"‘% 1_1]/((,02 +w+ 1)

w3

and the universal elliptic curve over Ay with full level 8 structure is the pair

(A.4.1) {EH = Proj Au[X,Y, Z]/(X? + Y? + Z° = 3uXY Z)

[—1:0:1],[1: —w:0]
with identity section [1: —1:0].

The explicit Z[%]-algebra isomorphisms Ay — Aw and Ay — Ap are given in (A.8.7) and
(A.8.8) respectively.

A.5. By [Sma01, §4], the group law of an elliptic curve E = Proj A[X,Y, Z]/(X?+ Y3+ 73 =
3uXY Z) in Hessian form over a ring A is as follows. If P = [z : y : 2], then 2P = [2' : ¢/ : 2]
where

and if P, = [z; : y; : z;] are points of Ey for i = 1,2, 3 satisfying P, + P, = P, then

2 2

T3 = ToYi22 — T1Yz21
2 2

Yz = T1Y222 — TrY121

2 2
23 = T2Y22] — T1Y1%9

which only makes sense if P, # P,.

Using the above formulas, we may check that the full level 3 structure &y : (Z/(3))%,, — Eu
is given by the table (A.5.1).

(0,0) (1,0) (2,0) 1:-1:00 [-1:0:1] [0:1:-1]
(A5.1) &gl [(0,1) (1,1) )| |=|[1:—w:0] [~w:0:1] [0:1:—w]
0,2) (1,2) (2,2) 1:—w?:0] [~w?:0:1] [0:1:—w?]

The Hesse presentation (A.4.1) is sometimes easier to work with than the Weierstrass pre-
sentation (A.3.1) since the equation of the universal elliptic curve is symmetric in XY, Z,
which means that there is also considerable symmetry in the 3-torsion points (A.5.1).

A.6. We describe the GLy(Z/(3))-action on Ey/Agn. Set Sy := Spec Ag. The functor [['(3)]
being representable by Sy means explicitly that for any Z[1]-scheme T and object (E/T,€) €
([IC3))(T), there exists a unique pair («, ) of morphisms of schemes o : E — Ep and
BT — Sy such that the diagram
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E a Ey
Yy
Z/3)2 — 2 (@)3))8, | Fm

\ fr
T 3 Su

commutes and induces an isomorphism of T-group schemes E ~ T Xgg, Ey as in (A.1.1).

As in A.2, for every o € GLy(Z/(3)), let ¢, be the Sy-automorphism of (Z/(3))%, induced
by o; then precomposition {gp, defines another full level 3 structure on FEy/Sy. Taking
T = Sy and & = &y, above, there is a unique pair (o, 3,) of morphisms of schemes
Qo : By — Ey and B, : Sy — Sy such that the diagram

Ey Qo By
id X Bo
(Z/(3))8, —— (Z/(3))%, fou
\ fSH
Sk o Sy

commutes and induces an isomorphism of Sy-group schemes Ey o~ Sy Xg, g, Eu. Given two
elements o1, 09 € GL3(Z/(3)), we have a commutative diagram

oy oy

By Ey Ey
EH%M/ £HV y
(Z/(3)8, — T+ (Z/(3)%, —T— (Z/(3))%, Fsu
\ fsu \ fsu \
Su 5o, Sy o SH

which implies
Bogﬁol = 50102

Since Yo, 0y = Yo, Po, (see A.2). Thus the assignment
(A.6.1) o= By
defines a right action of GLy(Z/(3)) on the scheme Sy.
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In terms of the generators

1 0 1 0 . 0 -1
o A owes [ ]
of GLo(Z/(3)), the action of GL2(Z/(3)) on En/Ax is as follows. (We refer to (A.5.1) for the
additive structure on Ey[3].)

(1) For o = My, the new level 3 structure {gpm, is

[1:0:1] [1:—w:0]] [(1) _01]:[[—1:0:1] [1:—w?:0]]

and the scheme morphisms ay, : By — Fy and By, : Sy — Su correspond to the
ring homomorphisms sending

(XY, Z) + (X,Y, 2)

(py w?) =4 (11, w)
respectively.

(2) For o = My, the new level 3 structure {gpm, is

[-1:0:1] [1:—w:0]] l_ll (1)]:[[—@2:0:1] [1:—w: 0]

and the scheme morphisms anm, : g — Fy and Bu, : Sy — Su correspond to the
ring homomorphisms sending

(X,Y,w?Z) <1 (X,Y, 2Z)

(Wi, w) <= (1, w)
respectively.

(3) For o =i, the new level 3 structure &y is

[1:0:1] [1:—w:0]] [(1) Bl}:[[lz—w:O] [0:1:—1]]

and the scheme morphisms «; : Fg — Eg and 5, : Sg — Sy correspond to the ring
homomorphisms sending

{(wX+w2Y+Z,w2X+wY+Z,X+Y+Z)<—| (X,Y, 2)

(45, w) 1 (1, w)

respectively.

Remark A.7. According to our convention, the action of GLy(Z/(3)) on the fiber category
[I'(3)](Eu/ Spec An) is by precomposition, hence the action of GLy(Z/(3)) on pairs of points
on the right hand side of (A.5.1) is a right action; thus the induced action of GLy(Z/(3)) on
the scheme Spec Ay is a right action (as described in (A.6.1)) and the corresponding action
of GLy(Z/(3)) on the coordinate ring Ay is a left action.
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A.8 (Proof of Proposition A.4). In fact, it turns out that the identities

(A.8.1) ad —27a3 = (3C + 9B — 1)
(A.8.2) a3 = B(6C' 4+ 9B — 1)
hold in Aw which yields a simpler description
Aw = Z[L B.C, b osber, s )/ (C2 4 30B 4 352

of Aw. (For (A.8.1), write out a3 — 27a3 in terms of B, C' and notice that it is of the form
9C' 4 27B — 1 plus higher order terms; then check that the naive guess works. To see (A.8.2),
substitute C? = —3C'B — 3B? into (A.3.3).)

We follow the argument of [ADO09, 2.1]; see also [Con96, §1.4.1, §1.4.2]. Working “generi-
cally”, we will assume that @, is a unit to obtain the coordinate change formula (A.8.9), then
observe that it applies also to the case when a; is not a unit. Starting with

(AS?)) YiZl(Yi + CL1X1 + CL3Z1) = X13
we define Xs, Y5, Z5 by the system
X1 U2 X2
Y| = u? Ys
7 1| | Z5
where u = a;/3 and substitute into (A.8.3) to get
(A.8.4) Yo Zy (Yo + 3Xo + 283 75) = X3 .
We define X3, Y3, Z3 by the system
1 1 X2 w W X3
1 22{;3 1/2 — w2 W Y},
1 Zy 1] | Z;

where w = “£2 2 and substitute into (A.8.4) to get

(WX3 + wW?Ys — Z3)(W? X3 + wYs — Z3)(— X3 — Vs + Z3) = 225;?3 A

or equivalently
(A.8.5) X5+ VP + T 78 = X3V

We know that the coefficient of Z3 in (A.8.5) is a cube (A.8.1) so we normalize by defining
X4, Yy, Z4 by the system

X3 1 Xy
Y| = 1 Yy
Zy 3(J+gB 1 Za
and substitute into (A.8.5) to get
(A.8.6) X3+ YR+ 78 = 35 X\ YaZ, |

2Since 3 is invertible, if z is a root of the polynomial 72 4 3T + 3 then z + 1 is a root of the polynomial
T? + T + 1, thus it is natural to take <2 as our w.
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To summarize the above, there is a ring homomorphism 9, : Ay — Aw sending

s 3C -1
C+B
B
and solving for B, C in terms of u,w implies that the inverse ¢15 @ Aw — Ay sends
B p-l

—
3w+2)(p—w)
R o V()
3(w+2)(p—w)
where w + 2 is a unit of Ay since (w + 2)(w — 1) = —3 and g — w is a unit of Ay since
pr—1=(u—1)(g —w)(p —w?). We may check that the product
-1

(A.8.8)

u? 11 W w? 1
u? 1 % w? w 1
1] |1 1 —

3C+9B—1
is “projectively equivalent” to the matrix

0 0 srop
(A.8.9) Xi=|w o g
w? w 3u

as a3z a3(3C+9B—1)

whose determinant is a unit of Aw. Given a section [sy : sy : sz] of (A.8.3), the corresponding
section of (A.8.6) is X! [sy : sy : sz|T where

—a1 B -9CB-18B%*-C
3 C 3
- —a; -B —-9CB-9B%2+C+3B
3 C+3B 3
—3C—-9B+1 0 0

3
The above implies that the sections

0:1:0],[0:0:1], [C:B+C:1]

of (A.8.3) (i.e. the identity section and ordered basis for the 3-torsion) correspond to the
sections

(A.8.10) [1:—w:0], 1:=w?:0], [-1:0:1]

of (A.8.6). We may apply an automorphism of the pair (Ay, Ey/An) € #1172 of the form
A.6(2) (for Y instead of Z) to (A.8.10) to get

(A.8.11) [1:-1:0],[1:—w:0], [-1:0:1]

and using the fact that there is a simply transitive action of GLy(Z/(3)) on the set of ordered
bases of the 3-torsion in Ey /Ay, we may switch the second and third sections of (A.8.11) to
obtain

(A.8.12) [1:-1:0],[-1:0:1], [1:—w:0]
as desired. m



Br s, =7/(2) FOR k=% AND chark = 2 29
Remark A.9. For (A.8.1), see also Stojanoska’s derivation [Stol4, §4.1].

Remark A.10. There are coordinate change formulas in [Sma01, §3] transforming a Weier-
strass equation into Hesse normal form, but there it is assumed that the base ring is a finite
field F, where ¢ = 2 (mod 3), in order to take cube roots of a} — 27a3, but from this descrip-
tion it is not clear that the cube root is an algebraic function. As shown in (A.8.1), it turns out

that in fact a3 —27as is a cube in the ring Aw. One suspects that this is the case after tracing
_ a3
through the proof of [AD09, 2.1] and arriving at the equation a3 + > + 27“273'1%3
1
27a3—a?

which case we know that = 5— is a cube by Lemma A.11.
1

= 3zryz, in

Lemma A.11. Let k be a field of characteristic not 3, and let

(A.11.1) ¥+ y® 4+ B =3y

be a curve in AZ. Suppose that

(A.11.2) ar+by+c=0

is the tangent line to a flex point of E and suppose that a® # b3. Then B is a cube in k.

Proof. If a = 0, then b # 0 and substituting y = —7 into (A.11.1) and rearranging gives
2® + %z — (£)* + B = 0 which by assumption is of the form (z + ¢)* for some ¢ € k.
Comparing coefficients, we have £ = 0 and so = ().
By symmetry we may assume that a,b # 0. By scaling (A.11.2), we may assume that
b = —1. Substituting y = azx + ¢ into F gives
(a® + 1)z + 3(a)(ac — 1)2* + 3(c)(ac — )z + (¢* + B)

and dividing by the leading coefficient gives

3 alac—1)\ clac—1) A+
x+3<7a3+1 ):E +3<7a3+1 T+ P

and comparing this to

2 + 30x* + 30z + 1
gives either ac — 1 = 0 in which case ¢® + 8 = 0 as well (so that 8 = (=1/a)® = (—¢)?),

otherwise if ac — 1 # 0 then
c ac—1
— =q
a a’+1

which implies ¢ = —a? so that the original equation of the tangent line is y = ax — a?.
Substituting this back into E gives 8 = (—a)?. O

APPENDIX B. HIGHER DIRECT IMAGES OF SHEAVES ON CLASSIFYING STACKS OF
DISCRETE GROUPS

The material in this section is standard and we claim no originality.

For a category C, we denote by PSh(C) (resp. PAb(C)) the category of presheaves (resp.
abelian presheaves) on C. If C is a site, we denote by Sh(C) (resp. Ab(C)) the category of
sheaves (resp. abelian sheaves) on C.
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Let C be a site, let G be a finite (discrete) group, let BG¢ be the classifying stack associated
to G over C. Let
T BGC —C
be the projection and let
¢ C — BGe

be the canonical section of m. We view any fibered category p : F — C as a site via the
Grothendieck topology inherited from C via p.

Lemma B.1. In the setup above, for any abelian sheaf F € Ab(BGe) the higher pushforward
Rirn,.Z is naturally isomorphic to the sheaf associated to the presheaf whose value on an object
U eC is H(G,T(U,p*7)).

Proof. Let PG denote the category whose objects are the objects of C and where a morphism
X7 — Xy in PGe is a pair (¢, g) where ¢ € More(Xy, Xo) and g € G. (In other words, there
is an equivalence of categories PG¢ ~ C x [x/G] where [x/G] is the category with one object
* and where Homy, q(*, %) is isomorphic to G.) The fibered category PG¢ is a (separated)
prestack whose associated stack is BG¢, and the inclusion PG¢ — BGe induces an equivalence
of topoi Sh(PG¢) ~ Sh(BG¢). Hence in the statement of the lemma we may replace BG¢ by
PGe where by abuse of notation we also denote

m:PGe — C

the projection morphism. Since sheafification is an exact functor, the diagram

PAb(PGe) ™ PADB(C)

N s

Ab(PGe) —— Ab(C)

is (2-)commutative. For the same reason, we have a natural isomorphism
(B.1.1) (RaP™(F))™ ~ R, (F*")

in D*(ADb(C)) for any abelian presheaf .# € PAb(PG¢). Presheaves on PG¢ correspond to
presheaves .# on C equipped with a G-action, and under this identification 7P*(.%) = .F#¢
where T'(U, ) := ([(U, #))¢ for all U € C. Let .# € Ab(PG¢) be an abelian sheaf, and let

F I =T -1 — .

be a resolution of .# by injective abelian presheaves Z' € PAb(PG¢). Then RaP™(.%) is
isomorphic to

(B.1.2) (%) = {(1°)¢ - (1) —» (T») - ---}
in DT (PAD(C)), and T'(U, RwP™(F)) is isomorphic to
(B.13) DU, (2%)6) = (DU, 2°))° = (MU, )° — (U, 12)C -}

in D" (PAb(C)). Furthermore I'(U,Z%) ~ (iy)*Z" is an injective G-module for all i by
Lemma B.2, thus we have an isomorphism

RU(L(U, (T°)%)) ~ H(G,T(U, F))
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of abelian groups. O

Lemma B.2. Let C be a category, let U € C be an object, let Acy denote the full subcategory
of C containing exactly U, and let iy : Acy — C denote the inclusion. The inverse image
functor (iy)* : PAb(C) — PAb(Ac) preserves injectives.

Proof. The functor (iy)* : PAb(PGe) — PAb(Ac ) has an exact left adjoint, namely the
“extension by zero” functor iy, : PAb(Ac ) — PAb(PGe) which sends M € PAb(Ac ) to
the abelian presheaf iy ;(M) where I'(V, iy +(M)) = M if V = U and 0 otherwise (with the
only nontrivial restriction morphisms being those corresponding to the endomorphisms of

U). O

APPENDIX C. COMPUTATION USING MAGMA

We compute H'(GLy(Z/(3)), M) in 5.4 using MAGMA [BCP97]. Here G is defined as the
subgroup of GLy(Z/(3)) generated by the matrices in (5.3.6), but the specified matrices
constitute a generating set so in fact G = GL2(Z/(3)). The group G acts on the abelian group
M = (Z/(2))®5 by the three specified elements of Matgys(Z), where each x € M is viewed as
a horizontal vector and each 6 x 6 matrix A acts on M by right multiplication x +— x - A.

The last line computes HY(G, (Z/(2))®").

G := MatrixGroup< 2 , FiniteField(3) |
[ 190 ) _1,1 ] ) [01_1 5 1,O] ) [ 110 ) 01_1 ]
>3

mats := [
Matrix(Integers() , 6 , 6 , [

o, 0, 1, 0, 0, O ,

i, 0, 0, 0, 0, O,

o, 1, 0, 0, 0, O,

o, 0, 0, 0, 1, O,

o, 0, 0, 0, O, 1,

0, 0, 0, 1, 0, 01) ,

Matrix(Integers() , 6 , 6 , [

i, 0, 0, 0, 0, O,

i, 0, 1, 0, 0, O ,

i, 1, 0, 0, 0, O ,

o, 0, 0, 1, 0, O,

o, 0, 0, 1, 0, 1,

0, 0, 0, 1,1, 0 1) ,

Matrix(Integers() , 6 , 6 , [

o, 0, 0, 1, 0, O ,

o, 0, 0, 0, 1, O ,

o, 0, 0, 0, 0, 1,

i, 0, 0, O, 0, O,

o, 1, 0, 0, 0, O,

0, 0, 1, 0, 0, 0 1)

1;
CM := CohomologyModule(G,[2,2,2,2,2,2] ,mats);
CohomologyGroup(CM,1);
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