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THE BRAUER GROUP OF M1,1 OVER ALGEBRAICALLY CLOSED

FIELDS OF CHARACTERISTIC 2

MINSEON SHIN

Abstract. We prove that the Brauer group of the moduli stack of elliptic curves M1,1,k over
an algebraically closed field k of characteristic 2 is isomorphic to Z/(2). We also compute
the Brauer group of M1,1,k where k is a finite field of characteristic 2.

1. Introduction

Let M1,1,Z denote the moduli stack of elliptic curves over Z. For any scheme S, we denote
by M1,1,S := S ×Z M1,1,Z the restriction of M1,1,Z to the category of schemes over S.

Antieau and Meier [AM16, 11.2] computed the Brauer group BrM1,1,S for various base
schemes S, and in particular proved that for any algebraically closed field k of characteristic
not 2 the Brauer group BrM1,1,k is trivial. The purpose of this note is to compute BrM1,1,k in
the characteristic 2 case. This then completes the calculation of BrM1,1,k over algebraically
closed fields k. We summarize the result in the following theorem.

Theorem 1.1 ([AM16, 11.2] in char k 6= 2). Let k be an algebraically closed field. Then
BrM1,1,k is 0 unless char k = 2, in which case BrM1,1,k = Z/(2).

To prove the theorem, we calculate the cohomology groups H2
ét(M1,1,k, µn) for varying n.

There are essentially two ways to approach this calculation: (1) using the coarse moduli
space; (2) using a presentation of M1,1,k as a quotient stack. In this paper we give a new
proof of the Antieau-Meier result using approach (1), and calculate in characteristic 2 using
approach (2).

We also compute the Brauer group of M1,1,k where k is a finite field of characteristic 2:

Theorem 1.2. Let k be a finite field of characteristic 2. Then

BrM1,1,k =

{
Z/(12)⊕ Z/(2) if x2 + x+ 1 has a root in k

Z/(24) otherwise.

An outline of the paper is as follows.

In Section 2 we state definitions and recall general facts about the Brauer group of algebraic
stacks.

In Section 3 we record some general remarks regarding BrM1,1,S. We show that if S is a
quasi-compact scheme admitting an ample line bundle and if at least one prime is invertible
on S, then BrM1,1,S ≃ Br′ M1,1,S. The restriction of M1,1,Z to the dense open substack of
elliptic curves E/S with j-invariant j(E) ∈ Γ(S,OS) for which j(E) and j(E) − 1728 are
invertible is a trivial Z/(2)-gerbe over the coarse space A

1
Z
\ {0, 1728}, and we use this fact
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2 MINSEON SHIN

to conclude that BrM1,1,k is a subgroup of Z/(2) ⊕ Z/(2) for an algebraically closed field k
of arbitrary characteristic.

In Section 4 we give a second proof of Antieau and Meier’s result above (that BrM1,1,k = 0

if k = k and char k 6= 2). Using a dévissage argument, we study the relationship between the
cohomology of µn on the stack M1,1,k and on A1

k, in terms of the stabilizer groups of elliptic
curves with j-invariant 0, 1728 ∈ A1

k. This may be of independent interest for computing the
Brauer groups of other separated Deligne-Mumford stacks whose coarse moduli space is a
smooth curve over an algebraically closed field with vanishing Picard group.

In Section 5 we prove Theorem 1.1 and Theorem 1.2. Antieau and Meier suggest in [AM16,
11.3] that the characteristic 2 case can be settled using the GL2(Z/(3))-cover Y (3) → M1,1,k,
where Y (3) denotes the moduli stack of elliptic curves with full level 3 structure, and indeed
we use this presentation M1,1,k ≃ [Y (3)/GL2(Z/(3))] as a global quotient stack to show
that its Brauer group is in fact nonzero. We use the “Hesse presentation” of Y (3) as in
[FO10]; it is shown in Appendix A that this presentation coincides with the usual Weierstrass
presentation as in [KM85]. The cohomological descent spectral sequence associated to the
covering Y (3) → M1,1,k reduces our task to a computation of the first group cohomology of
a 6-dimensional representation of GL2(Z/(3)) over F2.

1.3 (Acknowledgements). I thank my advisor Martin Olsson for suggesting this research topic
and for his generosity in sharing his ideas. I am also grateful to Benjamin Antieau, Siddharth
Mathur, and Lennart Meier for helpful discussions. During this project, I received support
from the Raymond H. Sciobereti Fellowship.

2. The Brauer group of algebraic stacks

Let (X,OX) be a locally ringed site [Gir71, V, §4], [Sta18, 04EU]. For any quasi-coherent
OX -module E , we set GL(E ) := AutOX -mod(E ) and let PGL(E ) be the sheaf quotient

of GL(E ) by Gm,X via the diagonal embedding. We denote GLn(OX) := GL(O⊕n
X ) and

PGLn(OX) := PGL(O⊕n
X ). A basic fact about these groups is the Skolem-Noether theorem,

which states that the morphism

PGLn(OX) → AutOX -alg(Matn×n(OX))

is an isomorphism (see [Gir71, V.4.1]).

Definition 2.1 (Azumaya algebras). [Gro68a, §2], [Gir71, V, §4] Let (X,OX) be a locally
ringed site. An Azumaya OX-algebra is a quasi-coherent (non-commutative, unital) OX-
algebra A such that there exists a covering {Xi → X}i∈I , positive integers ni, and OXi

-
algebra isomorphisms A |Xi

≃ Matni×ni
(OXi

).

Two Azumaya algebras A1 and A2 are Morita equivalent if there exist finite type locally
free OX -modules E1 and E2, everywhere of positive rank, and an isomorphism

A1 ⊗OX
EndOX -mod(E1) ≃ A2 ⊗OX

EndOX -mod(E2)

of OX-algebras. Under tensor product of Azumaya algebras, Morita equivalence classes of
Azumaya algebras form an abelian group BrX called the (Azumaya) Brauer group of X
in which [A ]−1 = [A op] and the identity element is the class of trivial Azumaya algebras
[EndOX -mod(E)].
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Definition 2.2 (Gerbe of trivializations). [Gir71, IV, §4.2], [Ols16, 12.3.5] There is a natural
way to associate, to every Azumaya OX -algebra A , a Gm,X -gerbe GA called the gerbe of
trivializations of A . An object of GA is a triple

(U, E , σ)

consisting of an object U ∈ X , a finite type locally free OU -module E (necessarily everywhere
positive rank), and an isomorphism σ : EndOU -mod(E) → A |U of OU -algebras. A morphism

(f, f ♯) : (U1, E1, σ1) → (U2, E2, σ2)

consists of a morphism f ∈ MorX(U1, U2) and an isomorphism f ♯ : f ∗E2 → E1 of OU1
-modules

such that σ2 = σ1 ◦ ρf♯ where ρf♯ denotes conjugation by f ♯. For any object (U, E , σ) ∈ GA ,
there is a canonical injection

ι(U,E,σ) : Gm,U → Aut(U,E,σ)

of sheaves on X/U , sending u 7→ (idU , u); this is in fact an isomorphism, since if (idU , f
♯) ∈

AutGA (U)((U, E , σ)) then f ♯ ∈ Z(EndOU -mod(E)), which coincides withOU since Z(Matn×n(A)) =
A for any commutative, unital ring A.

By the Skolem-Noether theorem, any two local trivializations of A are locally related by
an automorphism of the trivializing vector bundle E , i.e. any two objects of GA are locally
isomorphic. Furthermore, according to the definition, an Azumaya algebra is locally trivial,
i.e. for any U ∈ X there exists a covering {Ui → U} such that the fiber category GA (Ui) is
nonempty. These considerations show that GA is a Gm,X -gerbe.

The assignment A 7→ GA induces a group homomorphism

α′
X : BrX → H2(X,Gm,X)(2.2.1)

which is injective since a Gm,X -gerbe G is trivial if and only if G(X) is nonempty.

For a morphism

(f, f ♯) : (X,OX) → (Y,OY )

of locally ringed sites, the diagram

(2.2.2)

BrX H2(X,Gm,X)

BrY H2(Y,Gm,Y )

α′

X

α′

Y

f∗ f∗

is commutative.

Lemma 2.3. Let X be a Gm,X-gerbe over a locally ringed site X. The class [X ] ∈
H2(X,Gm,X) is in the image of α′

X if and only if X admits a 1-twisted finite locally free
sheaf of everywhere positive rank.

The usual proof (c.f. [dJ03, 2.14], [Lie08, 3.1.2.1], [Ols16, 12.3.11]) of Lemma 2.3 applies
more generally to the case of Gm-gerbes over an arbitrary locally ringed site.

We will only consider locally ringed sites (X,OX) whose underlying site X is quasi-compact
[Sta18, 090G]. For such X , the Brauer group BrX is a torsion group.
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Definition 2.4. The torsion subgroup of H2(X,Gm,X), denoted Br′ X , is called the cohomo-
logical Brauer group and the restriction

αX : BrX → Br′ X(2.4.1)

of α′
X to Br′ X is called the Brauer map.

We will consider algebraic stacks using the étale topology except in Section 5 (the case of
characteristic 2) in which we will require the flat topology.

Surjectivity of the Brauer map may be checked on a finite flat surjective covering (c.f.
[Gab78, II, Lemma 4], [dJ03, 2.15], [Lie08, 3.1.3.5]):

Proposition 2.5. Let f : X → Y be a finitely presented, finite, flat, surjective morphism of
algebraic stacks. A class β ∈ H2(Y,Gm,Y ) is in the image of α′

Y if and only if its pullback
f ∗β ∈ H2(X,Gm,X) is in the image of α′

X .

Proof. Let Y be the Gm,Y -gerbe corresponding to β. Set X := X×Y Y and let F : X → Y

be the induced morphism of algebraic stacks. If X is in the image of α′
X , then there exists

a 1-twisted finite locally free OX -module E of everywhere positive rank. The pushforward
F∗E is a 1-twisted, finite locally free OY -module of everywhere positive rank. Hence Y is in
the image of α′

Y .

The other direction follows from commutativity of the diagram (2.2.2). �

Corollary 2.6. Let f : X → Y be a finitely presented, finite, flat, surjective morphism of
algebraic stacks. If αX is an isomorphism, then αY is an isomorphism.

Corollary 2.7. Let X be a smooth separated generically tame Deligne-Mumford stack over
a field k with quasi-projective coarse moduli space. Then the Brauer map αX is surjective.

Proof. By Kresch-Vistoli [KV04, 2.1,2.2], such X has a finite flat surjection Z → X where
Z is a quasi-projective k-scheme. By Gabber’s theorem (see [dJ03, 1.1]), the Brauer map is
surjective for Z. Thus the Brauer map is surjective for X by Proposition 2.5. �

Remark 2.8. If char k 6= 2, the stack M1,1,k is generically tame and so Corollary 2.7 implies
surjectivity of the Brauer map αM1,1,k

. For the case char k = 2, see Lemma 3.1.

3. Preliminary observations

The purpose of this section is to prove Lemma 3.4 below. Let us start, however, with a
few preliminary observations about the stack M1,1 and its Brauer group.

The stack M1,1,Z is a Deligne-Mumford stack smooth and separated over Z [Ols16, 13.1.2];
hence if S is a regular Noetherian scheme then M1,1,S is a regular Noetherian stack. For any
locally Noetherian scheme S, the morphism

π : M1,1,S → A
1
S

sending an elliptic curve to its j-invariant identifies A1
S with the coarse moduli space of M1,1,S

[FO10, 4.4].

In general, if X is a separated Deligne-Mumford stack and π : X → X is its coarse moduli
space, then π is initial among maps from X to an algebraic space, so the map X(G) → X (G)
is an isomorphism for any group scheme G; moreover if U → X is an etale morphism, then πU :
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X ×XU → U is a coarse moduli space. Applying these observations to G = Ga,Gm, µn implies
that the canonical maps OX → π∗OX , Gm,X → π∗Gm,X , µn,X → π∗µn,X are isomorphisms;
thus we will omit subscripts and denote µn,Gm for the corresponding sheaves on either M1,1,S

or A1
S.

Lemma 3.1. Let S be a quasi-compact scheme admitting an ample line bundle, and suppose
that at least one prime p is invertible in S. Then the Brauer map αM1,1,S

: BrM1,1,S →
Br′ M1,1,S is an isomorphism.

Proof. By [KM85, 4.7.2], for N ≥ 3 the moduli stack of full level N structures is representable
by an affine Z[ 1

N
]-scheme Y (N). Set Y (N)S := Y (N)×

Z[ 1
N
] S; the projection Y (N)S → S is

an affine morphism, hence Y (N)S is quasi-compact and admits an ample line bundle, hence
the Brauer map αY (N)S is surjective by Gabber’s theorem (see [dJ03]), and, since the map
Y (N)S → M1,1,S is finite locally free, we have by Corollary 2.6 that αM1,1,S

is surjective. �

Lemma 3.2. Let U := SpecZ[t, (t(t− 1728))−1] ⊂ A1
Z
and let M ◦

1,1,Z := U ×A1
Z

M1,1,Z. Then

the restriction π◦ : M ◦
1,1,Z → U of π to U is a trivial Z/(2)-gerbe, i.e. M ◦

1,1,Z ≃ B(Z/(2))U .

Proof. Let S be a scheme and let E1, E2 be two elliptic curves over S. If j(E1) = j(E2) ∈
Γ(S,OS) and j(Ei), j(Ei) − 1728 are units of Γ(S,OS), then by [Del75, 5.3] one can find a
finite étale cover S ′ → S such that there is an isomorphism S ′ ×S E1 ≃ S ′ ×S E2 of elliptic
curves over S ′. For any connected scheme S and an elliptic curve E/S for which j(E) and
j(E)− 1728 are invertible, we have Aut(E/S) ≃ Z/(2) by [KM85, (8.4.2)]. It suffices now to
show that there is an elliptic curve EU over U with j-invariant t. For this we may take the
elliptic curve EU defined by the Weierstrass equation

Y 2Z +XY Z = X3 − 36
t−1728

XZ2 − 1
t−1728

Z3

which satisfies ∆(EU) =
t2

(t−1728)3
and j(EU) = t (see [Sil09, Proposition III.1.4(c)]). �

Lemma 3.3. Let k be an algebraically closed field and let U be a smooth curve over k. If
Pic(U) = 0, then Br′ B(Z/(2))U ≃ (Gm(U))/(2).

Proof. The cohomological descent spectral sequence associated to the cover U → B(Z/(2))U
is of the form

Ep,q
2 = Hp(Z/(2),Hq

ét(U,Gm)) =⇒ Hp+q
ét (B(Z/(2))U ,Gm)(3.3.1)

with differentials Ep,q
2 → Ep+2,q−1

2 . We have by [Mil80, III.2.22 (d)] that Hq
ét(U,Gm) = 0 for

all q ≥ 2. Moreover, we have H1
ét(U,Gm) = Pic(U) = 0 by assumption. Thus the only row of

the E2-page of (3.3.1) containing nonzero entries is q = 0, which gives an isomorphism

H2
ét(B(Z/(2))U ,Gm) ≃ H2(Z/(2),H0

ét(U,Gm)) ≃ (Gm(U))/(2)

of abelian groups. �

Lemma 3.4. Let k be an algebraically closed field. If char k 6= 2, 3, then Br′ M1,1,k is a
subgroup of Z/(2)⊕ Z/(2). If char k is 2 or 3, then Br′ M1,1,k is a subgroup of Z/(2).

Proof. We have that M1,1,k is regular Noetherian and that M ◦
1,1,k := M ◦

1,1,Z ×Z k is a dense
open substack; thus by [AM16, 2.5(iv)] the map

Br′ M1,1,k → Br′ M ◦
1,1,k
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induced by restriction is an injection. Here Lemma 3.2 implies Br′ M ◦
1,1,k = Br′ B(Z/(2))U

for U = Spec k[t, (t(t − 1728))−1], and Lemma 3.3 implies Br′ B(Z/(2))U is Z/(2) ⊕ Z/(2)
if char k 6= 2, 3 and Z/(2) otherwise (here we use that k× = (k×)2 since k is algebraically
closed). �

4. The case char k is not 2

Antieau and Meier [AM16] compute the Brauer group BrM1,1,S for various base schemes S,
including algebraically closed fields k of odd characteristic [AM16, 11.2] (the case char k 6= 2
in Theorem 1.1). In this section we give a proof via a dévissage argument, using the fact
that the coarse moduli space morphism π : M → A1

k is a trivial Z/(2)-gerbe away from
0, 1728 ∈ A1

k (see Lemma 3.2). Our proof is divided into two cases, depending on whether
char k = 3 or char k 6= 3 (this will determine whether we puncture A

1
k at one or two points,

respectively). We first fix notation and record some observations that apply to both cases.

4.1. We abbreviate M := M1,1,k. By Lemma 3.1, the Brauer map αM : BrM → Br′ M is
an isomorphism. By Lemma 3.4, the main task is to show that the 2-torsion in BrM is 0.

For any integer n ≥ 1, the étale Kummer sequence

1 → µ2n → Gm
×2n
→ Gm → 1

gives an exact sequence

0 → (PicM )/(2n) → H2(M , µ2n) → H2(M ,Gm)[2
n] → 0(4.1.1)

of abelian groups. Since we have PicM ≃ Z/(12) by [FO10], we wish to compute H2(M , µ2n).

Set

U := Spec k[t, (t(t− 1728))−1] = A
1
k \ {0, 1728}

with inclusion j : U → A1
k and let i : Z → A1

k be the complement with reduced induced
closed subscheme structure. (Thus, if char k is 2 or 3 then Z ≃ Spec k, otherwise Z ≃
Spec k ∐ Spec k.) Set

M
◦ := U ×A1

k
M

MZ := Z ×A1
k
M

with projections π◦ : M ◦ → U and πZ : MZ → Z. We have a commutative diagram

(4.1.2)

M ◦ M MZ

U A1
k Z

j

π◦ π

i

πZ

with cartesian squares.

We have a distinguished triangle

j!j
∗Rπ∗µ2n → Rπ∗µ2n → i∗i

∗Rπ∗µ2n
+1
→(4.1.3)
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in the derived category of bounded-below complexes of abelian sheaves on the étale site of
A1

k, whose associated long exact sequence has the form

(4.1.4)

H0(A1
k, j!Rπ◦

∗µ2n) H0(M , µ2n) H0(Z, i∗Rπ∗µ2n)

H1(A1
k, j!Rπ◦

∗µ2n) H1(M , µ2n) H1(Z, i∗Rπ∗µ2n)

H2(A1
k, j!Rπ◦

∗µ2n) H2(M , µ2n) H2(Z, i∗Rπ∗µ2n)

since j∗Rπ∗µ2n ≃ Rπ◦
∗µ2n and

Hs(A1
k,Rπ∗µ2n) ≃ Hs(M , µ2n)

Hs(A1
k, i∗i

∗Rπ∗µ2n) ≃ Hs(Z, i∗Rπ∗µ2n)

for all s. We will first compute the groups Hs(A1
k, j!j

∗Rπ∗µ2n) in the left column of (4.1.4).

Lemma 4.2. Let k be an algebraically closed field, let x1, . . . , xr ∈ A1
k be r distinct k-points,

set

Z := Spec k(x1)∐ · · · ∐ Spec k(xr)

and let U = A1
k \ Z be the complement with inclusion j : U → A1

k. For any positive integer ℓ
invertible in k, we have

Hs(A1
k, j!µℓ) =

{
0 s 6= 1

(µℓ(k))
⊕(r−1) s = 1

.

Proof. Let i : Z → A1
k be the inclusion. We have a distinguished triangle

j!µℓ|U → µℓ → i∗i
∗µℓ

+1
→

in the derived category of bounded-below complexes of abelian sheaves on the big étale site
of A1

k, which gives a long exact sequence

H0(A1
k, j!µℓ|U) H0(A1

k, µℓ) H0(Z, µℓ)

H1(A1
k, j!µℓ|U) H1(A1

k, µℓ) H1(Z, µℓ)

H2(A1
k, j!µℓ|U) H2(A1

k, µℓ) H2(Z, µℓ)

H3(A1
k, j!µℓ|U) · · ·

in cohomology. The map H0(A1
k, µℓ) → H0(Z, µℓ) is identified with the diagonal map µℓ(k) →

(µℓ(k))
⊕r. Since k is algebraically closed, the etale site of Z is trivial, hence Hs(Z, µℓ) = 0

for s ≥ 1. By [Del77, Exp. 1, III, (3.6)] we have Hs(A1
k, µℓ) = 0 for s ≥ 2. We have

Gm(A
1
k) ≃ Gm(k) and the multiplication-by-ℓ map ×ℓ : Gm(k) → Gm(k) is surjective; thus

H1(A1
k, µℓ) = H1(A1

k,Gm)[ℓ] = (PicA1
k)[ℓ] = 0 by the Kummer sequence. �
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Lemma 4.3. In the setup of Lemma 4.2, let n be any positive integer and let π◦ : B(Z/(n))U →
U be the trivial Z/(n)-gerbe over U . Then

Hs(A1
k, j!Rπ◦

∗µℓ) =





0 if s = 0 ,

(µℓ(k))
⊕(r−1) if s = 1 ,

(µgcd(n,ℓ)(k))
⊕(r−1) if s = 2 .

Proof. We set

C := j!Rπ◦
∗µℓ

for convenience. We will compute the groups Hs(A1
k, C) using the fact that the canonical

truncations τ≤sC satisfy

Hs(A1
k, τ≤tC) ≃ Hs(A1

k, C)(4.3.1)

for s ≤ t. For any s ∈ Z, the distinguished triangle

τ≤s−1C → τ≤sC → (hsC)[−s]
+1
→(4.3.2)

gives a long exact sequence

(4.3.3)

H0(A1
k, τ≤s−1C) H0(A1

k, τ≤sC) H0−s(A1
k, j!R

sπ◦
∗µℓ)

H1(A1
k, τ≤s−1C) H1(A1

k, τ≤sC) H1−s(A1
k, j!R

sπ◦
∗µℓ)

H2(A1
k, τ≤s−1C) H2(A1

k, τ≤sC) H2−s(A1
k, j!R

sπ◦
∗µℓ)

where

hsC ≃ j!R
sπ◦

∗µℓ

since j! is exact.

Since π◦ : B(Z/(n))U → U is a trivial Z/(n)-gerbe, by Lemma B.1 we have

Rsπ◦
∗µℓ ≃





µℓ s = 0

µℓ[n] s = 1, 3, 5, . . .

µℓ/(n) s = 2, 4, 6, . . .

(4.3.4)

where µℓ[n] and µℓ/(n) are defined by the exact sequence

1 → µℓ[n] → µℓ
×n
→ µℓ → µℓ/(n) → 1

of abelian sheaves. Since k is algebraically closed of characteristic prime to ℓ, the sheaves
µℓ[n] and µℓ/(n) are both isomorphic to µgcd(n,ℓ), but for us the difference is important for
reasons of functoriality (as ℓ is allowed to vary). More precisely, if ℓ1 divides ℓ2, then the
inclusion µℓ1 → µℓ2 induces an inclusion

µℓ1[n] → µℓ2 [n]

whereas

µℓ1/(n) → µℓ2/(n)(4.3.5)
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is not necessarily injective since an element x ∈ µℓ1 which is not an nth power of any y1 ∈ µℓ1

may be an nth power of some y2 ∈ µℓ2 (in particular, if ℓ2 = nℓ1, then (4.3.5) is the zero
morphism).

We have

τ≤0C ≃ h0C ≃ j!R
0π◦

∗µℓ ≃ j!π
◦
∗µℓ ≃ j!µℓ

since π◦ is a coarse moduli space morphism and R1π◦
∗µℓ ≃ µgcd(n,ℓ) by (4.3.4). Applying

Lemma 4.2 to the case s = 1 in (4.3.3) implies H0(A1
k, τ≤1C) = 0 and gives isomorphisms

H1(A1
k, j!µℓ) ≃ H1(A1

k, τ≤1C) and H2(A1
k, τ≤1C) ≃ H1(A1

k, j!µgcd(n,ℓ)).

Since R2π◦
∗µℓ ≃ µgcd(n,ℓ) by (4.3.4) and Hs(A1

k, j!µgcd(n,ℓ)) = 0 for s = −2,−1, 0, the case
s = 2 in (4.3.3) gives isomorphisms Hs(A1

k, τ≤1C) ≃ Hs(A1
k, τ≤2C) for s = 0, 1, 2, which implies

the desired result. �

4.4 (Proof of Theorem 1.1 for char k = 3). If char k = 3, then Z consists of one point, so
taking r = 1 in Lemma 4.3 implies

Hs(A1
k, j!Rπ◦

∗µ2n) = 0(4.4.1)

for s = 0, 1, 2. Therefore, to compute H2(M , µ2n), it now remains to compute H2(Z, i∗Rπ∗µ2n)
in (4.1.4). The stabilizer of any object of M of lying over i : Z → A1

k is the automorphism
group of an elliptic curve with j-invariant 0, which is the semidirect product Γ = Z/(3)⋊Z/(4)
since k has characteristic 3. The underlying reduced stack (MZ)red is the residual gerbe as-
sociated to the unique point of |MZ| and is isomorphic to the classifying stack BΓk. We have
natural isomorphisms

H2(Z, i∗Rπ∗µ2n) ≃ i∗R2π∗µ2n
1
≃ H2(MZ , µ2n)

2
≃ H2(BΓk, µ2n)

3
≃ H2(Γ, µ2n(k))

where isomorphism 1 follows from proper base change [Ols05, 1.3], isomorphism 2 is by
invariance of étale site for nilpotent thickenings and the fact that 2n is invertible on MZ , and
isomorphism 3 is by the cohomological descent spectral sequence for the covering Spec k →
BΓk (and the fact that Hi(Spec k, µ2n) = 0 for i > 0 since k is algebraically closed). The
Hochschild-Serre spectral sequence for the exact sequence

1 → Z/(3) → Γ → Z/(4) → 1

gives an isomorphism

H2(Γ, µ2n(k)) ≃ H2(Z/(4), µ2n(k)) ≃ µ2n(k)/(4)

where Hi(Z/(3), µ2n(k)) = 0 for i > 0 since 3 is coprime to the order of µ2n(k). Since the first
term in the last row of the diagram (4.1.4) is zero by (4.4.1), the above observations imply
that we have natural inclusions

H2(M , µ2n) → µ2n(k)/(4)

compatible with the inclusions µ2n ⊂ µ2n+1 for all n. The inclusion µ2n ⊂ µ2n+2 induces the
zero map µ2n(k)/(4) → µ2n+2(k)/(4), so H2(M , µ2n) → H2(M , µ2n+2) is the zero map as well,
hence

lim
−→n∈N

H2(M , µ2n) = 0

which by (4.1.1) gives H2(M ,Gm)[2
n] = 0 for all n.
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4.5 (Proof of Theorem 1.1, for char k 6= 2, 3). We describe the terms in (4.1.4). For the right
column, we have

Hs(Z, i∗Rπ∗µ2n) ≃ Hs(Z/(4), µ2n(k))⊕Hs(Z/(6), µ2n(k))

by [ACV03, A.0.7]. For the middle column, we have

H0(M , µ2n) ≃ H0(A1
k, µ2n) ≃ µ2n(k)

since A
1
k is the coarse moduli space of M , and we have

H1(M , µ2n)
1
≃ H1(M ,Gm)[2

n]
2
≃ (Z/(12))[2n]

3
≃ Z/(4)

where isomorphism 1 follows since k× = (k×)2
n

, isomorphism 2 is by [Mum65], and isomor-
phism 3 holds for n ≫ 0. For the left column, we have

Hs(τ≤1j!Rπ◦
∗µ2n) =





0 s = 0

µ2n s = 1

µ2 s = 2

by Lemma 4.3.

To summarize, (4.1.4) simplifies to

(4.5.1)

0 µ2n µ2n ⊕ µ2n

µ2n Z/(4) µ4 ⊕ µ2

µ2 H2(M , µ2n) µ2n/(4)⊕ µ2n/(6)

for n ≫ 0, and counting the number of elements in each group in (4.5.1) implies that the last
morphism

H2(M , µ2n) → µ2n/(4)⊕ µ2n/(6)

is injective. Furthermore, the inclusion

µ2n ⊂ µ2n+2

induces the zero map

µ2n/(4)⊕ µ2n/(6) → µ2n+2/(4)⊕ µ2n+2/(6)

so the map H2(M , µ2n) → H2(M , µ2n+2) is the zero map as well, hence

lim
−→n∈N

H2(M , µ2n) = 0

which by (4.1.1) gives H2(M ,Gm)[2
n] = 0 for all n.
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5. The case char k is 2

In this section we prove Theorem 1.1 (in case char k = 2) and Theorem 1.2. For conve-
nience, we denote GLn,p := GLn(Z/(p)) and SLn,p := SLn(Z/(p)). We denote by e the identity
element of GLn,p.

5.1 (Hesse presentation of M1,1,k). By [FO10, 6.2] (and explained in more detail in A.6),
there is a left action of GL2,3 on the Z[1

3
]-algebra

AH := Z[1
3
, µ, ω, 1

µ3−1
]/(ω2 + ω + 1)

sending

(5.1.1)

[
1 0
0 −1

]
∗ (µ, ω) = (µ, ω2)

[
1 0
−1 1

]
∗ (µ, ω) = (ωµ, ω)

[
0 −1
1 0

]
∗ (µ, ω) = (µ+2

µ−1
, ω)

for which the corresponding right action of GL2,3 on the Z[1
3
]-scheme

SH := SpecAH

gives a presentation

M1,1,Z[ 1
3
] ≃ [SH/GL2,3](5.1.2)

of M1,1,Z[ 1
3
] as a global quotient stack. The morphism

SH → M1,1,Z[ 1
3
](5.1.3)

is given by the elliptic curve

X3 + Y 3 + Z3 = 3µXY Z

over SH.

5.2 (Cohomological descent). Let k be an algebraically closed field of characteristic 2. The
Brauer map αM1,1,k

: BrM1,1,k → Br′ M1,1,k is an isomorphism by Lemma 3.1. By Lemma 3.4,
there is only 2-torsion in BrM1,1,k. By Grothendieck’s fppf-étale comparison theorem for
smooth commutative group schemes [Gro68b, (11.7)], it suffices to compute the 2-torsion in
H2

fppf(M1,1,k,Gm). Since Spec k is a reduced scheme, we have

H1
fppf(M1,1,k,Gm) = Pic(M1,1,k) = Z/(12)

by [FO10, 1.1]. Thus, for any integer n, the fppf Kummer sequence

1 → µ2 → Gm
×2
→ Gm → 1(5.2.1)

gives an exact sequence

1 → Z/(2)
∂
→ H2

fppf(M1,1,k, µ2) → H2
fppf(M1,1,k,Gm)[2] → 1(5.2.2)

of abelian groups. It remains to compute the middle term H2
fppf(M1,1,k, µ2).
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The cohomological descent spectral sequence associated to the cover (5.1.3) is of the form

Ep,q
2 = Hp(GL2,3,H

q
fppf(SH,k, µ2)) =⇒ Hp+q

fppf(M1,1,k, µ2)(5.2.3)

with differentials Ep,q
2 → Ep+2,q−1

2 .

Let

ξ ∈ k

be a fixed primitive 3rd root of unity. By the Chinese Remainder Theorem, there is a k-
algebra isomorphism

AH,k = k[µ, ω, 1
µ3−1

]/(ω2 + ω + 1) → k[ν1,
1

ν31−1
]× k[ν2,

1
ν32−1

](5.2.4)

sending µ 7→ (ν1, ν2) and ω 7→ (ξ, ξ2). Since SH,k is a smooth curve over an algebraically
closed field, we have by [Mil80, III.2.22 (d)] that Hq

ét(SH,k,Gm) = 0 for all q ≥ 2; since
SH,k is a disjoint union of two copies of a distinguished affine open subset of A1

k, we have
H1

ét(SH,k,Gm) = Pic(SH,k) = 0. By [Gro68b, (11.7)] we have Hq
fppf(SH,k,Gm) = Hq

ét(SH,k,Gm)

for all q ≥ 0; thus the fppf Kummer sequence implies Hq
fppf(SH,k, µ2) = 0 for all q ≥ 2.

Furthermore, we have H0
fppf(SH,k, µ2) = 0 since SH,k is the product of two integral domains of

characteristic 2. Thus the only nonzero terms on the E2-page of (5.2.3) occur on the q = 1
row, so we have an isomorphism

Hp+1
fppf(M1,1,k, µ2) ≃ Hp(GL2,3,H

1
fppf(SH,k, µ2))(5.2.5)

for all p ≥ 0. We are interested in the case p = 1.

5.3 (Description of the GL2,3-action on H1
fppf(SH,k, µ2)). We describe the abelian group

M := H1
fppf(SH,k, µ2)

and the left GL2,3-module structure it inherits from (5.1.1). Since k[µ, (µ3−1)−1] is a principal
localization of the polynomial ring k[µ] by a polynomial µ3−1 = (µ−1)(µ−ξ)(µ−ξ2) splitting
into three distinct irreducible factors, we have an isomorphism

(k[µ, 1
µ3−1

])× ≃ k× · (µ− 1)Z · (µ− ξ)Z · (µ− ξ2)Z(5.3.1)

of abelian groups. Thus (5.2.4) and the Kummer sequence (5.2.1) gives an isomorphism

M ≃ (Z/(2))⊕6(5.3.2)

of abelian groups, with generators given by the classes of νi − ξj for i = 1, 2 and j = 0, 1, 2.

The isomorphism (5.2.4) is given by the map

s1(µ)ω + s0(µ) 7→
(
s1(ν1)ξ + s0(ν1), s1(ν2)ξ

2 + s0(ν2)
)

(5.3.3)

for s0, s1 ∈ k[µ, 1
µ3−1

]. The inverse of (5.2.4) is given by the map

(f1(ν1), f2(ν2)) 7→ f1(µ)

(
ω

ξ − ξ2
+

ξ

ξ − 1

)
+ f2(µ)

(
−ω

ξ − ξ2
+

−1

ξ − 1

)
(5.3.4)

where fi(νi) ∈ k[νi,
1

ν3i −1
]. (Note that, if we set A1(t) :=

t
ξ−ξ2

+ ξ
ξ−1

and A2(t) :=
−t

ξ−ξ2
+ −1

ξ−1
,

then Ai(ξ
j) is the Kronecker delta function.)
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A computation with (5.1.1), (5.3.3), (5.3.4) shows that the action of GL2,3 on the right
hand side of (5.2.4) is given by

(5.3.5)

[
1 0
0 −1

]
∗ (f1(ν1), f2(ν2)) = (f2(ν1), f1(ν2))

[
1 0
−1 1

]
∗ (f1(ν1), f2(ν2)) = (f1(ξν1), f2(ξ

2ν2))

[
0 −1
1 0

]
∗ (f1(ν1), f2(ν2)) = (f1(

ν1+2
ν1−1

), f2(
ν2+2
ν2−1

))

for fi(νi) ∈ k[νi,
1

ν3i −1
]. A computation with (5.3.5) (and using that char k = 2) shows that

the action of GL2,3 on (5.3.2) is given by (5.3.6), where every element is considered up to
multiplication by k×.

(5.3.6)

ν1 − 1 ν1 − ξ ν1 − ξ2 ν2 − 1 ν2 − ξ ν2 − ξ2

M1 :=

[
1 0
0 −1

]
ν2 − 1 ν2 − ξ ν2 − ξ2 ν1 − 1 ν1 − ξ ν1 − ξ2

M2 :=

[
1 0
−1 1

]
ν1 − ξ2 ν1 − 1 ν1 − ξ ν2 − ξ ν2 − ξ2 ν2 − 1

i :=

[
0 −1
1 0

]
1

ν1 − 1

ν1 − ξ2

ν1 − 1

ν1 − ξ

ν1 − 1

1

ν2 − 1

ν2 − ξ2

ν2 − 1

ν2 − ξ

ν2 − 1

5.4. We compute H1(GL2,3,M). (In Appendix C we provide Magma code that can be used
to verify this computation.) We have a filtration of groups

Q8 E SL2,3 E GL2,3(5.4.1)

where each is a normal subgroup of the next. Here Q8 denotes the quaternion group

Q8 = {±e,±i,±j,±k : ijk = i2 = j2 = k2 = −e}

and is identified with the subgroup of GL2,3 as follows:

i =

[
0 −1
1 0

]
j =

[
−1 −1
−1 1

]
k =

[
1 −1
−1 −1

]

The quotient GL2,3 / SL2,3 is cyclic of order 2 and is generated by M1 in (5.3.6). The quotient
SL2,3 /Q8 is cyclic of order 3 and is generated by M2 in (5.3.6). For i = 1, 2, let 〈Mi〉 denote
the subgroup of GL2,3 generated by Mi. We note that SL2,3 is generated by i and M2.

Let

F : (Z[GL2,3] -Mod) → (Z[SL2,3] -Mod)

be the forgetful functor. An inspection of (5.3.6) implies that F (M) is the direct sum N1⊕N2

where Ni is the SL2,3-submodule of F (M) generated by the classes of νi − 1, νi − ξ, νi − ξ2,
and moreover M1 switches the summands N1 and N2. Under the adjunction

HomSL2,3
(F (M), N1) ≃ HomGL2,3

(M, Ind
GL2,3

SL2,3
(N1))

the projection map F (M) ≃ N1 ⊕N2 → N1 onto the first factor corresponds to a morphism

M → Ind
GL2,3

SL2,3
(N1)(5.4.2)
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of GL2,3-modules. Given m ∈ M , write m = n1 + n2 for ni ∈ Ni; then the image of m
under (5.4.2) is the function ϕm ∈ HomZ[SL2,3](Z[GL2,3], N1) such that ϕm([e]) = n1 and
ϕm([M1]) = M1 · n2; thus (5.4.2) is an isomorphism.

A computation using (5.3.6) and the identities

k = M−1
2 · i ·M2

i = M−1
2 · j ·M2

j = M−1
2 · k ·M2

(5.4.3)

shows that the action of an element g ∈ SL2,3 on N1 is by left multiplication by the matrix
Tg as in (5.4.4), with elements of N1 being viewed as vertical vectors. We note T−e = T 2

i =
T 2
j = T 2

k = idN1
, i.e. −e acts trivially on N1.

(5.4.4)

g M2 i j k

Tg



0 1 0
0 0 1
1 0 0






1 1 1
0 0 1
0 1 0






0 1 0
1 0 0
1 1 1






0 0 1
1 1 1
1 0 0




Since M is an induced module, the restriction map

H1(GL2,3,M) → H1(SL2,3, N1)(5.4.5)

is an isomorphism so we reduce to computing H1(SL2,3, N1).

The Hochschild-Serre spectral sequence for the inclusion Q8 E SL2,3 degenerates on the E2

page since the order of the quotient group 〈M2〉 is coprime to the order of N1. In particular
the restriction map

H1(SL2,3, N1) → H0(〈M2〉,H
1(Q8, N1))(5.4.6)

is an isomorphism.

Let Ci(Q8, N1) := Fun((Q8)
i, N1) denote the group of inhomogeneous i-cochains. By

Remark 5.5, the group SL2,3 has a natural left action on Ci(Q8, N1) (by entrywise conju-
gation on the source (Q8)

i and by its usual action on N1) such that the differentials in the
inhomogeneous cochain complex

C0(Q8, N1)
d0→ C1(Q8, N1)

d1→ C2(Q8, N1) → · · ·

are SL2,3-linear. Since the order of the subgroup 〈M2〉 is coprime to the orders of Ci(Q8, N1),
we have that H0(〈M2〉,H

1(Q8, N1)) ≃ (H1(Q8, N1))
M2 is isomorphic to the middle cohomology

of the sequence

(C0(Q8, N1))
M2

(d0)M2

→ (C1(Q8, N1))
M2

(d1)M2

→ (C2(Q8, N1))
M2

i.e. cohomology commutes with taking M2-invariants.

We now describe ker((d1)
M2) and im((d0)

M2).

An element f ∈ (C1(Q8, N1))
M2 is a function f : Q8 → N1 satisfying

f(g) = M2 · f(M
−1
2 gM2)(5.4.7)

for all g ∈ Q8. We have that f ∈ ker d1 if

f(g1 · g2) = g1 · f(g2) + f(g1)(5.4.8)
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for all g1, g2 ∈ Q8.

Suppose f ∈ ker((d1)
M2) = (ker d1) ∩ (C1(Q8, N1))

M2; taking (g1, g2) = (e, e) in (5.4.8)
implies f(e) = 0; taking g = −e in (5.4.7) implies that

f(−e) = (s, s, s)

for some s ∈ Z/(2); taking (g1, g2) = (−e,−e) in (5.4.8) and using the fact that −e acts
trivially on N1 implies that 2f(−e) = 0, which imposes no condition on s. We note that

g · f(−e) = f(−e)

for any g ∈ SL2,3.

Setting g = i, j, k in (5.4.7) and using (5.4.3) gives

f(i) = M2 · f(k)

f(j) = M2 · f(i)

f(k) = M2 · f(j)

(5.4.9)

respectively; thus we have

f(i) = (s1, s2, s3)

f(j) = (s2, s3, s1)

f(k) = (s3, s1, s2)

for some s1, s2, s3 ∈ Z/(2).

Setting either g1 = −e or g2 = −e in (5.4.8) implies

f(−g) = f(g) + f(−e)(5.4.10)

for any g ∈ Q8.

Setting (g1, g2) = (±i,±j), (±j,±k), (±k,±i) in (5.4.8) (where the signs can vary indepen-
dently of each other) all impose the condition

s2 = 0(5.4.11)

for s, s2 (check the case (g1, g2) = (i, j), then use (5.4.10) to show that changing the signs don’t
give new relations, then use (5.4.9) to show that one can permute using left multiplication
by M2).

Setting (g1, g2) = (±j,±i), (±k,±j), (±i,±k) in (5.4.8) (where the signs can vary indepen-
dently of each other) all impose the condition

s = s3(5.4.12)

for s3 (check the case (g1, g2) = (j, i), then use (5.4.10) to show that changing the signs don’t
give new relations, then use (5.4.9) to show that one can permute using left multiplication
by M2).

Setting (g1, g2) = (±g,±g) for g = i, j, k (where the signs can vary independently of each
other) all impose the condition

s = s2 + s3(5.4.13)

on s, s2, s3 (check the case g = i, then use (5.4.10) to show that changing the signs don’t give
new relations, then use (5.4.9) to show that one can permute using left multiplication by M2),
but (5.4.13) is implied by (5.4.11) and (5.4.12).
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These are the only relations satisfied by the s, s1, s2, s3. Thus we have

ker((d1)
M2) ≃ Z/(2)⊕ Z/(2)

since there are no relations on s, s1 ∈ Z/(2).

An element of (C0(Q8, N1))
M2 corresponds to an element (t, t, t) ∈ N1; since every element

of SL2,3 fixes elements of this form (see (5.4.4)), the image of (t, t, t) under (d0)
M2 corresponds

to the function f : Q8 → N1 sending every element to (0, 0, 0), in other words

im((d1)
M2) = 0

which implies

H0(〈M2〉,H
1(Q8, N1)) ≃ Z/(2)⊕ Z/(2)(5.4.14)

and so

BrM1,1,k = H2
fppf(M1,1,k,Gm)[2] = Z/(2)(5.4.15)

by combining (5.4.14) with (5.4.6), (5.4.5), (5.2.5), and (5.2.2). �

Remark 5.5 (The inhomogeneous cochain complex admits a left G-action). Let G be a
group, let H E G be a normal subgroup, and let M be a left G-module. Set Pi := Z[H i+1];
we denote by [h0, . . . , hi] the canonical Z-basis of Pi. We view Pi as a left H-module via the
diagonal action h · [h0, . . . , hi] = [hh0, . . . , hhi]; then Pi is a free left Z[H ]-module with basis
consisting of elements of the form [e, h1, . . . , hi]. Applying the functor HomH(−,M) to the
bar resolution

· · · → P2 → P1 → P0 → Z → 0

gives the usual homogeneous cochain complex

HomZ[H](P0,M)
δ0→ HomZ[H](P1,M)

δ1→ HomZ[H](P2,M) → · · ·

whose cohomology gives Hi(H,M).

We note that there is a natural left G-action on HomZ[H](Pi,M) for which the differential
δi : HomZ[H](Pi,M) → HomZ[H](Pi+1,M) is G-linear. Namely, the action of g ∈ G on
ϕi ∈ HomZ[H](Pi,M) is described by

(gϕi)([h0, . . . , hi]) := g · (ϕi([g
−1h0g, . . . , g

−1hig]))

for all h0, . . . , hi ∈ H . Let
Ci(H,M) := Fun(H i,M)

denote the abelian group of functions H i → M . Via the usual abelian group isomorphism

HomZ[H](Pi,M) ≃ Ci(H,M)

sending ϕi 7→ {(h1, . . . , hi) 7→ ϕi(e, h1, h1h2, . . . , h1 · · · hi)}, the abelian group Ci(H,M) inher-
its a left action of G described by

(gfi)(h1, . . . , hi) = g · (fi(g
−1h1g, . . . , g

−1hig))(5.5.1)

for g ∈ G and fi ∈ Ci(H,M). The inhomogeneous cochain complex

C0(H,M)
d0→ C1(H,M)

d1→ C2(H,M) → · · ·

is G-linear as well.

For f0 ∈ C0(H,M), we have (d0f0)(h1) = h1 · f0(e)− f0(e).
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For f1 ∈ C1(H,M), we have (d1f1)(h1, h2) = h1 · f1(h2)− f1(h1h2) + f1(h1).

Let Σ := G/H be the quotient; then there is an induced left action of Σ on the cohomology
hi(C•(H,M)). In case G → Σ has a section, in which case G is the semi-direct product
G ≃ H ⋊ Σ, then this Σ-action coincides with the one obtained by restricting the G-action
on C•(H,M) to Σ.

Remark 5.6. The arguments used in 5.3 and 5.4 are similar to those of Mathew and Sto-
janoska [MS16, Appendix B], who show H1(GL2,3, (TMF (3)0)

×) = Z/(12) where GL2,3 acts
on

TMF (3)0 = Z[1
3
, ζ, t, 1

t
, 1
1−ζt

, 1
1+ζ2t

]/(ζ2 + ζ + 1)(5.6.1)

as in [Sto14, §4.3].

Note 5.7 (Explicit description of inhomogeneous 1-cocycles). We describe the 1-cocycles
GL2,3 → M obtained via the compositions (5.4.6) and (5.4.5). By our computation in 5.4,
the 1-cocycles

fQ8
: Q8 → N1

are of the form

e 7→ (0, 0, 0) −e 7→ (s, s, s)

i 7→ (s1, 0, s) −i 7→ (s1 + s, s, 0)

j 7→ (0, s, s1) −j 7→ (s, 0, s1 + s)

k 7→ (s, s1, 0) −k 7→ (0, s1 + s, s)

for some s, s1 ∈ Z/(2). Suppose

fSL2,3
: SL2,3 → N1

is a 1-cocycle such that fSL2,3
is fixed by the action of M2 (see (5.5.1)) and which satisfies

fSL2,3
(g) = fQ8

(g) for g ∈ Q8. We have

M2 · fSL2,3
(M−1

2 · g ·M2) = fSL2,3
(g)

for all g ∈ SL2,3; taking g = M2 gives M2 · fSL2,3
(M2) = fSL2,3

(M2). Taking g1 = g2 = M2 in
the 1-cocycle condition (5.4.8) then gives fSL2,3

(M2) = 0. Thus we have

fSL2,3
(g ·M2) = fSL2,3

(g)(5.7.1)

for any g ∈ SL2,3, again by (5.4.8).

By Shapiro’s lemma (5.4.5), there is a 1-cocycle

fGL2,3
: GL2,3 → Ind

GL2,3

SL2,3
(N1)

such that precomposing with the inclusion SL2,3 ⊂ GL2,3 and postcomposing with the projec-

tion Ind
GL2,3

SL2,3
(N1) → N1 gives fSL2,3

. After altering fGL2,3
by a 1-coboundary, we may assume

by Note 5.8 that fGL2,3
is given by the formula (5.8.1), namely

fGL2,3
(g ·Mi

1)([M
j
1]) := fSL2,3

(Mj
1 · g ·M

−j
1 )(5.7.2)

for any i, j ∈ {0, 1} and g ∈ SL2,3. Any element g ∈ GL2,3 may be expressed in the form

h ·Mi2
2 ·Mi1

1
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where i1 ∈ {0, 1} and i2 ∈ {0, 1, 2} and h ∈ Q8. We have formulas

M1 ·M
−1
2 ·M1 = M−1

2

M1 · i ·M
−1
1 = −i

M1 · j ·M
−1
1 = −k

M1 · k ·M
−1
1 = −j

(5.7.3)

and so

fGL2,3
(h ·Mi2

2 ·Mi1
1 )([M

j
1])

1
= fSL2,3

(Mj
1 · h ·M

i2
2 ·M−j

1 )

= fSL2,3
((Mj

1 · h ·M
−j
1 ) · (Mj

1 ·M
i2
2 ·M−j

1 ))

2
= fSL2,3

(Mj
1 · h ·M

−j
1 )

3
= fQ8

(Mj
1 · h ·M

−j
1 )

where equality 1 is by (5.7.2) and equality 2 is by (5.7.1) and (5.7.3) and equality 3 is since
M

j
1 · h ·M

−j
1 ∈ Q8 (see (5.7.3)). This is summarized in (5.7.4) below.

fGL2,3
(e) = (fQ8

(e), fQ8
(e)) = ((0, 0, 0), (0, 0, 0))

fGL2,3
(i) = (fQ8

(i), fQ8
(−i)) = ((s1, 0, s), (s1 + s, s, 0))

fGL2,3
(j) = (fQ8

(j), fQ8
(−k)) = ((0, s, s1), (0, s1 + s, s))

fGL2,3
(k) = (fQ8

(k), fQ8
(−j)) = ((s, s1, 0), (s, 0, s1 + s))

(5.7.4)

Note 5.8 (The Shapiro isomorphism and inhomogeneous 1-cocycles). 1 Let G be a group, let
H ⊆ G be a normal subgroup of finite index such that the projection G → G/H has a section
G/H → G whose image corresponds to a subgroup Σ of G. Let N be a left H-module and
let IndG

HN := HomZ[H](Z[G], N) denote the associated induced left G-module. We recall that

the left G-action on IndG
HN sends ϕ 7→ gϕ where (gϕ)(x) = ϕ(xg).

We describe the inverse of the Shapiro isomorphism H1(G, IndG
HN) → H1(H,N) in terms

of inhomogeneous cochains. Suppose given a function

f : H → N

which satisfies

f(h1h2) = h1 · f(h2) + f(h1)

for all h1, h2 ∈ H . We construct a 1-cocycle

s : G → IndG
H(N)

which restricts to f , i.e. satisfies s(h)(1 · [e]) = f(h) for all h ∈ H . Note that every element
of g ∈ G may be written uniquely in the form

g = hσ

for h ∈ H and σ ∈ Σ, hence the collection {[σ]}σ∈Σ forms a basis for Z[G] as a left Z[H ]-
module. We set

s(hσ)([ξ]) := f(ξhξ−1)(5.8.1)

1Ehud Meir’s MathOverflow post [Mei16] was helpful in working out the details of this section.
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for h ∈ H and σ, ξ ∈ Σ and extend Z[H ]-linearly. Given g1, g2 ∈ G where gi = hiσi with
hi ∈ H and σi ∈ Σ, for any ξ ∈ Σ we have

s(g1g2)([ξ]) = s(h1σ1h2σ2)([ξ])

= s(h1(σ1h2σ
−1
1 )σ1σ2)([ξ])

= f(ξh1(σ1h2σ
−1
1 )ξ−1)

and

(g1 · s(g2))([ξ]) = s(h2σ2)([ξh1σ1])

= s(h2σ2)([(ξh1ξ
−1)ξσ1])

= (ξh1ξ
−1) · s(h2σ2)([ξσ1])

= (ξh1ξ
−1) · f((ξσ1)h2(ξσ1)

−1)

and

s(g1)([ξ]) = s(h1σ1)([ξ]) = f(ξh1ξ
−1)

which implies

s(g1g2) = g1 · s(g2) + s(g1)

by Z[H ]-linearity and since f is a 1-cocycle; hence s is a 1-cocycle. �

5.9 (Proof of Theorem 1.2). Let ksep be a fixed separable closure of k and let Gk := Gal(ksep/k) ≃

Ẑ be the absolute Galois group. Set M := M1,1,k and M sep := M1,1,ksep . We have
BrM = Br′ M by Lemma 3.1. The Leray spectral sequence for the map M → Spec k
is of the form

Ep,q
2 = Hp(Gk,H

q
ét(M

sep,Gm)) =⇒ Hp+q
ét (M ,Gm)

with differentials Ep,q
2 → Ep+2,q−1

2 . Here we have Γ(M sep,Gm) = Γ(A1
ksep ,Gm) = (ksep)×

since M sep → A1
ksep is the coarse moduli space map. Since k is a finite field, we have that

H0
ét(M

sep,Gm) is a torsion group. Moreover H1
ét(M

sep,Gm) ≃ Pic(M sep) ≃ Z/(12) is a
torsion group by [FO10]. Thus by e.g. [Fu11, 4.3.7] or [GS06, 6.1.3] we have Ep,q

2 = 0 for
(p, q) ∈ Z≥2 × {0, 1}. This means there is an exact sequence

0 → E1,1
2 → H2

ét(M ,Gm) → E0,2
2 → 0(5.9.1)

of abelian groups.

By [FO10], we have that Pic(M sep) ≃ Z/(12) is generated by the class of the Hodge
bundle; since Gk acts trivially on invariant differentials of elliptic curves E → S where S is
a k-scheme, the action of Gk on Pic(M sep) is trivial. Hence we have

E1,1
2 = H1(Gk,H

1
ét(M

sep,Gm))
1
= Homcont(Gk,Pic(M

sep))
2
= Z/(12)

where equality 1 is by [Fu11, 4.3.7] and equality 2 is since Gk ≃ Ẑ. We have

E0,2
2 = H0(Gk,H

2
ét(M

sep,Gm))
1
= (Z/(2))Gk

2
= Z/(2)

where equality 1 is by the computation for an algebraically closed field (Theorem 1.1) and
also the fact that H2

ét(M
sep,Gm) is a torsion group (see [AM16, Proposition 2.5 (iii)]) and
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equality 2 is because any group action on the group of order 2 is necessarily trivial. Thus
(5.9.1) reduces to a natural extension

0 → Z/(12) → BrM → Z/(2) → 0(5.9.2)

and it remains to see whether (5.9.2) is split. It suffices to compute the size of (BrM )[2],
since (BrM )[2] has 4 or 2 elements depending on whether (5.9.2) is split or not, respectively.

As in 5.2, the fppf Kummer sequence

1 → µ2 → Gm
×2
→ Gm → 1(5.9.3)

gives an exact sequence

1 → Z/(2)
∂
→ H2

fppf(M , µ2) → (BrM )[2] → 1(5.9.4)

of abelian groups. We compute H2
fppf(M , µ2) using the Leray spectral sequence which is of

the form

Ep,q
2 = Hp(Gk,H

q
fppf(M

sep, µ2)) =⇒ Hp+q
fppf(M , µ2)

with differentials Ep,q
2 → Ep+2,q−1

2 . We have

Hp
fppf(M

sep, µ2) =





0 if p = 0

Z/(2) if p = 1

Z/(2)⊕ Z/(2) if p = 2

from the fppf Kummer sequence on M sep, where the p = 0 case follows since we are in
characteristic 2 and Γ(M sep,Gm) = Γ(A1

ksep,Gm) = (ksep)×, the p = 1 case is since the
multiplication-by-2 map on Γ(M sep,Gm) = (ksep)× is an isomorphism, and the p = 2 case is
by the computation in the algebraically closed case (combine (5.2.5), (5.4.5), (5.4.6), (5.4.14)).

Since k has characteristic 2, the 2-cohomological dimension of k satisfies cd2(k) ≤ 1 by e.g.
[GS06, 6.1.9]; hence Ep,q

2 = 0 for p ≥ 2 and any q. Hence there is an exact sequence

0 → H1(Gk,H
1
fppf(M

sep, µ2)) → H2
fppf(M , µ2) → H0(Gk,H

2
fppf(M

sep, µ2)) → 0(5.9.5)

of abelian groups. As above, the Gk-action on H1
fppf(M

sep, µ2) is necessarily trivial so we have

an isomorphism H1(Gk,H
1
fppf(M

sep, µ2)) ≃ Homcont(Gk,Z/(2)) ≃ Z/(2).

To describe H0(Gk,H
2
fppf(M

sep, µ2)), we describe the Gk-action on H2
fppf(M

sep, µ2). Let

ξ ∈ ksep

be a fixed root of x2 + x+ 1 (i.e. a primitive 3rd root of unity).

If ξ ∈ k, then Gk acts trivially on H2
fppf(M

sep, µ2); hence H0(Gk,H
2
fppf(M

sep, µ2)) has 4

elements, hence H2
fppf(M , µ2) has 8 elements by (5.9.5), hence (BrM )[2] has 4 elements by

(5.9.4), hence BrM ≃ Z/(2)⊕ Z/(12).

Suppose ξ 6∈ k. The k-algebra map

k[µ, ω, 1
µ3−1

]/(ω2 + ω + 1) → ksep[ν1,
1

ν3
1
−1

]× ksep[ν2,
1

ν3
2
−1

]

sending µ 7→ (ν1, ν2) and ω 7→ (ξ, ξ2) induces an isomorphism

k[µ, ω, 1
µ3−1

]/(ω2 + ω + 1)⊗k k
sep → ksep[ν1,

1
ν31−1

]× ksep[ν2,
1

ν32−1
](5.9.6)
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of ksep-algebras. The inverse to (5.9.6) sends

(f1(ν1), f2(ν2)) 7→ f1(µ)

(
ω ⊗

1

ξ − ξ2
+ 1⊗

ξ

ξ − 1

)
+f2(µ)

(
(−ω)⊗

1

ξ − ξ2
+ (−1)⊗

1

ξ − 1

)

for fi(νi) ∈ k[νi,
1

ν3i −1
].

Let

λ ∈ Gk

be an automorphism of ksep such that λ(ξ) = ξ2. Then the k-algebra automorphism of
ksep[ν1,

1
ν31−1

] × ksep[ν2,
1

ν32−1
] induced by (5.9.6) sends (ν1, 0) 7→ (0, ν2) and (0, ν2) 7→ (ν1, 0)

and (ξ, 0) 7→ (0, ξ2) and (0, ξ) 7→ (ξ2, 0). We see that the action of λ on M (see (5.3.2)) is
given by (5.9.7).

(5.9.7)
ν1 − 1 ν1 − ξ ν1 − ξ2 ν2 − 1 ν2 − ξ ν2 − ξ2

λ ν2 − 1 ν2 − ξ2 ν2 − ξ ν1 − 1 ν1 − ξ2 ν1 − ξ

A computation with (5.9.7) and (5.3.6) shows that

λgλ−1 ·m = g ·m(5.9.8)

for any m ∈ M and g ∈ GL2,3.

Let fGL2,3
: GL2,3 → M be an inhomogeneous 1-cocycle as in Note 5.7. Multiplying the

1-cocycle condition (5.4.8) on the left by λ gives

λ · fGL2,3
(g1 · g2) = λg1 · fGL2,3

(g2) + λ · fGL2,3
(g1)

1
= g1 · (λ · fGL2,3

(g2)) + λ · fGL2,3
(g1)

where equality 1 follows from (5.9.8). Hence the function λ · fGL2,3
: GL2,3 → M sending

g 7→ λ · fGL2,3
(g) is a 1-cocycle as well. Using (5.9.7) and (5.7.4), we have that

(λ · fGL2,3
)(e) = ((0, 0, 0), (0, 0, 0))

(λ · fGL2,3
)(i) = ((s1 + s, 0, s), (s1, s, 0))

(λ · fGL2,3
)(j) = ((0, s, s1 + s), (0, s1, s))

(λ · fGL2,3
)(k) = ((s, s1 + s, 0), (s, 0, s1))

(5.9.9)

and so

fGL2,3
(e)− (λ · fGL2,3

)(e) = ((0, 0, 0), (0, 0, 0))

fGL2,3
(i)− (λ · fGL2,3

)(i) = ((s, 0, 0), (s, 0, 0))

fGL2,3
(j)− (λ · fGL2,3

)(j) = ((0, 0, s), (0, s, 0))

fGL2,3
(k)− (λ · fGL2,3

)(k) = ((0, s, 0), (0, 0, s))

(5.9.10)

for the same s, s1 ∈ Z/(2) as in (5.7.4).

Suppose fGL2,3
and λ·fGL2,3

differ by a 1-coboundary, in other words there exists an element

m := ((m1
1, m

1
2, m

1
3), (m

2
1, m

2
2, m

2
3)) ∈ M

such that

fGL2,3
(g)− (λ · fGL2,3

)(g) = g ·m−m(5.9.11)
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for all g ∈ GL2,3. By (5.9.10), taking g = M2 in (5.9.11) gives mi := mi
1 = mi

2 = mi
3 for

i = 1, 2; then taking g = M1 gives m1 = m2; then taking g = i gives m = 0. We see that
fGL2,3

and λ · fGL2,3
differ by a 1-coboundary if and only if s = 0.

Hence we have that H0(Gk,H
2
fppf(M

sep, µ2)) ≃ Z/(2), hence H2
fppf(M , µ2) has 4 elements

by (5.9.5), hence (BrM )[2] has 2 elements by (5.9.4), hence BrM ≃ Z/(24). �

Appendix A. The Weierstrass and Hesse presentations of [Γ(3)]

The purpose of this section is to prove Proposition A.4 below, which we could not find
proved in the literature. For completeness of exposition, we first recall the definition of a full
level N structure on an elliptic curve E/S.

A.1 (Full level N structure). [KM85, Ch. 3] Let N be a positive integer. We define [Γ(N)]
to be the category of pairs

(E/S, ξ)

where

E/S = (f : E → S, e : S → E)

is an elliptic curve and

ξ : (Z/(N))2S → E

is a morphism of S-group schemes inducing an isomorphism (Z/(N))2S ≃ E[N ]. A morphism

(E1/S1, ξ1) → (E2/S2, ξ2)

is a pair

(α : E1 → E2 , β : S1 → S2)

of morphisms of schemes such that the diagram

(A.1.1)

E1 E2

(Z/(N))2S1
(Z/(N))2S2

S1 S2

α

β

id×β

ξ1 ξ2

f1

f2

commutes, where the morphism id×β is the one induced by the identity on (Z/(3))2
Z
and β,

and such that α induces an isomorphism of S1-group schemes E1 ≃ S1 ×β,S2
E2.

There is a functor

[Γ(N)] → M1,1,Z

sending (E/S, ξ) 7→ E/S on objects and (α, β) 7→ (α, β) on morphisms. If E/S admits a
full level N structure, then N is invertible on S by [KM85, 2.3.2], hence the above functor
factors through M1,1,Z[ 1

N
]. If N ≥ 3, then for any scheme S the fiber category [Γ(N)](S) is

equivalent to a set by [KM85, 2.7.2], so [Γ(N)] is fibered in sets over the category of schemes.
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A.2 (The GL2(Z/(N))-action on [Γ(N)]). Fix a scheme S. For any element

σ =

[
σ11 σ12

σ21 σ22

]

in GL2(Z/(N)), let

ϕσ : (Z/(N))2S → (Z/(N))2S

be the S-group scheme automorphism of (Z/(N))2S corresponding to the abelian group ho-
momorphism (Z/(N))2 → (Z/(N))2 defined by

[
x1

x2

]
7→

[
σ11 σ12

σ21 σ22

] [
x1

x2

]
=

[
σ11x1 + σ12x2

σ21x1 + σ22x2

]

for x1, x2 ∈ Z/(N), i.e. acting by multiplication on the left on (Z/(N))2 viewed as vertical
vectors. We have

ϕσ1
ϕσ2

= ϕσ1σ2

for σ1, σ2 ∈ GL2(Z/(N)).

Fix an object (E/S, ξ) ∈ [Γ(N)](E/S); then (E/S, ξ◦ϕσ) is another object of [Γ(N)](E/S),
i.e. corresponds to another full level N structure on E/S. This implies that there is a natural
action of GL2(Z/(N)) on each fiber category [Γ(N)](E/S); the action is a right action since
it is defined by precomposition.

Theorem A.3. [KM85, 4.7.2] If N ≥ 3, the category [Γ(N)] is representable by a smooth
affine curve Y (N) over Z[ 1

N
].

We are primarily interested in the case N = 3. The 3-torsion points of an elliptic curve
correspond to its inflection points (also “flex points”). In [KM85, (2.2.11)] it is shown that
Y (3) ≃ SpecAW where

AW := Z[1
3
, B, C, 1

C
, 1
a3
, 1
a31−27a3

]/(B3 − (B + C)3)

and the universal elliptic curve over AW with full level 3 structure is the pair
{
EW := ProjAW[X, Y, Z]/(Y 2Z + a1XY Z + a3Y Z2 = X3)

[0 : 0 : 1], [C : B + C : 1]
(A.3.1)

where

a1 = 3C − 1(A.3.2)

a3 = −3C2 − B − 3BC .(A.3.3)

The formulas (A.3.2) and (A.3.3) are obtained by imposing the condition that the line Y =
X +BZ is a flex tangent to EW at [C : B + C : 1]. The ring AW is isomorphic to TMF (3)0
(5.6.1), with mutually inverse ring isomorphisms TMF (3)0 → AW and AW → TMF (3)0
given by (ζ, t) 7→ (B+C

C
, 1
3C

) and (B,C) 7→ ( 1
3(ζ−1)t

, 1
3t
) respectively.

In this paper, however, we use the “Hesse presentation” of Y (3) as in [FO10, 5.1]. The
following is claimed without proof in the Introduction to [DR73] and [Har11, 5.2.30].
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Proposition A.4. There is an isomorphism Y (3) ≃ SpecAH where

AH := Z[1
3
, µ, ω, 1

µ3−1
]/(ω2 + ω + 1)

and the universal elliptic curve over AH with full level 3 structure is the pair

{
EH := ProjAH[X, Y, Z]/(X3 + Y 3 + Z3 = 3µXY Z)

[−1 : 0 : 1], [1 : −ω : 0]
(A.4.1)

with identity section [1 : −1 : 0].

The explicit Z[1
3
]-algebra isomorphisms AH → AW and AW → AH are given in (A.8.7) and

(A.8.8) respectively.

A.5. By [Sma01, §4], the group law of an elliptic curve E = ProjA[X, Y, Z]/(X3+Y 3+Z3 =
3µXY Z) in Hessian form over a ring A is as follows. If P = [x : y : z], then 2P = [x′ : y′ : z′]
where

x′ = y(z3 − x3)

y′ = x(y3 − z3)

z′ = z(x3 − y3)

and if Pi = [xi : yi : zi] are points of EH for i = 1, 2, 3 satisfying P1 + P2 = P3, then

x3 = x2y
2
1z2 − x1y

2
2z1

y3 = x2
1y2z2 − x2

2y1z1

z3 = x2y2z
2
1 − x1y1z

2
2

which only makes sense if P1 6= P2.

Using the above formulas, we may check that the full level 3 structure ξH : (Z/(3))2AH
→ EH

is given by the table (A.5.1).

(A.5.1) ξH






(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

(0, 2) (1, 2) (2, 2)





 =



[1 : −1 : 0] [−1 : 0 : 1] [0 : 1 : −1]

[1 : −ω : 0] [−ω : 0 : 1] [0 : 1 : −ω]

[1 : −ω2 : 0] [−ω2 : 0 : 1] [0 : 1 : −ω2]




The Hesse presentation (A.4.1) is sometimes easier to work with than the Weierstrass pre-
sentation (A.3.1) since the equation of the universal elliptic curve is symmetric in X, Y, Z,
which means that there is also considerable symmetry in the 3-torsion points (A.5.1).

A.6. We describe the GL2(Z/(3))-action on EH/AH. Set SH := SpecAH. The functor [Γ(3)]
being representable by SH means explicitly that for any Z[1

3
]-scheme T and object (E/T, ξ) ∈

([Γ(3)])(T ), there exists a unique pair (α, β) of morphisms of schemes α : E → EH and
β : T → SH such that the diagram
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E EH

(Z/(3))2T (Z/(3))2SH

T SH

α

β

id×β

ξ ξH

fT

fSH

commutes and induces an isomorphism of T -group schemes E ≃ T ×β,SH
EH as in (A.1.1).

As in A.2, for every σ ∈ GL2(Z/(3)), let ϕσ be the SH-automorphism of (Z/(3))2SH
induced

by σ; then precomposition ξHϕσ defines another full level 3 structure on EH/SH. Taking
T = SH and ξ = ξHϕσ above, there is a unique pair (ασ, βσ) of morphisms of schemes
ασ : EH → EH and βσ : SH → SH such that the diagram

EH EH

(Z/(3))2SH
(Z/(3))2SH

SH SH

ασ

βσ

id×βσ

ξHϕσ ξH

fSH

fSH

commutes and induces an isomorphism of SH-group schemes EH ≃ SH ×βσ,SH
EH. Given two

elements σ1, σ2 ∈ GL2(Z/(3)), we have a commutative diagram

EH EH EH

(Z/(3))2SH
(Z/(3))2SH

(Z/(3))2SH

SH SH SH

ασ1
ασ2

βσ1
βσ2

ξHϕσ1
ϕσ2

ξHϕσ2
ξH

fSH
fSH

fSH

which implies

βσ2
βσ1

= βσ1σ2

since ϕσ1σ2
= ϕσ1

ϕσ2
(see A.2). Thus the assignment

σ 7→ βσ(A.6.1)

defines a right action of GL2(Z/(3)) on the scheme SH.
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In terms of the generators

M1 =

[
1 0
0 −1

]
, M2 =

[
1 0
−1 1

]
, i =

[
0 −1
1 0

]

of GL2(Z/(3)), the action of GL2(Z/(3)) on EH/AH is as follows. (We refer to (A.5.1) for the
additive structure on EH[3].)

(1) For σ = M1, the new level 3 structure ξHϕM1
is

[
[−1 : 0 : 1] [1 : −ω : 0]

] [1 0
0 −1

]
=

[
[−1 : 0 : 1] [1 : −ω2 : 0]

]

and the scheme morphisms αM1
: EH → EH and βM1

: SH → SH correspond to the
ring homomorphisms sending

{
(X, Y, Z) ←p (X, Y, Z)

(µ, ω2) ←p (µ, ω)

respectively.

(2) For σ = M2, the new level 3 structure ξHϕM2
is

[
[−1 : 0 : 1] [1 : −ω : 0]

] [ 1 0
−1 1

]
=

[
[−ω2 : 0 : 1] [1 : −ω : 0]

]

and the scheme morphisms αM2
: EH → EH and βM2

: SH → SH correspond to the
ring homomorphisms sending

{
(X, Y, ω2Z) ←p (X, Y, Z)

(ωµ, ω) ←p (µ, ω)

respectively.

(3) For σ = i, the new level 3 structure ξHϕi is

[
[−1 : 0 : 1] [1 : −ω : 0]

] [0 −1
1 0

]
=

[
[1 : −ω : 0] [0 : 1 : −1]

]

and the scheme morphisms αi : EH → EH and βi : SH → SH correspond to the ring
homomorphisms sending

{
(ωX + ω2Y + Z, ω2X + ωY + Z,X + Y + Z) ←p (X, Y, Z)

(µ+2
µ−1

, ω) ←p (µ, ω)

respectively.

Remark A.7. According to our convention, the action of GL2(Z/(3)) on the fiber category
[Γ(3)](EH/ SpecAH) is by precomposition, hence the action of GL2(Z/(3)) on pairs of points
on the right hand side of (A.5.1) is a right action; thus the induced action of GL2(Z/(3)) on
the scheme SpecAH is a right action (as described in (A.6.1)) and the corresponding action
of GL2(Z/(3)) on the coordinate ring AH is a left action.
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A.8 (Proof of Proposition A.4). In fact, it turns out that the identities

a31 − 27a3 = (3C + 9B − 1)3(A.8.1)

a3 = B(6C + 9B − 1)(A.8.2)

hold in AW which yields a simpler description

AW ≃ Z[1
3
, B, C, 1

C
, 1
3C+9B−1

, 1
6C+9B−1

]/(C2 + 3CB + 3B2)

of AW. (For (A.8.1), write out a31 − 27a3 in terms of B,C and notice that it is of the form
9C+27B− 1 plus higher order terms; then check that the naive guess works. To see (A.8.2),
substitute C2 = −3CB − 3B2 into (A.3.3).)

We follow the argument of [AD09, 2.1]; see also [Con96, §1.4.1, §1.4.2]. Working “generi-
cally”, we will assume that a1 is a unit to obtain the coordinate change formula (A.8.9), then
observe that it applies also to the case when a1 is not a unit. Starting with

Y1Z1(Y1 + a1X1 + a3Z1) = X3
1(A.8.3)

we define X2, Y2, Z2 by the system


X1

Y1

Z1


 =



u2

u3

1





X2

Y2

Z2




where u = a1/3 and substitute into (A.8.3) to get

Y2Z2(Y2 + 3X2 +
27a3
a31

Z2) = X3
2 .(A.8.4)

We define X3, Y3, Z3 by the system


1 1
1 27a3

a31
1





X2

Y2

Z2


 =



ω ω2

ω2 ω
1





X3

Y3

Z3




where ω = C+B
B

2 and substitute into (A.8.4) to get

(ωX3 + ω2Y3 − Z3)(ω
2X3 + ωY3 − Z3)(−X3 − Y3 + Z3) =

27a3
a31

Z3
3

or equivalently

X3
3 + Y 3

3 +
27a3−a31

a31
Z3

3 = −3X3Y3Z3 .(A.8.5)

We know that the coefficient of Z3
3 in (A.8.5) is a cube (A.8.1) so we normalize by defining

X4, Y4, Z4 by the system 

X3

Y3

Z3


 =



1

1
−a1

3C+9B−1





X4

Y4

Z4




and substitute into (A.8.5) to get

X3
4 + Y 3

4 + Z3
4 = 3 a1

3C+9B−1
X4Y4Z4 .(A.8.6)

2Since 3 is invertible, if x is a root of the polynomial T 2 + 3T + 3 then x + 1 is a root of the polynomial
T 2 + T + 1, thus it is natural to take C+B

B
as our ω.
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To summarize the above, there is a ring homomorphism ϕ21 : AH → AW sending

µ 7→
3C − 1

3C + 9B − 1

ω 7→
C +B

B

(A.8.7)

and solving for B,C in terms of µ, ω implies that the inverse ϕ12 : AW → AH sends

B 7→
µ− 1

3(ω + 2)(µ− ω)

C 7→
(ω − 1)(µ− 1)

3(ω + 2)(µ− ω)

(A.8.8)

where ω + 2 is a unit of AH since (ω + 2)(ω − 1) = −3 and µ − ω is a unit of AH since
µ3 − 1 = (µ− 1)(µ− ω)(µ− ω2). We may check that the product



u2

u3

1





1 1
1 27a3

a3
1

1




−1

ω ω2

ω2 ω
1





1

1
−a1

3C+9B−1




is “projectively equivalent” to the matrix

X :=



0 0 −3

3C+9B−1

ω ω2 3u
3C+9B−1

ω2

a3
ω
a3

3u
a3(3C+9B−1)


(A.8.9)

whose determinant is a unit of AW. Given a section [sX : sY : sZ ] of (A.8.3), the corresponding
section of (A.8.6) is X−1 · [sX : sY : sZ ]

T where

X−1 =




−a1
3

B
C

−9CB−18B2−C
3

−a1
3

−B
C+3B

−9CB−9B2+C+3B
3

−3C−9B+1
3

0 0


 .

The above implies that the sections

[0 : 1 : 0] , [0 : 0 : 1] , [C : B + C : 1]

of (A.8.3) (i.e. the identity section and ordered basis for the 3-torsion) correspond to the
sections

[1 : −ω : 0] , [1 : −ω2 : 0] , [−1 : 0 : 1](A.8.10)

of (A.8.6). We may apply an automorphism of the pair (AH, EH/AH) ∈ M1,1,Z of the form
A.6(2) (for Y instead of Z) to (A.8.10) to get

[1 : −1 : 0] , [1 : −ω : 0] , [−1 : 0 : 1](A.8.11)

and using the fact that there is a simply transitive action of GL2(Z/(3)) on the set of ordered
bases of the 3-torsion in EH/AH, we may switch the second and third sections of (A.8.11) to
obtain

[1 : −1 : 0] , [−1 : 0 : 1] , [1 : −ω : 0](A.8.12)

as desired. �
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Remark A.9. For (A.8.1), see also Stojanoska’s derivation [Sto14, §4.1].

Remark A.10. There are coordinate change formulas in [Sma01, §3] transforming a Weier-
strass equation into Hesse normal form, but there it is assumed that the base ring is a finite
field Fq where q ≡ 2 (mod 3), in order to take cube roots of a31− 27a3, but from this descrip-
tion it is not clear that the cube root is an algebraic function. As shown in (A.8.1), it turns out
that in fact a31−27a3 is a cube in the ring AW. One suspects that this is the case after tracing

through the proof of [AD09, 2.1] and arriving at the equation x3 + y3 +
27a3−a31

a31
z3 = 3xyz, in

which case we know that
27a3−a31

a31
is a cube by Lemma A.11.

Lemma A.11. Let k be a field of characteristic not 3, and let

x3 + y3 + β = 3xy(A.11.1)

be a curve in A2
k. Suppose that

ax+ by + c = 0(A.11.2)

is the tangent line to a flex point of E and suppose that a3 6= b3. Then β is a cube in k.

Proof. If a = 0, then b 6= 0 and substituting y = − c
b
into (A.11.1) and rearranging gives

x3 + 3c
b
x − ( c

b
)3 + β = 0 which by assumption is of the form (x + ℓ)3 for some ℓ ∈ k.

Comparing coefficients, we have ℓ = 0 and so β = ( c
b
)3.

By symmetry we may assume that a, b 6= 0. By scaling (A.11.2), we may assume that
b = −1. Substituting y = ax+ c into E gives

(a3 + 1)x3 + 3(a)(ac− 1)x2 + 3(c)(ac− 1)x+ (c3 + β)

and dividing by the leading coefficient gives

x3 + 3

(
a(ac− 1)

a3 + 1

)
x2 + 3

(
c(ac− 1)

a3 + 1

)
x+

(
c3 + β

a3 + 1

)

and comparing this to

x3 + 3ℓx2 + 3ℓ2x+ ℓ3

gives either ac − 1 = 0 in which case c3 + β = 0 as well (so that β = (−1/a)3 = (−c)3),
otherwise if ac− 1 6= 0 then

c

a
= a

(
ac− 1

a3 + 1

)

which implies c = −a2 so that the original equation of the tangent line is y = ax − a2.
Substituting this back into E gives β = (−a)3. �

Appendix B. Higher direct images of sheaves on classifying stacks of

discrete groups

The material in this section is standard and we claim no originality.

For a category C, we denote by PSh(C) (resp. PAb(C)) the category of presheaves (resp.
abelian presheaves) on C. If C is a site, we denote by Sh(C) (resp. Ab(C)) the category of
sheaves (resp. abelian sheaves) on C.
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Let C be a site, let G be a finite (discrete) group, let BGC be the classifying stack associated
to G over C. Let

π : BGC → C

be the projection and let
ϕ : C → BGC

be the canonical section of π. We view any fibered category p : F → C as a site via the
Grothendieck topology inherited from C via p.

Lemma B.1. In the setup above, for any abelian sheaf F ∈ Ab(BGC) the higher pushforward
Riπ∗F is naturally isomorphic to the sheaf associated to the presheaf whose value on an object
U ∈ C is Hi(G,Γ(U, ϕ∗F )).

Proof. Let PGC denote the category whose objects are the objects of C and where a morphism
X1 → X2 in PGC is a pair (ϕ, g) where ϕ ∈ MorC(X1, X2) and g ∈ G. (In other words, there
is an equivalence of categories PGC ≃ C × [∗/G] where [∗/G] is the category with one object
∗ and where Hom[∗/G](∗, ∗) is isomorphic to G.) The fibered category PGC is a (separated)
prestack whose associated stack is BGC, and the inclusion PGC → BGC induces an equivalence
of topoi Sh(PGC) ≃ Sh(BGC). Hence in the statement of the lemma we may replace BGC by
PGC where by abuse of notation we also denote

π : PGC → C

the projection morphism. Since sheafification is an exact functor, the diagram

PAb(PGC) PAb(C)

Ab(PGC) Ab(C)

πpre
∗

π∗

sh sh

is (2-)commutative. For the same reason, we have a natural isomorphism

(Rπpre
∗ (F ))sh ≃ Rπ∗(F

sh)(B.1.1)

in D+(Ab(C)) for any abelian presheaf F ∈ PAb(PGC). Presheaves on PGC correspond to
presheaves F on C equipped with a G-action, and under this identification πpre

∗ (F ) = FG

where Γ(U,FG) := (Γ(U,F ))G for all U ∈ C. Let F ∈ Ab(PGC) be an abelian sheaf, and let

F → I0 → I1 → I2 → · · ·

be a resolution of F by injective abelian presheaves Ii ∈ PAb(PGC). Then Rπpre
∗ (F ) is

isomorphic to

(I•)G = {(I0)G → (I1)G → (I2)G → · · · }(B.1.2)

in D+(PAb(C)), and Γ(U,Rπpre
∗ (F )) is isomorphic to

Γ(U, (I•)G) = {(Γ(U, I0))G → (Γ(U, I1))G → (Γ(U, I2))G → · · · }(B.1.3)

in D+(PAb(C)). Furthermore Γ(U, Ii) ≃ (iU)
∗Ii is an injective G-module for all i by

Lemma B.2, thus we have an isomorphism

hi(Γ(U, (I•)G)) ≃ Hi(G,Γ(U,F ))
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of abelian groups. �

Lemma B.2. Let C be a category, let U ∈ C be an object, let AC,U denote the full subcategory
of C containing exactly U , and let iU : AC,U → C denote the inclusion. The inverse image
functor (iU)

∗ : PAb(C) → PAb(AC,U) preserves injectives.

Proof. The functor (iU)
∗ : PAb(PGC) → PAb(AC,U) has an exact left adjoint, namely the

“extension by zero” functor iU,! : PAb(AC,U) → PAb(PGC) which sends M ∈ PAb(AC,U) to
the abelian presheaf iU,†(M) where Γ(V, iU,†(M)) = M if V = U and 0 otherwise (with the
only nontrivial restriction morphisms being those corresponding to the endomorphisms of
U). �

Appendix C. Computation using Magma

We compute H1(GL2(Z/(3)),M) in 5.4 using Magma [BCP97]. Here G is defined as the
subgroup of GL2(Z/(3)) generated by the matrices in (5.3.6), but the specified matrices
constitute a generating set so in fact G = GL2(Z/(3)). The group G acts on the abelian group
M = (Z/(2))⊕6 by the three specified elements of Mat6×6(Z), where each x ∈ M is viewed as
a horizontal vector and each 6 × 6 matrix A acts on M by right multiplication x 7→ x ·A.
The last line computes H1(G, (Z/(2))⊕6).

G := MatrixGroup< 2 , FiniteField(3) |

[ 1,0 , -1,1 ] , [ 0,-1 , 1,0] , [ 1,0 , 0,-1 ]

>;

mats := [

Matrix(Integers() , 6 , 6 , [

0, 0, 1, 0, 0, 0 ,

1, 0, 0, 0, 0, 0 ,

0, 1, 0, 0, 0, 0 ,

0, 0, 0, 0, 1, 0 ,

0, 0, 0, 0, 0, 1 ,

0, 0, 0, 1, 0, 0 ]) ,

Matrix(Integers() , 6 , 6 , [

1, 0, 0, 0, 0, 0 ,

1, 0, 1, 0, 0, 0 ,

1, 1, 0, 0, 0, 0 ,

0, 0, 0, 1, 0, 0 ,

0, 0, 0, 1, 0, 1 ,

0, 0, 0, 1, 1, 0 ]) ,

Matrix(Integers() , 6 , 6 , [

0, 0, 0, 1, 0, 0 ,

0, 0, 0, 0, 1, 0 ,

0, 0, 0, 0, 0, 1 ,

1, 0, 0, 0, 0, 0 ,

0, 1, 0, 0, 0, 0 ,

0, 0, 1, 0, 0, 0 ])

];

CM := CohomologyModule(G,[2,2,2,2,2,2],mats);

CohomologyGroup(CM,1);
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