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Abstract
We consider the stochastic higher spin six vertex (SHS6V) model introduced by
Corwin and Petrov (Commun. Math. Phys., 343(2), 651–700 2016) with general
integer spin parameters I, J . Starting from near stationary initial condition, we
prove that the SHS6V model converges to the Kardar-Parisi-Zhang (KPZ) equation
under weakly asymmetric scaling. This generalizes the result in Corwin et al. (2018,
Theorem 1.1) from I = J = 1 to general I, J .

Keywords Stochastic higher spin six vertex model · KPZ equation ·
Markov duality · Bethe ansatz
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1 Introduction

1.1 KPZ Equation andWeak KPZ Universality

The Kardar–Parisi–Zhang (KPZ) equation is the following non-linear stochastic
partial differential equation (SPDE) introduced in the seminal work [32], which
describes the random evolution of an interface that has the property of relaxation and
lateral growth

∂tH(t, x) = δ

2
∂2xH(t, x) + κ

2

(
∂xH(t, x)

)2 + √
Dξ(t, x). (1.1)

Here ξ(t, x) is the space time white noise, which could be formally understood as a
Gaussian field with covariance function E

[
ξ(t, x)ξ(s, y)

] = δ(t − s)δ(x −y), where
δ is the Dirac delta function.
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Care is needed to make sense of (1.1) due to the nonlinearity (∂xH(t, x))2. The
Hopf-Cole solution to the KPZ equation is defined by

H(t, x) = δ

κ
logZ(t, x), (1.2)

where Z(t, x) is the mild solution of the Stochastic Heat Equation (SHE)

∂tZ(t, x) = δ

2
∂2xZ(t, x) + κ

√
D

δ
Z(t, x)ξ(t, x).

So long as Z(0, x) is (almost surely) positive, [42] proved that Z(t, x) remains
positive for all t > 0 and x. This justifies the well-definedness of (1.2). Other equiv-
alent definitions of the solution are given by regularity structure [29], paracontrolled
distribution [26] or the notion of energy solution [25, 27].

It is well-known that there is no non-trivial scaling under which the KPZ equa-
tion is invariant in law. More precisely, if we define Hε(t, x) = εzH(ε−bt, ε−1x),

using the scaling of space-time white noise ξ(ε−bt, ε−1x) = ε
b+1
2 ξ(t, x) (in law),

then

∂tHε(t, x) = δ

2
ε2−b∂2xHε(t, x) + κ

2
ε−z+2−b(∂xHε(t, x))2 + εz+ 1

2− b
2
√

Dξ(t, x).

(1.3)
It is clear that there is no b, z such that the coefficients in the above equation match
with those in (1.1). However, if we simultaneously scale some of the parameters
δ, κ , D, it is possible that the KPZ equation remains unchanged: such scaling is
called weak scaling. It is thus natural to believe that the KPZ equation is the weak
scaling limit of microscopic models with similar properties such as relaxation and
lateral growth. Roughly speaking, this is the weak universality of the KPZ equa-
tion, see [16, 46] for an extensive survey. We emphasize that the weak universality
of the KPZ equation should be distinguished from KPZ universality, which says
that without tuning of the parameter of the model, the microscopic system con-
verges to a universal limit called KPZ fixed point under [1 : 2 : 3] scaling, see [10,
22, 41] for some recent progress and breakthroughs in identifying the KPZ fixed
point.

The weak universality of the KPZ equation has been verified for a number of inter-
acting particle systems. The first result was given in the work of [7], for Asymmetric
Simple Exclusion Process (ASEP). For more results of the weak universality of KPZ
equation, see Section 1.5.3 of [15] for a brief review.

Recently [15, Theorem 1.1] proved that under weak asymmetric scaling (which
corresponds to taking b = 2, z = 1

2 and κ → √
εκ in (1.3)), the stochastic six

vertex model converges to the KPZ equation. In this paper, we consider stochastic
higher spin six vertex model (SHS6V) model introduced in [17].1 We prove that
under similar weak asymmetric scaling, the SHS6V model converges to the KPZ
equation. This extends the result of [15, Theorem 1.1] to the full generality. We like

1The stochastic higher spin six vertex (SHS6V) model has vertical and horizontal spin parameters I, J ∈
Z�1. The stochastic six vertex model is a degeneration of it by taking I = J = 1.
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to emphasize that there are some significant new complications in our case compared
with [15], see Section 1.4 for discussion.

Before ending this section, we remark that there might be other SPDEs (besides
the KPZ equation) arising from the vertex model. For instance, it was shown in [8, 48]
that under a different scaling, the stochastic six vertex model converges to the solution
of the stochastic telegraph equation. It is interesting to ask whether the SHS6Vmodel
converges to other SPDEs, this question is left for future work.

1.2 The SHS6VModel

The SHS6V model introduced in [17] (also see [11]) belongs to the family of vertex
models which themselves are examples of quantum integrable systems. In general,
the R-matrix (which can be thought of as the weights associated to the vertex) are
not stochastic. Gwa and Spohn [28] and Borodin et al. [4] studied the stochastic six
vertex model, which is a stochastic version of the six vertex model introduced by
[45]. The authors of [17] worked with the L-matrices, which is a stochastic version
of the R-matrices2 and they defined the SHS6V model. The stochasticity allows us
to define the vertex model on the entire line as an interacting particle system which
follows sequential Markov update rule. Moreover, the L-matrices in [17] satisfy the
Yang-Baxter equation which implies the integrability of the model. In particular, the
transfer matrices are diagonalizable by a complete set of Bethe ansatz eigenfunc-
tions [5, 17]. The model also enjoys Markov duality. The stochastic R-matrices of
the SHS6V model have four parameters, by specifying which the SHS6V model
degenerates to known integrable systems such as stochastic six vertex model, ASEP,
q-Hahn TASEP, q-TASEP. Indeed, it is on top of a hierarchy of KPZ class integrable
probabilistic systems. Recent studies of the SHS6V model and its dynamical version
include [3, 12, 13, 30, 43].

Let us recall the definition of the SHS6V model from [17]. Fix I, J ∈ Z�1, α, q ∈
R, we define the L-matrix L

(J)
α : Z4

�0 → R via

L(J)
α (i1, j1; i2, j2) = 1{i1+j1=i2+j2}q

2j1−j21
4 − 2j2−j22

4 + i22+i21
4 + i2(j2−1)+i1j1

2

× νj1−i2αj2−j1+i2(−αν−1; q)j2−i1

(q; q)i2(−α; q)i2+j2(q
J+1−j1; q)j1−j2

4φ̄3

×
(

q−i2; q−i1, −αqJ , −qνα−1

ν, q1+j2−i1 , qJ+1−i2−j2

∣
∣∣
∣q, q

)
. (1.4)

Here, ν = q−I and 4φ̄3 is the regularized terminating basic hyper-geometric series
defined by

r+1φ̄r

(
q−n, a1, . . . , ar

b, . . . , br

∣
∣
∣∣q, z

)
= ∑n

k=0 zk (q−n;q)k
(q;q)k

∏r
i=1(ai; q)k(biq

k; q)n−k,

2See [17, Remark 2.2] for more discussion of the relation between L-matrices and R-matrices.
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where we recall the q-Pochhammer symbols (a, q)n (here n is allowed to be negative)
are defined by

(a; q)n :=
⎧
⎨

⎩

∏n
i=1(1 − aqi−1), n > 0,

1, n = 0,∏−n−1
k=0 (1 − aqn+k)−1, n < 0.

We view L
(J)
α as a matrix with row indexed by (i1, j1) ∈ Z

2
�0 and column indexed

by (i2, j2) ∈ Z
2
�0. Note that the L-matrix in (1.4) actually depends on four generic

parameters α, q, I, J , we suppress the dependence on q, I in the notation of L
(J)
α to

simplify the notation.
It is straightforward by definition that for (i1, j1) ∈ {0, 1, . . . , I } × {0, 1, . . . , J }

(using ν = q−I )

L(J)
α (i1, j1; i2, j2) = 0, for all (i2, j2) ∈ Z

2
�0\{0, 1, . . . , I } × {0, 1, . . . , J },

which means there is no way to transition out of {0, 1, . . . , I } × {0, 1, . . . , J }
from itself. Therefore, in the following we restrict ourselves to the block with
(i1, j1), (i2, j2) ∈ {0, 1, . . . , I } × {0, 1, . . . , J }.

When J = 1, by straightforward calculation, the L-matrix defined above
simplifies to

L(1)
α (m, 0; m, 0) = 1 + αqm

1 + α
, L(1)

α (m, 0; m − 1, 1) = α(1 − qm)

1 + α
,

L(1)
α (m, 1; m + 1, 0) = 1 − νqm

1 + α
, L(1)

α (m, 1; m, 1) = α + νqm

1 + α
. (1.5)

For the history of the expression (1.4), we remark that more intricate expressions for
a quantity similar to the L

(J)
α had been known in the context of quantum integrable

systems since the work of [33]. Relatively compact expressions ofL(J)
α became avail-

able only in more recent times after the work of [40]. Corwin and Petrov [17] also
provides a probabilistic proof for this expression.

From our perspective, we will think of L
(J)
α (i1, j1; i2, j2) as the weight associ-

ated to a vertex configuration with i1 input lines from south, j1 input lines from
west, i2 output lines to the north and j2 output lines to the east see Fig. 1. Since we
have restricted L

(J)
α (i1, j1; i2, j2) to (i1, j1), (i2, j2) ∈ {0, 1, . . . , I } × {0, 1, . . . , J },

we can have at most I vertical lines and J horizontal lines in the vertex config-
uration. Note that due to the indicator in (1.4), all non-zero vertex weights L

(J)
α

(i1, j1; i2, j2) satisfy i1 + j1 = i2 + j2, a property that we consider as conservation
of lines.

In this paper, we always assume the following condition.

Condition 1.1 We take q > 1, α < −q−(I+J−1) and as we noted before, ν = q−I .

It follows from [17] that under Condition 1.1, L
(J)
α is a stochastic matrix on

{0, 1, . . . , I } × {0, 1, . . . , J }. In other words, for any fixed (i1, j1) ∈ {0, 1, . . . , I } ×
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Fig. 1 Left: The vertex configuration labeled by four tuples of integer (i1, j1; i2, j2) ∈ Z
4
�0 (from bottom

and then in the clockwise order) has weight L
(J)
α (i1, j1; i2, j2), which takes i1 vertical input lines and

j1 horizontal input lines, and produce i2 vertical output lines and j2 horizontal output lines. Right: The
representation of the vertex configuration (i1, j1; i2, j2) = (2, 2; 3, 1) in terms of lines

{0, 1, . . . , J }, L
(J)
α (i1, j1; ·, ·) defines a probability measure on {0, 1, . . . , I } ×

{0, 1, . . . , J }. Although in this paper we will not investigate the range of parameters
out of Condition 1.1, it is worth remarking that there are other choices of parameters
which make L

(J)
α stochastic, a few of them are provided in [17, Proposition 2.3].

There are several equivalent ways to define the SHS6V model. In this paper, we
view the SHS6V model as a one-dimensional interacting particle system, which fol-
lows a sequential update rule. We proceed to give a precise definition of it. Denote
by the space of left-finite particle configuration

G = {�g = (. . . , g−1, g0, g1 . . . ) : all gi ∈ {0, 1, . . . , I } and there exists x ∈ Z

such that gi = 0 for all i < x.}, (1.6)

where gx should be understood as the number of particles at position x. We define a
discrete time Markov process �g(t) = (gx(t))x∈Z ∈ G as follows.

Definition 1.2 (left-finite fused SHS6V model) For any state �g = (gx)x∈Z ∈ G, we
specify the update rule from state �g to �g′ as follows: Assume the leftmost particle in
the configuration �g is at x (i.e. gx > 0 and gz = 0 for all z < x). Starting from x, we
update gx to g′

x by setting hx = 0 and randomly choosing g′
x according to the prob-

ability L
(J)
α (gx, hx = 0; g′

x, hx+1) where hx+1 := gx − g′
x . Proceeding sequentially,

we update gx+1 to g′
x+1 according to the probability L

(J)
α (gx+1, hx+1; g′

x+1, hx+2)

where hx+2 := gx+1+hx+1−g′
x+1. Continuing for gx+2, gx+3, . . . , we have defined

the update rule from �g to �g′ = (g′
x)x∈Z, see Fig. 2 for visualization of the update pro-

cedure. We call the discrete time-homogeneous Markov process �g(t) ∈ G with the
update rule defined above the left-finite fused SHS6V model.3

3Note that in Definition 1.2, although the update from �g to �g′ may never stop as it goes to the right, the
process is well-defined since we only care about the sigma algebra generated by (gx)x�z,x∈Z for all z ∈ Z.
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Fig. 2 The visualization of the sequential update rule for the left-finite fused SHS6V model in Definition
1.2. Assuming x is the location of the leftmost particle, we update sequentially for positions x, x + 1, x +
2, . . . according to the stochastic matrix L

(J)
α , the gray particles in the picture above will move one step

to the right

For s ∈ Z�0, we define modJ (s) := s − J �s/J �. For instance,
(
modJ (0),modJ (1), . . . ,modJ (J − 1),modJ (J ),modJ (J + 1), . . .

)

= (
0, 1, . . . , J − 1, 0, 1, . . .

)
.

We further define α(t) = αqmodJ (t) for t ∈ Z�0.

Definition 1.3 (left-finite unfused SHS6Vmodel) For all state �η ∈ G, we specify the
update rule at time t from state �η to �η′ ∈ G as follows. Assume the leftmost particle
in the configuration �η is at x. Starting from x, we update ηx to η′

x by setting hx = 0

and randomly choosing η′
x according to the probabilityL

(1)
α(t)(ηx, hx; η′

x, hx+1)where
hx+1 := ηx +hx −η′

x . Proceeding sequentially, we update ηx+1 to ηx+1 according to

the probability L
(1)
α(t)(ηx+1, hx+1; η′

x+1, hx+2) where hx+2 := ηx+1 + hx+1 − η′
x+1.

Continuing for ηx+2, ηx+3, . . . , we have defined the update rule from �η to �η′ =
(η′

x)x∈Z. We call the discrete time-inhomogeneous Markov process �η(t) ∈ G with
the update rule defined above the left-finite unfused SHS6V model.

Remark 1.4 It is straightforward to check that under Condition 1.1, for all t ∈ Z�0,

L
(1)
α(t) in (1.5) is a stochastic matrix which transfers {0, 1, . . . , I } × {0, 1} to itself.

In this paper, as a notational convention, we always use �g(t) to denote the fused
SHS6V model and �η(t) to denote the unfused one. The connection between them is
specified in the following proposition.
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Proposition 1.5 [17, Theorem 3.15] Consider the left-finite fused SHS6V model �g(t)

and the left-finite unfused SHS6V model �η(t). If �g(0) = �η(0) in law, then

(�g(t), t � 0) = (�η(J t), t � 0) in law .

By Proposition 1.5, we can construct the SHS6V model with higher horizontal
spin (J ∈ Z�1) from those with horizontal spin J = 1. This procedure is called
fusion, which goes back to the work of [33]. Thanks to Proposition 1.5, for any left-
finite SHS6V model �g(t), we can couple it with a left-finite unfused SHS6V model
�η(t) so that �g(t) = �η(J t). We will extend the definition of unfused SHS6V model
�η(t) in Lemma 2.1 so that it takes value in a larger space of bi-infinite particle config-
uration {0, 1, . . . , I }Z (thus extend as well the definition of the fused SHS6V model
using the relation �g(t) = �η(J t)).

For the particle configuration �g ∈ G, define

Nx(�g) =
∑

y�x

gy . (1.7)

For the left-finite unfused SHS6V model �η(t) ∈ G, we define the unfused height
function as

Nuf(t, x) = Nx(�η(t)) − N0(�η(0)). (1.8)

Note that in the notation of unfused height function, we suppress the underlying
process �η(t). Similarly, we define the fused height function N f(t, x) for the left-finite
fused SHS6V model �g(t) ∈ G as

N f(t, x) = Nx(�g(t)) − N0(�g(0)).

Since �g(t) = �η(J t), certainly one has for all t ∈ Z�0 and x ∈ Z, N f(t, x) =
Nuf(J t, x).

We will state our result for the fused height function N f(t, x) though we will
mainly work with the unfused height function Nuf(t, x) in our proof. In the future,
the notation of Nuf(t, x) will often be shortened to N(t, x).

Having defined N f(t, x) (respectively, Nuf(t, x)) on the lattice, we linearly inter-
polate it first in space variable x then in time variable t , which makes N f(t, x)

(respectively, Nuf(t, x)) a C([0, ∞), C(R))-valued process. For construction of
height functions of the bi-infinite version of the fused or unfused SHS6V model, see
Lemma 2.1.

1.3 Result

The main result of our paper shows that the fluctuation of the fused height function
N f(t, x) converges weakly to the solution of the KPZ equation. Fix ρ ∈ (0, I ), define

λ= 1+α−qρ(α+ν)

1+αqJ −qρ(αqJ +ν)
, μ= αqρ(1−qJ )(1−ν)

(1 + αqJ −qρ(αqJ +ν))(1 + α−qρ(α + ν))
.

(1.9)
As a matter of convention, we endow the space C(R) and C([0, ∞), C(R)) with the
topology of uniform convergence over compact subsets, and write “ ⇒ ” for the
weak convergence of probability laws. We present our main theorem.
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Theorem 1.6 Fix b ∈ (
I+J−2
I+J−1 , 1

)
, I � 2 and J � 1, for small ε > 0, wet q = e

√
ε

and define α via b = 1+αq
1+α

. We call this weakly asymmetric scaling. Assume that

{N f
ε(0, x)}ε>0 is nearly stationary with density ρ (see Definition 5.5) and

√
ε
(
N f

ε(0, ε
−1x) − ρε−1x

)
⇒ Hic(x) in C(R) as ε ↓ 0,

then√
ε
(
N f

ε(ε
−2t, ε−1x + ε−2tμε) − ρ(ε−1x + ε−2μεt)

)
− t log λε ⇒ H(t, x)

in C([0, ∞), C(R)) as ε ↓ 0, (1.10)

where H(t, x) is the Hopf-Cole solution of the KPZ equation

∂tH(t, x) = JV∗
2

∂2xH(t, x) − JV∗
2

(
∂xH(t, x)

)2 + √
JD∗ξ(t, x), (1.11)

with initial conditionHic(x), where the coefficients are given by

V∗ = (I + J )b − (I + J − 2)

I 2(1 − b)
, (1.12)

D∗ = ρ(I − ρ)

I

(I + J )b − (I + J − 2)

I 2(1 − b)
. (1.13)

Note that the restriction of b ∈ ( I+J−2
I+J−1 , 1) in Theorem 1.6 is necessary and suffi-

cient to ensure that Condition 1.1 holds for ε small enough. In Appendix B, we will
demonstrate how our theorem agrees with the non-rigorous KPZ scaling theory used
in physics.4

Remark 1.7 In a different setting where 0 < q, ν < 1 (in contrast to Condition 1.1,
there is no I ∈ Z�1 such that ν = q−I ) and α � 0, one can show that L

(J)
α is a

stochastic matrix on Z�0 ×{0, 1, . . . , J } (instead of {0, 1, . . . , I }×{0, 1, . . . , J } for
our case). In this regime, the SHS6V model allows arbitrary number of particles at
each site (instead of at most I particles for our case). Corwin and Tsai [21] proves the
weak universality of the SHS6V model5 under a different type of weak scaling that
corresponds to taking b = 3, z = 1, δ → εδ, κ → ε2κ in (1.3). Under this scaling,
the number of particles at each site diverges to infinity with rate ε−1. This simplifies
considerably the control of the quadratic variation of the martingale in the discrete
SHE (1.14), which is the main complexity in our analysis.

Remark 1.8 Taking I = J = 1, Theorem 1.6 recovers [15, Theorem 1.1]. We assume
I � 2 in Theorem 1.6 merely due to some technical subtleties we met in Section 7.
The proof for I = 1 needs particular modification and we do not pursue it here.

4The KPZ scaling theory is a non-rigorous physics method used to compute the constants (the coefficients
of the KPZ (1.11) as in our case) arising in limit theorems for the models in the KPZ universality class
[31, 47], which has been confirmed in a few cases such as [23, 24].
5In the context of [21], the authors prove the weak universality for the higher spin exclusion process
defined in [17, Definition 2.10], which is equivalent to the SHS6V model after a gap-particle transform.
We describe their result in the language of the SHS6V model here.
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The proof of Theorem 1.6 will be given in the end of Section 5, as a corollary of
Theorem 5.6.

1.4 Method

In this section, we explain the method used in proving Theorem 1.6. Although ini-
tially our methods follow [15], rather quickly, we encounter novel complexities that
are not present in [15] which require new ideas.

As illustrated in Section 1.2, via fusion, to study the fused SHS6V model, it suf-
fices to work with the unfused version. Similar to [15], the first step is to perform
a microscopic Hopf-Cole transform of the SHS6V model (5.6). The existence of
the microscopic Hopf-Cole transform is guaranteed by one particle version of the
duality (3.8) (which goes back to [17, Theorem 2.21]). The microscopic Hopf-Cole
transform Z(t, x), which is essentially an exponential version of the unfused height
function N(t, x), satisfies a discrete version of SHE

dZ = LZdt + dM . (1.14)

Here L is an operator which approximates the Laplacian and M is a martingale.
Owing to the definition of the Hopf-Cole solution to the KPZ equation, Theorem
1.6 is equivalent to showing that the above discrete SHE converges to its continuum
version (Theorem 5.6). The proof of Theorem 5.6 reduces to three steps:

1). Showing tightness.
2). Identifying the limit of the linear martingale problem.
3). Identifying the limit of the quadratic martingale problem.

Steps 1) and 2) follow from a similar approach as in [15]. Step 3) is the difficult
part; Proposition 6.8 does this by proving a form of self-averaging for the quadratic
variation of the martingale M . We will focus on discussing the method for proving
this self-averaging result in the rest of the section. We remark that other recent KPZ
equation convergence results using the Hopf-Cole transform include ASEP-(q, j)

[20], Hall-Littlewood PushTASEP [24], weakly asymmetric bridges [36], open ASEP
[19, 44].

We will explain what is self-averaging in a moment, but first introduce two tools
used in proving it. The first tool is the Markov duality and the second is the exact
formula of two particle transition probability of the SHS6V model.

The stochastic six vertex model enjoys two Markov dualities [17, Theorem 2.21]
and [39, Theorem 1.5],6 which are exploited in proving the self-averaging [15, Propo-
sition 5.6]. The Markov duality in [17, Theorem 2.21] also works for the SHS6V
model (Proposition 3.6 in our paper), yet it is unknown whether there exists a gener-
alization of [39, Theorem 1.5] for the SHS6V model. [35, Theorem 4.10] discovers

6The Markov duality proved in [39] first appears in [17, Theorem 2.23]. In fact [17, Theorem 2.23] claims
a more general Markov duality for the SHS6V model. In discussions with the authors of [CP16], we
recognized a gap in that proof as well as a counter-example to the result when I > 1, see [18] for detail.
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a general duality for the multi-species SHS6V model using the algebraic machin-
ery.7 At first glance, the duality functional written in [35, Theorem 4.10] takes a
rather complicated form, but we only need a two particle version of this duality, in
which case the duality functional simplifies greatly (Proposition 3.7 in our paper) and
is applicable for proving the desired self-averaging. We remark that this is the first
application of [35, Theorem 4.10] as far as we know.

In [4, Theorem 3.6], an integral formula was obtained for general k particle tran-
sition probability of the stochastic six vertex model via a generalized Fourier theory
(Bethe ansatz), using a complete set of eigenfunction of the stochastic six vertex
model transition matrix obtained in [4, Theorem 3.4] together with the Plancherel
identity [49, Theorem 2.1]. [15] applies the steepest descent analysis to a two parti-
cle version of this formula to extract a space-time bound, which is the key to control
the quadratic variation of the martingale in (1.14).

For the SHS6V model, it is natural to expect that the similar method should apply,
since we also have a set of eigenfunctions from [17, Proposiiton 2.12] and a gener-
alized Plancherel identity from [5, Corollary 3.13]. However, the Plancherel identity
was originally designed only for 0 < q, ν < 1 and there is a technical issue in
extending this identity to q > 1, ν = q−I which has not been addressed in the exist-
ing literatures8 (see Remark 4.5). Fortunately, we find that when I � 2 and there
are only two particles, such analytic continuation does work, which produces an inte-
gral formula for the two particle SHS6V model transition probability (Theorem 4.4).
In terms of large contours, the integral formula consists of two double contour inte-
grals and one single contour integral. We find that the single contour integral can be
expressed as a residue of one of the double contour integrals. This simplifies our anal-
ysis since via certain contour deformation, the single contour integral will be canceled
out.

We will analyze (a tilted version of) this integral formula (Corollary 5.3) in
Section 7 using steepest descent analysis and obtain a very precise estimate of the
(tilted) two particle transition probability V defined in (5.20). Compared with the
analysis for stochastic six vertex model in [15, Section 6], one difficulty is to find
(and justify) the contours for different I, J such that the steepest descent analysis
applies. Also in certain cases (Section 7.5) the steepest descent contour can only
be implicitly defined (compared with [15, Section 6] where all the steepest descent
contour are circles), which complicates our analysis.

Now let us explain what is self-averaging and how these two tools can be applied
to prove it. Denote the discrete gradient by ∇f (x) := f (x + 1) − f (x). Roughly
speaking, the terminology “self-averaging” refers to the phenomena that as ε ↓ 0
(A) For x1 �= x2, the average of ε−1∇Z(t, x1)∇Z(t, x2) over a long time interval of
length O(ε−2) will vanish.

7As a remark, the functional in [35, Theorem 4.10] also serves as the duality functional for a multi-species
version of ASEP(q, j), see [14, 34].
8Corwin and Petrov [17, Proposition A.3] claims the Plancherel identity for ν = q−I can be obtained
by analytic continuation of [5, Corollary 3.13]. After discussions with the authors of [17], they agree that
there is an issue in this analytic continuation (and the resulting identity) due to poles encountered along
the way [18].
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(B) There exists a positive constant λ such that the average of (ε− 1
2 ∇Z(t, x))2 −

λZ(t, x)2 over a long time interval of length O(ε−2) will vanish.
The proofs of (A) and (B) are given in Lemma 8.2 and Lemma 8.3 respectively,

let us make a brief discussion about our strategy here. As we will see in (8.15), under
weakly asymmetric scaling,

ε− 1
2 ∇Z(t, x) = (ρ − η̃x+1(t))Z(t, x) + error term . (1.15)

where ρ ∈ (0, I ) is the density, η̃x(t) = ηx+μ̂(t)(t) and μ̂(t) is some constant defined

in (5.4). Pointwisely, ε− 1
2 ∇Z(t, x) is of the same order as Z(t, x). But (A) tells that

after averaging over a long time interval (we will just say ”averaging” afterwards for
short), ε−1∇Z(t, x1)∇Z(t, x2) vanishes for x1 �= x2, this explains the terminology
of “self-averaging”. To prove (A), by the first duality in Lemma 5.2 (which goes back
to Proposition 3.6), one is able to write down the conditional quadratic variation in
terms of the summation of (a tilted version of) two particle transition probability V,
i.e. for x1 � x2

E
[
Z(t, x1)Z(t, x2)

∣∣F(s)
] =

∑

y1�y2

V
(
(x1, x2), (y1, y2), t, s

)
Z(s, y1)Z(s, y2)

(1.16)
This allows us to move the gradients from Z(t, x1) and Z(t, x2) to V. We proceed
by using a very precise estimate of V from Proposition 7.1 (which is proved by mak-
ing use of the steepest descent analysis of the integral formula of V). Referring to
Proposition 7.1, each gradient on V

(
(x1, x2), (y1, y2), t, s

)
gives an extra decay of

1√
t−s+1

, which helps us to conclude (A). We remark that for demonstrating (A), our
argument is actually simpler than that of [15]. Since we assume I � 2, (1.16) holds
for all x1 � x2, while in the situation of the stochastic six vertex model (I = 1),
(1.16) holds only for x1 < x2, due to the exclusion restriction (i.e. two particles can
not stay in the same site). In fact, [15] needs both of the duality [17, Theorem 2.21]
and [39, Theorem 1.5] to prove (A).

For (B), there are two tasks: Identifying λ and proving the self-averaging. These
were done simultaneously for the stochastic six vertex model [15]: Note that by
(1.15),

(ε− 1
2 ∇Z(t, x))2 = (̃ηx+1(t) − ρ)2Z(t, x)2 + error term . (1.17)

For the stochastic six vertex model, η̃x(t) ∈ {0, 1} for all t, x, hence η̃x(t)
2 = η̃x(t).

Corwin et al. [15, Lemma 7.1] uses this crucial observation to obtain

(̃ηx+1(t) − ρ)2Z(t, x)2 = ρ2Z(t, x)2 + (1 − 2ρ)̃ηx+1(t)Z(t, x)

= ρ(1 − ρ)Z(t, x)2 + ε− 1
2 (2ρ − 1)∇Z(t, x)Z(t, x)

+ error term .

By similar method used in demonstrating (A), it is not hard to prove that

ε− 1
2 ∇Z(t, x)Z(t, x) vanishes after averaging, implying that λ = ρ(1 − ρ).
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For our case, first we note that η̃x(t) ∈ {0, 1, . . . , I } with I � 2, so the η̃x(t)
2 =

η̃x(t) identity obviously fails. We need to find another way to determine λ and prove
the self-averaging. We proceed by first guessing the λ. Via (1.17), the average of
ε−1(∇Z(t, x))2 over a long time interval can be approximated by the average of
(̃ηx(t) − ρ)2Z(t, x)2. In Appendix A, we derive a family of stationary distribution
of the SHS6V model, which is a product measure

⊗
πρ , where πρ is a probability

measure on {0, 1, . . . , I } indexed by its mean ρ ∈ (0, I ). Starting the SHS6V model
�η(t) from �η(0) ∼ ⊗

πρ , it is clear that η̃x(t) ∼ πρ for all t, x. In a heuristic level, one
can approximate the average of (̃ηx+1(t)−ρ)2Z(t, x)2 by that of the Eπρ

[
(̃ηx+1(t)−

ρ)2
]
Z(t, x)2. Under weakly asymmetric scaling, one computes that

lim
ε↓0 Eπρ

[
(̃ηx+1(t) − ρ)2

] = ρ(I − ρ)

I
,

which suggests λ = ρ(I−ρ)
I

.

To prove (B) with λ = ρ(I−ρ)
I

, note that the second duality in Lemma 5.2 (which
goes back to Proposition 3.7) implies

E
[
D(t, x, x)

∣∣F(s)
] =

∑

y1�y2

D(s, y1, y2)V
(
(x, x), (y1, y2), t, s

)
(1.18)

where approximately9

D(s, y1, y2) =
{

Z(s, y1)
2
(
I − η̃y1(s)

)(
I − 1 − η̃y1(s)

)
if y1 = y2,

I−1
I

Z(s, y1)Z(s, y2)
(
I − η̃y1(s)

)(
I − η̃y2(s)

)
if y1 < y2

(1.19)
Note that the expression of D(s, y1, y2) is different depending on whether y1 = y2,

which is crucial to our proof. Rewriting (ε− 1
2 ∇Z(t, x))2 − ρ(I−ρ)

I
Z(t, x)2 in terms

of the two duality functionals in (1.16) and (1.19)

(ε− 1
2 ∇Z(t, x))2 − ρ(I − ρ)

I
Z(t, x)2

=
(

(̃ηx+1(t) − ρ)2 − ρ(I − ρ)

I

)
Z(t, x)2 + error term

=
(

(I − η̃x+1(t))(I − 1 − η̃x+1(t)) − (I − 1)(I − ρ)2

I

)
Z(t, x + 1)2

−(2ρ + 1 − 2I )ε− 1
2 ∇Z(t, x)Z(t, x) + error term ,

=
(

D(t, x + 1, x + 1) − (I − 1)(I − ρ)2

I
Z(t, x + 1)2

)

−(2ρ + 1 − 2I )ε− 1
2 ∇Z(t, x)Z(t, x) + error term .

9In fact, the functional D(s, y1, y2) below is only an approximate version of the duality functional defined
in (5.19), we use this approximate version here to avoid extra notations and make our argument more
intuitive.
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It is not hard to show that the second term ε− 1
2 ∇Z(t, x)Z(t, x) vanishes after aver-

aging. For the first term above, we combine both of the dualities (1.16), (1.18) and
get

E

[
D(t, x + 1, x + 1) − (I − 1)(I − ρ)2

I
Z(t, x + 1)2

∣∣
∣
∣F(s)

]

=
∑

y1�y2

V
(
x + 1, x + 1, y1, y2, t, s

)

×
(

D(s, y1, y2) − (I − 1)(I − ρ)2

I
Z(s, y1)Z(s, y2)

)
. (1.20)

The number of pairs (y1, y2) such that y1 = y2 compared with y1 < y2 is negligible
in the summation above so it suffices to study for y1 < y2

D(s, y1, y2) − (I − 1)(I − ρ)2

I
Z(s, y1)Z(s, y2)

=
(

I − 1

I
(I − η̃y1(s))(I − η̃y2(s)) − (I − 1)(I − ρ)2

I

)
Z(s, y1)Z(s, y2)

= (I − η̃y2(s))(ε
− 1

2 ∇Z(s, y1))Z(s, y2) + (I − ρ)(ε− 1
2 ∇Z(s, y2))Z(s, y1)

+ error term .

Inserting this expression into the RHS of (1.20) and using the summation by part
formula (see (8.39)), we can move the gradient from Z to V. Similar to the argument
for (A), applying the estimate in Proposition 7.1 completes the proof of (B).

1.5 Outline

The paper will be organized as follows. In Section 2 we give an equivalent defini-
tion of SHS6V model through fusion. At the beginning, we require the existence of
a leftmost particle. After that we extend the definition to a bi-infinite version of the
SHS6V model (Lemma 2.1), which is the object that we study for the rest of the
paper. In Section 3, we introduce two Markov dualities enjoyed by the model. The
first one is taken directly from the [17, Theorem 2.21]. The second one is a certain
degeneration from a general duality in [35, Theorem 4.10]. Section 4 contains the
derivation of integral formula for the two point transition probability of the SHS6V
model. In Section 5, we define the microscopic Hopf-Cole transform and prove that
it satisfies a discrete version of SHE. Due to the definition of the Hopf-Cole solution
to the KPZ equation, it suffices to prove that the discrete SHE converges to its con-
tinuum version. In Section 6, we prove this result in two steps. First, we establish the
tightness of the discrete SHE. Second, we show that any limit point is the solution to
the SHE in continuum, assuming the self-averaging property (Proposition 6.8). The
last two sections are devoted to the proof of Proposition 6.8. In Section 7, we obtain
a very precise estimate for the two point transition probability by applying steepest
descent analysis to the integral formula that we obtain in Section 4. In Section 8, we
prove Proposition 6.8 using the Markov duality and our estimate of the two point
transition probability.
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1.6 Notation

In this paper, we denote Z�i = {n ∈ Z : n � i}. 1E denotes the indicator function
of an event E. We use E (respectively, P) to denote the expectation (respectively,
probability) with respect to the process or random variable that follow. The symbol
Cr represents a circular contour centered at the origin with radius r . All contours,
unless otherwise specified, are counterclockwise.

2 The Bi-Infinite SHS6VModel

The main goal of this section is to extend the definition of the left-finite unfused
(fused) SHS6V model in Definition 1.3 (Definition 1.2) to the space of bi-infinite
configurations {0, 1, . . . , I }Z. The motivation of such extension is to include one
important class of initial condition called near stationary initial condition as in [7].
We will proceed following the idea of [15], which goes back to [21]. By fusion
(Proposition 1.5), it suffices to extend the left-finite unfused SHS6V model �η(t). The
extension of the fused version �g(t) follows easily by taking �g(t) = �η(J t).

For the extension, the first step is to restate the SHS6V model in a parallel
update rule. To this end, we equip the probability space with a family of independent
Bernoulli random variables B(t, y, η), B ′(t, y, η) such that

B(t, y, η) ∼ Ber

(
α(t)(1 − qη)

1 + α(t)

)
, B ′(t, y, η) ∼ Ber

(
α(t) + νqη

1 + α(t)

)
, (2.1)

for t ∈ Z�0, y ∈ Z and η ∈ {0, 1, . . . , I }, recall that α(t) = αqmodJ (t).
Treating these Bernoulli random variables as a random environment, we find an

equivalent way to define the left-finite unfused SHS6V model, through recursion.
Given initial state �η(0) ∈ G, define N(0, x) := Nx(�η(0)) − N0(�η(0)) (recall the
notation from (1.7)) and recursively for t = 0, 1, . . . ,

N(t + 1, y) :=
{

N(t, y)− B(t, y, ηy(t)) if N(t, y − 1) − N(t + 1, y − 1)=0,
N(t, y)− B ′(t, y, ηy(t)) if N(t, y − 1) − N(t + 1, y − 1)=1.

ηy(t + 1) := N(t + 1, y) − N(t + 1, y − 1). (2.2)

It is straightforward to see that �η(t) = (ηy(t))y∈Z is a left-finite unfused SHS6V
model and N(t, x) is indeed its height function defined by (1.8).

The recursion (2.2) is equivalent to

N(t, y)−N(t+1, y) =
(
N(t, y−1)−N(t+1, y−1)

)

×
(
B ′(t,y,ηy(t))−B(t,y,ηy(t))

)
+B(t,y,ηy(t)). (2.3)

Iterating (2.3) implies

N(t, y) − N(t + 1, y) =
y∑

y′=−∞

y∏

z=y′+1

(
B ′(t, z, ηz(t)) − B(t, z, ηz(t))

)

×B(t, z, ηz(t)). (2.4)
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Note that the summation above is finite. The reason is that since �η(t) ∈ G, there
exists w such that ηz(t) = 0 for all z < w, which implies B(t, z, ηz(t)) = 0 for all
z < w.

In light of (2.4), we extend the Definition 1.3 to the space of bi-infinite particle
configuration {0, 1, . . . , I }Z.

Lemma 2.1 For any bi-infinite particle configuration �η(0) ∈ {0, 1, . . . , I }Z, define
the initial height function

N(0, x) = 1{x>0}
∑x

i=1 ηi(0) − 1{x<0}
∑−x

i=1 η−i (0).

Note that if �η(0) ∈ G, N(0, x) defined above coincides with that defined in (1.8). We
inductively define the �η(t) and N(t, x) for t = 0, 1, . . . via the recursion

N(t, y) − N(t + 1, y) :=
y∑

y′=−∞

y∏

z=y′+1

(
B ′(t, z, ηz(t)) − B(t, z, ηz(t))

)

×B(t, z, ηz(t)), (2.5)

ηy(t + 1) := N(t + 1, y) − N(t + 1, y − 1). (2.6)

For p � 1, the infinite sum in (2.5) converges almost surely and in Lp to a
{0, 1}-valued random variable. Furthermore, consider left-finite initial configuration
�ηw(0) = (ηi(0)1{i�w})i∈Z and the height function Nw(t, y) inductively defined by
(2.5) and (2.6), then for all t ∈ Z�0 and y ∈ Z

lim
w→−∞ Nw(t, y) = N(t, y) in Lp.

Remark 2.2 It is clear that via (2.5), one can recover the recursion (2.2) since

N(t, y)−N(t+1, y) =
y∑

y′=−∞

y∏

z=y′+1

(
B ′(t, z, ηz(t)) − B(t, z, ηz(t))

)
B(t, z, ηz(t))

= B(t, y, ηy(t)) +
(
B ′(t, y, ηy(t)) − B ′(t, y, ηy(t))

)

×
y−1∑

y′=−∞

y−1∏

z=y′+1

(
B ′(t, z, ηz(t)) − B(t, z, ηz(t))

)

= B(t, y, ηy(t)) +
(
B ′(t, y, ηy(t)) − B ′(t, y, ηy(t))

)

×
(
N(t, y − 1) − N(t, y)

)
.

In particular, if �η(0) ∈ G, the �η(t) defined in Lemma 2.1 is a left-finite unfused
SHS6V model. Therefore, Lemma 2.1 truly extends the scope of Definition 1.3.

Proof of Lemma 2.1 Define the canonical filtration

F(t) = σ
(
�η(0), B(s, z, η), B ′(s, z, η), 0 � s � t − 1

)
.
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It is not hard to see (via (2.5) and (2.6)) that N(t, y) and �η(t) are adapted to this
filtration.

Let us first justify the convergence of the infinite summation (2.5). To simplify
notation, we denote by E′[ · ] = E

[ · ∣∣F(t)
]
. For x < y ∈ Z, denote by

Kx,y(t) :=
y∑

y′=x

y∏

z=y′+1

(
B ′(t, z, ηz(t)) − B(t, z, ηz(t))

)
B(t, y′, ηy′(t))

Observing that Kx,y(t) ∈ {0, 1} for all realization of B, B ′ ∈ {0, 1}. Therefore, as
x → −∞, the Lp convergence of Kx,y(t) implies the almost sure convergence. Note
that B, B ′ are independent Bernoulli random variables with mean given in (2.1). As
a consequence, there exists constant δ > 0 such that

P
(
B ′(t, z, η) − B(t, z, η) = 0

)
> δ, ∀ (t, z, η) ∈ Z�0 × Z × {0, 1, . . . , I }.

Since |B ′(t, z, η) − B(t, z, η)| � 1,

E
′[(B ′(t, z, ηz(t)) − B(t, z, ηz(t))

)p] � 1 − δ.

Furthermore, note that conditioning on F(t), B(t, z, ηz(t)), B
′(t, z, ηz(t)) are all

independent, which yields

E
′
[(

B(t, y′, ηy′(t))
y∏

z=y′+1

(
B ′(t, z, ηz(t)) − B(t, z, ηz(t))

))p]

= E
′[B(t, y′, ηy′(t))p

] y∏

z=y′+1

E
′[(B ′(t, z, ηz(t)) − B(t, z, ηz(t))

)p]

� (1 − δ)y−y′
. (2.7)

Taking expectation on both sides of (2.7), by tower property,
∥
∥∥
∥

( y∏

z=y′+1

(
B ′(t, z, ηz(t)) − B(t, z, ηz(t))

)
B(t, y′, ηy′(t))

)∥∥∥
∥

p

� (1 − δ)
y−y′

p ,

which implies the convergence of Kx,y(t) in Lp as x → −∞.
We proceed to justify

lim
w→−∞ Nw(t, y) = N(t, y) in Lp. (2.8)

We prove this by applying induction on t . The t = 0 case is immediately checked.
Assuming that we have a proof for t = s, we show that (2.8) also holds for t = s +1.
Note that for all y ∈ Z,

ηw
y (s) = Nw(s, y) − Nw(s, y − 1) → N(s, y) − N(s, y − 1)

= ηy(s) in Lp as w → −∞.

Since both ηw
y (s), ηy(s) take value in {0, 1, . . . , I }, we obtain

lim
w→−∞P

(
ηw

y (s) = ηy(s)
) = 1.
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Taking w → −∞, one achieves

Nw(s, y) − Nw(s + 1, y) =
y∑

y′=−∞

y∏

z=y′+1

(
B ′(s, z, ηw

z (s)) − B(s, z, ηw
z (s))

)

×B(s, z, ηw
z (s)).

Therefore, limw→−∞ Nw(s, y)−Nw(s+1, y) = N(s, y)−N(s, y+1) in Lp. Since
we have assumed (2.8) for t = s, we have

Nw(s + 1, y) → N(s + 1, y) in Lp,

which completes the induction.

Definition 2.3 We call the �η(t) ∈ {0, 1, . . . , I }Z defined in Lemma 2.1 the bi-
infinite unfused SHS6V model and associate it with the height function N(t, x)

defined in Lemma 2.1. We simply define the bi-infinite fused SHS6V model �g(t)

and its height function N f(t, x) via

�g(t) := �η(J t), N f(t, x) := N(J t, x).

It is clear that to prove Theorem 1.6, it suffices to work with the bi-infinite unfused
SHS6V model. Unless specified otherwise, the SHS6V model now means the bi-
infinite unfused SHS6V model �η(t). We associate it with the canonical filtration

F(t) = σ
(
�η(0), B(s, z, η), B ′(s, z, η), 0 � s � t − 1

)
.

3 Markov Duality

One main tool that we rely on to prove Theorem 1.6 is the Markov duality. This is
a powerful property which has been found for different interacting particle systems
including the contact process, voter model and symmetric simple exclusion process
[37, 38]. Using Markov duality, Spitzer and Liggett showed that the only extreme
translation invariant measures for the SSEP on Zd are the Bernoulli product measure.

In this section, we first state two Markov dualities for the J = 1 version of left-
finite SHS6V model, which comes form [17, Theorem 2.21] and [35, Theorem 4.10]
respectively. The extension of them to the unfused left-finite SHS6V model is imme-
diate since the transition operators of the model are commute. Finally we explain
how to extend these dualities to the bi-infinite unfused SHS6V model constructed in
the previous section.

Let us recall the definition of Markov duality in the first place.

Definition 3.1 Given two discrete time Markov processes X(t) ∈ U and Y (t) ∈ V

(might be time inhomogeneous) and a function H : U × V → R, we say that X(t)

and Y (t) are dual with respect to H if for any x ∈ U, y ∈ V and s � t ∈ Z�0, we
have

E
[
H(X(t), y)

∣∣X(s) = x
] = E

[
H(x, Y (t))

∣∣Y (s) = y
]
.
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TheMarkov dualities that we are going to present are between the unfused SHS6V
model and the k-particle reversed unfused SHS6V model location process. To define
the latter process, let us first introduce several state spaces.

Definition 3.2 Recall the space of left-finite particle configurationG from (1.6). We
likewise define the space of right-finite particle configuration

M = { �m = (. . . , m−1, m0, m1, . . . ) : all mi ∈ {0, 1, . . . , I } and there exists
x ∈ Z such that mi = 0 for all i > x}.

When there are finite number of k particles, we restrict G andM to

G
k = {�g ∈ G :

∑

i

gi = k}, M
k = { �m ∈ M :

∑

i

mi = k}.

In terms of particle positions, the spaces Gk andMk are in bijection with

W
k
I =

{
�y = (y1 � · · · � yk) : �y ∈ Z

k, max
1�i�M(�y)

ci � I

}
,

where (c1, . . . , cM(�y)) denotes the cluster number in �y, i.e. �y = (y1 = · · · = yc1 <

yc1+1 = · · · = yc1+c2 < . . . ). (y1 � · · · � yk) should be understood as the location
of k particles in a non-decreasing order. In particular, we denote by ϕ : Wk

I → G
k

and φ : Wk
I → M

k to be the bijective maps respectively.

Definition 3.3 When J = 1, it is clear that Definition 1.2 and Definition 1.3
define the same Markov process. We call it the left-finite J = 1 SHS6V model.
In addition, we call �ξ(t) = (ξx(t))x∈Z ∈ M the reversed J = 1 SHS6V model if
�ξ ′(t) = (ξ−x(t))x∈Z ∈ G is a left-finite J = 1 SHS6V model.

Since the SHS6V model preserves the number of particles, we can consider
SHS6V model with k particles as a process on the particle locations.

Definition 3.4 We define the k particle J = 1 SHS6Vmodel location process �x(t) =(
x1(t) � · · · � xk(t)

) ∈ W
k
I if ϕ(�x(t)) (recall the bijective map ϕ : Wk

I → G
k from

Definition 3.2) is the J = 1 left-finite SHS6V model. We say that �y(t) = (y1(t) �
· · · � yk(t)) ∈ W

k
I is a k-particle reversed J = 1 SHS6V model location process

if −�y(t) = (−yk(t) � · · · � −y1(t)) is a k-particle J = 1 SHS6V model location
process. In addition, for �y, �y′ ∈ W

k
I , we denote by B̃α(�y, �y′) to be the transition

probability from �y to �y′ of the k-particle reversed J = 1 SHS6V model location
process. As a matter of convention, B̃α could be seen as an operator acting on function
f : Wk

I → R in the manner that

(B̃αf )(�y) :=
∑

�y′∈Wk
I

B̃α(�y, �y′)f (�y′).

Definition 3.5 We define the k-particle unfused SHS6V model location process
�x(t) = (x1(t) � · · · � xk(t)) so that ϕ(�x(t)) is the left-finite unfused SHS6V model.
We say �y(t) = (y1(t) � · · · � yk(t)) is a k-particle reversed unfused SHS6V model
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location process if −�y(t) = (−yk(t) � · · · � −y1(t)) is a k-particle unfused SHS6V
model location process.

Note that for the reversed k-particle SHS6V model �y(t), we denote by
P←−−−−
SHS6V

(�x, �y, t, s
)
the transition probability from �y(s) = �x to �y(t) = �y. Apparently,

one has
P←−−−−
SHS6V

(�x, �y, t, s
) = (

B̃α(s) · · · B̃α(t−1)
)
(�x, �y).

It follows from [17, Corollary 2.14] (or the Yang-Baxter equation [13, Section 3])
that B̃α(i) commutes with itself for different values of i (i.e. B̃α(i)B̃α(j) = B̃α(j)B̃α(i)).
Consequently,

P←−−−−
SHS6V

(�x, �y, t, s
) = (

B̃α(t−1) · · · B̃α(s)

)
(�x, �y). (3.1)

Let us first state the J = 1 version of Markov duality.

Proposition 3.6 [17, Proposition 2.21] For all k ∈ Z�1, the J = 1 left-finite
SHS6V model �η(t) ∈ G (Definition 3.3) and k-particle J = 1 reversed SHS6V
model location process �y(t) (Definition 3.4) are dual with respect to the functional
H : G × Y

k → R

H(�η, �y) =
k∏

i=1

q−Nyi
(�η), (3.2)

recall Ny(�η) = ∑
i�y ηi .

In [35], the author discovers a Markov duality for a multi-species version of the
SHS6V model. For our application, we explain how to degenerate this result to a
two particle SHS6V model duality. Before stating the proposition, let us recall the
notation of q-deformed quantity

[n]q := qn − q−n

q − q−1
, [n]!q :=

n∏

i=1

[i]q,

(
n

k

)

q

:= [n]!q
[k]!q [n − k]!q

.

Proposition 3.7 The J = 1 left-finite SHS6V model �η(t) and the two particle J = 1
reversed SHS6V model location process �y(t) are dual with respect to

G(�η, (y1, y2)) =

⎧
⎪⎪⎨

⎪⎪⎩

q−2Ny1 (�η)[I − ηy1 ]
q
1
2
[I − 1 − ηy1 ]

q
1
2
qηy1 if y1 = y2;

[I−1]
q
1
2

[I ]
q
1
2

q−Ny1 (�η)q−Ny2 (�η)[I − ηy1 ]
q
1
2
[I − ηy2 ]

q
1
2
q

1
2 ηy1 q

1
2 ηy2 if y1 < y2.

(3.3)

We remark that there is a misstatement in [35, Theorem 4.10]. The particles in
the process Z and Zrev were stated to jump to the left and to the right respectively.
However, after discussing with the author, we realize that the right statement is that
the particles in Z jump to the right and those in Zrev jump to the left.

Proof This is a degeneration from [35, Theorem 4.10]. By taking the species number

n = 1, the spin parameter mx = I for all x ∈ Z as well as replacing q by q
1
2 , the
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multi-species SHS6V model considered in [35] degenerates to the J = 1 SHS6V
model (see Section 2.6.2 of [35] for detail). Then Theorem 4.10 of [35] reduces to:
The J = 1 left-finite SHS6V model �ξ(t) and the J = 1 reversed SHS6V model �η(t)

are dual with respect to the functional

G1(�ξ, �η) =
∏

x∈Z
[ηx]!

q
1
2
[I − ηx]!

q
1
2

(
I − ξx

ηx

)

q
1
2

q− 1
2 ξx(

∑
z>x 2ηz+ηx).

Swapping the role of left and right, which makes the particles in �ξ(t) jump to the
left and those in �η(t) jump to the right. Then �η(t) becomes the J = 1 left-finite
SHS6V model and �ξ(t) becomes the J = 1 reversed SHS6V model. They are dual
with respect to the functional

G2(�η, �ξ) =
∏

x∈Z
[ηx]!

q
1
2
[I − ηx]!

q
1
2

(
I − ξx

ηx

)

q
1
2

q− 1
2 ξx(

∑
z<x 2ηz+ηx),

=
∏

x∈Z
[ηx]!

q
1
2
[I − ηx]!

q
1
2

(
I − ξx

ηx

)

q
1
2

q−ξxNx(�η)+ 1
2 ξxηx . (3.4)

Assuming �ξ(t) has two particles, recall the bijective map φ : W2
I → M

2 (take k = 2)
in Definition 3.2, then �y(t) = φ−1(�ξ(t)) is the J = 1 reversed two particle location
process. The J = 1 left-finite SHS6Vmodel �η(t) and the two particle J = 1 reversed
SHS6V model location process �y(t) = (y1(t) � y2(t)) are dual with respect to
G2(�η, φ−1(y1, y2)), where �ξ = (ξx)x∈Z = φ(y1, y2) is given by

ξx =
{
21{x=y1} if y1 = y2,

1{x=y1} + 1{x=y2} if y1 < y2.

In addition, note that

[ηx]!
q
1
2
[I − ηx]!

q
1
2

(
I − ξx

ηx

)

q
1
2

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[I ]
q
1
2

if ξx = 0,

[I − ηx]
q
1
2

if ξx = 1,
[I−ηx ]

q
1
2

[I−1−ηx ]
q
1
2

[I−1]
q
1
2

if ξx = 2.

(3.5)

When �ξ = φ(y1, y2), there are at most two values for x ∈ Z so that ξx �= 0. To make
sense of the infinite product in (3.4), one needs to normalize G2(�η, �ξ) by dividing
each factor in the product (3.4) by [I ]

q
1
2
. After such normalization, it is straightfor-

ward via (3.5) that G2(�η, φ(y1, y2)) equals the functional G(�η, (y1, y2)) in (3.3) up
to a constant factor.

We note that the duality functionals in (3.2) and (3.3) do not depend on the param-
eter α. By Markov property and the property that B̃α(i) commutes for different value
of i, it is clear that the same Markov dualities in Proposition 3.6 and Proposition 3.7
apply for the left-finite unfused SHS6V model.

Corollary 3.8 For all k ∈ Z�1, the left-finite unfused SHS6V model �η(t) ∈ G

(Definition 1.3) and the reversed k-particle unfused SHS6V model location process
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�y(t) ∈ W
k
I (Definition 3.5) are dual with respect to the functional H in (3.2). The

left-finite SHS6V model �η(t) and the two particle reversed unfused SHS6V model
location process �y(t) are dual with respect to the functional G in (3.3).

Proof Due to Proposition 3.6, we see that for all �η ∈ G and �y ∈ W
k
I ,

E
[
H(�η(t), �y)

∣
∣�η(t − 1) = �η] =

∑

�x∈Wk
I

B̃α(t−1)(�y, �x)H(�η, �x). (3.6)

Using Markov property and applying (3.6) repetitively, we see that

E
[
H(�η(t), �y)

∣
∣�η(s) = �η] =

∑

�x∈Wk
I

(
B̃α(s) · · · B̃α(t−1)

)
(�y, �x)H(�η, �x)

=
∑

�x∈Wk
I

P←−−−−
SHS6V

(�y, �x, t, s
)
H(�η, �x)

= E
[
H(�η, �y(t))

∣
∣�y(s) = �y].

Here, the second equality follows from (3.1). This proves the desired duality with
respect to the functional H . The duality with respect to the functional G follows by
a similar argument.

For our application, we like to extend the dualities stated in Proposition 3.6 and
Proposition 3.7 to the bi-infinite SHS6V model. Denote by

D̃(t, y1, y2)=

⎧
⎪⎨

⎪⎩

q−2N(t,y1)[I −ηy1 (t)]
q
1
2
[I −1−ηy1 (t)]

q
1
2
qηy1 (t) if y1=y2;

[I−1]
q
1
2

[I ]
q
1
2

q−N(t,y1)q−N(t,y2)[I −ηy1 (t)]
q
1
2
[I −ηy2 (t)]

q
1
2
q

1
2 ηy1 (t)q

1
2 ηy2 (t) if y1<y2.

(3.7)

Here �η(t) = (ηx(t))x∈Z is the bi-infinite unfused SHS6V model defined in
Definition 2.3 and N(t, y) is the associated height function.

Corollary 3.9 For the bi-infinite unfused SHS6V model �η(t), for �y = (y1 � · · · �
yk) ∈ W

k
I one has

E
[ k∏

i=1

q−N(t,yi )
∣∣F(s)

] =
∑

�x∈Wk
I

P←−−−−
SHS6V

(�y, �x, t, s
) k∏

i=1

q−N(s,xi ). (3.8)

For y1 � y2 ∈ Z (Since I � 2, this is equivalent to the condition (y1, y2) ∈ W
2
I )

E
[
D̃(t, y1, y2)

∣
∣F(s)

] =
∑

x1�x2∈Z2

P←−−−−
SHS6V

(
(y1, y2), (x1, x2), t, s

)
D̃(s, x1, x2). (3.9)

Proof Let us prove (3.8) in the first place. Given initial condition of the bi-infinite
unfused SHS6V model �η(0), we construct a sequence of left-finite SHS6V model
�ηw(t) with initial condition �ηw(0) := (ηi(0)1{i�w})i∈Z. We denote by Nw(t, y) the

Math Phys Anal Geom (2020) 23: 1 Page 21 of 118 1



associated height function. The first duality in Corollary 3.8 implies that for any
w ∈ Z

E
[ k∏

i=1

q−Nw(t,yi )
∣
∣F(s)

] =
∑

�x∈Wk
I

P←−−−−
SHS6V

(�y, �x, t, s
) k∏

i=1

q−Nw(s,xi ). (3.10)

Let us show that the LHS and RHS of (3.10) approximate those of (3.8) asw → −∞.
For the approximation of the LHS, as |ηx(0)| � I for all x ∈ Z, we have

|Nw(0, yi)| � I |yi |. Moreover, in a single time step, Nw(t, yi) may change by at
most one, hence for all w ∈ Z,

|Nw(t, yi)| � |Nw(0, yi)| + t � yiI + t . (3.11)

Therefore, for fixed t ∈ Z�0 and q > 1,
∏k

i=1 q−Nw(t,yi ) is uniformly bounded.
Via Lemma 2.1, we know that Nw(t, yi) → N(t, yi) in probability, by conditional
dominated convergence theorem, one has

lim
w→−∞E

[ k∏

i=1

q−Nw(t,yi )
∣∣F(s)

] = E
[ k∏

i=1

q−N(t,yi )
∣∣F(s)

]
.

For the RHS approximation, according to Definition 3.5, when there is only one
particle in the reversed SHS6V model location process, it jumps to the left (at time t)
as a geometric random variables with parameter ν+α(t)

1+α(t)
. When there are k particles,

they jump to the left (at time t) as k independent geometric random variables with
parameter ν+α(t)

1+α(t)
except when one hits another. So there exists constant C such that

for all t, �x, �y

P←−−−−
SHS6V

(�y, �x, t + 1, t
)
� C

k∏

i=1

(
ν + α(t)

1 + α(t)

)|yi−xi |
.

Denote by θ = supt∈Z�0

ν+α(t)
1+α(t)

, one has

P←−−−−
SHS6V

(�y, �x, t + 1, t
)
� C

k∏

i=1

θ |yi−xi |. (3.12)

For fixed s � t , observing that P←−−−−
SHS6V

(�y, �x, t, s
)
can be written as a (t − s)-fold

convolution of one-step transition probability. The convolution can be expanded into
a sum over all trajectories from �y = (y1, . . . , yk) to �x = (x1, . . . , xk). The contribu-
tion of each trajectories can be bounded by the product of t − s one-step transition
probability, which is upper bounded by the RHS of (3.12). As the particles in the
reversed SHS6V model can only jump to the left, the number of the trajectories can
be upper bounded by

∏k
i=1

(|xi−yi |+t−s
t−s

)
. We obtain

P←−−−−
SHS6V

(�y, �x, t, s
)
� C

∏k
i=1

(|xi−yi |+t−s
t−s

)
θ |yi−xi |. (3.13)

Furthermore, it is readily verified that under Condition 1.1,

qI θ = sup
t∈Z�0

1 + qIα(t)

1 + α(t)
< 1.
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Using the bounds in (3.11) and (3.13), fix s � t ∈ Z�0 and �y ∈ W
k
I , we have for all

�x ∈ W
k
I ,

P←−−−−
SHS6V

(�y, �x, t, s
)
q−Nw(s,xi ) � C

k∏

i=1

(|xi − yi | + t − s

t − s

)
θ |yi−xi |qI |xi |,

� C

k∏

i=1

(|xi − yi | + t − s

t − s

)
(qI θ)|yi−xi |,

� C

k∏

i=1

δ|yi−xi |,

for some constant 0 < δ < 1. Since Nw(s, xi) → N(s, xi) in probability, we find
that

∑

x∈WI
I

P←−−−−
SHS6V

(�y, �x, t, s
) k∏

i=1

q−Nw(s,xi )

−→
∑

x∈Wk
I

P←−−−−
SHS6V

(�y, �x, t, s
) k∏

i=1

q−N(s,xi ) in probability.

Therefore, We conclude (3.8). The proof of (3.9) is similar to (3.8), where we
consider instead

D̃w(t, y1, y2)=

⎧
⎪⎪⎨

⎪⎪⎩

q−2Nw(t,y1)[I −ηw
y1

(t)]
q
1
2
[I −1−ηw

y1
(t)]

q
1
2
q

ηw
y1

(t) if y1=y2;
[I−1]

q
1
2

[I ]
q
1
2

q−Nw(t,y1)q−Nw(t,y2)[I −ηw
y1

(t)]
q
1
2
[I −ηw

y2
(t)]

q
1
2
q

1
2 ηw

y1
(t)

q
1
2 ηw

y2
(t) if y1<y2.

Applying the second duality in Corollary 3.8, we find that

E
[
D̃w(t, y1, y2)

∣
∣F(s)

] =
∑

x1�x2∈Z2

P←−−−−
SHS6V

(
(y1, y2), (x1, x2), t, s

)
D̃w(s, x1, x2).

By taking w → −∞ and using similar approximation, we conclude (3.9).

4 Integral Formula for the Two Particle Transition Probability

In this section, we give an explicit integral formula for P←−−−−
SHS6V

(
(x1, x2), (y1, y2), t, s

)

(note that for the rest of the paper, we prefer to swap the order of (x1, x2) and
(y1, y2) in the notation compared with the RHS of (3.9)). Our approach is to utilize
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the generalized Fourier theory (Bethe ansatz) developed in [5]. Let us review a few
results obtained in [5] and [17] on which we rely to derive the integral formula.

Definition 4.1 For �y ∈ (y1 � · · · � yk) ∈ Z
k , we define the left and right Bethe

ansatz eigenfunction10

��
�w(�y) =

∑

σ∈Sk

∏

1�B<A�k

wσ(A) − qwσ(B)

wσ(A) − wσ(B)

k∏

i=1

(
1 − wσ(j)

1 − νwσ(j)

)−yk+1−j

,

�r
�w(�y) = (−1)k(1 − q)kq

k(k−1)
2 mq,v(�y)

∑

σ∈Sk

∏

1�B<A�k

wσ(A) − q−1wσ(B)

wσ(A) − wσ(B)

×
k∏

i=1

(
1 − wσ(j)

1 − νwσ(j)

)yk+1−j

,

where Sk is the permutation group of {1, . . . , k} and

mq,v(�y) :=
M(�y)∏

i=1

(ν; q)ci

(q; q)ci

, (4.1)

where (c1, . . . , cM(�y)) denotes the cluster number in �y, i.e. �y = (y1 = · · · = yc1 <

yc1+1 = · · · = yc1+c2 < . . . ).

It turns out that ��
�w are the eigenfunctions of the operator B̃α defined in

Definition 3.4.

Lemma 4.2 (Proposition 2.12 of [17]) For all k ∈ Z�1 and �w = (w1, . . . , wk) ∈ C
k

such that for all i ∈ {1, . . . , k}, ∣∣ 1−wi

1−νwi

α+ν
1+α

∣
∣ < 1. Then,

(
B̃α��

�w
)
(�y) =

( k∏

i=1

1 + αqwi

1 + αwi

)
��

�w(�y).

Borodin et al. [5] shows that the left and right Bethe ansatz eigenfunctions enjoy
the following bi-orthogonal relation.

Lemma 4.3 (Corollary 3.13 of [5]) For 0 < q, ν < 1 and k ∈ Z�1 �x = (x1 � · · · �
xk) ∈ Z

k and �y = (y1 � · · · � yk) ∈ Z
k ,

∑

λ�k

∮

γ

. . .

∮

γ

dm
q
λ( �w)

�(λ)∏

i=1

1

(wi, q)λj
(νwi, q)λj

��
�w◦λ(�x)�r

�w◦λ(�y) = 1{�x=�y} (4.2)

10Comparing with the original definition for Bethe ansatz function defined in (2.11) and (2.14) of [5],
we reverse the order of components in the vector: We prefer to write �y = (y1 � · · · � yk) instead of
�y = (y1 � · · · � yk).
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Some notations must be specified here: γ is a very small circular contour around 1
so as to exclude all the poles of the integrand except 1. The Plancherel measure is
defined as

dm
q
λ( �w)= (−1)k(1 − q)kq−k(k−1)/2

m1!m2! . . . det

[
1

wiqλi − wi

]�(λ)

i,j=1

k∏

i=1

qλi(λi−1)/2w
λi

i

dwi

2π i
,

(4.3)
where the sum in (4.3) is taken over the partition λ of k, that is to say, λ = (λ1 �
· · · � λs) ∈ Z

s
�1 with

∑s
i=1 λi = k and �(λ) = s is the length of the partition λ. For

instance, the partitions of k = 3 are given by (2, 1) and (1, 1, 1). We denote by mj

to be number of components that equal j in λ so that λ = 1m12m2 . . . . Furthermore,
we define

�w ◦ λ := (w1, . . . , q
λ1−1w1, w2, . . . , q

λ2−1w2, . . . , ws, . . . , q
λs−1ws).

We are in a position to present our formula.

Theorem 4.4 Assume I � 2, for any x1 � x2 ∈ Z and y1 � y2 ∈ Z, the two point
transition probability of reversed SHS6V model admits the following integral formula

P←−−−−
SHS6V

(
(x1, x2), (y1, y2), t, s

)

= c(y1, y2)

[ ∮

CR

∮

CR

2∏

i=1

D̃(zi)
� t−s

J
�R̃(zi, t, s)z

xi−yi

i

dzi

2π izi

−
∮

CR

∮

CR

F̃(z1, z2)

2∏

i=1

D̃(zi)
� t−s

J
�R̃(zi, t, s)z

x3−i−yi

i

dzi

2π izi

+Resz1=s̃(z2)

∮

CR

∮

CR

F̃(z1,z2)

2∏

i=1

D̃(zi)
� t−s

J
�R̃(zi,t,s)z

x3−i−yi

i

dzi

2π izi

]
, (4.4)

where CR is a circle centered at zero with large enough radius R so as to include all
the poles of all the integrands. In addition,

c(y1, y2) := 1{y1<y2} + 1 − qν

(1 + q)(1 − ν)
1{y1=y2},

D̃(z) := (1 + αqJ )z − (ν + αqJ )

(1 + α)z − (ν + α)
,

R̃(z, t, s) :=
t−1∏

k=s+J � t−s
J

�

(1 + α(k)q)z − (ν + α(k)q)

(1 + α(k))z − (ν + α(k))
,

F̃(z1, z2) := qν − ν + (ν − q)z2 + (1 − qν)z1 + (q − 1)z1z2
qν − ν + (ν − q)z1 + (1 − qν)z2 + (q − 1)z1z2

,

s̃(z) := (1 − qν)z − ν(1 − q)

(q − ν) + (1 − q)z
. (4.5)
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Note that z1 = s̃(z2) corresponds to the pole produced by the denominator of
F̃(z1, z2) and

Resz1=s̃(z2)

∮

CR

∮

CR

F̃(z1, z2)

2∏

i=1

D̃(zi, t, s)z
x3−i−yi

i

dzi

2π izi

denotes the residue of the double contour integral above at the pole z1 = s̃(z2).

Proof of Theorem 4.4 The first step to prove Theorem 4.4 is utilizing the bi-
orthogonality of the Bethe ansatz function. Taking k = 2 in the previous lemma,
since the possible partition is either λ = (1, 1) or λ = (2), we obtain

1{(x1,x2)=(y1,y2)} =
∮

γ

∮

γ

dm
q

(1,1)(w1, w2)

2∏

i=1

1

(1 − wi)(1 − νwi)

×��
(w1,w2)

(x1, x2)�
r
(w1,w2)

(y1, y2)

+
∮

γ

dm
q

(2)(w)
1

(w, q)2(νw, q)2
��

(w,qw)(x1, x2)�
r
(w,qw)(y1, y2).

(4.6)

Note that according to the previous lemma, (4.6) holds only for 0 < q, ν < 1, we
want to extend this identity to q > 1 and ν = q−I . This extension can be justified
by analytic continuation. Note that the RHS of (4.6) is an analytic function of q, ν

in a suitable domain which connects {(q, ν) : (q, ν) ∈ (0, 1)2} and {(q, ν) : q >

1, ν = q−I }. The reason behind is that after plugging in ν = q−I , there is no new
pole of integrand generated inside γ (Here we use the assumption I � 2, this analytic
continuation argument is not valid when I = 1, see Remark 4.5).

Let us now fix y1 � y2 ∈ Z on both side of (4.6) and treat both sides as functions
of (x1, x2). We denote by the operator

B̃α(s, t) := B̃α(s) · · · B̃α(t − 1).

Applying the operator B̃α(s, t) on both side of (4.6). For the LHS, it is clear that
(
B̃α(s, t)1{·=(y1,y2)}

)
(x1, x2) = P←−−−−

SHS6V

(
(x1, x2), (y1, y2), t, s

)
.

For the RHS, we move B̃α(s, t) inside the integrand, which yields

P←−−−−
SHS6V

(
(x1, x2), (y1, y2), t, s

) =
∮

γ

∮

γ

dm
q

(1,1)(w1, w2)

2∏

i=1

1

(1 − wi)(1 − νwi)

×(
B̃α(s, t)��

(w1,w2)

)
(x1, x2)�

r
(w1,w2)

(y1, y2)

+
∮

γ

dm
q

(2)(w)
1

(w,q)2(νw,q)2

((
B̃α(s, t)��

(w,qw)

)

×(x1, x2)�
r
(w,qw)(y1, y2). (4.7)
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Due to Lemma 4.2 (note that γ is a small circle around 1, hence w1, w2 satisfy the
condition of Lemma 4.2),

(
B̃α(s, t)��

(w1,w2)

)
(x1, x2) =

2∏

i=1

( t−1∏

k=s

1 + α(k)qwi

1 + α(k)wi

)
��

(w1,w2)
(x1, x2),

(
B̃α(s, t)��

(w,qw)

)
(x1, x2) =

t−1∏

k=s

(
1 + α(k)qw

1 + α(k)w
· 1 + α(k)q2w

1 + α(k)qw

)
��

(w1,w2)
(x1, x2),

=
t−1∏

k=s

(
1 + α(k)q2w

1 + α(k)w

)
��

(w1,w2)
(x1, x2).

We name the first term on the RHS of (4.7) I1 and the second term I2,

I1 =
∮

γ

∮

γ

dm
q

(1,1)(w1, w2)

2∏

i=1

1

(1 − wi)(1 − νwi)

( t−1∏

k=s

1 + α(k)qwi

1 + α(k)wi

)

×��
(w1,w2)

(x1, x2)�
r
(w1,w2)

(y1, y2), (4.8)

I2 =
∮

γ

dm
q

(2)(w)
1

(w, q)2(νw, q)2

t−1∏

k=s

(
1 + α(k)q2w

1 + α(k)w

)

×��
(w,qw)(x1, x2)�

r
(w,qw)(y1, y2). (4.9)

We compute I1 in the first place. In the integrand of (4.8), the function
��

(w1,w2)
(x1, x2) is a symmetrization of

w2 − qw1

w2 − w1

2∏

i=1

(
1 − wi

1 − νwi

)−x3−i

Furthermore, all other terms of the integrand (4.8) are symmetric function of w1, w2.
In addition, we are integrating w1, w2 along the same contour, this allows us to
desymmetrize the integrand

I1 = 2
∮

γ

∮

γ

dm
q

(1,1)(w1, w2)

2∏

i=1

(
1

(1 − wi)(1 − νwi)

t−1∏

k=s

1 + α(k)qwi

1 + α(k)wi

)

×w2 − qw1

w2 − w1

2∏

i=1

(
1 − wi

1 − νwi

)−x3−i

�r
(w1,w2)

(y1, y2). (4.10)

We readily calculate

dm
q

(1,1)(w1, w2) = (1 − q)2q−1

2
det

[
1

wiq − wj

]2

i,j=1

2∏

i=1

widwi

2π i

= (w1 − w2)
2

2(w2 − qw1)(qw2 − w1)

2∏

i=1

dwi

2π i
(4.11)
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�r
�w(y1, y2) = q(1 − q)2mq,v(y)

∑

σ∈S2

∏

1�B<A�2

wσ(A) − q−1wσ(B)

wσ(A) − wσ(B)

×
2∏

i=1

(
1 − wσ(i)

1 − νwσ(i)

)y3−i

= (1 − q)2mq,v(y)

(
qw2 − w1

w2 − w1

2∏

i=1

(
1 − wi

1 − νwi

)y3−i

+ qw1 − w2

w1 − w2

×
2∏

i=1

(
1 − wi

1 − νwi

)yi

)

(4.12)

Replacing the terms dm
q

(1,1)(w1, w2) and �r
�w(y1, y2) in the integrand of (4.10) by

the RHS of (4.11) and (4.12), one sees that

I1 = (1 − q)2mq,v(y1, y2)

[ ∮

γ

∮

γ

2∏

i=1

1

(1 − wi)(1 − νwi)

( t−1∏

k=s

1 + α(k)qwi

1 + α(k)wi

)

×
(

1 − wi

1 − νwi

)y3−i−x3−i dwi

2π i
−

∮

γ

∮

γ

qw1 − w2

qw2 − w1

2∏

i=1

1

(1 − wi)(1 − νwi)

×
( t−1∏

k=s

1 + α(k)qwi

1 + α(k)wi

)(
1 − wi

1 − νwi

)yi−x3−i dwi

2π i

]
,

= (1 − q)2mq,v(y1, y2)

[ ∮

γ

∮

γ

2∏

i=1

1

(1 − wi)(1 − νwi)

( t−1∏

k=s

1 + α(k)qwi

1 + α(k)wi

)

(
1 − wi

1 − νwi

)yi−xi dwi

2π i
−

∮

γ

∮

γ

qw1 − w2

qw2 − w1

2∏

i=1

1

(1 − wi)(1 − νwi)

×
( t−1∏

k=s

1 + α(k)qwi

1 + α(k)wi

)(
1 − wi

1 − νwi

)yi−x3−i dwi

2π i

]
. (4.13)

For the second equality above, we changed
( 1−wi

1−νwi

)y3−i−x3−i to
( 1−wi

1−νwi

)yi−xi , due to
the symmetry of w1, w2.

We proceed to compute I2, by a straightforward calculation

m
q

(2)(w) = (q − 1)w

q + 1

dw

2πi
,

��
w,qw(x1, x2) = (1 + q)

(
1 − w

1 − νw

)−x1
(

1 − qw

1 − νqw

)−x2

,

�r
w,qw(y1, y2) = (1 − q)2mq,v(y)(1 + q)

(
1 − w

1 − νw

)y2
(

1 − qw

1 − qνw

)y1

.
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Inserting these expressions into the integrand of (4.9) gives

I2 = (1 − q)2mq,v(y1, y2)

∮

γ

(q2 − 1)w

(w, q)2(νw, q)2

t−1∏

k=s

(
1 + α(k)q2w

1 + α(k)w

)(
1−w

1−νw

)y2−x1

×
(

1 − qw

1 − qνw

)y1−x2 dw

2π i
.

A crucial observation is that one can verify directly

I2 = −(1 − q)2mq,v(y1, y2)Resw1=qw2

∮

γ

∮

γ

qw1 − w2

qw2 − w1

×
2∏

i=1

1

(1 − wi)(1 − νwi)

( t−1∏

k=s

1 + α(k)qwi

1 + α(k)wi

)

×
(

1 − wi

1 − νwi

)yi−x3−i dwi

2π i
, (4.14)

Note that P←−−−−
SHS6V

(
(x1, x2), (y1, y2), t, s

) = I1 + I2, using (4.13) and (4.14) one
has

P←−−−−
SHS6V

(
(x1, x2), (y1, y2), t, s

)

= (1 − q)2mq,v(y1, y2)

[ ∮

γ

∮

γ

2∏

i=1

1

(1 − wi)(1 − νwi)

( t−1∏

k=s

1 + α(k)qwi

1 + α(k)wi

)

×
(

1 − wi

1 − νwi

)yi−xi dwi

2π i
−

∮

γ

∮

γ

qw1 − w2

qw2 − w1

2∏

i=1

1

(1 − wi)(1 − νwi)

( t−1∏

k=s

1 + α(k)qwi

1 + α(k)wi

)(
1 − wi

1 − νwi

)yi−x3−i dwi

2π i
− Resw1=qw2

∮

γ

∮

γ

qw1 − w2

qw2 − w1

×
2∏

i=1

1

(1 − wi)(1 − νwi)

( t−1∏

k=s

1 + α(k)qwi

1 + α(k)wi

)(
1 − wi

1 − νwi

)yi−x3−i dwi

2π i

]
.

Recall that α(k) = αqmodJ (k) for all k, we can simplify the telescoping product in
the integrand via

t−1∏

k=s

1 + α(k)qwi

1 + α(k)wi

=
(
1 + αqJ wi

1 + αwi

)� t−s
J

� t−1∏

k=s+J � t−s
J

�

1 + α(k)qwi

1 + α(k)wi

.
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Furthermore, referring to the expression (4.1) and (4.5), we notice that (1 −
q)2mq,v(y1, y2) = c(y1, y2). Thereby,

P←−−−−
SHS6V

(
(x1, x2), (y1, y2), t, s

)

= c(y1, y2)

[ ∮

γ

∮

γ

2∏

i=1

1

(1 − wi)(1 − νwi)

(
1 + αqJ wi

1 + αwi

)� t−s
J

�

×
( t−1∏

k=s+J � t−s
J

�

1 + α(k)qwi

1 + α(k)wi

)(
1 − wi

1 − νwi

)yi−xi dwi

2π i

−
∮

γ

∮

γ

qw1 − w2

qw2 − w1

2∏

i=1

1

(1 − wi)(1 − νwi)

(
1 + αqJ wi

1 + αwi

)� t−s
J

�

×
( t−1∏

k=s+J � t−s
J

�

1 + α(k)qwi

1 + α(k)wi

)(
1 − wi

1 − νwi

)yi−x3−i dwi

2π i

−Resw1=qw2

∮

γ

∮

γ

qw1 − w2

qw2 − w1

2∏

i=1

1

(1 − wi)(1 − νwi)

(
1 + αqJ wi

1 + αwi

)� t−s
J

�

×
( t−1∏

k=s+J � t−s
J

�

1 + α(k)qwi

1 + α(k)wi

)(
1 − wi

1 − νwi

)yi−x3−i dwi

2π i

]
. (4.15)

Lastly, we transform the small circle γ surrounding 1 into the big circle CR via a
change of variable

wi = �(zi) = 1 − zi

ν − zi

(equivalently zi = 1 − νwi

1 − wi

), i = 1, 2.

By the following relations

q�(z1) − �(z2)

q�(z2) − �(z1)
= F̃(z1, z2),

1 − �(zi)

1 − ν�(zi)
= z−1

i ,

1 + αqJ �(zi)

1 + α�(zi)
= D̃(zi),

t−1∏

k=s+J � t−s
J

�

1 + α(k)q�(zi)

1 + α(k)�(zi)
= R̃(zi, t, s),

d�(zi)

(1 − �(zi))(1 − ν�(zi))
= dzi

(1 − ν)zi

,

Math Phys Anal Geom (2020) 23: 1Page 30 of 1181



we obtain

P←−−−−
SHS6V

(
(x1, x2), (y1, y2), t, s

)

= c(y1, y2)

[ ∮

CR

∮

CR

2∏

i=1

D̃(zi)
� t−s

J
�R̃(zi, t, s)z

xi−yi

i

dzi

2π izi

−
∮

CR

∮

CR

F̃(z1, z2)

2∏

i=1

D̃(zi)
� t−s

J
�R̃(zi, t, s)z

x3−i−yi

i

dzi

2π izi

+Resz1=s̃(z2)

∮

CR

∮

CR

F̃(z1, z2)

2∏

i=1

D̃(zi)
� t−s

J
�R̃(zi, t, s)z

x3−i−yi

i

dzi

2π izi

]
.

(4.16)

This concludes the proof of Theorem 4.4. Note that we change the sign in front of
the residue from (4.15) to (4.16). This is due to the fact that, before employing the
change of variable, the set of the poles {qw1 : w1 ∈ γ } lies outside the w2-contour
γ , while after the change of variable, the set of the pole {̃s(z1) : z1 ∈ CR} lies inside
the z2-contour CR , since R is chosen to be sufficiently large.

Remark 4.5 We remark that our argument in proving that (4.6) holds for q > 1 and
ν = q−I does not work when I = 1. The reason is as follows: Note that the factor

1
(νz1,q)2

in the integrand of (4.6) gives a pole for the z1-contour at z1 = ν−1q. Before

the substitution of ν = q−1, this pole lies outside the contour γ . Yet after substituting
ν = q−1, the pole becomes z1 = 1, which runs inside the contour γ , hence the
argument of analytic continuation fails. This issue is also addressed in [6], when
the authors tried to reproduce the integral formula for the k particle ASEP transition
probability (which first appears in [49, Theorem 2.1]) via analytic continuation of
(4.2). For a similar reason, our method does not yield the general k particle transition
probability formula of the SHS6V model.

5 Microscopic Hopf-Cole Transform and SHE

In this section, we first define the microscopic Hopf-Cole transform Z(t, x), which
is an exponential transform of the height function N(t, x). Using k = 1 version of
duality of (3.8), it turns out that Z(t, x) satisfies a discrete version of SHE. As the
Hopf-Cole solution to the KPZ equation is the logarithm of the mild solution of the
SHE, this reduces the proof of Theorem 1.6 to proving that Z(t, x) converges to the
solution of SHE. We will derive two Markov dualities for Z(t, x) in Lemma 5.2, as
a tilted version of (3.8). This will be used in the proof of self-averaging property
Proposition 6.8.
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5.1 Microscopic Hopf-Cole Transform

We first study a one particle version of the unfused SHS6V model location process
(Definition 3.5). When there is only one particle, it performs a random walk X′(t) =∑t−1

k=0 R′(k) where R′(k) are independent (but not same distributed) Z�0-valued
random variables with distribution

P
(
R′(k) = n

) =

⎧
⎪⎨

⎪⎩

1+qα(k)
1+α(k)

if n = 0;
α(k)(1−q)
1+α(k)

(
1 − ν+α(k)

1+α(k)

)(
ν+α(k)
1+α(k)

)n−1 if n ∈ Z

0 else.

By tilting and centering R′(k) with respect to E
[
qρR′(k)1{R′(k)=·}

]
, we define a tilted

random walk X(t) = ∑t−1
k=0 R(k), where R(k) are independent Z�0 − μ(k) valued

with distribution11

P
(
R(k) = n − μ(k)

) =

⎧
⎪⎨

⎪⎩

λ(k)
1+qα(k)
1+α(k)

if n = 0;
λ(k)

α(k)(1−q)
1+α(k)

(
1 − ν+α(k)

1+α(k)

)(
ν+α(k)
1+α(k)

)n−1
qρn if n ∈ Z�1

0 else.
(5.1)

Here, λ(k) = (
E
[
qρR(k)

])−1 is the normalizing parameter and μ(k) is the centering
parameter which makes E

[
R(k)] = 0. Under straightforward calculation, we see that

λ(k) = 1 + α(k) − qρ(α(k) + ν)

1 + a(k)q − qρ(α(k)q + ν)
, (5.2)

μ(k) = α(k)(1 − q)(1 − ν)qρ

(1 + α(k)q − qρ(α(k)q + ν))(1 + α(k) − qρ(α(k) + ν))
. (5.3)

We remark that λ(k) (respectively μ(k)) are J periodic in the sense that λ(k) =
λ(J + k) (respectively μ(k) = μ(J + k)). Denote by

λ̂(t) :=
t−1∏

k=0

λ(k), μ̂(t) :=
t−1∑

k=0

μ(k), �(t, s) := Z − μ̂(t) + μ̂(s),

�(t) := �(t, 0). (5.4)

It can be verified that the parameter λ, μ defined in (1.9) satisfies

λ = λ̂(J ), μ = μ̂(J ),

hence, one has
λ̂(J t) = λt , μ̂(J t) = μt . (5.5)

We define the microscopic Hopf-Cole transform for x ∈ �(t) as

Z(t, x) := λ̂(t)q−(N(t,x+μ̂(t))−ρ(x+μ̂(t))). (5.6)

11The tilted and centered random walk X(t) provides the heat kernel p(t + 1, t) for the discrete SHE (5.7)
satisfied by the microscopic Hopf-Cole transform (5.6), which is an exponential transform of the LHS
of (1.10).
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For x ∈ �(t, s), we set p(t, s, x) := P
(
X(t)−X(s) = x

)
. Denote by the convolution

(p(t, s) ∗ f (s))(x) :=
∑

y∈�(s)

p(t, s, x − y)f (s, y).

We set

K(t, x) := N(t, x) − N(t + 1, x), K(t, x) := K(t, x) − E
[
K(t, x)

∣∣F(t)
]
.

We sometimes call K(t, x) the flux, since it records the number of particles (either
zero or one) that move across the position x between time t and t+1. Now we present
the discrete SHE satisfied by the microscopic Hopf-Cole transform of the unfused
SHS6V model.

Proposition 5.1 For t ∈ Z�0 and x ∈ �(t), Z(t, x) satisfies the following discrete
SHE

Z(t + 1, x − μ(t)) = (p(t + 1, t) ∗ Z(t))(x − μ(t)) + M(t, x), (5.7)

where
M(t, x) = λ(t)(q − 1)Z(t, x + μ̂(t))K(t, x + μ̂(t)). (5.8)

Furthermore, M(t, x) is a martingale increment, i.e. E
[
M(t, x)

∣
∣F(t)

] = 0. The
conditional quadratic variation of M(t, x) equals

E
[
M(t, x1)M(t, x2)

∣
∣F(t)

] =
(

qρ ν + α(t)

1 + α(t)

)|x1−x2|
�1(t, x1 ∧ x2)�2(t, x1 ∧ x2),

x1, x2 ∈ �(t), (5.9)

where

�1(t, x) := qλ(t)Z(t, x) − (
p(t + 1, t) ∗ Z(t)

)
(x − μ(t)), (5.10)

�2(t, x) := −λ(t)Z(t, x) + (
p(t + 1, t) ∗ Z(t)

)
(x − μ(t)). (5.11)

Proof We first show that M(t, x) is a martingale increment. Note by (5.7),

M(t, x) = Z(t + 1, x − μ(t)) = (p(t + 1, t) ∗ Z(t))(x − μ(t)).

Taking k = 1 in the duality (3.8), one has

E
[
Z(t + 1, x − μ(t))

∣
∣F(t)

] = (p(t + 1, t) ∗ Z(t))(x − μ(t)).

Hence,

M(t, x) = Z(t + 1, x − μ(t)) − E
[
Z(t + 1, x − μ(t))

∣∣F(t)
]
, (5.12)

which implies E
[
M(t, x)

∣∣F(t)
] = 0.

We turn to justify (5.8). Note that by (5.6)

Z(t +1, x−μ(t))=λ(t)Z(t, x)qN(t,x+μ̂(t))−N(t+1,x+μ̂(t)) =λ(t)Z(t, x)qK(t,x+μ̂(t)).

Since K(t, x + μ̂(t)) ∈ {0, 1},
Z(t + 1, x − μ(t)) = λ(t)Z(t, x) + λ(t)(q − 1)Z(t, x)K(t, x + μ̂(t)). (5.13)
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Combining with (5.12) gives

M(t, x) = λ(t)(q − 1)Z(t, x)
(
K(t, x + μ̂(t)) − E

[
K(t, x + μ̂(t))

∣
∣F(t)

])
,

= λ(t)(q − 1)Z(t, x)K(t, x + μ̂(t)), (5.14)

which gives the desired equality.
We turn our attention to (5.9). Define the short notation E′[ · ] := E

[ · ∣∣F(t)
]

and write Var′, Cov′ to be the corresponding conditional variance and covariance.
We assume without loss of generosity x1 � x2 and use shorthand notation x′

i :=
xi + μ̂(t) ∈ Z, i = 1, 2. Owing to (5.14),

E
′[M(t, x′

1)M(t, x′
2)
] = λ(t)2(q − 1)2Z(t, x1)Z(t, x2)E

′[K(t, x′
1)K(t, x′

2)
]
,

= λ(t)2(q − 1)2Z(t, x1)Z(t, x2)Cov
′(K(t, x′

1), K(t, x′
2)
)
.

(5.15)

Define

Lx′
1,x

′
2
(t) =

x′
2∏

z=x′
1+1

(
B ′(t, z, ηz(t)) − B(t, z, ηz(t))

)
,

Kx′
1,x

′
2
(t) =

x′
2∑

y′=x′
1+1

x′
2∏

z=y′+1

(
B ′(t, z, ηz(t)) − B(t, z, ηz(t)

)
B(t, z, ηz(t)),

(5.16)

where B, B ′ are defined in (2.1). Since B, B ′ are all independent, due to the
expression (2.5) of K(t, x′

1) = N(t, x′
1) − N(t + 1, x′

1) provided by (2.5), it is
straightforward that conditioning on F(t), (Kx′

1,x
′
2
(t), Lx′

1,x
′
2
(t)) are independent

with K(t, x′
1). Furthermore, (2.5) implies

K(t, x′
2) = Kx′

1,x
′
2
(t) + Lx′

1,x
′
2
(t)K(t, x′

1).

By the independence, we see that

Cov′(K(t, x′
1), K(t, x′

2)
) = E

′[Lx′
1,x

′
2
(t)

]
Var′

(
K(t, x′

1)
)
. (5.17)

Referring to (5.16),

E
′[Lx′

1,x
′
2
(t)

] =
x′
2∏

z=x′
1+1

E
′[B ′(t, z, ηz(t)) − B(t, z, ηz(t))

]

=
(

ν + α(t)

1 + α(t)

)x′
2−x′

1
x′
2∏

z=x′
1+1

qηz(t).
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Inserting this into the RHS of (5.17), we find that

Cov′(K(t, x1), K(t, x2)
)

=
(

ν + α(t)

1 + α(t)

)x′
2−x′

1
x′
2∏

z=x′
1+1

qηz(t)
(
E

′[K2(t, x′
1)
] − E

′[K(t, x′
1)
]2)

,

=
(

ν + α(t)

1 + α(t)

)x2−x1
x′
2∏

z=x′
1+1

qηz(t)E
′[K(t, x′

1)
](
1 − E

′[K(t, x′
1)
])
. (5.18)

Here, the last equality follows from the fact K(t, x′
1)

2 = K(t, x′
1). Furthermore,

due to (5.13),

E
′[K(t, x′

1)
] = E

[
Z(t + 1, x1 − μ(t)) − λ(t)Z(t, x1)

∣∣F(t)
]

λ(t)(q − 1)Z(t, x1)

= (p(t + 1, t) ∗ Z(t))(x1 − μ(t)) − λ(t)Z(t, x1)

λ(t)(q − 1)Z(t, x1)
.

Inserting this into the RHS of (5.18) yields

Cov′(K(t, x1), K(t, x2)
)

=
(

ν + α(t)

1 + α(t)

)x2−x1 (p(t + 1, t) ∗ Z(t))(x1 − μ(t)) − λ(t)Z(t, x1)

λ(t)(q − 1)Z(t, x1)

×
(
1 − (p(t + 1, t) ∗ Z(t))(x1 − μ(t)) − λ(t)Z(t, x1)

λ(t)(q − 1)Z(t, x1)

) x′
2∏

z=x′
1+1

qηz(t),

=
(

ν + α(t)

1 + α(t)

)x2−x1 �2(t, x1)

λ(t)(q − 1)Z(t, x1)
· �1(t, x1)

λ(t)(q − 1)Z(t, x1)

x′
2∏

z=x′
1+1

qηz(t).

Using the fact Z(t, x2) = qρ(x2−x1)Z(t, x1)
∏x′

2
z=x′

1+1 q−ηz(t), we obtain

Cov′(K(t, x1), K(t, x2)
) =

(
qρ ν + α(t)

1 + α(t)

)x2−x1 �1(t, x1)

λ(t)(q − 1)Z(t, x1)

· �2(t, x1)

λ(t)(q − 1)Z(t, x2)
.

Combining with (5.15), we arrive at the desired (5.9).

For x ∈ �(t), define

η̃x(t) := ηx+μ̂(t)(t).
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We consider a tilted version of the duality functional D̃ in (3.7), for y1 � y2 ∈ �(t),
define

D(t, y1, y2) :=

⎧
⎪⎨

⎪⎩

Z(t, y1)
2
[
I −η̃y1 (t)

]
q
1
2

[
I −1−η̃y1 (t)

]
q
1
2

qη̃y1 (t) if y1=y2,

[I−1]
q
1
2

[I ]
q
1
2

Z(t, y1)Z(t, y2)[I −η̃y1 (t)]
q
1
2
[I −η̃y2 (t)]

q
1
2
q

1
2 η̃y1 (t)q

1
2 η̃y2 (t) if y1<y2.

(5.19)

We further define for x1, x2 ∈ �(t) and y1, y2 ∈ �(s),

V
(
(x1, x2), (y1, y2), t, s

) :=
(

λ̂(t)

λ̂(s)

)2

qρ(x1+x2−y1−y2+2(μ̂(t)−μ̂(s)))P←−−−−
SHS6V

×(
x1 + μ̂(t), x2 + μ̂(t), y1 + μ̂(s), y2 + μ̂(s), t, s

)
.

(5.20)

Observe that Z(t, x) is a tilted version of q−N(t,x), thus it is clear that it inherits the
two dualities stated in Corollary 3.9.

Lemma 5.2 For s � t ∈ Z�0 and x1 � x2 ∈ �(t),

E
[
Z(t, x1)Z(t, x2)

∣
∣F(s)

] =
∑

y1�y2∈�(s)

V
(
(x1, x2), (y1, y2), t, s

)
Z(s, y1)Z(s, y2),

(5.21)

E
[
D(t, x1, x2)

∣
∣F(s)

] =
∑

y1�y2∈�(s)

V
(
(x1, x2), (y1, y2), t, s

)
D(s, y1, y2).

(5.22)

Proof We use the shorthand notation x′
i := xi + μ̂(t). Referring to (5.6),

E
[
Z(t, x1)Z(t, x2)

∣∣F(s)
] = λ̂(t)2qρ(x′

1+x′
2)E

[
q−N(t,x′

1)q−N(t,x′
2)
∣∣F(s)

]
(5.23)

Using Corollary 3.9, we have

E
[
q−N(t,x′

1)q−N(t,x′
2)
∣
∣F(s)

]

=
∑

y′
1�y′

2∈Z2

P←−−−−
SHS6V

(
(x′

1, x
′
2), (y

′
1, y

′
2), t, s

)
q−N(s,y′

1)q−N(s,y′
2),

=
∑

y1�y2∈�(s)2

P←−−−−
SHS6V

(
(x1 + μ̂(t), x2 + μ̂(t), (y1 + μ̂(s), y2 + μ̂(s), t, s

)

×q−N(s,y1+μ̂(s))q−N(s,y2+μ̂(s)),

=
∑

y1�y2∈�(s)2

P←−−−−
SHS6V

(
(x1 + μ̂(t), x2 + μ̂(t), (y1 + μ̂(s), y2 + μ̂(s), t, s

)

×Z(s, y1)Z(s, y2)

λ̂(s)2
q−2μ̂(s).

Inserting this into the RHS of (5.23), via a straightforward computation, we conclude
(5.21). The second duality (5.22) follows from a similar argument, we do not repeat
here.
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The following corollary follows from Theorem 4.4.

Corollary 5.3 For all x1 � x2 ∈ �(t) and y1 � y2 ∈ �(s), we have

V
(
(x1, x2), (y1, y2), t, s

) = c(�y)

[ ∮

CR

∮

CR

2∏

i=1

D(zi, t, s)z
xi−yi

i

dzi

2π izi

−
∮

CR

∮

CR

F(z1, z2)

2∏

i=1

D(zi, t, s)z
x3−i−yi

i

dzi

2π izi

+Resz1=s(z2)

∮

CR

∮

CR

F(z1, z2)

×
2∏

i=1

D(zi, t, s)z
x3−i−yi

i

dzi

2π izi

]
. (5.24)

where CR is a circle centered at zero with a large enough radius R so as to include
all the poles of the integrands, c(�y) is defined in (4.5) and

D(z):=λzμ (1 + αqJ )q−ρz − (ν + αqJ )

(1 + α)q−ρz − (ν + α)
, (5.25)

R(z, t, s):=
t−1∏

k=s+J � t−s
J

�
λ(k)zμ(k) (1 + α(k)q)q−ρz − (ν + α(k)q)

(1 + α(k))q−ρz − (ν + α(k))
, (5.26)

F(z1, z2):= qν−ν+(ν−q)q−ρz2+(1−qν)q−ρz1+(q−1)q−2ρz1z2

qν−ν+(ν−q)q−ρz1+(1−qν)q−ρz2+(q−1)q−2ρz1z2
, (5.27)

s(z):= (1 − qν)q−ρz − ν(1 − q)

(q − ν)q−ρ + (1 − q)q−2ρz
. (5.28)

Proof Note that the integral formula for P←−−−−
SHS6V

is given by (4.4), referring to (5.20),
we find that

V
(
(x1, x2), (y1, y2), t, s

)

=
(

λ̂(t)

λ̂(s)

)2

qρ(x1+x2−y1−y2+2μ̂(t)−2μ̂(s))

×P←−−−−
SHS6V

(
x1 + μ̂(t), x2 + μ̂(t), y1 + μ̂(s), y2 + μ̂(s), t, s

)
,

= c(�y) ·
(

λ̂(t)

λ̂(s)

)2

qρ(x1+x2−y1−y2+2μ̂(t)−2μ̂(s))

[ ∮

CR

∮

CR

2∏

i=1

D̃(zi)
� t−s

J
�R̃(zi, t, s)

×z
xi−yi

i

dzi

2π izi

−
∮

CR

∮

CR

F̃(z1, z2)

2∏

i=1

D̃(zi)
� t−s

J
�R̃(zi, t, s)z

x3−i−yi

i

dzi

2π izi

+Resz1=s̃(z2)

∮

CR

∮

CR

F̃(z1, z2)

2∏

i=1

D̃(zi)
� t−s

J
�R̃(zi, t, s)z

x3−i−yi

i

dzi

2π izi

]
.
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We refer to the context of Theorem 4.4 for the notation. Multiplying the con-

stant
(

λ̂(t)

λ̂(s)

)2
qρ(x1+x2−y1−y2+2μ̂(t)−2μ̂(s)) to each term inside the square bracket

above and applying change of variable zi → q−ρzi readily yield the desired
formula.

5.2 The SHE

Consider the KPZ equation with parameter V∗ and D∗ given in (1.12) and (1.13),

∂tH(t, x) = V∗
2

∂2xH(t, x) − V∗
2

(
∂xH(t, x)

)2 + √
D∗ξ(t, x). (5.29)

As mentioned in Section 1.1, via formally applying Hopf-Cole transform, we say that
H(t, x) is a Hopf-Cole solution of (5.29) if

H(t, x) = − logZ(t, x),

where Z(t, x) is a mild solution of the SHE

∂tZ(t, x) = V∗
2

∂2xZ(t, x) + √
D∗ξ(t, x)Z(t, x)

in the sense that it satisfies the following Duhamel integral form

Z(t, x) =
∫

R

p(V∗t, x − y)Z ic(y)dy +
∫ t

0

∫

R

p(V∗(t − s), x − y)

×Z(s, y)
√

D∗ξ(s, y)dsdy,

where p(t, x) = 1√
2πt

e− x2
2t is the heat kernel. The stochastic heat equation has a

unique mild solution Z(t, x), see [16] and references therein.
We recall the weakly asymmetric scaling for the SHS6V model stated in

Theorem 1.6:

For ε > 0, fix I ∈ Z�2, J ∈ Z�1 and b ∈
(

I + J − 2

I + J − 1
, 1

)
,

set q = e
√

ε and define α via b = 1 + αq

1 + α
. (5.30)

Such scaling corresponds to taking b = 2, z = 1
2 , κ → √

εκ and keeping δ, D

unchanged in (1.3). Note that all parameters in the SHS6V model rely on the generic
parameters q, b, I, J, ρ, since under weakly asymmetry scaling, b, I, J, ρ are all
fixed and q = e

√
ε , the evolution of the entire model depends on ε. As we will let ε

go to zero, it suffices to consider all ε > 0 small enough, which means that we only
consider ε ∈ (0, ε0) for some generic but fixed threshold ε0 > 0.
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Lemma 5.4 Under weakly asymmetric scaling (5.30), we have the following asymp-
totics near ε = 0

ν + α(t)

1 + α(t)
= b(I + modJ (t)) − (I + modJ (t) − 1)

bmodJ (t) − (modJ (t) − 1)
+ O(ε

1
2 ),

ν + qα(t)

1 + α(t)
= b(I + 1 + modJ (t)) − (I + modJ (t))

bmodJ (t) − (modJ (t) − 1)
+ O(ε

1
2 ),

1 + qα(t)

1 + α(t)
= b(1 + modJ (t)) − modJ (t)

bmodJ (t) − (modJ (t) − 1)
+ O(ε

1
2 ),

μ(t) = 1

I
+ O(ε

1
2 ), λ(t) = 1 − ρε

1
2

I
+ O(ε).

As notational convention, we denote O(a) to be a generic quantity such that
sup0<a<1 |O(a)|a−1 < ∞.

Proof For every ε > 0, we have q = e
√

ε , ν = e−I
√

ε and α(t) = αqmodJ (t) =
1−b

b−e
√

ε
e
√

εmodJ (t), where b, I, J, ρ are fixed. The relation of λ(t) and μ(t) with
ε is implied by (5.2) and (5.3) The verification of the above asymptotic is then
straightforward.

To highlight the dependence on ε under weakly asymmetric scaling, we denote
by the microscopic Hopf-Cole transform Zε(t, x) := Z(t, x). Note that presently
Zε(t, x) is only defined for t ∈ Z�0 and x ∈ �(t), we extend Zε(t, x) to be
a C([0, ∞), C(R))-valued process by first linearly interpolating in x ∈ Z, then
in t ∈ Z�0. This is slightly different from exponentiating the interpolated height
function N(t, x). Nevertheless, under the weak asymmetric scaling q = e

√
ε , it is

straightforward to see that the difference between these two interpolation schemes is
negligible as ε ↓ 0.

As a notational convention, we write
∥
∥X

∥
∥

p
:= (E|X|p)

1
p for p � 1. Following

the work of [BG97], we define the near stationary initial data for the unfused/fused
SHS6V model.

Definition 5.5 Fix ρ ∈ (0, I ), we call the initial data Nε(0, x) (equivalently
N f

ε(0, x)) near stationary with density ρ if for any n ∈ Z�1 and a ∈ (0, 1
2 ), there

exists constant u := u(n, a) and C := C(n, a) such that for all x, x′ ∈ Z

∥∥Zε(0, x)
∥∥

n
� Ceuε|x|,

∥∥Zε(0, x) − Zε(0, x
′)
∥∥

n
� C(ε|x − x′|)aeuε(|x|+|x′|),

holds for ε > 0 small enough.

Theorem 5.6 Under weakly asymmetric scaling, assuming that Nε(0, x) is near
stationary with density ρ and for some C(R)-valued process Z ic(x)

Zε(0, x) ⇒ Z ic(0, x) in C(R) as ε ↓ 0,

then
Zε(ε

−2t, ε−1x) ⇒ Z(t, x) in C
([0, ∞), C(R)

)
as ε ↓ 0,

Math Phys Anal Geom (2020) 23: 1 Page 39 of 118 1



where Z(t, x) is the mild solution to the SHE

∂tZ(t, x) = V∗
2

∂2xZ(t, x) + √
D∗ξ(t, x)Z(t, x), (5.31)

with initial condition Z ic(x).

As a consequence of the preceding theorem, we prove Theorem 1.6.

Proof of Theorem 1.6 Via the discussion in Section 5.2, H(t, x) = − logZ(t, x)

solves the KPZ equation

∂tH(t, x) = V∗
2

∂2xH(t, x) − V∗
2

(
∂xH(t, x)

)2 + √
D∗ξ(t, x).

One has by (5.7),

Zε(ε
−2t, ε−1x) = λ̂ε(t)e

−√
ε
(
Nε(ε

−2t,ε−1x+ε−2μ̂ε (t))−ρ(ε−1x+ε−2μ̂ε (t)
)

= e
−√

ε
(
Nε(ε

−2t,ε−1x+ε−2μ̂ε (t))−ρ(ε−1x+ε−2μ̂ε (t))
)
+log λ̂ε (t).

By Theorem 5.6 and continuous mapping theorem, we obtain

− logZε(ε
−2t, ε−1x) ⇒ H(t, x) in C([0, ∞), C(R)).

In other words,
√

ε
(
Nε(ε

−2t, ε−1x + ε−2μ̂ε(t)) − ρ(ε−1x + ε−2μ̂ε(t))
) − log λ̂ε(t)

⇒ H(t, x) in C([0, ∞), C(R)). (5.32)

Note that we have N f
ε(t, x) = Nε(J t, x) (although in fact, they only equal on the

lattice due to different linear interpolation scheme, but it is obvious that the difference
between them is negligible). Moreover, via (5.5)

λ̂ε(J t) = λt
ε, μ̂ε(J t) = μt

ε .

Therefore, replacing the time variable t with J t in (5.32),
√

ε
(
N f

ε(ε
−2t, ε−1x + ε−2μεt) − ρ(ε−1x + ε−2μεt)

) − t log λε

⇒ H̃(t, x) in C([0, ∞), C(R)),

where H̃(t, x) := H(J t, x). It is straightforward to check that H̃(t, x) satisfies the
KPZ equation

∂tH̃(t, x) = JV∗
2

∂2x H̃(t, x) − JV∗
2

(
∂xH̃(t, x)

)2 + √
JD∗ξ(t, x),

which concludes the proof of Theorem 1.6.

6 Tightness and Proof of Theorem 5.6

In this section, we prove Theorem 5.6 assuming Proposition 6.8, whose proof is post-
poned to Section 8. First of all, we prove the tightness of {Zε(ε

−2·, ε−1·)}0<ε<1,
which indicates that as ε ↓ 0, Zε(ε

−2·, ε−1·) converges weakly along a subsequence.
To identify the limit as well as proving the convergence of the entire sequence, we
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appeal to the martingale problem of SHE that was first introduced in the work of
[7]. Using approximation from the microscopic SHE (5.7) to the SHE in continuum,
we show that any subsequential limit of Zε(ε

−2·, ε−1·) satisfies the same martingale
problem, hence is the mild solution of SHE.

Hereafter, we always assume that we are under weakly asymmetric scaling (5.30).
In general, we will not specify the dependence of parameters on ε. We will also
write qε, νε , etc. when we do want to emphasize the dependence. The dependence on
I ∈ Z�2, J ∈ Z�1, b = 1+αq

1+α
∈ ( I+J−2

I+J−1 , 1), ρ ∈ (0, I ) will not be indicated as they
are fixed.

For the ensuing discussion, we will usually write C for constants. We might not
generally specify when irrelevant terms are being absorbed into the constants. We
might also write C(T ), C(β, T ), . . . when we want to specify which parameters the
constant depends on. We say “for all ε > 0 small enough” if the referred statement
holds for all 0 < ε < ε0 for some generic but fixed threshold ε0 > 0 that may change
from line to line.

6.1 Moment Bounds and Tightness

The goal of this section is to prove the following Kolmogorov-Chentsov type bound
for the microscopic Hopf-Cole transform.

Proposition 6.1 Assume that we start the SHS6V model with near stationary initial
data with density ρ ∈ (0, I ). Given n ∈ Z�1, a ∈ (0, 1

2 ), T > 0. There exists positive
constants C := C(n, a, T ), u := u(n, a) such that

∥
∥Z(t, x)

∥
∥
2n � Ceuε|x|, (6.1)

∥
∥Z(t, x) − Z(t, x′)

∥
∥
2n � C|ε(x − x′)|aeuε(|x|+|x′|), (6.2)

∥
∥Z(t, x) − Z(t ′, x)

∥
∥
2n � C|ε2(t − t ′)| a

2 e2uε|x|, (6.3)

for all t, t ′ ∈ [0, ε−2T ] and x, x′ ∈ R.

We immediately deduce the tightness of Zε(ε
−2·, ε−1·) once we have the moment

bound above.

Corollary 6.2 The law of C([0, ∞), C(R))-valued process {Zε(ε
−2·, ε−1·)}0<ε<1

is tight.

Proof Equations (6.1), (6.2) and (6.3) indicate that with large probability
{Zε(ε

−2·, ε−1·)}0<ε<1 is uniformly bounded, uniformly spatially and uniformly
temporally Hölder continuous. Applying Arzela-Ascoli theorem together with
Prokhorov’s theorem [9] yields the desired result.

For the proof of Proposition 6.1, we will basically follow the framework developed
in [15]. Let us begin with a technical lemma which will be frequently used for the
rest of the paper.
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Lemma 6.3 Fix T > 0, for any u > 0, there exists β0 > 0 such that for all β > β0
and C(β) > 0, there exists ε0 such that for all positive ε < ε0, t ∈ [0, ε−2T ] ∩Z and
x ∈ �(t), the following inequality holds12

∑

y∈�(t)

e
− β|x−y|√

t+1+C(β) euε|y| � 2
√

t + 1euε|x|.

Proof Take β0 = 4
√

T u, for β > β0 and arbitrary C(β) > 0, due to t ∈ [0, ε−2T ],
one has

β|x|√
t + 1 + C(β)

� βε|x|√
T + ε2 + C(β)ε

� 2uε|x|
holds for ε < ε0, where is ε0 is to be chosen small enough. Thereby,

∑

y∈�(t)

e
− β|x−y|√

t+1+C(β) euε|y| � euε|x| ∑

y∈�(t)

e
− β|x−y|√

t+1+C(β) euε|x−y|,

� euε|x| ∑

y∈Z
e
− β|y|√

t+1+C(β) euε|y|

� euε|x| ∑

y∈Z
e
− β|y|

2(
√

t+1+C(β))

� 2
√

t + 1euε|x|.
Here, the last inequality follows from

∑

x∈�(t)

e
− β|y|

2(
√

t+1+C(β)) � 2

1 − e
− β

2(
√

t+1+C(β))

� 2
√

t + 1.

Thus, we conclude the lemma.

The following estimate for the one particle transition probability will be useful in
proving Proposition 6.1.

Lemma 6.4 For any u, T ∈ (0, ∞) and a ∈ (0, 1), there exists constant C

(depending on a, u, T ) such that

(i) p(t, s, x) � C(t − s + 1)−
1
2 , (ii)

∑

x∈�(t,s)

p(t, s, x)euε|x| � C,

(iii)
∑

x∈�(t,s)

|x|ap(t, s, x)euε|x| � C(t − s + 1)
a
2 ,

(iv) |p(t, s, x) − p(t, s, x′)| � C|x − x′|a(t − s + 1)−
a+1
2 .

for ε > 0 small enough and s � t ∈ [0, ε−2T ] ∩ Z.

12Here C(β) can be any positive constant, though for application, the choice of it usually depends on the
value of β.
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Proof The proof is more or less analogous to [15, Lemma 5.1]. We first claim that
p(t, s, x) admits the following integral formula

p(t, s, x) =
∮

CR

(
D(z)

)� t−s
J

�
R(z, t, s)zx dz

2π iz
, (6.4)

where D(z), R(z, t, s) are defined in (5.25) and (5.26) respectively and R is large
enough so that the circle CR includes all the singularities of the integrand. This claim
can be proved by observing

E
[
z−R(k)

] =
∞∑

n=0

P
(
R(k) = n − μ(k)

)
zμ(k)−n,

= λ(k)
1 + qα(k)

1 + α(k)
zμ(k) +

∞∑

n=1

λ(k)

(
1 − 1 + qα(k)

1 + α(k)

)

×
(
1 − ν + α(k)

1 + α(k)

)(
ν + α(k)

1 + α(k)

)n−1

qρnzμ(k)−n,

= λ(k)zμ(k) 1 + α(k)q − (ν + α(k)q)qρz−1

1 + α(k) − (ν + α(k))qρz−1
. (6.5)

This implies

E
[
z−(X(t)−X(s))

] =
t−1∏

k=s

E
[
z−R(k)

] = (
D(z)

)� t−s
J

�
R(z, t, s).

Via Fourier inversion formula, we have

p(t, s, x) = P
(
X(t) − X(s) = x

) ∮

CR

E
[
z−(X(t)−X(s)

]
zx dz

2π iz

=
∮

CR

(
D(z)

)� t−s
J

�
R(z, t, s)

dz

2π iz
,

In Section 7, we will obtain an upper bound of p(t, s, x) by applying steepest descent
analysis to the integral formula above and we use this upper bound here in advance.
Referring to (7.21), by taking xi − yi → x, we obtain for all β, T > 0, there exists
positive constant C(β), C(β, T ) such that for ε > 0 small enough

p(t, s, x) � C(β, T )√
t − s + 1

e
− β|x|√

t−s+1+C(β) , t ∈ [0, ε−2T ] ∩ Z. (6.6)

which gives (i). Using (6.6) together with Lemma 6.3 gives (ii)
∑

x∈�(t,s)

p(t, s, x)euε|x| �
∑

x∈�(t,s)

C(β, T )√
t − s + 1

e
− β|x|√

t−s+1+C(β) euε|x| � C.

For (iii), we see that
∑

x∈�(t,s)

|x|ap(t, s, x)euε|x| �
∑

x∈�(t,s)

C(β, T )|x|ae− β|x|
2(

√
t−s+1+C(β))

� C
(√

t − s + 1 + C(β)
)a+1 � C(t − s + 1)

a+1
2 .
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For the second inequality above, we used the inequality
∑

x∈�(t,s)

|x|ae−b|x| � C

∫ ∞

0
xae−bxdx � Cb−a−1.

Finally, to prove (iv), one has by (7.24) (taking β = 1)

|∇p(t, s, x)| = |p(t, s, x + 1) − p(t, s, x)| � C(T )

t − s + 1
e
− |x|√

t−s+1+C .

Summing the above equation over [x, x′ − 1] (assuming with out loss of generosity
that x < x′), we obtain

∣
∣p(t, s, x) − p(t, s, x′)

∣
∣ � C(T )

t − s + 1

x′−1∑

y=x

e
− |y|√

t−s+1+C

If we bound each term in the geometric sum by 1, we have
∣∣p(t, s, x)− p(t, s, x′)

∣∣ �
C

t−s+1 |x′ − x|. In addition, we can bound the geometric sum by

x′−1∑

y=x

e
− |y|√

t−s+1+C � 2
∞∑

y=0

e
− |y|√

t−s+1+C = 2

1 − e
− 1√

t−s+1+C

� C
√

t − s + 1,

which implies
∣∣p(t, s, x) − p(t, s, x′)

∣∣ � C√
t − s + 1

.

Thereby,

∣
∣p(t, s, x) − p(t, s, x′)

∣
∣ � min

(
C

t − s + 1
|x − x′|, C√

t − s + 1

)

� C|x − x′|a(t − s + 1)−
a+1
2 ,

which concludes the proof of (iv).

Recall the discrete SHE in Proposition 5.1

Z(t, x) = (p(t, t − 1) ∗ Z(t − 1))(x) + M(t − 1, x + μ(t − 1)). (6.7)

Iterating (6.7) for t times yields

Z(t, x) = (p(t, 0) ∗ Z(0))(x) + Zmg(t), (6.8)

where the martingale Zmg(t) equals

Zmg(t) =
t−1∑

s=0

(
p(t, s + 1) ∗ M(s)

)
(x + μ(s)). (6.9)

To estimateZ(t, x), it suffices to estimate (p(t, 0)∗Z(0))(x) andZmg(t) respectively.
In general, the former one is easier to bound due to Lemma 6.4, while controlling the
latter one is much harder. Following the style of [15], to estimate Zmg(t), we need
to establish the following two lemmas, which are in analogy with Lemma 5.2 and
Lemma 5.3 of [15].
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Let P23(n) denote the set of the partitions into intervals of 2 or 3 elements. Here,
the interval refers to the set of form U = [a, b] := [a, b] ∩ Z, a � b ∈ Z. For
example,

P23(6) = {{[1, 2], [3, 4], [5, 6], {[1, 2], [3, 6]}, {[1, 4], [5, 6]}, {[1, 3], [4, 6]}} .
For �y = (y1 � · · · � yn) and U = [a, b], we define |�y|U = yb − ya .

Lemma 6.5 Fix n ∈ Z>0, for all t ∈ Z�0 and y1 � · · · � yn ∈ Z, we have
∣
∣∣
∣E

[ n∏

i=1

K(t, yi)

∣
∣∣
∣F(t)

]∣∣∣
∣ � C(n)

∑

π∈P23(n)

∏

U∈π

e
− 1

C(n)
|�y|U .

Proof [15, Lemma 5.2] proved this inequality for I = 1. When I � 2, the proof is
almost the same. Let us denote by E

′[ · ] = E
[ · ∣∣F(t)

]
and

I (y′, y) =
y∏

z=y′+1

(
B ′(t, z, ηz(t)) − B(t, z, ηz(t))

)
B(t, y′, ηy′(t)).

Due to (2.7), there exists C > 0 such that
∣
∣E′[I (y′, y)�

]∣∣ � Ce− 1
C

|y−y′|, � ∈ Z�1.

This gives bound similar to (5.10) in [15, Lemma 5.2]. The rest of the proof is the
same as in [15, Lemma 5.2], we do not repeat it here.

Lemma 6.6 Fix n ∈ Z�1, recall the martingale increment M(t, x) from (5.7) and
let f (t, x) be a deterministic function defined on t ∈ [t1, t2] ∩Z and x ∈ �(t). Write
f∞(t) := supx∈�(t) |f (t, x)|, we have

∥∥
∥
∥

t2−1∑

t=t1

∑

x∈�(t)

f (t, x)M(t, x)

∥∥
∥
∥

2

2n
� εC(n)

t2−1∑

t=t1

∑

x∈�(t)

∣
∣f∞(t)f (t, x)

∣
∣
∥
∥Z(t, x)

∥
∥2
2n.

Proof Using the previous lemma, the proof is the same as the one appeared in [15,
Lemma 5.3].

Have prepared the preceding lemmas, we proceed to prove Proposition 6.1. Here
we use a slightly different approach compared with the proof of the moment bounds
in [15, Proposition 5.4].

Proof of Proposition 6.1 Recall that Z(t, x) is defined on [0, ∞) ×R through linear
interpolation. It suffices to prove the theorem for the lattice t ∈ Z�0 and x, x′ ∈ �(t).
Generalization to continuum t, x follows easily.

Let us begin with proving (6.1). We have by (6.8)
∥∥Z(t, x)

∥∥
2n �

∥∥(p(t, 0) ∗ Z(0)
)
(x)

∥∥
2n + ∥∥Zmg(t)

∥∥
2n.
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Using (x + y)2 � 2(x2 + y2), we get

∥
∥Z(t, x)

∥
∥2
2n � 2

∥
∥(p(t, 0) ∗ Z(0)

)
(x)

∥
∥2
2n + 2

∥
∥Zmg(t)

∥
∥2
2n. (6.10)

For the first term on RHS of (6.10), by Cauchy-Schwarz inequality,

∥∥(p(t, 0) ∗ Z(0)
)
(x)

∥∥2
2n �

(
p(t, 0) ∗ ∥∥Z(0)

∥∥2
2n

)
(x). (6.11)

For the second term
∥∥Zmg(t)

∥∥2
2n, by (6.9)

Zmg(t) =
t−1∑

s=0

(
p(t, s + 1) ∗ M(s)

)
(x + μ(s))

=
t−1∑

s=0

∑

y∈�(s)

p
(
t, s + 1, x + μ(s) − y

)
M(s, y).

Applying Lemma 6.6, there exists a constant C∗ so that

∥
∥Zmg(t)

∥
∥2
2n � C∗ε

t−1∑

s=0

∑

y∈�(s)

(
sup

y∈�(s)

p(t, s+1, x+μ(s)−y)
)

×p(t, s + 1, x + μ(s) − y)
∥
∥Z(s, y)

∥
∥2
2n,

�
t−1∑

s=0

∑

y∈�(s)

C∗ε√
t − s

p
(
t, s+1, x+μ(s)−y

)∥∥Z(s, y)
∥∥2
2n, (6.12)

where the last inequality follows from Theorem 6.4 (i).
Replacing the RHS of (6.10) by upper bound obtained in (6.11) and (6.12), we

obtain

∥
∥Z(t, x)

∥
∥2
2n�(p(t, 0)∗∥∥Z(0)

∥
∥2
2n)(x)+

t−1∑

s=0

C∗ε√
t − s

(
p(t, s+1)∗∥∥Z(s)

∥
∥2
2n

)
(x+μ(s)).

(6.13)
Define the set �+

n = {(s1, . . . , sn) ∈ Z
n
�0 : 0 � sn < · · · < s1 < t} for n ∈ Z�1.

Iterating (6.13) yields

∥
∥Z(t, x)

∥
∥2
2n � (p(t, 0) ∗ ∥

∥Z(0)
∥
∥2
2n)(x)

+
∞∑

n=1

∑

(s1,...sn)∈�+
n

(C∗ε)n√
t − s1

√
s1 − s2 . . .

√
sn−1 − sn

(p(t, s1, . . . , sn)

∗∥∥Z(0)
∥∥2
2n)(x +

n∑

i=1

μ(si)). (6.14)
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where p(t, s1, . . . , sn) = p(t, s1 +1)∗p(s1, s2 +1)∗ · · · ∗p(sn−1 +1, sn). Following
Lemma 6.4, we bound

(p(t, 0) ∗ ∥
∥Z(0)

∥
∥2
2n)(x) � Ce2uε|x|,

(p(t, s1, . . . , sn) ∗ ∥∥Z(0)
∥∥2
2n)(x +

n∑

i=1

μ(si)) � Ce2uε(|x|+n). (6.15)

For the second term on the RHS of (6.14), note that via integral approximation, we
readily see that

∑

(s1,...,sn)∈�+
n

(C∗ε)n√
t − s

√
s1 − s2 . . .

√
sn−1 − sn

�
∫

0�s1�···�sn�t

(C∗ε)nds1 . . . dsn√
t − s1

√
s1 − s2 . . .

√
sn−1 − sn

= (C∗εt
1
2 )n

∫

τ1+···+τn�1

1√
τ1 . . .

√
τn

dτ1 . . . dτn = (�( 12 )C∗εt
1
2 )n

�(n/2)
(6.16)

where �(z) is the Gamma function. Combining (6.15) and (6.16) yields

∥∥Z(t, x)
∥∥2
2 � Ce2uε|x| +

∞∑

n=1

(�( 12 )C∗εt
1
2 )n

�(n/2)
e2uε(|x|+n)

= e2uε|x|
(

C +
∞∑

n=1

(�( 12 )C∗εt
1
2 e2uε)n

�(n/2)

)

Note that εt
1
2 �

√
T (since t ∈ [0, ε−2T ]), as the growth rate of �(n

2 ) is much faster
than that of xn, the infinite series in the parentheses above converge, which concludes
(6.1).

The proof for (6.2) and (6.3) relies on (6.1). We proceed to prove (6.2), denote by

Z∇(t, x, x′) := Z(t, x) − Z(t, x′), p∇(t, s, x, x′) := p(t, s, x) − p(t, s, x′).

Using (6.8) (subtract Z(t, x′) from Z(t, x)) , we have

Z∇(t, x, x′) =
∑

y∈�(t)

p(t, 0, y)Z∇(0, x − y, x′ − y) + Z∇
mg(t),

where

Z∇
mg(t) =

t−1∑

s=0

∑

y∈�(s)

p∇(t, s + 1, x + μ(s) − y, x′ + μ(s) − y
)
M(s, y). (6.17)

It is straightforward that
∥∥Z∇(t, x, x′)

∥∥2
2n � 2

∑

y∈�(t)

p(t, 0, y)
∥∥Z∇(0, x − y, x′ − y)

∥∥2
2n + 2

∥∥Z∇
mg(t)

∥∥2
2n.
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By the definition of the near stationary initial data (Definition 5.5), for a ∈ (0, 1
2 ),

there exists C such that
∑

y∈�(t)

p(t, 0, y)
∥
∥Z∇(0, x − y, x′ − y)

∥
∥2
2n

� C
∑

y∈�(t)

p(t, 0, y)(ε|x − x′|)2ae2uε(|x−y|+|x′−y|)

� C(ε|x − x′|)2ae2uε(|x|+|x′|) ∑

y∈�(t)

p(t, 0, y)e4uε|y|

Further applying Theorem 6.4 (ii), one has
∑

y∈�(t)

p(t, 0, y)e4uε|y| � C.

We conclude that
∑

y∈�(t)

p(t, 0, y)
∥
∥Z∇(0, x−y, x′−y)

∥
∥2
2n�C(ε|x − x′|)2ae2uε(|x|+|x′|). (6.18)

To bound
∥∥Z∇

mg(t)
∥∥
2n, we appeal to Lemma 6.6. Note that due to Lemma 6.4 (iv),

sup
y∈�(s)

∣∣p∇(t, s +1, x +μ(t −1)−y, x′ +μ(t −1)−y)
∣∣ � C|x −x′|2a(t − s)−

2a+1
2 ,

Applying Lemma 6.6 to (6.17) implies

∥
∥Z∇

mg(t)
∥
∥2
2n � Cε|x − x′|2a

t−1∑

s=0

(t − s)−
a+1
2

∑

y∈�(s)

p∇(t − s − 1, x + μ(s) − y, x′ + μ(s) − y)
∥
∥Z(s, y)

∥
∥2
2n.

Owing to Theorem 6.4 (i), we observe that
∑

y∈�(s)

p∇(t − s − 1, x + μ(s) − y, x′ + μ(s) − y)
∥∥Z(s, y)

∥∥2
2

� C
∑

y∈�(s)

p∇(t − s − 1, x + μ(s) − y, x′ + μ(s) − y)e2uε|y| � Ce2uε(|x|+|x′|).

Consequently,

∥∥Z∇
mg(t)

∥∥2
2n � Cε|x′ − x|2ae2uε(|x|+|x′|)

t−1∑

s=0

(t − s)−
2a+1
2

� C(ε|x − x′|)2a(ε2t) 1−2a
2 e2uε(|x|+|x′|),

� C(ε|x − x′|)2ae2uε(|x|+|x′|). (6.19)

We conclude (6.2) via combining (6.18) and (6.19).
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Finally, we justify (6.3), we have

Z(t, x) − Z(t ′, x) =
∑

y∈�(t ′)
p(t, t ′, x − y)(Z(t ′, y) − Z(t ′, x)) + Zmg(t, t

′),

where Zmg(t, t
′) = ∑t−1

s=t ′
∑

y∈�(s) p(t − s −1, x +μ(s)−y)M(s, y). Similar to the
previous proof, we have
∥
∥Z(t,x)−Z(t ′,x)

∥
∥2
2n�2

∑

y∈�(t ′)
p(t,t ′,x−y)

∥
∥Z(t ′,y)−Z(t ′,x)

∥
∥2
2n+2

∥
∥Zmg(t,t

′)
∥
∥2
2n.

(6.20)
For the first term on the RHS of (6.20), we apply (6.2) and Lemma 6.4 (iii), for any
a ∈ (0, 1

2 ),
∑

y∈�(t ′)
p(t, t ′, x − y)

∥∥Z(t ′, y) − Z(t ′, x)
∥∥2
2n

� Cε2a
∑

y∈�(t ′)
p(t, t ′, x − y)|x − y|2aeuε(|x|+|y|)

� Cε2a(t − t ′ + 1)ae2uε|x|.

For the second term, invoking Lemma 6.6 gives

∥
∥Zmg(t, t

′)
∥
∥2
2n � Cε

t−1∑

s=t ′

1√
t − s

∑

y∈�(s)

p(t − s − 1, x + μ(s) − y)
∥
∥Z(s, y)

∥
∥2
2n

� Cεe2uε|x|
t−1∑

s=t ′

1√
t − s

� C(ε2(t − t ′))
1
2 e2uε|x|. (6.21)

Combining (6.20)–(6.21), we obtain
∥∥Z(t, x) − Z(t ′, x)

∥∥
2n � C(ε2(t − t ′)) a

2 euε|x|.
We complete the proof of Proposition 6.1.

Having shown the tightness of Zε(ε
−2·, ε−1·), to prove Theorem 5.6, it suffices to

show that any limit point Z of Zε(ε
−2·, ε−1·) is the mild solution to the SHE (5.31).

This is the goal of the Sections 6.2 and 6.3, where we will formulate the notion of
“solution to the martingale problem” (which is equivalent to the mild solution) and
prove that any limit point of Zε(ε

−2·, ε−1·) satisfies the martingale problem.

6.2 TheMartingale Problem

We recall the martingale problem of the SHE from [7].

Definition 6.7 We say that a C([0, ∞), C(R))-valued process Z(t, x) is a solution
of martingale problem of the SHE (5.31)

∂tZ(t, x) = V∗
2

∂2xZ(t, x) + √
D∗ξ(t, x)Z(t, x)
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with initial condition Z ic ∈ C(R) if Z(0, x) = Z ic(x) in distribution and

(i) Given any T > 0, there exists u < ∞ such that

sup
t∈[0,T ]

sup
x∈R

e−u|x|
E
[
Z(t, x)2

]
< ∞.

(ii) For any test function ψ ∈ C∞
c (R),

Mψ(t) =
∫

R

Z(t, x)ψ(x)dx −
∫

R

Z(0, x)ψ(x)dx

−V∗
2

∫ t

0

∫

R

Z(s, x)ψ ′′(x)dxds

is a local martingale.
(iii) For any test function ψ ∈ C∞

c (R),

Qψ(t) = Mψ(t)2 − D∗
∫ t

0

∫

R

Z(s, x)2ψ(x)2dxds

is a local martingale.

Bertini and Giacomin [7, Proposition 4.11] proves the the solution Z to the mar-
tingale problem is also the weak solution (equivalently, the mild solution) to the SHE.
Moreover, they show that there is a unique such solution.

To prove Theorem 5.6, it suffices to prove that any limit point of Zε(ε
−2·, ε−1·)

satisfies (i), (ii), (iii). We will do it in the next section. The main difficulty arises for
justifying the quadratic martingale problem (iii), we need the following proposition,
whose proof is postponed to Section 8.

Proposition 6.8 For s ∈ Z�0, define

τ(s) = ρ(I − ρ)

I 2
· b(I + 2modJ (s) + 1) − (I + 2modJ (s) − 1)

b(I + 2modJ (s)) − (I + 2modJ (s) − 2)
. (6.22)

Start the unfused SHS6V model from near stationary initial condition, for given T >

0, there exists constant C and u such that (recall the expressions �1 and �2 from
(5.10))

∥
∥∥
∥ε2

t∑

s=0

(
ε−1�1�2 − τ(s)Z2

)
(s, x� − μ̂(s) + �μ̂(s)�)

∥
∥∥
∥
2
� Cε

1
4 euε|x�| (6.23)

for all t ∈ [0, ε−2T ] ∩ Z, x� ∈ Z and ε > 0 small enough.

Remark 6.9 In (6.23), we compensate the space variable x� ∈ Z by μ̂(s) − �μ̂(s)� ∈
[0, 1) to ensure that x� − μ̂(s) + �μ̂(s)� ∈ �(s).

6.3 Proof of Theorem 5.6

The entire section is devoted to the proof of Theorem 5.6. As we mentioned ear-
lier, due to the tightness obtained in Proposition 6.1, if suffices to prove that for
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any limit point Z of Zε(ε
−2·, ε−1·) satisfies the martingale problem. The proof is

accomplished once we verify (i), (ii), (iii) for Z .
For the ensuing discussion, we denote by Eε(t) to be a generic process (which may

differ from line to line) satisfying for all fixed T > 0

lim
ε↓0 sup

t∈[0,ε−2T ]∩Z

∥∥Eε(t)
∥∥
2 = 0.

We start by verifying (i). Due to (6.1) and Zε(ε
−2t, ε−1x) ⇒ Z(t, x), by Skorohod

representation theorem and Fatou’s lemma, (i) holds.
We continue to prove (ii). To show that Mψ(t) is a local martingale, we consider

a discrete analogue. Define

Mψ(t) := ε

t−1∑

s=0

∑

x∈�(s)

M(s, x)ψ(ε(x − μ(s))). (6.24)

Due to Proposition 5.1, M(t, x) is a F(t)-martingale increment, which implies
Mψ(t) is a F(t)-martingale.

Define 〈Z(t), ψ〉ε := ∑
x∈�(t) εψ(εx)Z(t, x). By (5.7),

Z(t, x) =
∑

y∈�(t−1)

pε(t, t−1, x−y)Z(t−1, y)+M(t−1, x+μ(t−1)), x ∈ �(t),

we obtain

〈Z(s), ψ〉ε − 〈Z(s − 1), ψ〉ε
=

∑

x∈�(t)

εψ(εx)Z(t, x) −
∑

y∈�(t−1)

εψ(εy)Z(t − 1, y)

=
∑

x∈�(s)

εψ(εx)
( ∑

y∈�(s−1)

pε(s, s − 1, x − y)Z(s − 1, y)

+M(s − 1, x + μ(s − 1))
)

−
∑

y∈�(s−1)

εψ(εy)Z(s − 1, y)

=
∑

y∈�(s−1)

εZ(s − 1, y)
( ∑

x∈�(s)

pε(s, s − 1, x − y)
(
ψ(εx) − ψ(εy)

))

+
∑

x∈�(s)

εψ(εx)M(s − 1, x + μ(s − 1)) (6.25)

Summing (6.25) over s ∈ [1, t] ∩ Z yields

Mψ(t) = 〈Z(t), ψ〉ε − 〈Z(0), ψ〉ε −
t−1∑

s=0

ε
∑

y∈�(s)

Z(s, y)

×
( ∑

x∈�(s+1)

pε(s + 1, s, x − y)(ψ(εx) − ψ(εy))
)

(6.26)
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Recall that Rε(s) is the random variable defined in (5.1), as usual we put on the
subscript ε to emphasize the dependence. Note that,

E
[
Rε(s)

] =
∑

x∈�(1)

pε(s + 1, s, x)x = 0, Var
[
Rε(s)

] =
∑

x∈�(1)

pε(s + 1, s, x)x2.

By Taylor expansion

ψ(εx) = ψ(εy) + εψ ′(εy)(x − y) + 1

2
ε2ψ ′′(εy)(x − y)2 + ε3O(|x − y|3),

whereby (6.26) becomes

Mψ(t) = 〈Z(t), ψ〉ε − 〈Z(0), ψ〉ε − 1

2
ε2

t−1∑

s=0

Var
[
Rε(s)

]〈Z(s), ψ ′′〉ε + Eε(t).

Furthermore, we have

Var
[
Rε(s)

] = λ(s)

∞∑

n=1

α(s)(1 − q)

1 + α(s)

(
1 − ν + α(s)

1 + α(s)

)(
ν + α(s)

1 + α(s)

)n−1

qρnn2

−
(

λ(s)

∞∑

n=1

α(s)(1 − q)

1 + α(s)

(
1 − ν + α(s)

1 + α(s)

)(
ν + α(s)

1 + α(s)

)n−1

qρnn

)2

= (I + 1 + 2modJ (s))b − (I + 2modJ (s) − 1)

I 2(1 − b)
+ O(ε

1
2 ). (6.27)

In the last line, we used Lemma 5.4 to get asymptotics. Denote by

V (s) = (I + 1 + 2modJ (s))b − (I + 2modJ (s) − 1)

I 2(1 − b)

Then

Mψ(t) = 〈Z(t), ψ〉ε − 〈Z(0), ψ〉ε − 1

2
ε2

t−1∑

s=0

V (s)〈Z(s), ψ ′′〉ε + Eε(t).

Note that {V (s)}∞s=0 is a periodic sequence with period J , by the time regularity of
Z(t, x) in (6.3), we can replace V (s) by

V∗ = 1

J

J−1∑

s=0

V (s) = (I + J )b − (I + J − 2)

I 2(1 − b)

as defined in (1.12). Consequently,

Mψ(t) = 〈Z(t), ψ〉ε − 〈Z(0), ψ〉ε − 1

2
ε2V∗

t−1∑

s=0

〈Z(s), ψ ′′〉ε + Eε(t).

Since limε↓0 supt∈[0,ε−2T ]∩Z
∥
∥Eε(t)

∥
∥
2 = 0, by a standard discrete to continuous argu-

ment from the martingale Mψ(t) to Mψ(t), we conclude that Mψ(t) is a local
martingale.

We finish the proof of (iii) based on Proposition 6.8. Similar to what we did in
proving (ii), we want to find a discrete approximation of Qψ(t). This is given by
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Mψ − 〈Mψ 〉(t). Referring to (6.24), the martingale Mψ(t) possesses the quadratic
variation

〈Mψ 〉(t) = ε2
t−1∑

s=0

∑

x,x′∈�(s)

ψ(ε(x−μ(s)))ψ(ε(x′−μ(s)))E
[
M(s, x)M(s, x′)

∣
∣F(s)

]

= ε2
t−1∑

s=0

∑

x,x′∈�(s)

ψ(ε(x − μ(s)))ψ(ε(x′ − μ(s)))

(
ν + α(s)

1 + α(s)
qρ

)|x−x′|

×�1(s, x ∧ x′)�2(s, x ∧ x′) (6.28)

where the last equality follows from Proposition 5.1. Since ψ ∈ C∞
c (R), there exists

a constant C such that

∣
∣ψ(ε(x − μ(s)))ψ(ε(x′ − μ(s))) − ψ(ε(x ∧ x′))2

∣
∣ � Cε(|x − x′| + 1)

Consequently, the expression (6.28) is well-approximated with the corresponding
term ψ(ε(x − μ(s)))ψ(ε(x′ − μ(s))) replaced by ψ(ε(x ∧ x′))ψ(ε(x′ ∧ x′)), which
yields

〈Mψ 〉(t) = ε2
t−1∑

s=0

∑

x,x′∈�(s)

ψ(ε(x ∧ x′))2
(

ν + α(s)

1 + α(s)
qρ

)|x−x′|

×�1(s, x ∧ x′)�2(s, x ∧ x′) + Eε(t),

= ε2
t−1∑

s=0

∑

x∈�(s)

∞∑

n=−∞

(
ν + α(s)

1 + α(s)
qρ

)|n|
ψ(εx)2�1(s, x)�2(s, x) + Eε(t),

= ε2
t−1∑

s=0

∑

x∈�(s)

1 + α(s)+(ν + α(s))qρ

1 + α(s)−(ν + α(s))qρ
ψ(εx)2�1(s, x)�2(s, x) + Eε(t),

= ε2
t−1∑

s=0

b(I + 2modJ (s)) − (I + 2modJ (s) − 2)

I (1 − b)

×
∑

x∈�(s)

εψ(εx)2
(
ε−1�1(s, x)�2(s, x)

) + Eε(t). (6.29)

Here, in the third equality we used
∑∞

n=−∞ x−|n| = 1+x
1−x

. In the last equality, using

Lemma 5.4 for asymptotics expansion of ν+α(s)
1+α(s)

, one has

1 + α(s) + (ν + α(s))qρ

1 + α(s) − (ν + α(s))qρ
= 1 + ν+α(s)

1+α(s)
qρ

1 − ν+α(s)
1+α(s)

qρ

= b(I + 2modJ (s)) − (I + 2modJ (s) − 2)

I (1 − b)
+ O(ε

1
2 ).

Math Phys Anal Geom (2020) 23: 1 Page 53 of 118 1



Using Proposition 6.8, we replace the term ε−1�1(s, x)�2(s, x) in (6.29) with
τ(s)Z(s, x)2,

〈Mψ 〉(t) = ε2
t−1∑

s=0

b(I + 2modJ (s)) − (I + 2modJ (s) − 2)

I (1 − b)

×
∑

x∈�(s)

εψ(εx)2τ(s)Z(s, x)2 + Eε(t),

= ε2
t−1∑

s=0

ρ(I − ρ)

I 2
· b(I + 2modJ (s) + 1) − (I + 2modJ (s) − 1)

I (1 − b)

×
∑

x∈�(s)

εψ(εx)2Z(s, x)2 + Eε(t).

Using again the time regularity of Z(t, x) in (6.3), we conclude that

〈Mψ 〉(t) = D∗
t−1∑

s=0

∑

x∈�(s)

εψ(εx)2Z(s, x)2 + Eε(t),

where

D∗ = 1

J

J−1∑

s=0

ρ(I − ρ)

I 2
· b(I + 2modJ (s) + 1) − (I + 2modJ (s) − 1)

I (1 − b)

= ρ(I − ρ)

I

(I + J )b − (I + J − 2)

I 2(1 − b)

as defined in (1.13). Via a standard discrete to continuous argument from the martin-
gale Mψ(t)−〈Mψ 〉(t) toQψ(t), we conclude thatQψ(t) is a local martingale. Since
we have proved that for any limit point Z of Zε(ε

−2·, ε−1·), it satisfies (i), (ii), (iii)
in Definition 6.7, this concludes the proof of Theorem 5.6.

7 Estimate of the Two Particle Transition Probability

In this section, we prove a space-time estimate for the (tilted) two particle transition
probability Vε , using the integral formula provided in Corollary 5.3. This technical
result is crucial to the proof of Proposition 6.8.
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Recall from Corollary 5.3 that

Vε

(
(x1, x2), (y1, y2), t, s

)

= c(y1, y2)

[ ∮

CR

∮

CR

2∏

i=1

(
Dε(zi)

)� t−s
J

�
Rε(zi, t, s)z

xi−yi

i

dzi

2π izi

−
∮

CR

∮

CR

Fε(z1, z2)

2∏

i=1

(
Dε(zi)

)� t−s
J

�
Rε(zi, t, s)z

x3−i−yi

i

dzi

2π izi

+Resz1=sε(z2)

∮

CR

∮

CR

Fε(z1, z2)
(
Dε(zi)

)� t−s
J

�
Rε(zi, t, s)z

x3−i−yi

i

dzi

2π izi

]
,

(7.1)

where CR is a circle centered at zero with a large enough radius R so as to include all
the poles of the integrand, c(y1, y2) is defined in (4.5) and the functions in the inte-
grand above are defined respectively in (5.25) – (5.28). We put ε in the notation ofVε

and other functions to emphasize the dependence on ε under the weakly asymmetry
scaling.

We define the discrete gradients ∇x1 , ∇x2 , ∇y1 , ∇y2

∇x1Vε

(
(x1, x2), (y1, y2), t, s

) = Vε

(
(x1 + 1, x2), (y1, y2), t, s

)

−Vε

(
(x1, x2), (y1, y2), t, s

)
,

∇x2Vε

(
(x1, x2), (y1, y2), t) = Vε

(
(x1, x2 + 1), (y1, y2), t, s

)

−Vε

(
(x1, x2), (y1, y2), t, s

)
,

∇y1Vε

(
(x1, x2), (y1, y2), t, s

) = Vε

(
(x1, x2), (y1 + 1, y2), t, s

)

−Vε

(
(x1, x2), (y1, y2), t, s

)
,

∇y2Vε

(
(x1, x2), (y1, y2), t, s

) = Vε

(
(x1, x2), (y1, y2 + 1), t, s

)

−Vε

(
(x1, x2), (y1, y2), t, s

)
.

Furthermore, we define the mixed discrete gradient

∇x1,x2Vε

(
(x1, x2), (y1, y2), t, s

) = ∇x2

(
∇x1Vε

(
(x1, x2), (y1, y2), t, s

))

= Vε

(
(x1 + 1, x2 + 1), (y1, y2), t, s

)

−Vε

(
(x1 + 1, x2), (y1, y2), t, s

)

−Vε

(
(x1, x2 + 1), (y1, y2), t, s

)

+Vε

(
(x1, x2), (y1, y2), t, s

)

We define the ∇-Weyl chamber (which is understood with respect to whichever
gradient is taken) to be

{(x1, x2, y1, y2) : x1 + 1�x2 ∈ �(t), y1 � y2 ∈ �(s)} if ∇ =∇x1 ,

{(x1, x2, y1, y2) : x1�x2 ∈ �(t), y1 � y2 ∈ �(s)} if ∇ =∇x2 ,

{(x1, x2, y1, y2) : x1�x2 ∈ �(t), y1 + 1 < y2 ∈ �(s)} if ∇ =∇y1 ,

{(x1, x2, y1, y2) : x1�x2 ∈ �(t), y1 � y2 ∈ �(s)} if ∇ =∇y2 . (7.2)
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We remark that Vε

(
(x1, x2), (y1, y2), t, s

)
is defined only for x1 � x2 ∈ �(t) and

y1 � y2 ∈ �(s). In the definition of ∇-Weyl chamber, when ∇ = ∇x1 , ∇x2 , ∇y2 ,
the corresponding ∇-Weyl chamber is exactly where the quantities ∇x1Vε , ∇x2Vε or
∇y2Vε are well defined. But for ∇ = ∇y1 , we require y1 + 1 < y2, which is stronger
than y1 + 1 � y2 (where ∇y1Vε is well defined). The motivation of this requirement
is to ensure that (7.9) holds.

The following result is the main technical contribution of our paper.

Proposition 7.1 For all fixed β, T > 0, there exists positive constant C(β), C(β, T )

such that for ε > 0 small enough and s � t ∈ [0, ε−2T ] ∩ Z

(a) For all x1 � x2 ∈ �(t) and y1 � y2 ∈ �(s),

∣∣Vε

(
(x1, x2), (y1, y2), t, s

)∣∣ � C(β, T )

t − s + 1
e
− β(|x1−y1|+|x2−y2|)√

t−s+1+C(β) . (7.3)

(b) For all (x1, x2, y1, y2) in the ∇-Weyl chamber,

∣
∣∇xi

Vε

(
(x1, x2), (y1, y2), t, s

)∣∣ � C(β,T )

(t−s+1)
3
2
e
− β(|x1−y1|+|x2−y2|)√

t−s+1+C(β) , i = 1, 2,

∣∣∇yi
Vε

(
(x1, x2), (y1, y2), t, s

)∣∣ � C(β,T )

(t−s+1)
3
2
e
− β(|x1−y1|+|x2−y2|)√

t−s+1+C(β) . i = 1, 2.

(c) For all x1 < x2 ∈ �(t) and y1 � y2 ∈ �(s),

∣∣∇x1,x2Vε

(
(x1, x2), (y1, y2), t, s

)∣∣ � C(β,T )

(t−s+1)2
e
− β(|x1−y1|+|x2−y2|)√

t−s+1+C(β) .

It is helpful to divide the proof of Proposition 7.1 depending on whether the time
increment t − s is large enough. More precisely, we use the phrase t − s is large
enough if the referred statement holds for all t − s � t0, where t0 is some generic
time threshold which may change from line to line (depend on β and T , but does
not depend on ε). Note that this is not to be confused with the global assumption
0 � s � t � ε−2T , which implies t − s � ε−2T .

Given arbitrary fixed t0 > 0, let us first prove the proposition for t − s � t0.

Proof of Proposition 7.1 for t − s � t0 According to Lemma 5.4,

lim
ε↓0 sup

t∈Z�0

ν + α(t)

1 + α(t)
= sup

t∈Z�0

(I + modJ (t))b − (I + modJ (t) − 1)

modJ (t)b − (modJ (t) − 1)
< 1, (7.4)

here we used the condition I+J−2
I+J−1 < b < 1 in (5.30). Taking k = 2 in (3.13) yields

P←−−−−
SHS6V

(
(x1, x2), (y1, y2), t, s

)
� C

2∏

i=1

(|xi − yi | + t − s

t − s

)
θ |xi−yi | (7.5)

where θ = supt∈Z�0

ν+α(t)
1+α(t)

. So there exists 0 < δ < 1 such that for ε small enough
and all s � t such that t − s � t0

P←−−−−
SHS6V

(
(x1, x2), (y1, y2), t, s

)
� Cδ|xi−yi |, (7.6)
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Referring to the relation (5.20) between V and P←−−−−
SHS6V

. By limε↓0 e
√

ε = 1 along
with (7.6), there exists 0 < δ′ < 1 s.t.

Vε

(
(x1, x2), (y1, y2), t, s

)
� Cδ′|x1−y1|+|x2−y2|.

Consequently, we can take C(β, T ) and C(β) in (7.3) large enough such that for
t − s � t0,

Vε

(
(x1, x2), (y1, y2), t, s

)
� Cδ′|x1−y1|+|x2−y2| � C(β, T )

t0 + 1
e
− β(|x1−y1|+|x2−y2|)√

t0+1+C(β)

� C(β, T )

t − s + 1
e
− β(|x1−y1|+|x2−y2|)√

t−s+1+C(β)

For the gradients, let us consider ∇x1Vε for example. Note that

∇x1Vε

(
(x1, x2), (y1, y2), t, s

) = Vε

(
(x1 + 1, x2), (y1, y2), t, s

)

−Vε

(
(x1, x2), (y1, y2), t, s

)

Using the same argument as above, there exists constant C(β, T ) and C(β) such that
for all s � t satisfying t − s � t0,

Vε

(
(x1, x2), (y1, y2), t, s

)
,Vε

(
(x1 + 1, x2), (y1, y2), t, s

)

� C(β, T )

(t − s + 1)
3
2

e
− β(|x1−y1|+|x2−y2|)√

t−s+1+C(β) ,

which gives the desired bound for ∇x1Vε

(
(x1, x2), (y1, y2), t, s

)
. The argument for

the gradient ∇x2Vε, ∇y1Vε, ∇y2Vε and ∇x1,x2Vε is similar.

Having proved Proposition 7.1 for t − s � t0, it suffices to prove the same propo-
sition for t − s large enough. In other words, we need to show that there exists t0 > 0
such that the proposition holds for t − s � t0. We decompose Vε (7.1) by

Vε = c(y1, y2)
(
Vfr

ε − Vin
ε

)
,

where

Vfr
ε

(
(x1, x2), (y1, y2), t, s

) :=
∮

CR

∮

CR

2∏

i=1

(
Dε(zi)

)� t−s
J

�
Rε(zi, t, s)z

xi−yi

i

dzi

2π izi

,

Vin
ε

(
(x1, x2), (y1, y2), t, s

) :=
∮

CR

∮

CR

(
Dε(zi)

)� t−s
J

�
Rε(zi, t, s)z

x3−i−yi

i

dzi

2π izi

(7.7)

−Resz1=sε(z2)

∮

CR

∮

CR

Fε(z1, z2)

2∏

i=1

(
Dε(zi)

)� t−s
J

�

×Rε(zi, t, s)z
x3−i−yi

i

dzi

2π izi

. (7.8)
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Referring to (4.5), c(y1, y2) equals 1 as long as y1 < y2. It is straightforward that for
(x1, x2, y1, y2) in the ∇-Weyl chamber (7.2),

∇xi
Vε = c(y1, y2)

(∇xi
Vfr

ε − ∇xi
Vin

ε

)
,

∇yi
Vε = c(y1, y2)

(∇yi
Vfr

ε − ∇yi
Vin

ε

)
. (7.9)

In addition, for x1 + 1 � x2 ∈ �(t) and y1 � y2 ∈ �(s),

∇x1,x2Vε = c(y1, y2)
(∇x1,x2V

fr
ε − ∇x1,x2V

in
ε

)
.

Note that under weakly asymmetric scaling,

lim
ε↓0 c(y1, y2) = 1{y1<y2} + I − 1

2I
1{y1=y2},

which implies that c(y1, y2) is uniformly bounded for ε small enough, This being the
case, to prove Proposition 7.1 for t − s large enough, it suffices to prove the same
result for Vfr

ε and Vin
ε respectively.

Proposition 7.2 For all β, T > 0, there exists positive constant t0 := t0(β, T ) and
C(β, T ) such that for ε > 0 small enough and 0 � s � t ∈ [0, ε−2T ] ∩ Z satisfying
|t − s| � t0

(a) for all x1 � x2 ∈ �(t), y1 � y2 ∈ �(s)

∣∣Vfr
ε

(
(x1, x2), (y1, y2), t, s

)∣∣ � C(β,T )
t−s+1 e

− β(|x1−y1|+|x2−y2|)√
t−s+1

(b) For all (x1, x2, y1, y2) in the ∇-Weyl chamber,

∣
∣∇xi

Vfr
ε

(
(x1, x2), (y1, y2), t, s

)∣∣ � C(β,T )

(t−s+1)
3
2
e
− β(|x1−y1|+|x2−y2|)√

t−s+1 , i = 1, 2,

∣
∣∇yi

Vfr
ε

(
(x1, x2), (y1, y2), t, s

)∣∣ � C(β,T )

(t−s+1)
3
2
e
− β(|x1−y1|+|x2−y2|)√

t−s+1 , i = 1, 2.

(c) For all x1 + 1 � x2 ∈ �(t) and y1 � y2 ∈ �(s),

∣
∣∇x1,x2V

fr
ε

(
(x1, x2), (y1, y2), t, s

)∣∣ � C(β,T )

(t−s+1)2
e
− β(|x1−y1|+|x2−y2|)√

t−s+1 .

Proposition 7.3 For all β, T > 0, there exists positive constant t0 := t0(β, T ) and
C(β, T ) such that for ε > 0 small enough 0 � s � t ∈ [0, ε−2T ] ∩ Z such that
|t − s| � t0,

(a) for all x1 � x2 ∈ �(t) and y1 � y2 ∈ �(s),

∣∣Vin
ε

(
(x1, x2), (y1, y2), t, s

)∣∣ � C(β,T )
t−s+1 e

− β(|x2−y1|+|x1−y2|)√
t−s+1 .

(b) For all (x1, x2, y1, y2) in the ∇-Weyl chamber,

∣
∣∇xi

Vin
ε

(
(x1, x2), (y1, y2), t, s

)∣∣ � C(β,T )

(t−s+1)
3
2
e
− β(|x2−y1|+|x1−y2|)√

t−s+1 , i = 1, 2,

∣
∣∇yi

Vin
ε

(
(x1, x2), (y1, y2), t, s

)∣∣ � C(β,T )

(t−s+1)
3
2
e
− β(|x2−y1|+|x1−y2|)√

t−s+1 , i = 1, 2.
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(c) For all x1 + 1 � x2 ∈ �(t) and y1 � y2 ∈ �(s),

∣
∣∇x1,x2V

in
ε ((x1, x2), (y1, y2), t)

∣
∣ � C(β,T )

(t−s+1)2
e
− β(|x2−y1|+|x1−y2|)√

t+1 .

The reader might notice that in Proposition 7.3, we write |x2 − y1| + |x1 − y2| on
the RHS exponents (compared with |x1 − y1| + |x2 − y2| in Proposition 7.1). This in
fact yields a stronger upper bound since by x1 � x2 and y1 � y2, one always has

|x1 − y1| + |x2 − y2| � |x2 − y1| + |x1 − y2|.
Hence, combining Proposition 7.2 and Proposition 7.3, we conclude Proposition 7.1.

7.1 Estimate of Vfrε

In this section, we will prove Proposition 7.2. Referring to (6.4),

pε(t, s, xi − yi) =
∮

CR

(
Dε(zi)

)�(t−s)/J �
Rε(zi, t, s)z

xi−yi

i

dzi

2π izi

(7.10)

where R is large enough so that CR encircles all the poles of the integrand. Therefore,
from (7.7) we have

Vfr
ε

(
(x1, x2), (y1, y2), t, s

) = pε

(
t, s, x1 − y1

)
pε

(
t, s, x2 − y2

)
. (7.11)

To estimate Vε

(
(x1, x2), (y1, y2), t, s

)
, it suffices to analyze pε(t, s, xi − yi). Refer-

ring to the expression (5.25) and (5.26),

Dε(z) := λzμ (1 + αqJ )q−ρz − (ν + αqJ )

(1 + α)q−ρz − (ν + α)
, (7.12)

Rε(z, t, s) :=
t−1∏

k=s+J � t−s
J

�
λ(k)zμ(k) (1 + α(k)q)q−ρz − (ν + α(k)q)

(1 + α(k))q−ρz − (ν + α(k))
. (7.13)

Define the set of poles of the integrand in (7.10) to be P , it is clear that

P ⊆
∞⋃

k=0

{qρ ν + α(k)

1 + α(k)
} ∪ {0} =

J−1⋃

k=0

{qρ ν + α(k)

1 + α(k)
} ∪ {0}.

Due to Lemma 5.4,

lim
ε↓0

qρ(α(k) + ν)

1 + α(k)
= (I + modJ (k))b − (I + modJ (k) − 1)

bmodJ (k) − (modJ (k) − 1)
∈ (0, 1).

Therefore, there exists 0 < � < 1 such that for ε small enough

P ⊆ [0, �]. (7.14)

To extract the spatial decay of pε(t, s, xi − yi), we deform the contour of zi from CR

to Cri where

ri = u(t − s, −sgn(xi − yi)β). (7.15)
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Note that when t − s is large enough, ri is close to 1, thus deforming the contour
from CR to Cri , we do not cross the poles in the integrand. We parametrize Cri by
zi(θi) = rie

iθi , θ ∈ (−π, π ] and get
pε(t, s, xi − yi) = 1

2π

∮

Cri

(
Dε(zi(θi))

)�(t−s)/J �
Rε(zi(θi), t, s)zi(θi)

xi−yi dθi

We want to bound each terms that appear in the integrand above. Note that by (7.15),

|zi(θi)|xi−yi = e
− β√

t−s+1
|xi−yi |.

To estimate Rε(zi, t, s), referring to (7.13), Rε(z, t, s) is a product of up to J

terms (since t − s − J � t−s
J

� � J ). For each term, by Lemma 5.4

lim
ε↓0

∣
∣
∣∣λ(k)zμ(k) (1 + α(k)q)q−ρz − (ν + α(k)q)

(1 + α(k))q−ρz − (ν + α(k))

∣
∣
∣∣

= |z| 1I (b(1 + modJ (k)) − modJ (k))z − (b(I + modJ (k) + 1) − (I + modJ (k))

(bmodJ (k) − (modJ (k) − 1))z − ((I + modJ (k))b − (I + modJ (k) − 1))
.

(7.16)

The singularities in (7.16) lie strictly inside the unit disk. Since ri is close to 1 when
t − s is large, for ε small enough and t − s large enough, there exists constant C such
that for z ∈ Cri and k ∈ Z�0

∣
∣
∣∣λ(k)zμ(k) (1 + α(k)q)q−ρz − (ν + α(k)q)

(1 + α(k))q−ρz − (ν + α(k))

∣
∣
∣∣ � C,

which implies
|Rε(zi, t, s)| � C. (7.17)

Consequently,

pε(t, s, xi − yi) �
∫ π

−π

|Dε(zi)|�(t−s)/J �|Rε(zi(θ), t, s)||zi(θ)|xi−yi dθ

� Ce
− β√

t−s+1
|xi−yi |

∫ π

−π

∣∣Dε(zi(θ))
∣∣�(t−s)/J �

dθ (7.18)

We expect to extract the temporal decay 1√
t−s+1

from the integral above. To this end,

we need to the following lemma.

Lemma 7.4 There exists positive constants C(β, T ), C such that for θ ∈ (−π, π ]
∣
∣Dε(z(θ))

∣
∣t−s � C(β, T )e−C(t−s+1)θ2, z(θ) = u(t − s, ±β)eiθ

holds for ε > 0 small enough and large enough t − s � ε−2T .

As a remark, we see from (7.12) that the function Dε(z) is not globally analytic
due to the factor zμ (μ is not an integer), but it is analytic in a neighborhood of 1.
Furthermore,

∣
∣Dε(z)

∣
∣ is a continuous function in a neighborhood of the unit circle.

Proof of Lemma 7.4 We only prove Lemma 7.4 for z(θ) = u(t − s, β)eiθ , the
argument for z(θ) = u(t − s, −β)eiθ is similar. By writing

∣∣Dε(z(θ))
∣∣t−s =
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e(t−s)Re logDε (z(θ)), it suffices to show that there exists positive constants C(β, T ), C

such that for ε > 0 small enough and t − s � ε−2T large enough

Re logDε(u(t − s, β)eiθ ) � C(β, T )

t − s + 1
− Cθ2,

where Re z denotes the real part of a complex number z.
We divide our proof into three cases. It suffices to show

• (θ = 0) : logDε(u(t − s, β)) � C(β,T )
t−s+1• (θ small): There exists ζ > 0 s.t.

Re logDε(u(t − s, β)eiθ ) � C(β, T )

t − s + 1
− Cθ2 for |θ | � ζ .

• (θ large): There exists δ > 0 such that
∣∣Dε(u(t − s, β)eiθ )

∣∣ < 1 − δ for |θ | > ζ .

The proof for the first and second bullet point are done by using the local property of
Dε(z) near 1 (applying Taylor expansion). Let O be a small neighborhood around 1
such that Dε(z) is analytic inside O.

(θ = 0): We write Dε(z) into terms of a telescoping product

Dε(z) =
J−1∏

k=0

λ(k)zμ(k) 1 + α(k)q − (ν + α(k)q)qρz−1

1 + α(k) − (α(k) + ν)qρ
.

By (6.5), we see that

Dε(z) =
J−1∏

k=0

E
[
z−Rε(k)

] = E
[
z−∑J−1

k=0 Rε(k)
]
,

thus

Dε
′(1) = −E

[ J−1∑

k=0

Rε(k)
] = 0,

Dε
′′(1) = Var

[ J−1∑

k=0

Rε(k)
] =

J−1∑

k=0

Var
[
Rε(k)

]
.

Referring to (6.27),

lim
ε↓0

J−1∑

k=0

Var
[
Rε(k)

] =
J−1∑

k=0

(I + 1 + 2k)b − (I + 2k − 1)

I 2(1 − b)
= JV∗,

where V∗ is given by (1.12). The above discussion implies that

logDε(1) = 0, (logDε)
′(1) = 0.

Moreover, there exists constant C such that uniformly for z ∈ O and ε

small enough,

|(logDε)
′′(z)| � C.
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Since limt−s→∞ u(t − s, β) = 1, we see that u(t − s, β) ∈ O for t − s

large enough. Thus, we taylor expand Dε(z) around z = 1 and get

logDε(u(t − s, β)) � C
∣
∣u(t − s, β) − 1

∣
∣2 � C(β, T )

t − s + 1
, (7.19)

which justifies the first bullet point.
(θ small): Consider the function Dε(z(θ)), we calculate for z(θ) ∈ O

∂θ(logDε(z(θ)))
∣
∣
θ=0 ∈ iR,

lim
ε↓0,t−s→∞ ∂2θ (logDε(z(θ)))

∣∣
θ=0 = −JV∗,

∣
∣∂3θ (logDε(z(θ)))

∣
∣ � C.

Given these properties, we taylor expand logDε(z(θ)) at θ = 0, there
exists ζ > 0 such that

Re logDε(z(θ)) � Re logDε(z(0)) − JV∗
2

θ2 |θ | � ζ

In conjunction with Re logDε(z(0)) � C(β,T )
t−s+1 (which is shown by

(7.19)), we conclude the second bullet point.
(θ large): We set

D∗(z) := z
J
I
(bJ − (J − 1))z − ((I + J )b − (I + J − 1))

z − (Ib − (I − 1))
(7.20)

Referring to the expression of Dε in (7.12) and using Lemma 5.4, one
has

lim
ε↓0

∣
∣Dε(z)

∣
∣ = ∣

∣D∗(z)
∣
∣.

The convergence is uniform in an open neighborhood of unit circle.
Thereby,

lim
ε↓0,t−s→∞

∣∣Dε(u(t − s, β)eiθ )
∣∣ = ∣∣D∗(eiθ )

∣∣ uniformly over (−π, π ].

As a result, we conclude the third bullet point as long as we verify the
following steepest descent condition

∣
∣D∗(z)

∣
∣ < 1 for z ∈ C1\{1}. (SD.C1)

To prove (SD.C1), we compute

∣∣D∗(eiθ )
∣∣2

=
∣∣
∣∣
(bJ −(J −1))eiθ −((I +J )b−(I +J −1))

eiθ −(Ib−(I −1))

∣∣
∣∣

2

= (bJ −(J −1))2+((I +J )b−(I +J −1))2−2(bJ −(J −1))((I +J )b−(I +J −1)) cos θ

1+(Ib−(I −1))2−2(Ib−(I −1)) cos θ

= 1 − 2J (1−b)(1−cos θ)((I +J )b−(I +J −2))

1+(Ib−(I −1))2−2(Ib−(I −1)) cos θ
<1, θ ∈(−π, π ]\{0}.

In the last step, we used the condition I+J−2
I+J−1 < b < 1.
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Having proved Lemma 7.4, we proceed to finish the proof of Theorem 7.2.

Proof of Theorem 7.2 Due to Lemma 7.4,
∫ π

−π

∣
∣Dε(zi(θ))

∣
∣� t−s

J
�
dθ �

∫ π

−π

C(β, T )e−C(� t−s
J

�+1)θ2dθ � C(β, T )√
t − s + 1

.

This being the case, by (7.18) we readily see that

pε(t, s, xi − yi) �
C(β, T )√
t − s + 1

e
− β√

t−s+1
|xi−yi |. (7.21)

Incorporating this bound into (7.11) concludes Theorem 7.2 part (a).
For the gradient, notice that one has

∇x1V
fr
ε

(
(x1, x2), (y1, y2), t, s

) = ∇p(t, s, x1 − y1)p(t, s, x2 − y2),

∇y1V
fr
ε

(
(x1, x2), (y1, y2), t, s

) = p(t, s, x1−y1)∇p(t, s, x2−y2−1), (7.22)

∇x1,x2V
fr
ε

(
(x1, x2), (y1, y2), t, s

) = ∇p(t, s, x1 − y1)∇p(t, s, x2 − y2). (7.23)

The proof for gradients ∇x2 , ∇y2 is similar to that for ∇x1 , ∇y1 by symmetry. It
suffices to analyze

∇p(t, x1 −y1) = 1

2π

∫ π

−π

D(z1(θ1))
� t−s

J
�Rε(z1(θ1), t, s)z1(θ1)

x1−y1(z1(θ1)−1)dθ1

By the fact
∣
∣z1(θ1) − 1

∣
∣ = ∣

∣e
± β√

t−s+1
+iθ1 − 1

∣
∣ � C( 1√

t−s+1
+ |θ1|), we conclude

∣∣∇p(t, xi − yi)
∣∣ � C(β, T )e

− β√
t−s+1

|xi−yi |
∫ π

−π

e−C� t−s
J

�θ21 ( 1√
t − s + 1

+ |θ1|)dθ1

� C(β, T )

t − s + 1
e
− β√

t−s+1
|xi−yi |

, (7.24)

where the last inequality follows by a change of variable θ1 → θ1√
t−s+1

. Incorporating

this bound into (7.22) and (7.23), we conclude the Theorem 7.2 (b), (c).

7.2 Estimate of Vinε , an Overview

Recall from (7.8) that

Vin
ε

(
(x1, x2), (y1, y2), t, s

) =
∮

CR

∮

CR

Fε(z1, z2)

2∏

i=1

Dε(zi)
� t−s

J
�

×Rε(zi, t, s)z
x3−i−yi

i

dzi

2π izi

−Resz1=sε(z2)

[ ∮

CR

∮

CR

Fε(z1, z2)

2∏

i=1

Dε(zi)
� t−s

J
�

×Rε(zi, t, s)z
x3−i−yi

i

dzi

2π izi

]
. (7.25)
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We study the double contour integral in (7.25). Recall from (5.27) and (5.28) that

Fε(z1, z2) = qν − ν + (ν − q)q−ρz2 + (1 − qν)q−ρz1 + (q − 1)q−2ρz1z2

qν − ν + (ν − q)q−ρz1 + (1 − qν)q−ρz2 + (q − 1)q−2ρz1z2
,

(7.26)
which produces a pole at z1 = sε(z2) where

sε(z) = (1 − qν)q−ρz − ν(1 − q)

(q − ν)q−ρ + (1 − q)q−2ρz
.

Referring to (7.14), the other poles of the integrand belong to [0, �] for some 0 <

� < 1.
We say the contour � is admissible if

(1) : � contains [0, �] but does not contain 1−I, (2) : d(1−I, �) >
1

2I
, (7.27)

where the distance between a point z ∈ C and a set A is define by d(z, A) :=
inf{|z − y| : y ∈ A}. Figure 3 below gives several graphical examples of admissible
and not admissible contours.

Define

s∗(z) := lim
ε↓0 sε(z) = (I − 1)z + 1

I + 1 − z
.

Note that

lim|z|→∞ s∗(z) = 1 − I .

Note that z2 ∈ CR , from above we have: For R large enough and ε small enough, if �

is admissible, deforming the z1-contour from CR to � will cross the pole sε(z2) for all
z2 ∈ CR . Moreover, such deformation does not cross any other poles in P . Therefore,

Vin
ε

(
(x1, x2), (y1, y2), t, s

) =
∮

�

∮

CR

Fε(z1, z2)

2∏

i=1

Dε(zi)
� t−s

J
�

Rε(zi, t, s)z
x3−i−yi

i

dzi

2π izi

.

Fig. 3 Graphical examples of admissible and not admissible contour �
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In practice, we deform the z1-contour to some contour �(t − s, ε) which depends
on both t − s and ε so that it is admissible for t − s large enough and ε small
enough.

Assuming that we have deformed z1-contour to �(t − s, ε), which is admissible.
The next step is to deform the z2-contour. Note that given z1 ∈ �(t −s, ε), Fε(z1, z2)

generates a pole at z2 = pε(z1) (pε is the inverse of sε)

pε(z1) = (1 − q)ν + (q − ν)q−ρz1

(q − 1)q−2ρz1 + (1 − qν)q−ρ
. (7.28)

We consider three potential radius

r2 := u(t − s, sgn(x1 − y2)k2β), r ′
2 := u(t − s, sgn(x1 − y2)2k2β),

r ′′
2 := u(t − s, sgn(x1 − y2)3k2β), (7.29)

where k2 � 1 is a constant which is irrelevant with the current discussion. We deform
z2-contour from CR to Cr∗

2 (z1), where

r∗
2 (z1) = r21{pε (z1)>r ′

2} + r ′′
2 1{pε (z1)�r ′

2}.

In other words, if the pole pε(z1) lies outside Cr ′
2
, we choose z2-contour to be a

circle with radius r2 < r ′
2. If the pole pε(z1) lies inside Cr ′

2
, we choose z2-contour

to be circle with radius r ′′
2 > r ′

2. It is clear we always have for t − s large enough
that

|pε(z1) − z2| � β√
t − s + 1

, ∀z2 ∈ Cr∗
2 (z1). (7.30)

Referring to the expression of Fε(z1, z2) (7.26), we find that

Resz2=pε (z1)Fε(z1, z2)

= qν − ν + (ν − q)q−ρpε(z1) + (1 − qν)q−ρz1 + (q − 1)q−2ρz1pε(z1)

(q − 1)q−2ρz1 + (1 − qν)q−ρ
.

We set

Hε(z1) = Dε(z1)Dε(pε(z1)),

Jε(z1) = Resz2=pε (z1)Fε(z1, z2)z
x2−y1
1 pε(z1)

x2−y11{|pε (z1)|>r ′
2},

= qν − ν + (ν − q)q−ρpε(z1) + (1 − qν)q−ρz1 + (q − 1)q−2ρz1pε(z1)

(q − 1)q−2ρz1 + (1 − qν)q−ρ

×z
x2−y1
1 pε(z1)

x2−y11{|pε (z1)|>r ′
2}. (7.31)
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From preceding discussion, we decompose Vin
ε = Vblk

ε + Vres
ε , where

Vblk
ε

(
(x1, x2), (y1, y2), t, s

) =
∮

�(t−s,ε)

∮

Cr2(z1)

Fε(z1, z2)

×
2∏

i=1

Dε(zi)
� t−s

J
�zx3−i−yi

i

dzi

2π izi

,

Vres
ε

(
(x1, x2), (y1, y2), t, s

) =
∮

�(t−s,ε)

1{|pε (z1)|>r ′
2}Jε(z1)

×Hε(z1)
� t−s

J
� dz1

2π iz1pε(z1)
. (7.32)

Note that we integrate under the indicator 1{|pε (z1)|>r ′
2}, which arises in the case that

deforming the z2-contour from CR to Cr∗
2 (z1) crosses the pole pε(z1).

We want to perform the steepest descent argument for Vblk
ε and Vres

ε , similar to
what we have done in Section 7.1. More precisely, as t−s → ∞ and ε ↓ 0, �(t−s, ε)

converges to some fixed contour �∗.13 We set

p∗(z) := lim
ε↓0 pε(z) = (I + 1)z − 1

z + (I − 1)
. (7.33)

Recall from (7.20) that

D∗(z) = z
J
I
(J b − (J − 1))z − ((I + J )b − (I + J − 1))

z − (Ib − (I − 1))
.

and set

H∗(z) = D∗(z)D∗(p∗(z)).

Note that

|D∗(z)| = lim
ε↓0 |Dε(z)|, |H∗(z)| = lim

ε↓0 |Hε(z)|.

We require the contour �∗ satisfying the steepest descent condition.

(i)
∣∣D∗(z)

∣∣ < 1, z ∈ �∗\{1}; (ii)
∣∣H∗(z)

∣∣ < 1, z ∈ �∗\{1}. (7.34)

As we see from (SD.C1) that if we take �∗ = C1, (i) holds. However, (ii) does not
hold. In truth, Fig. 4 indicates the region where |D∗(z)| � 1 and |H∗(z)| � 1 for
I = 2 and b = 0.8. We see that C1 lies fully inside |D∗(z)| � 1, but partially outside
|H∗(z)| � 1.

Set M = {∣∣z − 1
I+1

∣
∣ = I

I+1 }, the following lemma says that M the satisfies the
steepest descent condition (7.34).

13We define the distance of two contours to be dist
(
�1, �2

) = supx∈�1,y∈�2

(
d(x, �2) ∨ d(y, �1)

)
. We

say a sequence of contours �n converges to � if limn→∞ dist (�n, �) = 0.
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Fig. 4 We choose b = 0.8 and I = 2. The figures on the left and right show respectively the region where∣∣D∗(z)
∣∣ � 1 and

∣∣H∗(z)
∣∣ � 1, which is filled with gray color. The unit circle (with blue color) is drawn

for comparison

Lemma 7.5 We have

|D∗(z)| < 1, z ∈ M\{1}, |H∗(z)| < 1, z ∈ M\{1}. (SDM)

Proof Parametrize M by z(θ) = 1
I+1 + I

I+1e
iθ , θ ∈ (−π, π ], we compute

|D∗(z(θ))|2 � |z(θ)| 2JI
∣
∣∣
∣
(Jb − (J − 1))z(θ) − ((I + J )b − (I + J − 1))

z(θ) − (Ib − (I − 1))

∣
∣∣
∣

2

�
∣∣
∣
∣
(Jb − (J − 1))z(θ) − ((I + J )b − (I + J − 1))

z(θ) − (Ib − (I − 1))

∣∣
∣
∣

2

=
∣
∣
∣∣
(Jb − (J − 1))( 1

I+1 + I
I+1e

iθ ) − ((I + J )b − (I + J − 1))
I

I+1 + I
I+1e

iθ − (Ib − (I − 1))

∣
∣
∣∣

2

= 1 − 2I 2J (1 − b)((I + J + 1)b − (I + J − 1))(1 − cos θ)
∣
∣ 1
I+1 + I

I+1e
iθ − (Ib − (I − 1))

∣
∣2(1 + I )2

< 1,

θ ∈ (−π, π ]\{0}.

where in the first line we used the fact |z(θ)| � 1 and in the last line we used
I+J−2
I+J−1 < b < 1, note that when I � 2 and J � 1, we have

b � I + J − 2

I + J − 1
>

I + J − 1

I + J + 1
,

which concludes the last inequality.
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For H∗(z), note that

H∗(z) = z
J
I
(bJ − (J − 1))z − ((I + J )b − (I + J − 1))

z − (Ib − (I − 1))

p∗(z)
J
I
(bJ − (J − 1))p∗(z) − ((I + J )b − (I + J − 1))

p∗(z) − (Ib − (I − 1))

= (
zp∗(z)

) J
I
(bJ − (J − 1))z − ((I + J )b − (I + J − 1))

z − (Ib − (I − 1))

· (bJ − (J − 1))p∗(z) − ((I + J )b − (I + J − 1))

p∗(z) − (Ib − (I − 1))

A crucial observation is that
∣∣z − 1

I+1

∣∣ = I
I+1 implies

∣∣zp∗(z)
∣∣ = ∣∣z

(I + 1)z − 1

z + (I − 1)

∣∣ = ∣∣ Iz

z + (I − 1)

∣∣ = 1.

which can be verified by inserting z(θ) = 1
I+1 + I

I+1e
iθ . Consequently, we see that

∣
∣H∗(z(θ))

∣
∣2 =

∣
∣
∣∣
bz(θ) − (I + 1)b − 1

z(θ) − (Ib − (I − 1))
· bp∗(z(θ)) − ((I + 1)b − I )

p∗(z(θ)) − (Ib − (I − 1))

∣
∣
∣∣

2

= ∣
∣I + J − (I + J + 1)b + (Jb − (J − 1))eiθ

I − (I + 1)b + eiθ

· (I + J )b − (I + J − 1) + ((1 − J )b + J − 2)eiθ

Ib − (I − 1) + (b − 2)eiθ

∣
∣
∣∣

2

= 1 + −4(b − 1)J (2 − J − I + b(J + I ))(cos θ − 1)(aJ − bJ cos θ)
∣
∣(b − 2)eiθ + (1 + (b − 1)I )

∣
∣2
∣
∣eiθ − (b + (b − 1)I )

∣
∣2

(7.35)

where

aJ = (J 2 + J I)(1 − b)2 + 2 + (2b − 2)J + (b2 − 1)I + (b − 1)2I 2

bJ = (J 2 + J I)(1 − b)2 + (2b − 2)J + (1 + 2b − b2) + (−3 + 4b − b2)I

We claim that |bJ | < aJ , which implies aJ − bJ cos θ > 0. This claim is justified by
showing

aJ + bJ = (2J 2 + 2J I + I 2)(1 − b)2 + (4b − 4)(I + J ) + 3 + 2b − b2

= (J 2 − 1)(1 − b)2 + ((J + I )(b − 1) + 2)2 > 0,

aJ − bJ = (b − 1)2I 2 + 2(b − 1)2I + (b − 1)2 = (b − 1)2(I + 1)2 > 0.

Therefore, by I+J−2
I+J−1 < b < 1 and (7.35)

|H∗(z(θ))| < 1, θ ∈ (−π, π ]\{0},
which concludes our proof.

We need to consider the following modification ofM

M(u) := ∂
({z : |z − 1

I + 1
| = I

I + 1
+ u} ∩ {|z| � 1}),
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where u is some positive real number.

Lemma 7.6 There exists δ > 0 such that for all 0 < u < δ, one has

|D∗(z)| < 1, z ∈ M(u)\{1},
|H∗(z)| < 1, z ∈ M(u)\{1}. (SDM(u))

Proof The proof of this lemma uses similar techniques which appear in [15, Lemma
6.4]. By straightforward computation, one finds that

D∗(1) = 1; D′∗(1) = 0; D′′∗(1) = JV∗.
H∗(1) = 1; H′∗(1) = 0; H′′∗(1) = 2JV∗.

Here, V∗ is given by (1.12). We taylor expandD∗(z) and H∗(z) around z = 1 and get

D∗(z) = 1 + 1

2
JV∗(z − 1)2 + O(|z − 1|3),

H∗(z) = 1 + JV∗(z − 1)2 + O(|z − 1|3).
Notice that in the vertical direction where z − 1 ∈ iR, 1

2 (z − 1)2 is negative. This
implies that

|D∗(z)| < 1 z ∈ A\{1}; |H∗(z)| < 1 z ∈ A\{1}. (7.36)

where A is a hourglass region centered at one, A = {z : z = 1 + veiφ, |φ −
π
2 | < φ0, |ν| < ν0} with ν0, φ0 > 0 fixed. For z ∈ M(u)\A, due to
limu↓0 dist (M(u)\A,M\A) = 0 and Lemma 7.5, we find that there exists a small
δ, such that for 0 < u < δ

sup
z∈M(u)\A

|D∗(z)| < 1, sup
z∈M(u)\A

|H∗(z)| < 1.

Combining this with (7.36) concludes the proof of Lemma 7.6.

We fix a constant 0 < u∗ < δ ∧ 1
4I , and set M′ := M(u∗). From our discussion

above, M′ is admissible and satisfies (SDM(u)).
To prove Proposition 7.3, we need to choose our contour such that it controls both

Vblk
ε and Vres

ε . The choice will depend on the sign of x2 − y1 and x1 − y2. We need
to discuss separately for each of the following cases

(i): (+−) case: x2 − y1 � 0 and x1 − y2 � 0,

(ii): (−−) case: x2 − y1 � 0 and x1 − y2 � 0,

(iii): (++) case: x2 − y1 � 0 and x1 − y2 � 0.

Note that we don’t need to consider the case where x2 − y1 < 0 and x1 − y2 < 0,
since it contradicts our condition x1 � x2 and y1 � y2.
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7.3 Estimate of Vinε , the (+−) case

In this case we shrink the z1-contour from CR to

M(t − s, −β) := {z1 : ∣∣z1 − 1

I + 1

∣∣ = I

I + 1
− β√

t − s + 1
}.

It is clear that for t − s large enough,M(t − s, −β) is admissible. Consequently, we
have

Vin
ε

(
(x1, x2), (y1, y2), t, s

) = Vblk
ε

(
(x1, x2), (y1, y2), t, s

)+Vres
ε

(
(x1, x2), (y1, y2), t, s

)
,

where

Vblk
ε

(
(x1, x2), (y1, y2), t, s

) =
∮

Cr∗2 (z1)

∮

M(t−s,−β)

Fε(z1, z2)

2∏

i=1

Dε(zi)
� t−s

J
�Rε(zi, t, s)z

x3−i−yi

i

dzi

2π izi

, (7.37)

Vres
ε

(
(x1, x2), (y1, y2), t, s

) =
∮

M(t−s,−β)

1{|pε (z1)|>r ′
2}Jε(z1)Hε(z1)

� t−s
J

�

×Rε(z1, t, s)Rε(pε(z1), t, s)
dz1

2π iz1pε(z1)
.

(7.38)

Parametrizing z1(θ1) = 1
I+1 + (

I
I+1 − β√

t−s+1

)
eiθ1 , we need the following lemma.

Lemma 7.7 There exists positive C(β, T ), C such that

|Dε(z(θ))|t−s � C(β, T )e−C(t−s+1)θ2; |Hε(z(θ))|t−s � C(β, T )e−C(t−s+1)θ2

with z(θ) = 1

I + 1
+ ( I

I + 1
− β√

t − s + 1

)
eiθ

for ε > 0 small enough and t − s � ε−2T large enough.

Proof Similar to the proof of Lemma 7.4, it suffices to show there exists positive
constants C(β, T ), C such that

Re logDε(z(θ)) � C(β, T )

t − s + 1
− Cθ2; Re logHε(z(θ)) � C(β, T )

t − s + 1
− Cθ2.

(7.39)
We prove the lemma for (θ = 0), (θ small) and (θ large) respectively

• (θ = 0) : ReDε(z(0)),ReHε(z(0)) � C(β,T )
t−s+1 .• (θ small): There exists ζ > 0 and constants C(β, T ) and C > 0 such that (7.39)

holds for |θ | � ζ .
• (θ large): There exists δ > 0 such that

∣
∣Dε(z(θ))

∣
∣,
∣
∣Hε(z(θ))

∣
∣ < 1 − δ for

|θ | > ζ .
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We consider the first two bullet points (θ = 0) and (θ small). The analysis of (θ =
0) and (θ small) case for Dε is similar to Lemma 7.4, we do not repeat here. For
Hε(z) = Dε(z)Dε(pε(z)), by straightforward calculation,

Hε(1) = Dε(pε(1)),

H′
ε(1) = D′

ε(pε(1))p
′
ε(1),

lim
ε↓0 H

′′
ε (1) = 2JV∗. (7.40)

For the first equation above, we taylor expandDε(z) at z = 1 and according to (7.44),

Hε(1) = 1+1

2
D′′

ε (1)(pε(1)−1)2+O
(
(pε(1)−1)3

) = 1+JV∗(ρI − ρ2)2

2I 2
ε2+O(ε

5
2 ).

(7.41)
For H′

ε(1) = D′
ε(pε(1))p′

ε(1), taylor expanding D′
ε(z) around z = 1, according

to (7.44),

D′
ε(pε(1)) = D′

ε(1)+D′′
ε (1)(pε(1)−1)+O(pε(1)−1)2 = JV∗(ρI − ρ2)

2I
ε+O(ε

3
2 ).

Combining this with p′
ε(1) = 1 + O(ε

1
2 ) yields

H′
ε(1) = JV∗(ρI − ρ2)

2I
ε + O(ε

3
2 ). (7.42)

Using (7.41), (7.42) and (7.40), we get

(logHε)(1) = JV∗(ρI − ρ2)2

2I 2
ε2 + O(ε

5
2 ),

(logHε)
′(1) = JV∗(ρI − ρ2)

2I
ε + O(ε

3
2 ),

lim
ε↓0, (logHε)

′′(1) = 2JV∗. (7.43)

Moreover, straightforward calculation gives |(logHε)
′′′(z)| � C for z ∈ O (which is

a small neighborhood of 1). Thereby, by Taylor expansion we find that

logHε(z(0)) = logHε(1) + (logHε)
′(1)(z(0) − 1) + (logHε)

′′(1)(z(0) − 1)2

+O((z(0) − 1)3).

Using (7.43), z(0) = 1− β√
t−s+1

and ε2(t − s) � T , we see that there exists C(β, T )

such that for t − s large and ε small,

logHε(z(0)) �
C(β, T )

t − s + 1
,

which gives the first bullet point.
For (θ small), we readily calculate

∂θ (logHε(z(θ)))
∣
∣
θ=0 ∈ iR,

lim
ε↓0,t−s→∞ ∂2θ (logHε(z(θ)))

∣
∣
θ=0 = − 2I 2JV∗

(I + 1)2
,

∣∣∂3θ (logHε(z(θ)))
∣∣ � C, for |θ | � ζ .
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Thus, via Taylor expansion, we find that for |θ | � ζ ,

Re logHε(z(θ)) � Re logHε(z(0)) − I 2JV∗
2(I + 1)2

θ2 � C(β, T )

t − s + 1
− I 2JV∗

2(I + 1)2
θ2,

which conclude the second bulletin point.
For (θ large), recall z(θ) = 1

I+1 + (
I

I+1 − β√
t−s+1

)
eiθ , we notice that

limε↓0,t−s→∞
∣
∣Dε(z(θ))

∣
∣ = ∣

∣D∗( 1
I+1 + I

I+1e
iθ )

∣
∣, uniformly for θ ∈ (−π, π ].

limε↓0,t−s→∞
∣
∣Hε(z(θ))

∣
∣ = ∣

∣H∗( 1
I+1 + I

I+1e
iθ )

∣
∣, uniformly for θ ∈ (−π, π ].

Thanks to Lemma 7.5, there exists δ > 0 such that for t − s large enough and ε > 0
small enough, ∣∣Dε(z(θ))

∣∣,
∣∣Hε(z(θ))

∣∣ < 1 − δ for |θ | > ζ,

which completes our proof.

For Vres
ε (7.38), we show that the indicator 1{pε (z)>r ′

2} prohibits θ to be too small.

Lemma 7.8 We can choose k2 large enough such that if
∣
∣pε(z(θ))

∣
∣ > r ′

2 with z(θ) =
1

I+1 + (
I

I+1 − β√
t−s+1

)
eiθ , then |θ | � (t − s + 1)− 1

4 .

Proof Note that r ′
2 = u(t − s, 2k2β) � 1 + 2k2β√

t−s+1
, it suffices to show that

∣∣pε(z(θ))
∣∣ > 1 + 2k2β√

t − s + 1
implies |θ | > C(t − s + 1)−

1
4 .

Referring to (7.28), we taylor expand pε(1) around ε = 0

pε(1) = e−I
√

ε(1 − e
√

ε) + (e
√

ε − e−I
√

ε)e−ρ
√

ε

(1 − e(1−I )
√

ε)e−ρ
√

ε − (1 − e
√

ε)e−2ρ
√

ε
= 1 + ρI − ρ2

I
ε + O(ε

3
2 ).

(7.44)
We highlight that there is no

√
ε term in the expansion, which is important for our

proof.
We taylor expand pε(z) at z = 1. Using (7.44), z(0) = 1 − β√

t−s+1
and

limε↓0 p′
ε(1) = 1, we find that for t − s large enough and ε small enough,

pε(z(0))=pε(1)+p′
ε(1)(z(0)−1)+O

(
z(0)−1

)2�1+2(ρI − ρ2)

I
ε�1+ C√

t−s+1
.

(7.45)
In the last inequality, we used the condition t − s ∈ [0, ε−2T ]. In addition, it is
straightforward to see that d

dθ
|pε(z(θ))|∣∣

θ=0 = 0 and there exists ζ, C′ > 0 such that
∣
∣ d2

dθ2
|pε(z(θ))|∣∣ � C′ for |θ | � ζ . Consequently, via Taylor expansion, for |θ | � ζ ,

∣
∣pε(z(θ))

∣
∣ �

∣
∣pε(z(0))

∣
∣ + C′θ2

2
� 1 + C√

t − s + 1
+ C′θ2

2
.
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Consequently, we have that when |θ | � ζ ,

∣∣pε(z(θ))
∣∣ > 1 + 2k2β√

t − s + 1
implies 1 + C√

t − s + 1
+ C′θ2

2
� 1 + 2k2β√

t − s + 1

By choosing k2 large enough, we see that |θ | > (t − s + 1)−1/4.

We are ready to prove Theorem 7.3 for (+−) case. As Vin
ε = Vblk

ε + Vres
ε ,

it is enough to bound respectively Vblk
ε and Vres

ε . We begin with Vblk
ε (7.37). The

proof consists a sequence of bounds on terms appearing in the integrand (7.37). We
parametrize by z1(θ1) = 1

I+1 + (
I

I+1 − β√
t−s+1

)
eiθ1 and z2(θ2) = r∗(z1)eiθ .

(Vblk
ε , z

x2−y1
1 z

x1−y2
2 ): Show that |zx2−y1

1 z
x1−y2
2 | � Ce

− β√
t−s+1

(|x1−y2|+|x2−y1|).
Observe that |z1(θ1)| = ∣

∣ 1
I+1 + (

I
I+1 − β√

t−s+1

)
eiθ1

∣
∣ reaches its maximum at θ1 = 0,

hence

|z1(θ1)| � |z1(0)| = 1 − β√
t − s + 1

� e
− β√

t−s+1 ,

which gives |z1|x2−y1 � e
− β√

t−s+1
|x2−y1|. By |z2| � u(t−s, β), we deduce |z2|x1−y2 �

e
− β√

t−s+1
|x1−y2|.

(Vblk
ε , 1

zi
): Show that | 1

zi
| � C.

Clearly, 1
|zi | is bounded for z1 ∈ M(t − s, −β) and z2 ∈ Cr∗(z1).

(Vblk
ε , Fε(z1, z2)): Show that

∣
∣Fε(z1, z2)

∣
∣ � C + C

√
t − s + 1(|θ1| + |θ2|).

To justify this claim, write

Fε(z1, z2) = qν − ν + (ν − q)q−ρz2 + (1 − qν)q−ρz1 + (q − 1)q−2ρz1z2

((q − 1)q−2ρz1 + (1 − qν)q−ρ)(z2 − pε(z1))

= 1 + q−ρ(1 + q)(ν − 1)

(q − 1)q−2ρz1 + (1 − qν)q−ρ
· (z2 − z1) · 1

z2 − pε(z1)
.

(7.46)

Let us bound each factor on the RHS of (7.46). Referring to (7.30), we know that
1

|z2−pε (z1)| � C
√

t − s + 1. Furthermore, we note that

z2 − z1 = eir
∗
2 (z1)θ2 − ( 1

I + 1
+ (

I

I + 1
− β√

t − s + 1
)eiθ1

)

= eir
∗
2 (z1)θ2 − 1 − ( I

I + 1
− β√

t − s + 1

)
(eiθ1 − 1) + β√

t − s + 1
,

which implies |z2 − z1| � C
( 1√

t−s+1
+ |θ1| + |θ2|

)
.

In addition, we observe that

lim
ε↓0

q−ρ(1 + q)(ν − 1)

(q − 1)q−2ρz1 + (1 − qν)q−ρ
= − 2I

z1 + I − 1
.

Thus, | q−ρ(1+q)(ν−1)
(q−1)q−2ρz1+(1−qν)q−ρ | is uniformly bound overM(t − s, −β). Incorporating

the bound for each factor on the RHS of (7.46) gives the desired bound.
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(Vblk
ε , Rε(zi, t, s)): Show that |Rε(zi, t, s)| � C.

This is proved using the same reasoning for (7.17).
(Vblk

ε , Dε(zi)
� t−s

J
�): Show that |Dε(zi(θi))|� t−s

J
� � C(β, T )e−C(t−s+1)θ2i .

The result Dε(z1(θ1))|� t−s
J

� � C(β, T )e−C(t−s+1)θ21 directly follows from Lemma
7.7. For |Dε(z2(θ2))|� t−s

J
�, note that either z2(θ2) = u(t, k2β)eiθ2 or u(t, 3k2β)eiθ2

(depending on the choice of z1). Lemma 7.4 implies |Dε(z2(θ2))|� t−s
J

� �
C(β, T )e−C(t−s+1)θ22 .

Via change of variable z1 = z1(θ1) and z2 = z2(θ2) and incorporating the
preceding bounds, we arrive at

∣
∣Vblk

ε

(
(x1, x2), (y1, y2), t, s

)∣∣ � C(β, T )e
− β√

t−s+1
(|x2−y1|+|x1−y2|)

×
∫ π

−π

∫ π

−π

(1 + √
t − s + 1(|θ1| + |θ2|))

×e−C(t−s+1)(θ21+θ22 )dθ1dθ2.

Applying change of variable θi → 1√
t−s+1

θi , we conclude

|Vblk
ε

(
(x1, x2), (y1, y2), t, s

)| � C(β, T )

t − s + 1
e
− β√

t−s+1
(|x2−y1|+|x1−y2|). (7.47)

We turn to study Vres
ε in (7.38). The proof consists of bounds on terms involved in the

integral (7.38). In the following we parametrize z1(θ1) = 1
I+1 + (

I
I+1 − β√

t−s+1

)
eiθ1 .

(Vres
ε , 1

z1pε (z1)
) Show that 1

|z1pε (z1)| � C.

By limε↓0 pε(z1) = (I+1)z1−1
z1+(I−1) , we deduce that

1
|z1pε (z1)| � C for z1 ∈ M(t − s, −β).

(Vres
ε , Rε(z1, t, s)Rε(pε(z1), t, s)): Show that |Rε(z1, t, s)Rε(pε(z1), t, s)| �

C.
By (Vblk

ε ,Rε(zi, t, s)), we see that |Rε(z1, t, s)| � C for z1 ∈ M(t − s, −β). We
are left to show for t − s large and ε small,

|Rε(pε(z1), t, s)| � C, z1 ∈ M(t − s, −β). (7.48)

Recall from (7.14) that when ε > 0 is small enough, all the singularity ofRε(z, t, s)

belongs to the interval [0, �] for some � < 1. As limε↓0 pε(z) = p∗(z), it suffices
to show that

|p∗(z1)| � 1, z1 ∈ M.

To justify this, we parametrize by z1(θ) = 1
I+1 + I

I+1e
iθ ∈ M,

|p∗(z1)|2 = (I + 1)2

I 2 + 1 + 2I cos θ
� 1.

Hence, we conclude (7.48).
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(Vres
ε , Jε(z1)): Show that |Jε(z1)| � Ce

− β√
t−s+1

(|x2−y1|+|x1−y2|).
Referring to (7.31),

Jε(z1) = qν − ν + (ν − q)q−ρpε(z1) + (1 − qν)q−ρz1 + (q − 1)q−2ρz1pε(z1)

(q − 1)q−2ρz1 + (1 − qν)q−ρ

×z
x2−y1
1 pε(z1)

x2−y11{|pε (z1)|>r ′
2}.

Let us first bound z
x2−y1
1 pε(z1)

x1−y21{|pε (z1)|>r ′
2}. We know from the discus-

sion in (Vblk
ε , z

x2−y1
1 z

x1−y2
2 ) that |z1| � e

− β√
t−s+1 . It is straightforward that

∣
∣pε(z1)

x1−y21{|pε (z1)|>r ′
2}
∣
∣ � e

− β√
t−s+1

|x1−y2|, which implies

|zx2−y1
1 pε(z1)

x1−y2 | � e
− β√

t−s+1
(|x2−y1|+|x1−y2|). (7.49)

In addition, one can compute

lim
ε↓0

qν − ν + (ν − q)q−ρpε(z1) + (1 − qν)q−ρz1 + (q − 1)q−2ρz1pε(z1)

(q − 1)q−2ρz1 + (1 − qν)q−ρ

= 1 − (1 + I )p∗(z) + (I − 1)z + zp∗(z)
z + I − 1

,

recall p∗(z1) = (I+1)z1−1
z1+(I−1) . This implies that

∣
∣qν − ν + (ν − q)q−ρpε(z1) + (1 − qν)q−ρz1 + (q − 1)q−2ρz1pε(z1)

(q − 1)q−2ρz1 + (1 − qν)q−ρ

∣
∣

� C, z1 ∈ M(t − s, −β). (7.50)

Combining (7.49) and (7.50) yields

|Jε(z1)| � Ce
− β√

t−s+1
(|x2−y1|+|x1−y2|).

(Vres
ε , Hε(z1(θ1))

� t−s
J

�): Show that |Hε(z1(θ1))|� t−s
J

� � C(β, T )e−C(t−s+1)θ21 .
This directly follows from Lemma 7.7.
Consequently, we find that

|Vres
ε

(
(x1, x2), (y1, y2), t, s

)|
� C

∮

M(t−s,−β)

1{|pε (z1(θ1))|>r ′
2}|Jε(z1(θ1))||Hε(z1(θ1))|� t−s

J
� dθ1

|pε(z1(θ1))| ,

� C(β, T )e
− β√

t−s+1
(|x2−y1|+|x1−y2|)

∫ π

−π

1{pε (z1(θ1))>r ′
2}e

−C(t−s+1)θ21 dθ1,

� C(β, T )e
− β√

t−s+1
(|x2−y1|+|x1−y2|)

∫

|θ1|>(t−s+1)−
1
4

e−C(t−s+1)θ21 dθ1,
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where the last inequality is due to Lemma 7.8. Via change of variable θ1 → θ1√
t−s+1

,
we get

∫

|θ1|>(t−s+1)−
1
4

e−C(t−s+1)θ21 dθ1 �
∫

|θ1|>(t−s+1)
1
2

e−Cθ21 dθ1 �
e−C(t−s+1)

√
t − s + 1

� C

t − s + 1
.

For the second inequality above, we used the fact
∫ ∞
b

e−x2dx � C
b
e−b2 . Thereby,

|Vres
ε

(
(x1, x2), (y1, y2), t, s

)| � C(β, T )

t − s + 1
e
− β√

t−s+1
(|x2−y1|+|x1−y2|).

Combining this with the upper bound over Vblk
ε (7.47) concludes Theorem 7.3

part (a).
For the gradient, note that applying ∇xi

or ∇yi
to (7.37) and (7.38) will gives

an additional z±
i − 1 in the integrand of Vblk

ε and Vres
ε , we bound |zi(θi) − 1| �

C( 1√
t−s+1

+ |θi |) and perform the change of variable θi → 1√
t−s+1

θi produces an

extra factor of 1√
t−s+1

. Similarly, applying ∇x1,x2 will produce an additional factor

(z1(θ1) − 1)(z2(θ2) − 1). We bound

|z1(θ1) − 1| · |z2(θ2) − 1| � C
( 1√

t − s + 1
+ |θ1|

) · ( 1√
t − s + 1

+ |θ2|
)
,

performing change of variable θi → 1√
t−s+1

θi produces an extra factor of 1
t−s+1 .

This completes the proof of Theorem 7.3 (b), (c).

7.4 Estimate of Vinε , the (−−) Case

We turn to prove Theorem 7.1 when x2 − y1 � 0 and x1 − y2 � 0. This case is more
involved than the previous one. One stumbling block is that we prefer to deform the
z1-contour to be Cu(t−s,β) to extract the spatial exponential decay. On the other hand,
as depicted in Fig. 4, the unit circle does not satisfy the steepest descent condition for
Hε(z). We resolve this issue by first shrinking the z1-contour to M′(t − s, β), then
for Vblk

ε , we re-deform the z1-contour fromM′(t − s, β) to Cu(t−s,β).
We define

M′(t − s, β) = ∂

{
{|z − 1

I + 1
| � I

I + 1
+ u∗} ∩ {|z| � u(t − s, β)}

}
,

recall u∗ is some fix constant which belongs to (0, δ∧ 1
4I ). SinceM′(t−s, β) → M′

as t − s → ∞, it is clear that for t − s large enough, M′(t − s, β) is admis-
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sible. Note that the parametrization of M′(t − s, β) is given by the right part of
Fig. 5.

We decompose Vin
ε = Vblk

ε + Vres
ε ,

Vblk
ε

(
(x1, x2), (y1, y2), t, s

) =
∮

M′(t−s,β)

∮

Cr∗2 (z1)

Fε(z1, z2)

×
2∏

i=1

Dε(zi)
� t−s

J
�Rε(zi, t, s)z

x3−i−yi

i

dzi

2π izi

,

Vres
ε

(
(x1, x2), (y1, y2), t, s

) =
∮

M′(t−s,β)

1{|pε (z1)|>r ′
2}Jε(z1)Hε(z1)

� t−s
J

�

×Rε(z1,t,s)Rε(pε(z1),t,s)
dz1

2π iz1pε(z1)
. (7.51)

Let us studyVblk
ε in the first place. As we mention at the beginning, when x2−y1 � 0,

z1 does not favor the contour M′(t − s, β) to extract spatial decay. We prove in the
following that we can re-deform the z1-contour fromM′(t − s, β) to Cu(t−s,β).

Lemma 7.9 For t − s large enough and ε small enough,

∮

M′(t−s,β)

∮

Cr∗2 (z1)

Fε(z1, z2)

2∏

i=1

Dε(zi)
� t−s

J
�Rε(zi, t, s)z

x3−i−yi

i

dzi

2π izi

=
∮

Cu(t−s,β)

∮

Cr∗2 (z1)

Fε(z1, z2)

2∏

i=1

Dε(zi)
� t−s

J
�Rε(zi, t, s)z

x3−i−yi

i

dzi

2π izi

.

Proof The contours M′(t − s, β) and Cu(t−s,β) share a common part �(t − s) :=
M′(t − s, β) ∩ Cu(t−s,β). We denote by �1(t − s) := M′(t − s, β)\�(t − s) and

Fig. 5 The contour M′(t − s, β) and its parametrization
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�2(t − s) := Cu(t−s,β)\�(t − s). Decompose the contourM′(t − s, β) = �(t − s)∪
�1(t − s), Cu(t−s,β) = �(t − s) ∪ �2(t − s), it suffices to prove

∮

�1(t−s)

∮

Cr∗2 (z1)

Fε(z1, z2)

2∏

i=1

Dε(zi)
� t−s

J
�Rε(zi, t, s)z

x3−i−yi

i

dzi

2π izi

=
∮

�2(t−s)

∮

Cr∗2 (z1)

Fε(z1, z2)

2∏

i=1

Dε(zi)
� t−s

J
�Rε(zi,t,s)z

x3−i−yi

i

dzi

2π izi

. (7.52)

To prove the above equation, we first claim that for ε small enough and t −s � ε−2T

large enough,

r∗
2 (z1) = u(t − s, k2β), ∀ z1 ∈ �1(t − s) ∪ �2(t − s) (7.53)

That is to say, the z2-contour is always Cu(t−s,k2β), which does not depend on the
choice of z1.

To justify this claim, we need to prove for ε small enough and t − s large enough

|pε(z1)| > u(t − s, 2k2β).

We denote by �∗ = M′ ∩ C1, �∗
1 = M′\�∗ and �∗

2 = C1\�∗. Note that as
t − s → ∞ and ε ↓ 0,

�1(t−s, β) → �∗
1, �2(t−s, β) → �∗

2, pε(z1) → p∗(z1), u(t−s, 2k2β) → 1.

Therefore, it suffices to consider the limit case and show that there exists δ > 0 s.t.

|p∗(z1)| =
∣
∣
∣∣
(I + 1)z1 − 1

z1 + (I − 1)

∣
∣
∣∣ > 1 + δ, z1 ∈ �∗

1 ∪ �∗
2.

If z1 ∈ �∗
1, we parametrize z1(θ) = 1

I+1 + I
I+1e

iθ , where |θ | � ζ for some positive
constant ζ . We readily compute

|p∗(z1(θ))|2 = (I + 1)2

I 2 + 1 + 2I cos θ
� (I + 1)2

I 2 + 1 + 2I cos ζ
> 1.

If z1 ∈ �∗
2, we parametrize z1(θ) = eiθ where |θ | � ζ ′ for some positive constant ζ ′.

|p∗(z1)|2 = (I + 1)2 + 1 − 2(I + 1) cos θ

(I − 1)2 + 1 + 2(I − 1) cos θ
� (I + 1)2 + 1 − 2(I + 1) cos ζ ′

(I − 1)2 + 1 + 2(I − 1) cos ζ ′ > 1,

where the first inequality above is due to the fact that (I+1)2+1−2(I+1) cos θ

(I−1)2+1+2(I−1) cos θ
increases

as |θ | ∈ [0, π ] increases.
Having shown (7.53), by Fubini’s theorem, the desired identity (7.52) turns into

∮

Cu(t−s,k2β)

∮

�1(t−s)

Fε(z1, z2)

2∏

i=1

Dε(zi)
� t−s

J
�Rε(zi, t, s)z

x3−i−yi

i

dzi

2π izi

=
∮

Cu(t−s,k2β)

∮

�2(t−s)

Fε(z1, z2)

2∏

i=1

Dε(zi)
� t−s

J
�Rε(zi, t, s)z

x3−i−yi

i

dzi

2π izi

.
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In order to justify the identity above, it is sufficient to show that for all z2 ∈
Cu(t−s,k2β),

∮

�1(t−s)

Fε(z1, z2)

2∏

i=1

Dε(zi)
� t−s

J
�Rε(zi, t, s)z

x3−i−yi

i

dzi

2π izi

=
∮

�2(t−s)

Fε(z1, z2)

2∏

i=1

Dε(zi)
� t−s

J
�Rε(zi, t, s)z

x3−i−yi

i

dzi

2π izi

,

which is equivalent to
∮

∂G(t−s)

Fε(z1, z2)Dε(z1)
� t−s

J
�Rε(z1, t, s)z

x2−y1
1

dz1

2π iz1
= 0, (7.54)

where ∂G(t − s) is the boundary of the crescent G(t − s) = {|z| � u(t − s, β)}\{|z −
1

I+1 | = I
I+1 + u∗}, which is depicted in Fig. 6 (note that ∂G(t − s) = �1(t − s) ∪

�2(t − s)).
We set out proving (7.54). Since ∂G(t−s) is a closed curve, according to Cauchy’s

theorem, we only need to prove that no pole of the integrand (7.54) lies inside of
G(t − s). As we mentioned before, for ε small enough, the pole either equals sε(z2)

or belongs to [0, �]. It is straightforward that [0, �] ∩ G(t − s) = ∅. Hence, we only
need to show that sε(z2) /∈ G(t − s) for all z2 ∈ Cu(t−s,k2β).

Fig. 6 The crescent G(t − s) and its boundary ∂G(t − s)
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We claim that for t − s large enough and ε small enough,

inf
z2∈Cu(t−s,k2β)

Re sε(z2) > sup
z1∈G(t−s)

Re z1.

Note that as t − s → ∞ and ε ↓ 0,

Cu(t−s,k2β) → C1, G(t − s) → G, sε(z) → s∗(z),

where G := {|z| � 1}\{|z − 1
I+1 | = I

I+1 + u∗} and s∗(z) = (I−1)z+1
I+1−z

. Therefore, it
suffices to show that

inf
z2∈C1

Re s∗(z2) > sup
z1∈G

Re z1.

To justify the inequality above, we first observe that supz1∈G Re z1 < 1. In addition,
by setting z2 = eiθ , we see that

Re s∗(eiθ ) = Re
(I − 1)eiθ + 1

I + 1 − eiθ
= 2 + (I 2 − 2) cos θ

(I + 1)2 + 1 − 2(I + 1) cos θ
� 1.

Consequently, we proved sε(z2) /∈ G(t − s), which completes the proof for Lemma
7.9.

In summary, we can write Vin
ε = Vblk

ε + Vres
ε , where

Vblk
ε

(
(x1, x2), (y1, y2), t, s

) =
∮

Cu(t−s,β)

∮

Cr∗2 (z1)

Fε(z1, z2)

2∏

i=1

Dε(zi)
� t−s

J
�Rε(zi,t,s)z

x3−i−yi

i

dzi

2π izi

(7.55)

and Vres
ε is given by (7.51).

Lemma 7.10 For the parametrization z(θ) given in Fig. 5, we have for t −s � ε−2T

large enough and ε > 0 small enough

|Dε(z(θ))|t−s � C(β, T )e−C(t−s+1)θ2 , |Dε(z(θ))|t−s � C(β, T )e−C(t−s+1)θ2,

z(θ) ∈ M′(t − s, β).

Proof Similar to Lemma 7.7, it suffices to show that there exists C(β, T ), C > 0 s.t.

Re logDε(z(θ)) � C(β, T )

t − s + 1
− Cθ2; Re logHε(z(θ)) � C(β, T )

t − s + 1
− Cθ2.

We split out proof for (θ = 0), for (θ small) and for (θ large).

• (θ = 0) : ReDε(z(0)),ReHε(z(0)) � C(β,T )
t−s+1 .• (θ small): There exists ζ > 0 and constants C(β, T ) and C > 0 such that (7.39)

holds for |θ | � ζ .
• (θ large): We can find δ > 0 such that

∣∣Dε(z(θ))
∣∣,
∣∣Hε(z(θ))

∣∣ < 1−δ for |θ | > ζ .

Recall thatM′(t − s, β) is the same as Cu(t−s,β) in a neighborhood of 1, hence z(θ) ∈
Cu(t−s,β) when θ is small. This being the case, the proof for (θ = 0) and (θ small) is
the same as in Lemma 7.7. For (θ large), sinceM′(t −s, β) → M′ when t −s → ∞
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and M′ satisfies the steepest descent condition, we find that for t − s large and ε

small,

|Dε(z(θ))| < 1 − δ, |Hε(z(θ))| < 1 − δ, for |θ | � ζ .

This completes our proof.

We begin to estimate Vblk
ε in (7.55). In what follows, we check a sequence of

bounds on terms involved in the integral (7.55), we parametrize z1 = u(t − s, β)eiθ1

and z2 = r∗
2 (z1)e

iθ2 .

(Vblk
ε , z

x2−y1
1 z

x1−y2
2 ): Show that |zx2−y1

1 z
x1−y2
2 | � e

− β√
t−s+1

(|x2−y1|+|x1−y2|).
Since z1 ∈ Cu(t−s,β) and z2 ∈ Cr∗

2 (z1), we have |zi | � u(t − s, β). Along
with the condition x3−i − yi � 0 for i = 1, 2, we obtain |z1|x2−y1 |z2|x1−y2 �
e
− β√

t−s+1
(|x2−y1|+|x1−y2|).

(Vblk
ε ,Fε(z1, z2)): Show that

∣∣Fε(z1, z2)
∣∣ � C + C

√
t − s + 1(|θ1| + |θ2|). The

argument for this part is the same as in the (+−) case.
(Vblk

ε ,Rε(zi, t, s)): Show that |Rε(zi, t, s)| � C.
The argument is the same as (+−) case (Vblk

ε ,Rε(zi, t, s)).

(Vblk
ε ,Dε(zi)

� t−s
J

�): Show that |Dε(zi(θi))|� t−s
J

� � C(β, T ) exp(−C(t − s +
1)θ2i ).

This is the content of Lemma 7.4.
As a consequence, we perform the same procedure as in the (+−) case and get

|Vblk
ε

(
(x1, x2), (y1, y2), t, s

)| � C(β, T )e
− β√

t−s+1
(|x2−y1|+|x1−y2|)

×
∫ π

−π

∫ π

−π

(1 + √
t − s + 1(|θ1| + |θ2|))

×e−C(t−s+1)(θ21+θ22 )dθ1dθ2

� C(β, T )

t − s + 1
e
− β√

t−s+1
(|x2−y1|+|x1−y2|). (7.56)

We turn our attention to study Vres
ε , the proof similarly consists of bounds on terms

involved in the integral (7.51). In the following we parametrize z1 = z1(θ) ∈ M′(t −
s, β) as depicted in Fig. 5.

(Vres
ε , 1

z1pε (z1)
): Show that | 1

z1pε (z1)
| � C.

This is by the same argument as in the (+−) case.
(Vres

ε ,Rε(z1, t, s)Rε(pε(z1), t, s)): Show that |Rε(z1, t, s)Rε(pε(z1), t, s)| �
C.

The argument for this part is the same as (Vres
ε ,Rε(z1, t, s)Rε(pε(z1), t, s)) in the

(+−) case.
(Vres

ε , Hε(z1)
� t−s

J
�): Show that |Hε(z1)|� t−s

J
� � C(β, T )e−C(t−s+1)θ2 .

This is the content of Lemma 7.4.
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(Vres
ε , Jε(z1)): Show that |Jε(z1)| � Ce

− β
2
√

t−s+1
(|x2−y1|+|x1−y2|).

Similar to the discussion in (Vres
ε , Jε(z1)) for the (+−) case, it is sufficient to show

|zx2−y1
1 pε(z1)

x1−y21{|pε (z1)|>r ′
2}| � e

− β
2
√

t−s+1
(|x1−y2|+|x2−y1|).

Since for z1 ∈ M(t − s, β), |z1| could be much less than 1, we can not bound z1 and
pε(z1) separately. Instead, we write

|zx2−y1
1 pε(z1)

x1−y21{|pε (z1)|>r ′
2}| = |z1pε(z1)|x2−y1 |pε(z1)|x1−x2+y1−y21{|pε (z1)|>r ′

2}.
(7.57)

Note that x1 − x2 + y1 − y2 � 0 (since x1 � y1 and x2 � y2), hence

|pε(z1)|x1−x2+y1−y21{|pε (z1)|>r ′
2} � u(t − s, β)x2−x1+y2−y1 .

We claim that

|z1pε(z1)| > u(t − s, β), z1 ∈ M′(t − s, β). (7.58)

Once this is proved, by (7.57)

|zx2−y1
1 pε(z1)

x1−y21{|pε (z1)|>r ′
2}| � u(t − s, β)x2−y1u(t − s, β)x1−x2+y1−y2

� e
− β

2
√

t−s+1
(|x1−y2|+|x2−y1|).

Let us justify (7.58). We decompose M′(t − s, β) = �(t − s) ∪ �1(t − s), where
�(t − s) = M′(t − s, β) ∩ Cu(t−s,β) and �1(t − s) = M′(t − s, β)\�(t − s). If
z1 ∈ �(t − s) ⊆ Cu(t−s,β), we reparametrize by z1(θ1) = u(t − s, β)eiθ1 . It suffices
to show that

|pε(u(t − s, β)eiθ1)| � 1.

By straightforward computation, one sees that |pε(u(t − s, β)eiθ1)| reaches its
minimum at θ1 = 0. Hence we only need to prove that

pε(u(t − s, β)) � 1.

By (7.44), pε(1) = 1 + ρI−ρ2

I
ε + O(ε

3
2 ). In addition, direct computation yields

limε↓0 p′
ε(1) = 1 and |p′′

ε (z)| uniformly bounded in a small neighborhood of 1.
Consequently, we taylor expand pε(z) at 1,

pε(u(t − s, β)) = pε(1) + p′
ε(1)(u(t − s, β) − 1) + O((u(t − s, β) − 1)2) � 1.

for t − s large and ε small.
If z1 ∈ �1(t − s), which means that |z1 − 1

I+1 | = I
I+1 + u∗. We see that

lim
ε↓0 |z1pε(z1)| = |z1p∗(z1)| = |(I + 1)z1 − 1| · ∣∣ z1

z1 + I − 1

∣
∣

= (I + (I + 1)u∗) · ∣∣ z1

z1 + I − 1

∣∣ (7.59)

We claim that for z1 ∈ �1(t − s),
∣∣ z1
z1+I−1

∣∣ > 1
I
. This could verify by inserting

z1 = 1
I+1 +( I

I+1 +u∗)eiθ into (7.59). A geometric way to prove this inequality is that
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one has | z
z+I−1 | = 1

I
for all z satisfying |z − 1

I+1 | = I
I+1 . If ones increase the radius

of circle |z − 1
I+1 | = I

I+1 } (by u∗), the value of
∣
∣ z
z+I−1

∣
∣ will also increase. Thereby,

lim
ε↓0 |z1pε(z1)| � I + (I + 1)u∗

I
> 1.

This implies when z1 ∈ �(t − s), |z1pε(z1)| > 1 for t − s large and ε small, which
completes the proof of (7.58).

Similar to the proof of Lemma 7.8 in the (+−) case, we find that {|pε(z1(θ))| >

u(t − s, 2k2β)} ⊆ {|θ | > (t − s + 1)− 1
4 }, hence

|Vres
ε

(
(x1, x2), (y1, y2), t, s

)|
� C(β, T )e

− β
2
√

t−s+1
(|x2−y1|+|x1−y2|)

∫ π

−π

1{|pε (z1(θ))|�r ′
2}e

−C(t−s+1)θ2dθ

� C(β, T )e
− β

2
√

t−s+1
(|x2−y1|+|x1−y2|)

∫

|θ |>(t−s+1)−
1
4

e−C(t−s+1)θ2dθ

� C(β, T )

t − s + 1
e
− β

2
√

t−s+1
(|x2−y1|+|x1−y2|) (7.60)

Combining the bounds (7.56) and (7.60) implies Theorem 7.3 (a).
To estimate the gradient, the procedure is similar to in (+−) case, note that apply-

ing ∇xi
or ∇yi

to (7.55) and (7.51) gives an additional z±
i − 1 factor, applying ∇x1,x2

produces an additional factor (z1 − 1)(z2 − 1). By |zi(θi) − 1| � C( 1√
t−s+1

+ |θi |),
we conclude Theorem 7.3 (b), (c).

7.5 Estimate of Vinε , the (++) Case

In this section, we fix k2 = 1 in (7.29). Note that x1 − y2 � 0, the difficulty for this
case is to choose a suitable z1-contour �(t − s, ε) so as to extract the spatial decay
from z

x2−y1
1 pε(z1)

x1−y2 in the integrand Vres
ε (7.32). Let us write

|zx2−y1
1 pε(z1)

x1−y2 | = |z1pε(z1)|x1−y2 |z1|x2−x1+y2−y1 .

We control respectively |z1pε(z1)| and |z1|. We deform the z1-contour to

M′′(t − s, ε, −k1β) = {z1 : |z1pε(z1)| = u(t − s, −k1β)},
where k1 is a positive constant that we will specify later. Note that when I � 2, this
contour can only be implicitly defined (when I = 1 it is a circle). The following
lemma provides a few properties of the contour.

Lemma 7.11 For t − s large enough and ε small enough, given θ ∈ (−π, π ], there
exists a unique positive rε,t−s(θ) such that

|z1pε(z1)| = u(t − s, −k1β), z1(θ) = 1

I + 1
+ rε,t−s(θ)eiθ . (7.61)
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rε,t−s(θ) is infinitely differentiable with r ′
ε,t−s(0) = 0. Moreover, one has uniformly

for θ ∈ (−π, π ],
lim

ε↓0,t−s→∞ rε,t−s(θ) = I
I+1 ,

lim
ε↓0,t−s→∞ r

(n)
ε,t−s(θ) = 0, ∀n ∈ Z�1.

where f (n)(θ) represents the n-th derivative of f (θ).

Proof Let w = t − s, as w → ∞ and ε ↓ 0, the equation |z1pε(z1)| = u(w, −β)

converges to

|z1p∗(z1)| =
∣
∣
∣∣
z1((I + 1)z1 − 1)

z1 + (I − 1)

∣
∣
∣∣ = 1. (7.62)

(note pε(z1) → p∗(z) and u(w, β) → 1). Setting z1 = 1
I+1 + reiθ in (7.62) yields

(I + 1)4r4 + 2(I + 1)3r3 cos θ − 2I 2(I + 1)r cos θ − I 4 = 0. (7.63)

Factorizing the LHS of (7.63) yields
(
(I + 1)2r2 − I 2

)(
(I + 1)2r2 + I 2 + 2(I + 1)r cos θ

) = 0.

Thus, (7.63) permits four root at

r = ± I

I + 1
,
−1 ± i

√
cos θ2 − I 2

I + 1
. (7.64)

We only care about positive root, thus the contour (7.62) can be parametrized by
z1(θ) = 1

I+1 + I
I+1e

iθ .

Similarly, inserting z1 = 1
I+1 + reiθ in (7.61) yields

a0(ε, w)r4 + 2a1(ε, w)r3 cos θ + a2(ε, w)r2 + a3(ε, w)r cos θ + a4(ε, w) = 0,

where {ai(ε, w)}4i=0 are constants depending on ε, w that converge to the coefficient
in (7.63):

lim
ε↓0,w→∞

(
a0(ε, w), a1(ε, w), a2(ε, w), a3(ε, w), a4(ε, w)

)

= (
(I + 1)4, 2(I + 1)3, 0, −2I 2(I + 1), −I 4

)
. (7.65)

Denote by

P(θ, r) = (I + 1)4r4 + 2(I + 1)3r3 cos θ − 2I 2(I + 1)r cos θ − I 4

Pε,w(θ, r) = a0(ε, w)r4 + 2a1(ε, w)r3 cos θ + a2(ε, w)r2

+a3(ε, w)r cos θ + a4(ε, w).

By (7.65), when ε is small and w is large, Pε,w(θ, 0) < 0 and Pε,w(θ, +∞) = +∞.
By continuity, for each θ ∈ (−π, π ], Pε,w(θ, r) = 0 admits a positive root. Since
Pε,w(θ, r) is a perturbation of P(θ, r), as ε ↓ 0 and w → ∞, the roots of Pε,w(θ, r)

converge to those in (7.64), which implies the the positive root of Pε,w(θ) is unique
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for ε small and t large. We denote this unique positive root by rε,w(θ). It is also clear
that for θ ∈ (−π, π ]

lim
ε↓0,w→∞ rε,w(θ) = I

I + 1
uniformly. (7.66)

Moreover, for all θ ∈ [−π, π ], r = I
I+1 is a simple root of P(θ, r) = 0. Hence,

∂
∂r

P (θ, r)
∣∣
r= I

I+1
�= 0, using implicit function theorem shows that for ε small and w

large, rε,t−s(θ) is smooth over (−π, π ]. Furthermore,

r ′
ε,w(0) = −

∂
∂θ

Pε,w(θ, rε,w(0))
∣∣
θ=0

∂
∂r

Pε,w(0, r)
∣
∣
r=rε,w(0)

= −
( − 2a1(ε, w)rε,w(0)3 sin θ + 2I 2(I + 1)rε,w(0) sin θ

)∣∣
θ=0

∂
∂r

Pε,w(0, r)
∣
∣
r=rε,w(0)

= 0.

In addition, by (7.66) and implicit function theorem, uniformly over θ ∈ (−π, π ]
lim

ε↓0,w→∞ r(n)
ε,w(θ) =

( I

I + 1

)(n) = 0,

this completes our proof.

We adopt the parametrization z1(θ1) = 1
I+1+rε,t−s(θ1)e

iθ1 ∈ M′′(t−s, ε, −k1β).
From the preceding lemma, as t − s → ∞ and ε ↓ 0, M′′(t − s, ε, −k1β) → M,
thus the contour M′′(t − s, ε, −k1β) is admissible for ε small and t − s large. As
before, we decompose Vin

ε = Vblk
ε + Vres

ε , where

Vblk
ε

(
(x1, x2), (y1, y2), t, s

)=
∮

M′′(t−s,ε,−k1β)

∮

Cr∗2 (z1)

Fε(z1, z2)

2∏

i=1

Dε(zi)
� t−s

J
�Rε(zi, t, s)z

x3−i−yi

i

dzi

2π izi

, (7.67)

Vres
ε

(
(x1, x2), (y1, y2), t, s

)=
∮

M′′(t−s,ε,−k1β)

1{|pε (z1)|>r ′
2}Jε(z1)Hε(z1)

� t−s
J

�

×Rε(z1, t, s)Rε(pε(z1), t, s)
dz1

2π iz1pε(z1)
. (7.68)

Lemma 7.12 There exists K > 0 (which depends on k1) such that for t − s � ε−2T

large enough and ε > 0 small enough, we have

z1(0) � 1 − Kβ√
t−s+1

,

|z1(θ)| � 1 − k1β
5
√

t−s+1
.

Proof Consider an alternate parametrization z̃1(θ) = r̃ε,t−s(θ)eiθ ∈ M′′(t −
s, ε, −k1β), where the existence and uniqueness of r̃ε,t−s(θ) are confirmed by
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Lemma 7.11. It suffices to show for t − s � ε−2T large enough and ε > 0 small
enough,

r̃ε,t−s(0) � 1− Kβ√
t − s + 1

; |̃rε,t−s(θ)| � 1− k1β
5
√

t − s + 1
, ∀θ ∈ (−π, π ].

(7.69)
We prove (7.69) in two steps.

• First, k1β
5
√

t−s+1
� 1 − r̃ε,t−s(0) � Kβ√

t−s+1
.

• Second, |̃rε,t−s(θ)| � r̃ε,t−s(0) for θ ∈ (−π, π ].
We verify the first bullet point. Note that uniformly in an neighborhood of 1,

lim
ε↓0 pε(z) = p∗(z), lim

ε↓0 p
′
ε(z) = p′∗(z).

Referring to (7.33), d
dz

zp∗(z)
∣∣
z=1 = 2. Thus, there exists δ > 0 such that for ε small

enough and z ∈ (1 − δ, 1 + δ),

|(zpε(z))
′ − 2| <

1

2
. (7.70)

We taylor expand zpε(z) around z = 1,

u(t−s,−k1β) = r̃ε,t−s(0)pε (̃rε,t−s(0))=pε(1) + d

dz
(zpε(z))

∣
∣
∣∣
z=x

· (̃rε,t−s(0)−1),

x ∈ (1 − δ, 1 + δ). (7.71)

Referring to (7.44), we see pε(1) � 1 for ε small enough, which implies

1 � u(t − s, −k1β) � 1 + d

dz
(zpε(z))

∣∣
z=x

· (̃rε,t−s(0) − 1).

Hence, r̃ε,t−s(0) � 1. We have by (7.70) and (7.71)

u(t − s, −k1β) � pε(1) + 5
2 (̃rε,t−s(0) − 1),

u(t − s, −k1β) � pε(1) + 3
2 (̃rε,t−s(0) − 1).

The first inequality yields

1− r̃ε,t−s(0) �
2

5

(
pε(1)−u(t −s, −k1β)

)
� 2

5

(
1−u(t −s, −k1β)

)
� k1β

5
√

t − s + 1
.

which gives the lower bound. The second inequality indicates that (by (7.44))

1 − r̃ε,t−s(0) �
2

3

(
pε(1) − u(t − s, −k1β)

)
� 2

3

(
1 − u(t − s, −k1β)

) + ρI − ρ2

I
ε.

Owing to ε �
√

T
t−s

, we see that 1 − r̃ε,t−s(0) � Kβ√
t−s+1

for constant K large

enough, which concludes the first bullet point.
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We move on proving the second bullet point. We set Fθ(r) = |rpε(re
iθ )|. When ε

small and t − s large, we readily compute (note that r̃ε,t−s(0) is nearly I
I+1 and pε

approximates p∗)

|Fθ (̃rε,t−s(0))|2 = r̃ε,t−s(0)
2|pε (̃rε,t−s(0)e

iθ )|2 = c21 + c22 − 2c1c2 cos θ

d2
1 + d2

2 + 2d1d2 cos θ
,

c1, c2, d1, d2 > 0,

which implies that |Fθ(rε,t−s(0))| reaches its minimum at θ = 0. In other words,
Fθ(rε,t−s(0)) � F0(rε,t−s(0)) = u(t −s, −k1β). In addition, Fθ(0) = 0. By interme-
diate value theorem, for each fixed θ ∈ (−π, π ], the equation Fθ(r) = u(t−s, −k1β)

admits a root r ∈ (0, r̃ε,t−s(0)]. By uniqueness, this root equals r̃ε,t−s(θ), thereby
r̃ε,t−s(θ) � r̃ε,t−s(0) for all θ ∈ (−π, π ].

Lemma 7.13 For k1 large enough, t − s � ε−2T large enough and ε > 0 small
enough, the condition |pε(z(θ))| > r ′

2 with z(θ) = 1
I+1 + rε,t−s(θ)eiθ ∈ M′′(t −

s, ε, β) implies |θ | � (t − s + 1)− 1
4 .

Proof The proof is similar to Lemma 7.8. Since k2 = 1, we have r ′
2 = u(t − s, −2β).

Hence, r ′
2 � 1 − 4β√

t−s+1
. It suffices to show that

|pε(z(θ))| � 1 − 4β√
t − s + 1

⇒ |θ | � (t − s + 1)−
1
4 .

Referring to (7.45), we see that

pε(z(0)) = pε(1) + p′
ε(1)(z(0) − 1) + O

(
z(0) − 1

)2.

By (7.44), we see pε(1) � 1 + C√
t−s+1

for some positive constant C, together with

the fact

z(0) − 1 � −k1β
5
√

t − s + 1
, lim

ε↓0 p
′
ε(1) = 1,

we obtain

pε(z(0)) � 1 + C√
t − s + 1

− k1β
10

√
t − s + 1

.

In addition, by Lemma 7.11, r ′
ε,t−s(0) = 0. Using this, it is straightforward to com-

pute d
dθ

|pε(z(θ))|∣∣
θ=0 = 0 and there exists ζ, C′ > 0 such that

∣
∣ d2

dθ2
|pε(z(θ))|∣∣ � C′

for |θ | < ζ . Consequently, one has by taylor expansion

|pε(z(θ))| � pε(z(0)) + C′θ2 � 1 + 10C − k1β
10

√
t − s + 1

+ C′θ2.

Thereby, we can pick k1 large enough s.t. |pε(z(θ))| � 1 − 4β√
t−s+1

implies |θ | �
(t − s + 1)− 1

4 .
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Lemma 7.14 For t − s large and ε small, there exists positive constants C(β, T ), C

such that

|Dε(z(θ))|t−s � C(β, T )e−C(t−s+1)θ2, |Hε(z(θ))|t−s

� C(β, T )e−C(t−s+1)θ2 with z(θ) = 1

I + 1
+ rε,t−s(θ)eiθ .

Proof Similar to Lemma 7.7, it suffices to show that there exists C(β, T ), C > 0 s.t.

Re logDε(z(θ)) � C(β, T )

t − s + 1
− Cθ2; Re logHε(z(θ)) � C(β, T )

t − s + 1
− Cθ2.

We split out proof for (θ = 0), for (θ small) and for (θ large).

• (θ = 0) : ReDε(z(0)),ReHε(z(0)) � C(β,T )
t−s+1 .• (θ small): There exists ζ > 0 and constants C(β, T ) and C > 0 such that (7.39)

holds for |θ | � ζ .
• (θ large): There exists δ > 0 such that

∣
∣Dε(z(θ))

∣
∣,
∣
∣Hε(z(θ))

∣
∣ < 1 − δ for

|θ | > ζ .

Owing to Lemma 7.12, K√
t−s+1

� 1 − z(0) � k1
5
√

t−s+1
, hence the argument for

(θ = 0) is similar to Lemma 7.4.
For (θ small), using Lemma 7.11, one has

r ′
ε,t−s(0) = 0, lim

ε↓0,t−s→∞ r ′′
ε,t−s(θ) = 0, lim

ε↓0,t−s→∞ r ′′′
ε,t−s(θ) = 0.

Using this, after a tedious but straightforward calculation (recall z(θ) = 1
I+1 +

I
I+1 rε,t−s(θ)),

∂θ (logDε(z(θ)))
∣
∣
θ=0 ∈ iR, ∂θ (logHε(z(θ)))

∣
∣
θ=0 ∈ iR

lim
ε↓0,t−s→∞ ∂2θ (logDε(z(θ)))

∣
∣
θ=0 = − I 2JV∗

(I + 1)2
, lim

ε↓0,t−s→∞ ∂2θ (logHε(z(θ)))
∣
∣
θ=0 = − 2I 2JV∗

(I + 1)2
∣
∣∂3θ (logDε(z(θ)))

∣
∣ � C,

∣
∣∂3θ (logHε(z(θ)))

∣
∣ � C.

The last line holds for all |θ | < ζ where ζ > 0 is a constant. Hereafter, the argument
is same as in Lemma 7.7, we do not repeat it here.

For (θ large), since

lim
ε↓0,t−s→∞ rε,t−s(θ) = I

I + 1
, uniformly for θ ∈ (−π, π ],

we have

lim
ε↓0,t−s→∞Dε(z(θ)) = D∗( 1

I+1 + I
I+1e

iθ ), uniformly over θ ∈ (−π, π ],
lim

ε↓0,t−s→∞Hε(z(θ)) = H∗( 1
I+1 + I

I+1e
iθ ), uniformly over θ ∈ (−π, π ].

By the steepest descent condition (SDM), we conclude (θ large).
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Now we are ready to bound Vblk
ε and Vres

ε . We begin with Vblk
ε given by (7.67).

The proof consists of bounding each terms involved in the integrand (7.67). We
parametrize z1(θ1) = rε,t−s(θ1)e

iθ1 , z2(θ2) = r∗
2 (z1)e

iθ2 .

(Vblk
ε , z

x2−y1
1 z

x1−y2
2 ): Show that |zx2−y1

1 z
x1−y2
2 | � e

− β√
t−s+1

(|x1−y2|+|x2−y1|).

By Lemma 7.12, we see that |z1| � e
− β√

t−s+1 , since r∗
2 (z1) equals

u(t − s, −β) or u(t − s, −3β), we find that |z2| � e
− β√

t−s+1 , which implies

|zx2−y1
1 z

x1−y2
2 | � e

− β√
t−s+1

(|x2−y1|+|x1−y2|).

(Vblk
ε ,Fε(z1, z2)): Show that

∣
∣Fε(z1, z2)

∣
∣ � C + C

√
t − s + 1(|θ1| + |θ2|).

By the argument in (Vblk
ε ,Fε(z1, z2)) in (+−) case. It suffices to show that |z2 −

z1| � C( 1√
t−s+1

+ |θ1| + |θ2|). Note that

|z2(θ2)−z1(θ1)| � |z1(θ1)−1|+|z2(θ2)−1| � |rε,t−s(θ1)e
iθ1 −1|+|r∗(z1)eiθ2 −1|.

(7.72)
By Lemma 7.11 and Lemma 7.12, we know that |rε,t−s(0) − 1| � C√

t−s+1
and

limε↓0,t−s→∞ r ′
ε,t−s(θ) = 0 uniformly for θ ∈ (−π, π ], we see that

|rε,t−s(θ1)e
iθ1 − 1| � |rε,t−s(θ1) − rε,t−s(0)| + |rε,t−s(0) − 1| + |e−iθ1 − 1|

� C(
1√

t − s + 1
+ |θ1|) (7.73)

Since r∗(z1) = u(t − s, β) or r∗(z1) = u(t − s, 3β), we have

|r∗(z1)eiθ2 − 1| � C(
1√

t − s + 1
+ |θ2|) (7.74)

Incorporating the bound (7.73) and (7.74) into the RHS of (7.72), we conclude
|z2(θ2) − z1(θ1)| � C( 1√

t−s+1
+ |θ1| + |θ2|).

(Vblk
ε ,Rε(zi, t, s)): Show that |Rε(zi, t, s)| � C.

This is the same as (+−) case (Vblk
ε ,Rε(zi, t, s)).

(Vblk
ε ,Dε(zi)

� t−s
J

�): Show that |Dε(zi)|� t−s
J

� � C(β, T ) exp(−C(t − s + 1)θ2i ).
This is the content of Lemma 7.14.

Consequently, we perform the same procedure as in the (+−) case and get

|Vblk
ε | � C(β, T )

∫ π

−π

∫ π

−π

(1 + √
t − s + 1(|θ1| + |θ2|))e−C(t−s+1)(θ21+θ22 )dθ1dθ2

� C(β, T )

t − s + 1
e
− β√

t−s+1
(|x2−y1|+|x1−y2|).

Let us move on bounding Vres
ε with integral expression (7.68). We parametrize by

z1(θ) = rε,t−s(θ)eiθ ∈ M′′(t − s, ε, −k1β).
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(Vres
ε , 1

z1pε (z1)
): Show that | 1

z1pε (z1)
| � C.

This is by the same argument as in the (+−) case.

(Vres
ε ,Rε(z1, t, s)Rε(pε(z1), t, s)): Show that |Rε(z1, t, s)Rε(pε(z1), t, s)| �

C.
The argument for this is the same as (Vres

ε ,Rε(z1, t, s)Rε(pε(z1), t, s)) in the
(+−) case.

(Vres
ε , Hε(z1)

� t−s
J

�):Show that |Hε(z1)|� t−s
J

� � C(β, T )e−C(t−s+1)θ2 .
This is the content of Lemma 7.14.

(Vres
ε , Jε(z1)): Show that |Jε(z1)| � Ce

− β
2
√

t−s+1
(|x2−y1|+|x1−y2|.

By the discussion in (Vres
ε , Jε(z1)), It is sufficient to show that

|zx2−y1
1 pε(z1)

x1−y2 | � e
− β

2
√

t−s+1
(|x1−y2|+|x2−y1|). We write

|zx2−y1
1 pε(z1)

x1−y2 | = |z1pε(z1)|x1−y2 |z1|x2−x1+y2−y1

Since z1 ∈ M′′(t−s, ε, −k1β), |z1pε(z1)| = u(t−s, −k1β) � e
− β√

t−s+1 . In addition,

referring to Lemma 7.12, one has |z1| � e
− β√

t−s+1 . Consequently,

|zx2−y1
1 pε(z1)

x1−y2 | � e
− β√

t−s+1
(x1−y2)

e
− β√

t−s+1
(x2−x1+y2−y1) = e

− β√
t−s+1

(x2−y1)

� e
− β

2
√

t−s+1
(|x2−y1|+|x1−y2|).

Thereby, using the same manner as (+−) case,

|Vres
ε | � C(β, T )e

− β
2
√

t−s+1
(|x2−y1|+|x1−y2|)

∫ π

−π

1{|pε (z1(θ))|�r ′
2}e

−C(t−s+1)θ2dθ,

� C(β, T )e
− β

2
√

t−s+1
(|x2−y1|+|x1−y2|)

∫

|θ |>(t−s+1)−
1
4

e− 1
C

(t−s+1)θ2dθ

� C(β, T )

t − s + 1
e
− β

2
√

t−s+1
(|x2−y1|+|x1−y2|).

We conclude Theorem 7.3 (a).
To estimate the gradient, the procedure is similar to in (+−) case, note that apply-

ing∇xi
or∇yi

will give an additional factor z±
i −1, while applying∇x1,x2 will produce

an additional factor (z1−1)(z2−1). By |zi(θi)−1| � C( 1√
t−s+1

+|θi |), we conclude
Theorem 7.3 (b), (c).

8 Proof of Proposition 6.8 via Self-Averaging

In this section, we apply the two Markov dualities in Corollary 3.9 and the estimate
of Vε in Theorem 7.1 to conclude Proposition 6.8. The first step is to expand the term
�1(t, x) and �2(t, x).
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8.1 Expanding�1(t , x) and�2(t , x)

We use Bε(t, x1, . . . , xn) to denote a generic uniformly bounded (random) process,
which may differ from line to line. Define

uε(t, i) :=
∞∑

j=i

pε(t + 1, t, j − με(t)).

Referring to (5.10) for the expression of �1(t, x)

ε− 1
2 �1(t, x) = ε− 1

2 qελε(t)Z(t, x) −
∞∑

i=1

ε− 1
2 pε(t + 1, t, i − με(t))Z(t, x − i),

= ε− 1
2 (qελε(t) − 1)Z(t, x) +

∞∑

i=1

ε− 1
2 pε(t + 1, t, i − με(t))

×(
Z(t, x) − Z(t, x − i)

)
,

= ε− 1
2 (qελε(t) − 1)Z(t, x) +

∞∑

i=1

uε(t, i)
(
ε− 1

2 ∇Z(t, x − i)
)
.

Here, we used the relation Z(t, x) − Z(t, x − i) = ∑i
j=1 ∇Z(t, x − j) and then

changed the order of summation in the last equality.
Likewise, by the expression (5.11) of �2(t, x)

ε− 1
2 �2(t, x) = ε− 1

2 (1 − λε(t))Z(t, x) −
∞∑

i=1

uε(t, i)(ε
− 1

2 ∇Z(t, x − i)).

Using Lemma 5.4, one has ε− 1
2 (qελε(t)−1) = 1− ρ

I
+O(ε

1
2 ) and ε− 1

2 (1−λε(t)) =
ρ
I

+ O(ε
1
2 ). Consequently,

ε− 1
2 �1(t, x) =

(
1 − ρ

I

)
Z(t, x) +

∞∑

i=1

uε(t, i)(ε
− 1

2 ∇Z(t, x − i))

+ε
1
2Bε(t, x)Z(t, x), (8.1)

ε− 1
2 �2(t, x) = ρ

I
Z(t, x) −

∞∑

i=1

uε(t, i)(ε
− 1

2 ∇Z(t, x − i))

+ε
1
2Bε(t, x)Z(t, x). (8.2)
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For x1 � x2 ∈ �(t) and x ∈ �(t), we denote by

Z∇(t, x1, x2) := ε− 1
2 ∇Z(t, x1)Z(t, x2),

Z∇,∇(t, x1, x2) := ε−1∇Z(t, x1)∇Z(t, x2),

Y∇(t, x) :=
∑

i∈Z�1

uε(t, i)Z∇(t, x − i, x), (8.3)

Y∇,∇(t, x) :=
∑

i>j∈Z�1

uε(t, i)uε(t, j)Z∇,∇(t, x − i, x − j), (8.4)

Ỹ(t, x) :=
∞∑

i=1

uε(t, i)
2
(
Z∇,∇(t, x − i, x − i) − ρ(I − ρ)

I
Z(t, x − i)2

)
.

(8.5)

Lemma 8.1 Recall from (6.22) that

τ(t) = ρ(I − ρ)

I 2
· b(I + 2modJ (t) + 1) − (I + 2modJ (t) − 1)

b(I + 2modJ (t)) − (I + 2modJ (t) − 2)
,

we have

ε−1�1(t, x)�2(t, x) − τ(t)Z(t, x)2

=
(
2ρ

I
− 1

)
Y∇(t, x) + 2Y∇,∇(t, x) + Ỹ(t, x) + ε

1
2Bε(t, x)Z(t, x)2.

Proof We name the three terms on the RHS of (8.1) (from left to right) as
A1,Z, A1,∇ , A1,err respectively and those on the RHS of (8.2) as A2,Z , A2,∇ , A2,err.
Multiplying (8.1) by (8.2) gives

ε−1�1(t, x)�2(t, x) = (
A1,Z + A1,∇ + A1,err

) · (A2,Z + A2,∇ + A2,err
)
.

Expanding this product, it is straightforward that

A1,ZA2,Z = ρ

I
(1 − ρ

I
)Z(t, x)2, A1,∇A2,Z + A2,∇A1,Z =

(
2ρ

I
− 1

)
Y∇(t, x),

A1,∇A2,∇ = −Y∇,∇(t, x) −
∞∑

k=1

uε(t, k)2Z∇,∇(t, x − k, x − k).

The sum of the rest of terms equals

A1,ZA2,err + A1,∇A2,err + A1,errA2,Z + A1,errA2,∇ + A1,errA2,err,

= ε
1
2Bε(t, x)Z(t, x)(ε− 1

2 �1(t, x) + ε− 1
2 �2(t, x)) − εBε(t, x)Z(t, x)2

= ε
1
2Bε(t, x)Z(t, x)2.
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Therefore, we find that

ε−1�1(t, x)�2(t, x) = ρ

I
(1 − ρ

I
)Z(t, x)2 + Y∇(t, x) − Y∇,∇(t, x)

−
∞∑

k=1

uε(t, k)2Z∇,∇(t, x − k, x − k) + ε
1
2Bε(t, x)Z(t, x)2.

Thus,

ε−1�1(t, x)�2(t, x) − ρ

I
(1 − ρ

I
)Z(t, x)2

= Y∇(t, x)−Y∇,∇(t, x)−
∞∑

k=1

uε(t, k)2Z∇,∇(t, x−k, x−k)+ε
1
2Bε(t, x)Z(t, x)2.

Adding ρ(I−ρ)
I

∑∞
k=1 uε(t, k)2Z(t, x − k)2 to both sides yields

ε−1�1(t, x)�2(t, x)− ρ

I
(1− ρ

I
)Z(t, x)2 + ρ(I − ρ)

I

∞∑

k=1

uε(t, k)2Z(t, x−k)2

= Y∇(t, x) − Y∇,∇(t, x) −
∞∑

k=1

uε(t, k)2
(

Z∇,∇(t, x − k, x − k)

−ρ(I − ρ)

I
Z(t, x − k)2

)
+ ε

1
2Bε(t, x)Z(t, x)2

= Y∇(t, x) − Y∇,∇(t, x) − Ỹ(t, x) + ε
1
2Bε(t, x)Z(t, x)2. (8.6)

We claim that

∞∑

k=1

uε(t, k)2Z(t, x − k)2 = 1 − b

I (b(I + 2modJ (t)) − (I + 2modJ (t) − 2))
Z(t, x)2

+ε
1
2Bε(t, x)Z(t, x)2. (8.7)

If (8.7) holds, note that

τ(t) = ρ

I
(1 − ρ

I
) − ρ(I − ρ)

I

1 − b

I (b(I + 2modJ (t)) − (I + 2modJ (t) − 2))
.

Replacing the term
∑∞

k=1 uε(t, k)2Z(t, x − k)2 in the LHS of (8.6) by the RHS of
(8.7), we prove Lemma 8.1.

To justify (8.7), we write

∞∑

k=1

uε(t, k)2Z(t, x − k)2 =
∞∑

k=1

uε(t, k)2
(
Z(t, x − k)2 − Z(t, x)2

)

+
∞∑

k=1

uε(t, k)2Z(t, x)2. (8.8)
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Let us analyze the first and second term on the RHS of (8.8) respectively. For the
second term, we compute

uε(t, k) =
∞∑

j=k

pε(t + 1, t, j) = α(t)(1 − q)

1 + α(t)

(
ν + α(t)

1 + α(t)

)k−1

. (8.9)

Here, we used pε(t + 1, t, j) = P(R(t) = j), the expression of which is given in
(5.1). Using the preceding equation, we find that

∞∑

k=1

uε(t, k)2 =
(
1− 1+qα(t)

1+α(t)

)2

1−
(

ν+α(t)
1+α(t)

)2 .

Due to Lemma 5.4,
∞∑

k=1

uε(t, k)2 = 1 − b

I
(
(I + 2modJ (t))b − (I + 2modJ (t) − 2)

) + O(ε
1
2 ).

Thereby, for the second term on the RHS of (8.8),
∞∑

k=1

uε(t, k)2Z(t, x)2 = 1 − b

I (b(I + 2modJ (t)) − (I + 2modJ (t) − 2))
Z(t, x)2

+ε
1
2Bε(t, x)Z(t, x)2 (8.10)

For the first term on the RHS of (8.8), noticing Z(t, x − k) = e−√
ε
∑k

i=1 (̃ηx−i+1(t)−ρ)

Z(t, x) (recall η̃x(t) = ηx(x + μ̂(t))), hence

Z(t, x − k)2 − Z(t, x)2 = Z(t, x)2
(
e
−2

√
ε
(
(̃ηx (t)−ρ)+···+(̃ηx−k+1(t)−ρ)

)
− 1

)

Since |̃ηx(t) − ρ| � I ,
∣
∣
∣∣

k∑

i=1

(̃ηx−i+1(t) − ρ)

∣
∣
∣∣ � kI .

Note that for any K > 0, there exists a constant C such that

|ex − 1| � C|x|, for |x| � K .

Thus, if k � ε− 1
2 , one has

∣
∣e−2

√
ε
∑k

i=1 (̃ηx−i+1(t)−ρ) − 1
∣
∣ � C

√
εkI .

If k > ε− 1
2 , one simply has

∣
∣e−2

√
ε
∑k

i=1 (̃ηx−i+1(t)−ρ) − 1
∣
∣ � e2kI

√
ε .

Therefore,
∣∣e−2

√
ε
∑k

i=1 (̃ηx−i+1(t)−ρ) − 1
∣∣ � C

(√
εkI1{k�ε

− 1
2 } + e2kI

√
ε1{k>ε

− 1
2 }
)
. (8.11)

Referring to (8.9) for the expression of uε(t, k), using (7.4) we see that there exists
0 < δ < 1 s.t. for ε small enough and for all t, k

uε(t, k) � δk−1. (8.12)
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Combining this with (8.11) gives
∞∑

k=1

uε(t, k)2
(
Z(t, x − k)2 − Z(t, x)2

)

= Z(t, x)2
( ∞∑

k=1

uε(t, k)2
(
e−2

√
ε
∑k

i=1 (̃ηx−i+1(t)−ρ) − 1
))

,

� CZ(t, x)2
( �ε− 1

2 �∑

k=1

√
εkδk +

∞∑

k=�ε− 1
2 �+1

e2kI
√

εδk

)
,

= ε
1
2Bε(t, x)Z(t, x)2.

Combining this with (8.10), we prove the desired claim (8.7).

By Lemma 8.1, we reduce the proof of Proposition 6.8 to the following lemmas.

Lemma 8.2 For any given T > 0, there exists positive constants C and u such that
for all t ∈ [0, ε−2T ] ∩ Z, x� ∈ Z

∥
∥∥
∥ε2

t∑

s=0

Y∇(s, x�(s))

∥
∥∥
∥
2
� Cε

1
4 e2uε|x�|, (8.13)

∥
∥∥
∥ε2

t∑

s=0

Y∇,∇(s, x�(s))

∥
∥∥
∥
2
� Cε

1
4 e2uε|x�|, (8.14)

where we used the shorthand notation x�(s) := x� − μ̂(s) + �μ̂(s)�.

Lemma 8.3 Fix T > 0, there exists positive constants C and u such that for all
t ∈ [0, ε−2T ] ∩ Z and x� ∈ Z,

∥
∥
∥∥ε2

t∑

s=0

Ỹ(s, x�(s))

∥
∥
∥∥
2
� Cε

1
4 e2uε|x�|

We will prove Lemma 8.2 and Lemma 8.3 in the next two sections. Let us first
conclude Proposition 6.8 based on them.

Proof of Proposition 6.8 Referring to Lemma 8.1, we have

ε2
t∑

s=0

(
ε−1�1�2 − τ(s)Z2

)
(s, x�(s))

= ε2
t∑

s=0

Y∇(s, x�(s)) + ε2
t∑

s=0

Y∇,∇(s, x�(s)) + ε2
t∑

s=0

Ỹ(s, x�(s))

+ε2
t∑

s=0

ε
1
2Bε(s, x)Z(s, x�(s))2.
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By Lemma 8.2 and Lemma 8.3, together with the bound
∥
∥Z(s, x�(s))

∥
∥
2 � Ceuε|x�|

(which follows from Proposition 6.1), one has
∥
∥∥
∥ε2

t∑

s=0

(
ε−1�1�2 − τ(s)Z2

)
(s, x�(s))

∥
∥∥
∥
2

�
∥∥
∥
∥ε2

t∑

s=0

Y∇(s, x�(s))

∥∥
∥
∥
2
+

∥∥
∥
∥ε2

t∑

s=0

Y∇,∇(s, x�(s))

∥∥
∥
∥
2
+

∥∥
∥
∥ε2

t∑

s=0

Ỹ(s, x�(s))

∥∥
∥
∥
2

+ε2
t∑

s=0

ε
1
2Bε(s, x)

∥
∥Z(s, x�(s))

∥
∥2
2,

� C
(
ε

1
4 e2uε|x�| + ε

5
2 te2uε|x�|).

Using t � ε−2T , we obtain
∥
∥∥
∥ε2

t∑

s=0

(
ε−1�1�2 − τ(s)Z2

)
(s, x�(s))

∥
∥∥
∥
2
� Cε

1
4 e2uε|x�|

This completes the proof of Proposition 6.8.

8.2 Proof of Lemma 8.2

Recall the notation η̃x(t) = ηx+μ̂(t)(t), we see that by Taylor expansion

∇Z(t, x)=Z(t, x)
(
e−√

ε(̃ηx+1(t)−ρ)−1
)=√

εZ(t, x)(ρ−̃ηx+1(t))+εBε(t, x)Z(t, x).

Hence,

ε− 1
2 ∇Z(t, x) = (ρ − η̃x+1(t))Z(t, x) + ε

1
2Bε(t, x)Z(t, x), (8.15)

Z(t, x + 1) = Z(t, x) + ∇Z(t, x) = Z(t, x) + ε
1
2Bε(t, x)Z(t, x). (8.16)

We will use these elementary relations frequently in the sequel.
The following lemma is crucial for the proof of Lemma 8.2.

Lemma 8.4 Given T > 0 and n ∈ Z�1, there exists constant C and u such that for
all s � t ∈ [0, ε−2T ] ∩ Z such that for x1 � x2 ∈ �(t),

∥
∥
∥∥E

[
Z∇(t, x1, x2)

∣
∣F(s)

]
∥
∥
∥∥

n

� Cε− 1
2√

t − s + 1
euε(|x1|+|x2|). (8.17)

For x1 < x2 ∈ �(t),
∥
∥
∥∥E

[
Z∇,∇(t, x1, x2)

∣
∣F(s)

]
∥
∥
∥∥

n

� Cε−1

t − s + 1
euε(|x1|+|x2|). (8.18)

Proof Let us first justify (8.17). Recall the two point duality (5.21),

E
[
Z(t, x1)Z(t, x2)

∣
∣F(s)

] =
∑

y1�y2∈�(s)2

V
(
(x1, x2), (y1, y2), t, s

)
Z(s, y1)Z(s, y2).
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As Z∇(t, x1, x2) = ε− 1
2 ∇Z(t, x1)Z(t, x2), it is straightforward that by this duality,

if x1 < x2,

E
[
Z∇(t, x1, x2)

∣
∣F(s)

] = ε− 1
2

∑

y1�y2∈�(s)

∇x1Vε

(
(x1, x2), (y1, y2), t, s

)

×Z(s, y1)Z(s, y2). (8.19)

If x1 = x2,

E
[
Z∇(t, x1, x2)

∣∣F(s)
] = ε− 1

2
∑

y1�y2∈�(s)

∇x2Vε

(
(x1, x1), (y1, y2), t, s

)

×Z(s, y1)Z(s, y2).

We assume x1 < x2 without loss of generosity, the proof of (8.17) for x1 = x2 will be
similar (one only needs to replicate the estimate of ∇x1Vε to ∇x2Vε). By the estimate
of ∇x1Vε provided in Theorem 7.1 (b), we see that

∣∣∇x1Vε

(
(x1, x2), (y1, y2), t, s

)∣∣ � C(β, T )

(t − s + 1)
3
2

e
− β(|x1−y1|+|x2−y2|)√

t−s+1+C(β) .

This, together with the moment bound of Z(t, x) in (6.1) yields
∥∥
∥
∥

∑

y1�y2

∇x1Vε

(
(x1, x2), (y1, y2), t, s

)
Z(s, y1)Z(s, y2)

∥∥
∥
∥

n

�
∑

y1�y2∈�(s)

C(β, T )

(t − s + 1)
3
2

e
− β(|x1−y1|+|x2−y2|)√

t−s+1+C(β) euε|y1|euε|y2|

Due to Lemma 6.3, we see that we can choose β large enough so that

∑

y1,y2∈�(s)

e
− β(|x1−y1|+|x2−y2|)√

t−s+1+C(β) euε(|y1|+|y2|) �
( ∑

y1∈�(s)

e
− β|x1−y1|√

t−s+1+C(β) euε(|y1|)
)

×
( ∑

y2∈�(s)

e
− β|x2−y2|√

t−s+1+C(β) euε(|y2|)
)

,

� C(t − s + 1)euε(|x1|+|x2|).
Thus,
∥
∥∥
∥

∑

y1�y2

∇x1Vε

(
(x1, x2), (y1, y2), t, s

)
Z(s, y1)Z(s, y2)

∥
∥∥
∥

n

� C(β, T )√
t − s + 1

euε(|x1|+|x2|).

Referring to (8.19), we conclude (8.17).
We turn our attention to prove (8.18). With the aid of (5.21), one has for x1 < x2 ∈

�(t),

E
[
Z∇,∇(t, x1, x2)

∣
∣F(s)

]

= ε−1
E
[∇Z(t, x1)∇Z(t, x2)

∣∣F(s)
]
,

= ε−1
∑

y1�y2∈�(s)

∇x1,x2Vε

(
(x1, x2), (y1, y2), t, s

)
Z(s, y1)Z(s, y2). (8.20)
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Note that (8.20) does not hold when x1 = x2 (see Remark 8.5 below). Theorem 7.1
(c) implies

∣∣∇x1,x2Vε

(
(x1, x2), (y1, y2), t, s

)∣∣ � C(β, T )

(t − s + 1)2
e
− β(|x1−y1|+|x2−y2|)√

t−s+1+C(β) .

By same argument used in proving (8.17), one has
∥
∥
∥∥E

[
Z∇,∇(t, x1, x2)

∣
∣F(s)

]
∥
∥
∥∥

n

� Cε−1

t − s + 1
euε(|x1|+|x2|).

This concludes the proof of the lemma.

With the help of the preceding lemma, we proceed to prove Lemma 8.2.

Proof of Lemma 8.2 Referring to (8.3), (8.4) that

t∑

s=0

Y∇(s, x�(s)) =
(

2ρ
I

− 1

)
∑

i∈Z�1

∑t
s=0 uε(s, i)Z∇(s, x�(s) − i, x�(s)),

t∑

s=0

Y∇,∇(s, x�(s)) = ∑
i>j∈Z�1

∑t
s=0 uε(s, i)uε(s, j)Z∇,∇(s, x − i, x − j).

By triangle inequality, one has
∥∥
∥
∥ε2

t∑

s=0

Y∇(s, x�(s))

∥∥
∥
∥
2
�

(
2ρ

I
− 1

) ∑

i∈Z�1

∥∥
∥
∥ε2

t∑

s=0

uε(s, i)

×Z∇(s, x�(s) − i, x�(s))

∥∥
∥
∥
2

∥
∥
∥∥ε2

t∑

s=0

Y∇,∇(s, x�(s))

∥
∥
∥∥
2
�

∑

i>j∈Z�1

∥
∥
∥∥ε2

t∑

s=0

uε(s, i)uε(s, j)

×Z∇,∇(s, x�(s) − i, x�(s) − j)

∥
∥∥
∥
2
.

To prove Lemma 8.2, it is sufficient to show that there exists constant C, u such that
for all t ∈ [0, ε−2T ] ∩ Z, x� ∈ Z and some constant 0 < δ < 1,

∥∥
∥
∥ε2

t∑

s=0

uε(s, i)Z∇(s, x�(s) − i, x�(s))

∥∥
∥
∥
2

� Cε
1
4 euε(2|x�|+i)δi , ∀i ∈ Z�0, (8.21)

∥
∥
∥∥ε2

t∑

s=0

uε(s, i)uε(s, j)Z∇,∇(s, x�(s) − i, x�(s) − j)

∥
∥
∥∥
2

� Cε
1
4 euε(2|x�|+i+j)δi+j , ∀i > j ∈ Z�1. (8.22)
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Note that here, we include i = 0 in (8.21), which is not needed to prove Lemma 8.2.
We are going to use this in the proof of Lemma 8.3.

We begin with proving (8.21), by writing

∥
∥∥
∥

t∑

s=0

uε(s, i)Z∇(s, x�(s) − i, x�(s))

∥
∥∥
∥

2

2

= 2
∑

0�s1<s2�t

E

[
uε(s1, i)uε(s2, i)Z∇(s1, x

�(s1)

−i, x�(s1))Z∇(s2, x
�(s2) − i, x�(s2))

]

+
t∑

s=0

E
[
uε(s, i)

2Z∇(s, x�(s) − i, x�(s))2
]

= 2
∑

0�s1<s2�t

uε(s1, i)uε(s2, i)E

[
Z∇(s1, x

�(s1) − i, x�(s1))

×E
[
Z∇(s2, x

�(s2) − i, x�(s2))
∣
∣F(s1)

]]

+
t∑

s=0

uε(s, i)
2
E
[
Z∇(s, x�(s) − i, x�(s))2

]

Using (8.12) to bound uε(s, i), one has

∥
∥∥
∥

t∑

s=0

uε(s, i)Z∇(s, x�(s) − i, x�(s))

∥
∥∥
∥

2

2

� Cδ2i
∑

0�s1<s2�t

∣
∣∣
∣E

[
Z∇(s1, x

�(s1) − i, x�(s1))

×E
[
Z∇(s2, x

�(s2) − i, x�(s2))
∣∣F(s1)

]
]∣∣∣
∣

+Cδ2i
t∑

s=0

E
[
Z∇(s, x�(s) − i, x�(s))2

]
(8.23)

Let us analyze the two terms on the RHS of (8.23) respectively. For the first term, via
Cauchy-Schwarz inequality |E[XY

]| � ∥
∥X

∥
∥
2

∥
∥Y

∥
∥
2, one has

∣
∣∣
∣E

[
Z∇(s1, x

�(s1) − i, x�(s1))E
[
Z∇(s2, x

�(s2) − i, x�(s2))
∣∣F(s1)

]
]∣∣∣
∣

�
∥
∥Z∇(s1, x

�(s1) − i, x�(s1))
∥
∥
2

∥
∥E

[
Z∇(s2, x

�(s2) − i, x�(s2))
∣
∣F(s1)

]∥∥
2
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By the moment bound in Proposition 6.1, we have
∥
∥Z∇(s, x1, x2)

∥
∥
2 �

Ceuε(|x1|+|x2|). Combining this with (8.17),
∣
∣∣
∣E

[
Z∇(s1, x

�(s1) − i, x�(s1))E
[
Z∇(s2, x

�(s2) − i, x�(s2))
∣∣F(s1)

]
]∣∣∣
∣

� Ceuε(|x�(s1)−i|+|x�(s1)|) ε− 1
2√

s2 − s1 + 1
euε(|x�(s2)−i|+|x�(s2)|)

� Cε− 1
2√

s2 − s1 + 1
e2uε(|x�|+|x�−i|).

Consequently, the first term in (8.23) is upper bounded by
∣
∣∣
∣

∑

0�s1<s2�t

E

[
Z∇(s1, x

�(s1) − i, x�(s1))E
[
Z∇(s2, x

�(s2) − i, x�(s2))
∣∣F(s1)

]
]∣∣∣
∣

�
∑

0�s1<s2�t

Cε− 1
2√

s2 − s1 + 1
e2uε(|x�|+|x�−i|)

� Cε− 1
2 t

3
2 e2uε(2|x�|+i) � Cε− 7

2 e2uε(2|x�|+i). (8.24)

where in the second inequality above we used the integral approximation

∑

0�s1<s2�t

1√
s2 − s1 + 1

� C

∫

0�s1�s2�t

ds1ds2√
s2 − s1

= Ct
3
2

and in the last inequality we used t � ε−2T .
Using again

∥
∥Z∇(s, x1, x2)

∥
∥
2 � Ceuε(|x1|+|x2|), the second term in (8.23) is

readily upper bounded by
∣
∣∣
∣

t∑

s=0

E
[
Z∇(s, x�(s) − i, x�(s))2

]
∣
∣∣
∣ � C

t∑

s=0

e2uε(|x�|+|x�−i|)

� Cε−2e2uε(2|x�|+i). (8.25)

Incorporating the bounds (8.24) and (8.25) into the RHS of (8.23), we get (8.21).
We proceed to justify (8.22), the method is similar to the proof of (8.21). Write

∥
∥
∥∥

t∑

s=0

uε(s, i)uε(s, j)Z∇,∇(s, x�(s) − i, x�(s) − j)

∥
∥
∥∥

2

2

= 2
∑

0�s1<s2�t

uε(s1, i)uε(s1, j)uε(s2, i)uε(s2, j)E

[
Z∇,∇(s1, x

�(s1) − i,

x�(s1) − j)E
[
Z∇,∇(s2, x

�(s2) − i, x�(s2) − j)
∣
∣F(s1)

]
]

+
t∑

s=0

uε(s, i)
2uε(s, j)2E

[
Z∇,∇(s, x�(s) − i, x�(s) − j)2

]
.
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Using again (8.12), one has

∥
∥∥
∥

t∑

s=0

uε(s, i)uε(s, j)Z∇,∇(s, x�(s) − i, x�(s) − j)

∥
∥∥
∥

2

2

� Cδ2(i+j)
∑

0�s1<s2�t

∣∣
∣
∣E

[
Z∇,∇(s1, x

�(s1) − i, x�(s1) − j)

×E
[
Z∇,∇(s2, x

�(s2) − i, x�(s2) − j)
∣∣F(s1)

]
]∣∣∣
∣

+Cδ2(i+j)

t∑

s=0

E
[
Z∇,∇(s, x�(s) − i, x�(s) − j)2

]
. (8.26)

Let us analyze the two terms on the RHS of (8.26) respectively. For the first term, by
Cauchy Schwarz,

∣
∣
∣∣E

[
Z∇,∇(s1, x

�(s1)−i, x�(s1)−j)E
[
Z∇,∇(s2, x

�(s2)−i, x�(s2) − j)
∣
∣F(s1)

]
]∣∣
∣∣

�
∥∥Z∇,∇(s1, x

�(s1)−i, x�(s1)−j)
∥∥
2

∥∥E
[
Z∇,∇(s2, x

�(s2)−i, x�(s2)−j)
∣∣F(s1)

]∥∥
2

Using the bound
∥
∥Z∇(s, x1, x2)

∥
∥
2 � Ceuε(|x1|+|x2|) and (8.18), we have

∣
∣
∣∣E

[
Z∇,∇(s1, x

�(s1)−i, x�(s1)−j)E
[
Z∇,∇(s2, x

�(s2)−i, x�(s2)−j)
∣
∣F(s1)

]
]∣∣
∣∣

� euε(|x�−i|+|x�−j |) Cε−1

s2 − s1 + 1
euε(|x�−i|+|x�−j |) = Cε−1

s2 − s1 + 1
e2uε(|x�−i|+|x�−j |).

Therefore,

∑

0�s1<s2�t

∣
∣
∣∣E

[
Z∇,∇(s1, x

�(s1) − i, x�(s1) − j)

×E
[
Z∇,∇(s2, x

�(s2) − i, x�(s2) − j)
∣
∣F(s1)

]
]∣∣
∣∣

�
∑

0�s1<s2�t

Cε−1

s2 − s1 + 1
e2uε(|x�−i|+|x�−j |)

� Cε−1(t + 1) log(t + 1)e2uε(|x�−i|+|x�−j |) � Cε− 7
2 e2uε(2|x�|+i+j). (8.27)

In the second inequality above, we used the integral approximation

∑

0�s1<s2�t

1

s2 − s1 + 1
� C

∫

0�s1�s2�t

1

s2 − s1 + 1
ds1ds2 � C(t + 1) log(t + 1).
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For the second term in (8.26), it is clear that

t∑

s=0

E
[
Z∇,∇(s, x�(s) − i, x�(s) − j)2

]
� Cte2uε(2|x�|+i+j) � Cε−2e2uε(2|x�|+i+j).

(8.28)
Incorporating the bounds (8.27) and (8.28) into the RHS of (8.26), we prove the
desired (8.22).

Remark 8.5 In the argument above, we showed Z∇,∇(t, x1, x2) = (ε− 1
2 ∇Z(t, x1))

(ε− 1
2 ∇Z(t, x2)) vanishes after averaging over a long time interval when x1 �= x2. The

readers might wonder whether the same holds for x1 = x2? The answer is negative.
In the case x1 �= x2, we used two particle duality (5.21) to move the gradient from Z

to Vε

E
[
Z∇,∇(t, x1, x2)

∣
∣F(s)

] = ε−1
∑

y1�y2∈�(s)

∇x1,x2Vε

(
(x1, x2), (y1, y2), t, s

)

×Z(s, y1)Z(s, y2).

However, if x1 = x2, the same two particle duality gives instead

E
[
Z∇,∇(t, x1, x2)

∣
∣F(s)

]

= ε−1
∑

y1�y2∈�(s)

(
Vε

(
(x1 + 1, x1 + 1), (y1, y2), t, s

)

× − 2Vε

(
(x1, x1 + 1), (y1, y2), t, s

) + 1
)
Z(s, y1)Z(s, y2).

The same argument fails because we do not have an effective estimate of

Vε

(
(x1 + 1, x1 + 1), (y1, y2), t, s

) − 2Vε

(
(x1, x1 + 1), (y1, y2), t, s

) + 1.

In fact, when x1 = x2, Z∇,∇(t, x1, x2) does not vanish after averaging. One quick
way to see this is to use

Z∇,∇(t, x1, x1) = (
ε− 1

2 ∇Z(t, x1)
)2

= (̃ηx1+1(t) − ρ)2Z(t, x1)
2 + ε

1
2BεZ(t, x1)

2

� min
(
1 − {ρ}, {ρ})2Z(t, x1)

2 + ε
1
2BεZ(t, x1)

2

where {ρ} represents the fractional part of ρ. This implies that Z∇,∇(t, x, x) is lower
bounded by a constant times Z(t, x)2, which does not vanish after averaging.

8.3 Proof of Lemma 8.3

The aim of this section is to justify Lemma 8.3, which indicates that Z∇,∇(t, x, x) −
ρ(I−ρ)

I
Z(t, x)2 vanishes after averaging over a long time interval. This was proved
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for the stochastic six vertex model [15] (which corresponds to I = 1, J = 1). Note
that when I = 1, for all t, x one has η̃x(t) ∈ {0, 1}, which yields η̃x(t)

2 = η̃x(t).
Corwin et al. [15] utilizes this crucial observation to show that

Z∇,∇(t, x, x) = (̃ηx+1(t) − ρ)2Z(t, x)2 + ε
1
2Bε(t, x)Z(t, x)2,

= ρ2Z(t, x)2 + (1 − 2ρ)̃ηx+1(t)Z(t, x)2,

= ρ(1 − ρ)Z(t, x)2 + (2ρ − 1)Z∇(t, x, x) + ε
1
2Bε(t, x)Z(t, x)2,

where in the last line above, we used (8.15). We have seen in the previous section
that Z∇(t, x, x) vanishes after averaging, which implies that Z∇,∇(t, x, x) − ρ(1 −
ρ)Z(t, x)2 will also vanish.

When I � 2, η̃x(t) can takes more than two values so the η̃x(t)
2 = η̃x(t) relation

no longer holds. Notice that in the proof of Lemma 8.2, we have only leveraged the
first duality (5.21) in the Lemma 5.2. To conclude Lemma 8.3, we will combine both
of the dualities (5.21) and (5.22).

Before moving to the proof, we first offer a heuristic argument to explain why
the λ = ρ(I−ρ)

I
is the value which makes Z∇,∇(t, x, x) − λZ(t, x)2 vanish after

averaging.

Heuristic argument for Lemma 8.3 Note that

Z∇,∇(t, x, x) = (̃ηx+1(t) − ρ)2Z(t, x)2 + ε
1
2Bε(t, x)Z(t, x)2.

In Theorem A.3, we find that the stationary distribution of the (bi-infinite) SHS6V
model is given by

⊗
πρ , where πρ is defined in (A.1). It is straightforward to verify

that
⊗

πρ is near stationary with density ρ (Definition 5.5). Start the SHS6V model
from �η(0) ∼ ⊗

πρ , by stationarity ηx(t) ∼ πρ for all t ∈ Z�0 and x ∈ Z. Heuristi-
cally, we can approximate (̃ηx+1(t) − ρ)2Z(t, x)2 by Eπρ

[
(̃ηx+1(t) − ρ)2

]
Z(t, x)2.

Note that

Eπρ

[
(̃ηx+1(t) − ρ)2

]
Z(t, x)2 = Var

[
πρ

]
Z(t, x)2

where Var
[
πρ

]
represents the variance of the probability distribution πρ . Referring

to Lemma A.2, we have

Var
[
πρ

] = ρ −
I∑

i=1

χ2

(qi − χ)2
.

where χ is the unique negative real number satisfying
∑I

i=1
χ

χ−qi = ρ. It is straight-

forward that under weak asymmetric scaling (5.30), one has limε↓0 χε = ρ
ρ−I

.
Therefore,

lim
ε↓0 Var

[
πρ

] = ρ(I − ρ)

I
,

which explains λ = ρ(I−ρ)
I

.
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We proceed to prove Lemma 8.3 rigorously. The first step is to express
Z∇,∇(t, x, x)− ρ(I−ρ)

I
Z(t, x)2 in terms of the two duality functionals in Lemma 5.2,

Z∇,∇(t, x, x) − ρ(I − ρ)

I
Z(t, x)2

=
(

(̃ηx+1(t) − ρ)2 − ρ(I − ρ)

I

)
Z(t, x)2 + ε

1
2Bε(t, x)Z(t, x)2

=
(

(I − η̃x+1(t))(I − 1 − η̃x+1(t)) − (I − 1)(I − ρ)2

I

)

×Z(t, x)2 − (2ρ + 1 − 2I )Z∇(t, x, x) + ε
1
2Bε(t, x)Z(t, x)2

=
(

(I − η̃x+1(t))(I − 1 − η̃x+1(t)) − (I − 1)(I − ρ)2

I

)

×Z(t, x + 1)2 − (2ρ + 1 − 2I )Z∇(t, x, x) + ε
1
2Bε(t, x)Z(t, x)2 (8.29)

In the last equality, we replaced Z(t, x) by Z(t, x + 1), according to (8.16), this

procedure produces an error term which can be absorbed in the ε
1
2Bε(t, x)Z(t, x)2.

Recall that [n]
q
1
2

= q
n
2 −q

− n
2

q
1
2 −q

− 1
2
. Under weak asymmetric scaling, q = e

√
ε , one has

[n]
q
1
2

= n + O(ε
1
2 ), qηx(t) = 1 + O(ε

1
2 ). (8.30)

These approximations imply that

(I − η̃x+1(t))(I − 1 − η̃x+1(t))Z(t, x + 1)2

= [I − η̃x+1(t)]
q
1
2
[I − 1 − η̃x+1(t)]

q
1
2
Z(t, x + 1)2qη̃x+1(t) + ε

1
2Bε(t, x)Z(t, x)2,

= D(t, x + 1, x + 1) + ε
1
2Bε(t, x)Z(t, x)2. (8.31)

where we recall the expression of the functional D from (5.19). Inserting (8.31) into
the RHS of (8.29)

Z∇,∇(t, x, x) − ρ(I − ρ)

I
Z(t, x)2

= D(t, x + 1, x + 1) − (I − 1)(I − ρ)2

I
Z(t, x + 1)2 − (2ρ + 1 − 2I )Z∇(t, x, x)

+ε
1
2Bε(t, x)Z(t, x)2. (8.32)

Recall that our goal is to show

∥
∥∥
∥ε2

t∑

s=0

Ỹ(s, x�(s))

∥
∥∥
∥
2
� Cε

1
4 e2uε|x�|.
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Referring to the expression of Ỹ(s, x�(s)) in (8.5), we need to prove that there exists
some 0 < δ < 1 such that for all i ∈ Z�1,

∥∥
∥
∥ε2

t∑

s=0

uε(s, i)
(
Z∇,∇(s, x�(s) − i, x�(s) − i) − ρ(I − ρ)

I
Z(s, x�(s) − i)2

)∥∥
∥
∥
2

� Cε
1
4 e2uε|x�|δi .

Using (8.32), it suffices to show that for all i ∈ Z�1,

∥
∥∥
∥

t∑

s=0

uε(s, i)
(
D(s, x�(s) + 1 − i, x�(s) + 1 − i)

− (I − 1)(I − ρ)2

I
Z(s, x�(s) + 1 − i)2

)∥∥∥
∥
2

� Cε
1
4 e2uε|x�|δi . (8.33)

and

∥∥
∥
∥

t∑

s=0

uε(s, i)Z∇(s, x�(s), x�(s))

∥∥
∥
∥
2
� Cε

1
4 e2uε|x�|δi . (8.34)

Note that (8.34) is proved by taking i = 0 in (8.21). Therefore, we only need to prove
(8.33). Similar to the proof in Lemma 8.2, to conclude (8.33), it suffices to prove the
following lemma for upper bounding the conditional expectation. We do not repeat
the rest of the proof here.

Lemma 8.6 For T > 0 and n ∈ Z�1, there exists constant C and u such that for all
x ∈ �(t) and s � t ∈ [0, ε−2T ] ∩ Z,

∥∥
∥
∥E

[
D(t, x, x)− (I −1)(I −ρ)2

I
Z(t, x)2

∣∣
∣
∣F(s)

]∥∥
∥
∥

n

� Cε− 1
2√

t − s + 1
e2uε|x|. (8.35)

Proof Combining both of the dualities (5.21) and (5.22), one has

E

[
D(t, x, x) − (I − 1)(I − ρ)2

I
Z(t, x)2

∣∣
∣
∣F(s)

]

=
∑

y1�y2∈�(s)

Vε

(
(x, x), (y1, y2), t, s

)

×
(

D(s, y1, y2) − (I − 1)(I − ρ)2

I
Z(t, y1)Z(t, y2)

)
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We split the summation above according to the range of the value of |y1 − y2|,

E

[
D(t, x, x) − (I − 1)(I − ρ)2

I
Z(t, x)2

∣∣
∣
∣F(s)

]

=
∑

y1<y2∈�(s)
|y1−y2|�3

Vε

(
(x, x), (y1, y2), t, s

)

×
(

D(s, y1, y2) − (I − 1)(I − ρ)2

I
Z(s, y1)Z(s, y2)

)

+
∑

y1�y2∈�(s)
|y1−y2|�2

Vε

(
(x, x), (y1, y2), t, s

)

×
(

D(s, y1, y2) − (I − 1)(I − ρ)2

I
Z(s, y1)Z(s, y2)

)
. (8.36)

We name the terms on the RHS of (8.36) E1 and E2 respectively and we bound them
separately. It follows from Proposition 6.1 that

∥
∥∥
∥D(s, y1, y2) − (I − 1)(I − ρ)2

I
Z(s, y1)Z(s, y2)

∥
∥∥
∥

n

� Ceuε(|y1|+|y2|)

Invoking Theorem 7.1 (a) and Lemma 6.3, we find that

∥∥E2
∥∥

n
�

∑

y1�y2∈�(s)
|y1−y2|�2

C(β, T )

t − s + 1
e

−β(|y1−x|+|y2−x|)√
t−s+1+C(β) euε(|y1|+|y2|)

� C√
t − s + 1

e2uε|x|. (8.37)

We proceed to bound E1, recall that when y1 < y2,

D(s,y1,y2)=
[I −1]

q
1
2

[I ]
q
1
2

Z(s,y1)Z(s,y2)[I −η̃y1(s)]
q
1
2
[I −η̃y2(s)]

q
1
2
q

1
2 η̃y1 (s)q

1
2 η̃y2 (s),

which could be rewritten as (using (8.30))

D(s, y1, y2) = I − 1

I
(I − η̃y1(s))(I − η̃y2(s))Z(s, y1)Z(s, y2)

+ε
1
2Bε(s, y1, y2)Z(s, y1)Z(s, y2).
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Consequently, we write

E1 = I − 1

I

∑

y1<y2∈�(s)
|y1−y2|�3

Vε

(
(x, x), (y1, y2), t, s

)

×
(
(I − η̃y1(s))(I − η̃y2(s)) − (I − ρ)2

)
Z(s, y1)Z(s, y2)

+ε
1
2

∑

y1<y2∈�(s)
|y1−y2|�3

Vε

(
(x, x), (y1, y2), t, s

)
Bε(s, y1, y2)Z(s, y1)Z(s, y2)

= I − 1

I

∑

y1<y2∈�(s)
|y1−y2|�3

Vε

(
(x, x), (y1, y2), t, s

)

×
(
(ρ − η̃y1(s))(I − η̃y2(s)) + (I − ρ)(ρ − η̃y2(s))

)
Z(s, y1)Z(s, y2)

+ε
1
2

∑

y1<y2∈�(s)
|y1−y2|�3

Vε

(
(x, x), (y1, y2), t, s

)
Bε(s, y1, y2)

×Z(s, y1)Z(s, y2) (8.38)

It Is straightforward by (8.15) and (8.16) that

(ρ − η̃y1(s))Z(s, y1) = (ρ − η̃y1(s))Z(s, y1 − 1) + ε
1
2Bε(s, y1)Z(s, y1)

= ε− 1
2 ∇Z(s, y1 − 1) + ε

1
2Bε(s, y1)Z(s, y1),

(ρ − η̃y2(s))Z(s, y2) = (ρ − η̃y2(s))Z(s, y2 − 1) + ε
1
2Bε(s, y2)Z(s, y2)

= ε− 1
2 ∇Z(s, y2 − 1) + ε

1
2Bε(s, y2)Z(s, y2).

Inserting these into the RHS of (8.38),

E1 = I −1

I

∑

y1<y2∈�(s)
|y1−y2|>2

Vε

(
(x, x), (y1, y2), t, s

)
(I − η̃y2(s))(ε

− 1
2 ∇Z(s, y1))Z(s, y2)

+I − 1

I

∑

y1<y2∈�(s)
|y1−y2|>2

Vε

(
(x, x), (y1, y2), t, s

)
(I − ρ)(ε− 1

2 ∇Z(s, y2))Z(s, y1)

+
∑

y1<y2∈�(s)
|y1−y2|>2

ε
1
2Vε

(
(x, x), (y1, y2), t, s

)
Bε(s, y1, y2)Z(s, y1)Z(s, y2).

Let us name respectively the three terms on the RHS above to be J1, J2, J3. Recall
the summation by part formula (with notation ∇f (x) = f (x + 1) − f (x))

∑

x<y

∇f (x) · g(x) = f (y)g(y − 1) −
∑

x<y

f (x) · ∇g(x − 1),

∑

x>y

∇f (x) · g(x) = −f (y + 1)g(y + 1) −
∑

x>y

f (x + 1)∇g(x). (8.39)
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Note that

J1 = I − 1

I

∑

y1<y2∈�(s)
|y1−y2|>2

Vε

(
(x, x), (y1, y2), t, s

)
(I −η̃y2(s))(ε

− 1
2 ∇Z(s, y1))Z(s, y2),

by (8.39), we move the gradient from ∇Z(s, y1) to Vε ,

J1 = I −1

I

[ ∑

y2∈�(s)

ε− 1
2Vε

(
(x, x), (y2−3, y2), t, s

)
(I −η̃y2(s))Z(s, y2−3)Z(s, y2)

−
∑

y1<y2∈�(s)
|y1−y2|>2

ε− 1
2 ∇y1Vε

(
(x, x), (y1, y2), t, s

)
(I − η̃y2(s))Z(s, y1)Z(s, y2)

]
.

Using Theorem 7.1 part (a) and part (b) to control Vε and ∇Vε respectively, we see
that for n ∈ Z�1,

∥
∥J1

∥
∥

n
� C(β, T )

( ∑

y2∈�(s)

ε− 1
2

t − s + 1
e

−β(|y2−x|+|y2−3−x|)√
t−s+1+C(β) euε(|y2−3|+|y2|)

+
∑

y1�y2∈�(s)

ε− 1
2

(t − s + 1)
3
2

e
− β(|y1−x1|+|y2−x2|)√

t−s+1+C(β) euε(|y1|+|y2|)
)
.

Applying Lemma 6.3 yields
∥∥J1

∥∥
n
� Cε

− 1
2√

t−s+1
e2uε|x|. Likewise, we obtain

∥∥J2
∥∥

n
�

Cε
− 1
2√

t−s+1
e2uε|x|.

For J3, applying Theorem 7.1 part (a) and Lemma 6.3 implies that

∥
∥J3

∥
∥

n
�

∑

y1�y2

C(β, T )ε
1
2

t − s + 1
e
− β(|x−y1|+|x−y2|)√

t−s+1+C(β) euε(|y1|+|y2|)

� Cε
1
2 e2uε|x| � Cε− 1

2√
t − s + 1

e2uε|x|.

In the last inequality above, we used the fact s � t ∈ [0, ε−2T ], which implies
t − s � ε−2T .

Combining the bounds for
∥
∥J1

∥
∥

n
,
∥
∥J2

∥
∥

n
,
∥
∥J3

∥
∥

n
, we have

∥
∥E1

∥
∥

n
� Cε− 1

2√
t − s + 1

e2uε|x|. (8.40)

Recall from (8.36) that

E

[
D(t, x, x) − (I − 1)(I − ρ)2

I
Z(t, x)2

∣
∣∣
∣F(s)

]
= E1 + E2,

combining the bounds for E1 and E2 in (8.40) and (8.37), we conclude the
desired (8.35).
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Appendix A: Stationary Distribution of the SHS6VModel

In this section, we provide a one parameter family of stationary distribution for the
unfused SHS6V model. It is worth to remark that in the recent work of [30], a
translation-invariant Gibbs measure was obtained (using the idea from [2]) for the
space-time inhomogeneous SHS6V model on the full lattice, see Proposition 4.5
of [30]. However, It is not obvious that the dynamic of SHS6V model under this
Gibbs measure coincides with the one of the bi-infinite SHS6V model specified in
Lemma 2.1. This being the case, we choose to proceed without relying on the result
from [30].

We start with a well-known combinatoric lemma.

Lemma A.1 (q-binomial formula) Set ν = q−I as usual, the following identity holds
for all q ∈ C,

I∑

n=0

(ν; q)n

(q; q)n
zn = (νz; q)∞

(z; q)∞
.

Proof According to q-binomial theorem [1],

∞∑

n=0

(ν; q)n

(q; q)n
zn = (νz; q)∞

(z; q)∞
.

When ν = q−I , (ν, q)n = 0 for n > I . Therefore,

I∑

n=0

(ν; q)n

(q; q)n
zn =

∞∑

n=0

(ν; q)n

(q; q)n
zn = (νz; q)∞

(z; q)∞
.

Lemma A.2 Fix q > 1, ν = q−I and ρ ∈ (0, I ), define a probability measure πρ

on {0, 1, . . . , I }:

πρ(i) = (χ, q)∞
(χν, q)∞

(ν, q)i

(q, q)i
χi, i ∈ {0, 1, . . . , I }, (A.1)

where χ is the unique negative real number satisfying

I∑

i=1

χ

χ − qi
= ρ. (A.2)
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Furthermore, we have

E
[
πρ

] = ρ, Var
[
πρ

] = ρ −
I∑

i=1

χ2

(qi − χ)2
.

Proof We first show that πρ is indeed a probability measure. It is clear that πρ(i) � 0
for all i ∈ {0, 1, . . . , I }. By Lemma A.1,

I∑

i=0

πρ(i) = (χ, q)∞
(χν, q)∞

I∑

i=0

(ν, q)i

(q, q)i
χi = (χ, q)∞

(χν, q)∞
(νχ, q)∞
(χ, q)∞

= 1.

Next, we compute the expectation and the variance of πρ . Using again Lemma A.1,
the moment generating function is given by

�(z) = (χ, q)∞
(χν, q)∞

I∑

i=0

(ν, q)i

(q, q)i
χizi = (χ, q)∞

(χν, q)∞
(νχz, q)∞
(χz, q)∞

= (χ, q)∞
(χν, q)∞

I∏

i=1

(1 − νqi−1χz). (A.3)

It is clear that

E
[
πρ

] = �′(1),
Var

[
πρ

] = �′′(1) + �′(1) − �′(1)2.

Via (A.3), one has

�′(z) = (χ, q)∞
(χν, q)∞

( I∏

i=1

(1 − νqi−1χz)

)( I∑

i=1

−νqi−1χ

1 − νqi−1χz

)
,

�′′(z) = (χ, q)∞
(χν, q)∞

( I∏

i=1

(1 − νqi−1χz)

)

×
[( I∑

i=1

−νqi−1χ

1 − νqi−1χz

)2

−
I∑

i=1

(νqi−1χ)2

(1 − νqi−1χz)2

]
.

Note that

(χ, q)∞
(χν, q)∞

I∏

i=1

(1 − νqi−1χ) = 1,

combining this with (A.2) yields

�′(1) = ρ, �′′(1) = ρ2 −
I∑

i=1

χ2

(qi − χ)2
,

which concludes the lemma.
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Theorem A.3 For ρ ∈ (0, I ), the product measure
⊗

πρ is stationary for the
unfused SHS6V model �η(t) (Definition 2.3).

Proof It suffices to show that if �η(t) ∼ ⊗
πρ , then �η(t + 1) ∼ ⊗

πρ .
Recall that K(t, y) = N(t, y)−N(t +1, y) records the number of particles (either

zero or one) that move across location y at time t . We first show that K(t, y) ∼
Ber ( α(t)χ

α(t)χ+1 ) (recall that α(t) = αqmodJ (t)). To this end, referring to (2.4),

K(t, y) =
y∑

y′=−∞

y∏

z=y′+1

(
B ′(t, z, ηz(t)) − B(t, z, ηz(t))

)
B(t, y′, ηy′(t)). (A.4)

Recalling from (2.1), B(t, z, η) ∼ Ber
(α(t)(1−qη)

1+α(t)

)
, B ′(t, z, η) ∼ Ber

(α(t)+νqη

1+α(t)

)
.

Since the random variables B, B ′ are all independent,

E

[ y∏

z=y′+1

(
B ′(t, z, ηz(t)) − B(t, z, ηz(t))

)
B(t, y′, ηy′(t))

∣
∣∣
∣F(t)

]

= α(t)(1 − q
ηy′ (t))

1 + α(t)

y∏

z=y′+1

(α(t) + ν)qηz(t)

1 + α(t)
.

Therefore, by tower property

E
[
K(t, y)

] =
y∑

y′=−∞
E

[ y∏

z=y′+1

α(t)(1 − q
ηy′ (t))

1 + α(t)

y∏

z=y′+1

(α(t) + ν)qηz(t)

1 + α(t)

]
,

=
y∑

y′=−∞

α(t)

1 + α(t)

(
α(t) + ν

1 + α(t)

)y−y′
(
E
[
qηy(t)

])y−y′
(1 − E

[
qηy(t)

]
).

(A.5)

As ηy(t) ∼ πρ , we obtain using Lemma A.1

E
[
qηy(t)

] = (χ, q)∞
(χν, q)∞

∞∑

i=0

(ν, q)i

(q, q)i
(χq)i = (χνq; q)∞

(χq; q)∞
(χ; q)∞
(χν; q)∞

= 1 − χ

1 − χν
.

Inserting the value of E
[
qηy(t)

]
into the RHS of (A.5) yields that

E
[
K(t, y)

] =
y∑

y′=−∞

α(t)

1 + α(t)

(
(α(t) + ν)(1 − χ)

(1 + α(t))(1 − χν)

)y−y′(
1 − 1 − χ

1 − χν

)

= α(t)χ

α(t)χ + 1
.

Since K(t, y) ∈ {0, 1}, we conclude that

K(t, y) ∼ Ber (
α(t)χ

α(t)χ + 1
). (A.6)
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The next step is to show that the marginal of �η(t + 1) is distributed as πρ for each
coordinate. Referring to (A.4), it is straightforward that the following recursion holds

K(t, y) = B(t, y, ηy(t)) +
(
B ′(t, y, ηy(t)) − B(t, y, ηy(t))

)
K(t, y − 1).(A.7)

Therefore,

ηy(t) − ηy(t + 1) = N(t, y) − N(t, y − 1) + N(t + 1, y − 1) − N(t + 1, y),

= K(t, y) − K(t, y − 1),

= K(t, y − 1)
(
B ′(t, y, ηy(t)) − B(t, y, ηy(t)) − 1

)

+B(t, y, ηy(t)).

For the second equality above, we used K(t, y) = N(t, y) − N(t + 1, y). Therefore,

ηy(t + 1) =
{

ηy(t) − B(t, y, ηy(t)), K(t, y − 1) = 0,
ηy(t) + 1 − B ′(t, y, ηy(t)), K(t, y − 1) = 1.

(A.8)

Due to (A.4), we see that K(t, y − 1) ∈ σ
(
B(t, z, η), B ′(t, z, η), ηz(t) : z � y −

1, η ∈ {0, 1, . . . , I }
)
. Note that we have assumed �η(t) ∼ ⊗

πρ , which implies the

independence between ηy(t) and ηz(t) for z �= y. Therefore, ηy(t) and K(t, y − 1)
are independent. Using (A.8) we get

P
(
ηy(t + 1) = i

) = P
(
K(t, y − 1) = 0

)
P
(
ηy(t) − B(t, y, ηy(t)) = i

)

+P
(
K(t, y − 1) = 1

)
P
(
ηy(t) − B ′(t, y, ηy(t)) = i − 1

)
.

By K(t, y − 1) ∼ Ber ( α(t)χ
α(t)χ+1 ) and ηy(t) ∼ πρ , one readily has

P
(
ηy(t + 1) = i

)

= 1

1 + α(t)χ

[
πρ(i)

1 + α(t)qi

1 + α(t)
+ πρ(i + 1)

α(t)(1 − qi+1)

1 + α(t)

]

+ α(t)χ

1 + α(t)χ

[
πρ(i)

α(t) + νqi

1 + α(t)
+ πρ(i − 1)

1 − νqi−1

1 + α(t)

]

= πρ(i).

To conclude Theorem A.3, it suffices to show the independence among ηy(t + 1) for
different value of y. It is enough to show that

ηy(t + 1) is independent with {ηy+1(t + 1), ηy+2(t + 1), . . . } for all y ∈ Z. (A.9)

We need the following lemma.

Lemma A.4 For all y ∈ Z, ηy(t + 1) is independent with K(t, y).

Let us first see how this lemma leads to (A.9). We have via (A.4),

K(t, y) ∈ σ
(
B(t, z, η), B ′(t, z, η), ηz(t) : z � y, η ∈ {0, 1, . . . , I }

)
.
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Combining this with (A.8),

ηy(t + 1) ∈ σ
(
B(t, z, η), B ′(t, z, η), ηz(t) : z � y, η ∈ {0, 1, . . . , I }

)
.

Since ηi(t) are all independent for different i, one has
(
B(t, z, η), B ′(t, z, η), ηz(t) : z � y, η ∈ {0, 1, . . . , I }

)
is independent with

(ηy+1(t), ηy+2(t), . . . ).

We achieve
(
K(t, y), ηy(t + 1)

)
is independent with

(
ηy+1(t), ηy+2(t), . . .

)
.

Using Lemma A.4, we conclude

ηy(t + 1) is independent with
(
K(t, y), ηy+1(t), ηy+2(t), . . .

)
.

Therefore,

ηy(t + 1) is independent with σ
(
K(t, y), ηz(t), B(t, z, η), B ′(t, z, η) : z�y + 1,

η ∈ {0, 1, . . . , I }
)
. (A.10)

On the other hand, by (A.7) and (A.8), we conclude for all y ∈ Z

(
ηy+1(t + 1), ηy+2(t + 1), . . .

) ∈ σ
(
K(t, y), B(t, z, η), B ′(t, z, η), ηz(t) : z � y

+1, η ∈ {0, 1, . . . , I }
)
. (A.11)

Combining (A.10) and (A.11), we find that for all y ∈ Z

ηy(t + 1) is independent with
(
ηy+1(t + 1), ηy+2(t + 1), . . .

)
,

which concludes (A.9).

Proof of Lemma A.4 As K(t, y) ∈ {0, 1}, it suffices to show that for all j ∈
{0, 1, . . . , I }, one has

P
(
ηy(t + 1) = j, K(t, y) = 1

) = P
(
ηy(t + 1) = j

)
P
(
K(t, y) = 1

)
.

Due to (A.7),

K(t, y) =
{

B(t, y, ηy(t)), K(t, y − 1) = 0,
B ′(t, y, ηy(t)), K(t, y − 1) = 1.

Together with (A.8), we obtain that if K(t, y − 1) = 0,
(
ηy(t + 1), K(t, y)

) = (j, 1) is equivalent to
(
ηy(t), B(t, y, ηy(t))

) = (j + 1, 1).

If K(t, y − 1) = 1,
(
ηy(t + 1), K(t, y)

) = (j, 1) is equivalent to
(
ηy(t), B(t, y, ηy(t))

) = (j, 1).
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The discussion above yields (using the independence between ηy(t) and K(t, y −1))

P
(
ηy(t + 1) = j, K(t, y) = 1

)
,

= P
(
K(t, y − 1) = 0

)
P
(
ηy(t) = j + 1, B(t, y, ηy(t)) = 1

) + P
(
K(t, y − 1) = 1

)

×P
(
ηy(t) = j, B ′(t, y, ηy(t)) = 1

)
,

= 1

1 + α(t)χ

α(t)(1 − qj+1)

1 + α(t)
πρ(j + 1) + α(t)χ

1 + α(t)χ

α(t) + νqj

1 + α(t)
πρ(j),

= α(t)χπρ(j)

α(t)χ + 1
= P

(
ηy+1(t + 1) = j

)
P
(
K(t, y) = 1

)
,

which concludes Lemma A.4.

Remark A.5 Since �g(t) = �η(J t), it is clear that for all ρ ∈ (0, I ),
⊗

πρ is also
stationary for the fused SHS6V model �g(t).

Appendix B: KPZ Scaling Theory

The KPZ scaling theory has been developed in a landmark contribution by [31]. The
scaling theory is a physics approach which makes prediction for the non-universal
coefficients of the KPZ equation. In this appendix, we show how the coefficients of
the KPZ (1.11) arise from the microscopic observables of the fused SHS6V model
using the KPZ scaling theory.

Recall that Theorem 1.6 reads
√

ε
(
N f

ε(ε
−2t, ε−1x + ε−2μεt) − ρ(ε−1x + ε−2μεt) − t log λε

)

⇒ H(t, x) in C([0, ∞), C(R)) as ε ↓ 0.

Here, N f
ε(t, x) is the fused height function andH(t, x) solves the KPZ equation

∂tH(t, x) = α1

2
∂2xH(t, x) − α2

2

(
∂xH(t, x)

)2 + √
α3ξ(t, x),

where

α1 = α2 = JV∗ = J
(
(I + J )b − (I + J − 2)

)

I 2(1 − b)
,

α3 = JD∗ = ρ(I − ρ)

I
· J

(
(I + J )b − (I + J − 2)

)

I 2(1 − b)
.

The first step in the KPZ scaling theory is to derive the stationary distribution of the
fused SHS6V model, which is exactly what we did in Appendix A (see Remark A.5).
Under stationary distribution

⊗
πρ , we proceed to define two natural quantities of

the models:

• The average steady state current j (ρ) is defined as

j (ρ) = ε− 1
2
(〈
N f(t, x) − N f(t, x + 1)

〉
ρ

− ρμε

)
, (B.1)
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where 〈·〉ρ means that we are taking the expectation under stationary distribution⊗
πρ and μ is given in (1.9). Note that under stationary distribution, the average

steady state current j (ρ) depends neither on space or time. Let us explain the
meaning of (B.1). Note thatN f(t, x)−N f(t+1, x) records the number of particles
in the fused SHS6Vmodel that move across location x at time t , we subtract ρμε

here because we are in a reference frame that moves to right with speed ρμε .
• The integrated covariance is defined as

A(ρ) := lim
r→∞

1
2r

〈
N f(t, x + r) − N f(t, x−r)−〈

N f(t, x + r)−N f(t, x−r)
〉
ρ

〉

ρ

.

The KPZ scaling theory (equation (12) and (15) of [31]) predicts that

(i) α2 = − lim
ε↓0 j ′′

ε (ρ), (ii)
α3

α1
= lim

ε↓0 Aε(ρ),

Aε(ρ) and jε(ρ) depend on ε under weakly asymmetry scaling (5.30).
Let us first verify (ii), note that under stationary distribution, N f

ε(t, x + r) −
N f

ε(t, x − r) is the sum of 2r i.i.d. random variables with the same distribution πρ ,
hence Aε(ρ) = Var

[
πρ

]
. By Lemma A.2, we know that

Var
[
πρ

] = ρ −
I∑

i=1

χ2

(qi − χ)2
,

where χ is the unique negative solution of

I∑

i=1

χ

χ − qi
= ρ. (B.2)

Under weakly asymmetric scaling, one has q = e
√

ε , which yields limε↓0 χε = ρ
ρ−I

.
Therefore,

lim
ε↓0 Aε(ρ) = lim

ε↓0 Var
[
πρ

] = ρ(I − ρ)

I
.

This matches with the value of α3
α1
.

We proceed to verify (i). First, note that by N f(t, x) = N(J t, x),

N f(t, x) − N f(t + 1, x) = N(J t, x) − N((J + 1)t, x) =
(J+1)t−1∑

s=J t

K(s, x),

where K(s, x) = N(s, x) − N(s + 1, x). We have shown in (A.6) that K(s, x) ∼
Ber ( α(s)χ

1+α(s)χ
), where α(s) = αqmodJ (s). Therefore,

E
[
N f(t, x) − N f(t + 1, x)

] = E

[ (J+1)t−1∑

s=J t

K(s, x)

]
=

J−1∑

k=0

αqkχ

1 + αqkχ
,

which yields

j (ρ) = ε− 1
2

( J−1∑

k=0

αqkχ

1 + αqkχ
− ρμ

)
.
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We proceed to taylor expand jε(ρ) around ε = 0. Note that χ is implicitly defined
through (B.2), we expand χε around ε = 0

χε = ρ

ρ − I
+ (I + 1)ρ

2(ρ − I )

√
ε + O(ε).

Note that α depends on ε through αε = 1−b

b−e
√

ε
. Via straightforward calculation, one

has

αqkχ

1 + αqkχ
= αεe

k
√

εχε

1 + αεek
√

εχε

= ρ

I
+ (Iρ−ρ2)((2k+I +1)b + 1−I −2k)

2(b − 1)I 2
√

ε +O(ε),

which implies

J−1∑

k=0

αqkχ

1 + αqkχ
= Jρ

I
+ J (Iρ − ρ2)

(
(I + J )b − (I + J − 2)

)

2(b − 1)I 2
√

ε + O(ε).

Referring to the expression of μ in (1.9), one has the asymptotic expansion

με = J

I
+ J (I − 2ρ)(2 + (b − 1)(I + J ))

2(b − 1)I 2
√

ε + O(ε).

Consequently,

jε(ρ) = ε− 1
2

(
J−1∑

k=0

αqkχ

1+αqkχ
− ρμ

)
= ρ2J (b(I+J )−(I+J−2)

2(b−1)I 2
+ O(ε

1
2 ).

We have

lim
ε↓0 −j ′′

ε (ρ) = J (b(I + J ) − (I + J − 2))

(1 − b)I 2
,

which coincides with the value of α2.
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