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Abstract

We consider the stochastic higher spin six vertex (SHS6V) model introduced by
Corwin and Petrov (Commun. Math. Phys., 343(2), 651-700 2016) with general
integer spin parameters I, J. Starting from near stationary initial condition, we
prove that the SHS6V model converges to the Kardar-Parisi-Zhang (KPZ) equation
under weakly asymmetric scaling. This generalizes the result in Corwin et al. (2018,
Theorem 1.1) from I = J = 1 to general I, J.
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1 Introduction
1.1 KPZ Equation and Weak KPZ Universality

The Kardar-Parisi—Zhang (KPZ) equation is the following non-linear stochastic
partial differential equation (SPDE) introduced in the seminal work [32], which
describes the random evolution of an interface that has the property of relaxation and
lateral growth

dH(,x) = ga,%ﬂ(r, x) + %(axmt, x0))* + VDE(, x). (1.1)

Here £(¢, x) is the space time white noise, which could be formally understood as a
Gaussian field with covariance function E[S (t, x)&(s, y)] =4(t —s5)6(x —y), where
§ is the Dirac delta function.
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Care is needed to make sense of (1.1) due to the nonlinearity (3, H(z, x))*. The
Hopf-Cole solution to the KPZ equation is defined by

H(t, x) = glog Z(t, x), (1.2)

where Z(¢, x) is the mild solution of the Stochastic Heat Equation (SHE)

% Z(t, x) = ga§2(t, X)+ @za, XE, x).

So long as Z(0, x) is (almost surely) positive, [42] proved that Z(¢, x) remains
positive for all # > 0 and x. This justifies the well-definedness of (1.2). Other equiv-
alent definitions of the solution are given by regularity structure [29], paracontrolled
distribution [26] or the notion of energy solution [25, 27].

It is well-known that there is no non-trivial scaling under which the KPZ equa-
tion is invariant in law. More precisely, if we define H¢(f, x) = eZ’H(e’b t, e’lx),
using the scaling of space-time white noise E(e bt e x) = eb%lé(t, x) (in law),
then

5
O H (1, x) = 562—ba§7{€(r, X) + %e—m—b(axmu, 0)2 + 273 DE, x).

(1.3)
It is clear that there is no b, z such that the coefficients in the above equation match
with those in (1.1). However, if we simultaneously scale some of the parameters
8, k, D, it is possible that the KPZ equation remains unchanged: such scaling is
called weak scaling. It is thus natural to believe that the KPZ equation is the weak
scaling limit of microscopic models with similar properties such as relaxation and
lateral growth. Roughly speaking, this is the weak universality of the KPZ equa-
tion, see [16, 46] for an extensive survey. We emphasize that the weak universality
of the KPZ equation should be distinguished from KPZ universality, which says
that without tuning of the parameter of the model, the microscopic system con-
verges to a universal limit called KPZ fixed point under [1 : 2 : 3] scaling, see [10,
22, 41] for some recent progress and breakthroughs in identifying the KPZ fixed
point.

The weak universality of the KPZ equation has been verified for a number of inter-
acting particle systems. The first result was given in the work of [7], for Asymmetric
Simple Exclusion Process (ASEP). For more results of the weak universality of KPZ
equation, see Section 1.5.3 of [15] for a brief review.

Recently [15, Theorem 1.1] proved that under weak asymmetric scaling (which
corresponds to taking b = 2,z = 1 and k — /ex in (1.3)), the stochastic six
vertex model converges to the KPZ equation. In this paper, we consider stochastic
higher spin six vertex model (SHS6V) model introduced in [17].1 We prove that
under similar weak asymmetric scaling, the SHS6V model converges to the KPZ
equation. This extends the result of [15, Theorem 1.1] to the full generality. We like

IThe stochastic higher spin six vertex (SHS6V) model has vertical and horizontal spin parameters I, J €
Z1. The stochastic six vertex model is a degeneration of it by taking / = J = 1.
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to emphasize that there are some significant new complications in our case compared
with [15], see Section 1.4 for discussion.

Before ending this section, we remark that there might be other SPDEs (besides
the KPZ equation) arising from the vertex model. For instance, it was shown in [8, 48]
that under a different scaling, the stochastic six vertex model converges to the solution
of the stochastic telegraph equation. It is interesting to ask whether the SHS6V model
converges to other SPDEs, this question is left for future work.

1.2 The SHS6V Model

The SHS6V model introduced in [17] (also see [11]) belongs to the family of vertex
models which themselves are examples of quantum integrable systems. In general,
the R-matrix (which can be thought of as the weights associated to the vertex) are
not stochastic. Gwa and Spohn [28] and Borodin et al. [4] studied the stochastic six
vertex model, which is a stochastic version of the six vertex model introduced by
[45]. The authors of [17] worked with the L-matrices, which is a stochastic version
of the R-matrices® and they defined the SHS6V model. The stochasticity allows us
to define the vertex model on the entire line as an interacting particle system which
follows sequential Markov update rule. Moreover, the L-matrices in [17] satisfy the
Yang-Baxter equation which implies the integrability of the model. In particular, the
transfer matrices are diagonalizable by a complete set of Bethe ansatz eigenfunc-
tions [5, 17]. The model also enjoys Markov duality. The stochastic R-matrices of
the SHS6V model have four parameters, by specifying which the SHS6V model
degenerates to known integrable systems such as stochastic six vertex model, ASEP,
g-Hahn TASEP, q-TASEP. Indeed, it is on top of a hierarchy of KPZ class integrable
probabilistic systems. Recent studies of the SHS6V model and its dynamical version
include [3, 12, 13, 30, 43].

Let us recall the definition of the SHS6V model from [17]. Fix I, J € Z3>1,a, q €

R, we define the L-matrix LS : 7%, — Rvia

21—t 2—i3 | i3HD  iy(a—D)Hig

J . PR . _ . . . . —— e 1 4ove - 171
LGy, jisias j2) = Vit jimint )43 4 4 2

i1 —in o jo— j1+i —1. .\, .

e s L |

x . 493
(@ Qi (=0 Qig+jo (@15 ) -,
qfig; qfil’ —(Xq'], —6]1)()[71
X( e N I AL (1.4)

1

Here, v = ¢! and 4¢3 is the regularized terminating basic hyper-geometric series

defined by

_Hd_) q " ay,...,ar no k(@ "k
reler b,...,b,

q,z> = Yo 2 T @i @)k big"s @n—,

28ee [17, Remark 2.2] for more discussion of the relation between L-matrices and R-matrices.
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where we recall the g-Pochhammer symbols (a, g), (here n is allowed to be negative)
are defined by

[Toi(1—ag'™,  n>0,
(a;q)n = lv l’l:O,
]_[,2(;1(1 —ag"™~1 n <.

We view L(gj) as a matrix with row indexed by (i, j1) € Zz>0 and column indexed
by (i2, j2) € ZZ>O. Note that the L-matrix in (1.4) actually depends on four generic
parameters «, g, I, J, we suppress the dependence on ¢, / in the notation of Léj) to
simplify the notation.

It is straightforward by definition that for (i, j1) € {0,1,..., 1} x {0, 1,...,J}
(using v = ¢ ~1)

L G iz j2) =0, forall (i2. j2) € ZE\O. Lo, I} x {0, 1., T},
which means there is no way to transition out of {0,1,...,71} x {0,1,..., J}

from itself. Therefore, in the following we restrict ourselves to the block with
(1, 1), G2, j2) €0, 1, ..., 1} x {0, 1, ..., J}

When J = 1, by straightforward calculation, the L-matrix defined above
simplifies to

1+ ag™ a(l—q™)
1 . 1 .
L om, 0:m, 0) = === L On, O = 1, 1) = = ——,
1 —vg" o+ vg"
LPOm m+1,00 = ——— L m, 1;m, 1) = ———. 1.5
o (m,1;m+1,0) T o o (m,1;m, 1) s (1.5)

For the history of the expression (1.4), we remark that more intricate expressions for
a quantity similar to the Lg/) had been known in the context of quantum integrable
systems since the work of [33]. Relatively compact expressions of foj) became avail-
able only in more recent times after the work of [40]. Corwin and Petrov [17] also
provides a probabilistic proof for this expression.

From our perspective, we will think of L(()/)(i 1, j1; 02, jo) as the weight associ-
ated to a vertex configuration with 7; input lines from south, j; input lines from
west, i output lines to the north and j, output lines to the east see Fig. 1. Since we
have restricted LY (i1, ji: ia, jo) to (i1, j1), (2, jo) € {0, 1, ..., I} x {0, 1,..., J},
we can have at most [ vertical lines and J horizontal lines in the vertex config-
uration. Note that due to the indicator in (1.4), all non-zero vertex weights L((,J)
(i1, j1; 02, Jo) satisfy i1 4+ ji = i2 + j2, a property that we consider as conservation
of lines.

In this paper, we always assume the following condition.

Condition 1.1 We take ¢ > 1, < —g~Y*/=D and as we noted before, v = g~.

It follows from [17] that under Condition 1.1, Lg/) is a stochastic matrix on
{0,1,...,1} x{0, 1, ..., J}. In other words, for any fixed (i1, j;) € {0, 1,...,1} x
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output output
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Fig. 1 Left: The vertex configuration labeled by four tuples of integer (i1, ji; i2, j2) € 2420 (from bottom

and then in the clockwise order) has weight L((),J)(i 1, j13 i2, j2), which takes i; vertical input lines and
J1 horizontal input lines, and produce i, vertical output lines and j, horizontal output lines. Right: The
representation of the vertex configuration (i1, ji; i2, j2) = (2, 2; 3, 1) in terms of lines

{0,1,...,J}, L((,,J)(il, Jj1;+,-) defines a probability measure on {0, 1,...,1} X
{0, 1, ..., J}. Although in this paper we will not investigate the range of parameters
out of Condition 1.1, it is worth remarking that there are other choices of parameters
which make foj) stochastic, a few of them are provided in [17, Proposition 2.3].

There are several equivalent ways to define the SHS6V model. In this paper, we
view the SHS6V model as a one-dimensional interacting particle system, which fol-
lows a sequential update rule. We proceed to give a precise definition of it. Denote
by the space of left-finite particle configuration

G={g=0(..,8-1,80,8...): allg; €{0,1,..., 1} and there exists x € Z
such that g; = O forall i < x.}, (1.6)

where g, should be understood as the number of particles at position x. We define a
discrete time Markov process g(t) = (gx(t))rez € G as follows.

Definition 1.2 (left-finite fused SHS6V model) For any state ¢ = (gx)xez € G, we
specify the update rule from state g to g’ as follows: Assume the leftmost particle in
the configuration g is at x (i.e. g, > O and g, = O for all z < x). Starting from x, we
update g, to g} by setting 4, = 0 and randomly choosing g’. according to the prob-
ability L((),J)(gx, hy = 0; g%, hyy1) where hyy1 := gy — g%. Proceeding sequentially,
we update g4 to g)’H_1 according to the probability L&J)(gxﬂ, hyxt1; g}’H_l, hy42)
where hyyo = geq1+hyy1— g)’C+l . Continuing for gx4+2, gx+3, - - . , we have defined
the update rule from g to g’ = (g )xez. see Fig. 2 for visualization of the update pro-
cedure. We call the discrete time-homogeneous Markov process g(t) € G with the
update rule defined above the left-finite fused SHS6V model.>

3Note that in Definition 1.2, although the update from g to g’ may never stop as it goes to the right, the
process is well-defined since we only care about the sigma algebra generated by (gx)x<z.xez forall z € Z.

@ Springer



1 Page 6 of 118 Math Phys Anal Geom (2020) 23: 1

g, =1 Gpr1 =3 Gpgo =2 Jors =2
hy =0 hay1 =2 hayyo =1 hyvs =0 haya =1
gz =3 Jot1 =2 Gzt2 =1 Jet3 =3
£$(3,0;1,2) L(2,2:3,1) L(1,1;2,0) £$(3,0;2,1)

et

x x+1 x4+ 2 x4+ 3

Fig.2 The visualization of the sequential update rule for the left-finite fused SHS6V model in Definition
1.2. Assuming x is the location of the leftmost particle, we update sequentially for positions x, x + 1, x +
2, ... according to the stochastic matrix Lé/), the gray particles in the picture above will move one step
to the right

For s € Z>(, we define mod; (s) := s — J|s/J]. For instance,

(mody (0), mod; (1), ..., mod;(J — 1), mod, (J), mod;(J +1),...)
=(0,1,....,7 —1,0,1,...).

We further define (1) = ag™%® forr € L.

Definition 1.3 (left-finite unfused SHS6V model) For all state 77 € G, we specify the
update rule at time ¢ from state 77 to ;' € G as follows. Assume the leftmost particle
in the configuration 7 is at x. Starting from x, we update nx to 0, by setting i, = 0
and randomly choosing 7, according to the probability LY o (z) (nx, hx; 0l hyq1) wWhere
hyt+1 = nx + hy — 1/, Proceeding sequentially, we update 7,1 to 1, according to
J 1

the probability Lz(x()t) Mx+1, hxs1s 77;_,_17 hyxi2) where Ay := nyq1 + by — 77;4_1'
Continuing for ny42, Nx43, ..., we have defined the update rule from 7 to 7’ =
(1 )xez. We call the discrete time-inhomogeneous Markov process 7() € G with
the update rule defined above the left-finite unfused SHS6V model.

Remark 1.4 1t is straightforward to check that under Condition 1.1, for all ¢ € Z3,

LD

() in (1.5) is a stochastic matrix which transfers {0, 1, ..., I} x {0, 1} to itself.

In this paper, as a notational convention, we always use g(¢) to denote the fused

SHS6V model and 7(¢) to denote the unfused one. The connection between them is
specified in the following proposition.
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Proposition 1.5 [17, Theorem 3.15] Consider the left-finite fused SHS6V model g(t)
and the left-finite unfused SHS6V model 1(t). If (0) = 7(0) in law, then

B),t=0)= G, t=0) inlaw.

By Proposition 1.5, we can construct the SHS6V model with higher horizontal
spin (J € Z1) from those with horizontal spin J = 1. This procedure is called
fusion, which goes back to the work of [33]. Thanks to Proposition 1.5, for any left-
finite SHS6V model g(¢), we can couple it with a left-finite unfused SHS6V model
77(t) so that g(¢) = 7(Jt). We will extend the definition of unfused SHS6V model
77(r) in Lemma 2.1 so that it takes value in a larger space of bi-infinite particle config-
uration {0, 1, ..., 1 }Z (thus extend as well the definition of the fused SHS6V model
using the relation g(t) = 7(Jt)).

For the particle configuration g € G, define

Ne@) =) gy (1.7)
y<x
For the left-finite unfused SHS6V model 7(t) € G, we define the unfused height
function as
N2, x) = Ny (ii(1)) — No(i(0)). (1.8)
Note that in the notation of unfused height function, we suppress the underlying

process 7j(¢). Similarly, we define the fused height function N'(t, x) for the left-finite
fused SHS6V model g(¢) € G as

Nz, x) = N.(3(2)) — No((0)).

Since g(t) = 7(J1), certainly one has for all 1 € Z>p and x € Z, Ni@, x) =
NY(Jt, x).

We will state our result for the fused height function N'(z, x) though we will
mainly work with the unfused height function NV (¢, x) in our proof. In the future,
the notation of N' (¢, x) will often be shortened to N (z, x).

Having defined N f(t, x) (respectively, N Uz, x)) on the lattice, we linearly inter-
polate it first in space variable x then in time variable #, which makes N'(z, x)
(respectively, NY(z,x)) a C([0, o0), C(R))-valued process. For construction of
height functions of the bi-infinite version of the fused or unfused SHS6V model, see
Lemma 2.1.

1.3 Result

The main result of our paper shows that the fluctuation of the fused height function
N'(t, x) converges weakly to the solution of the KPZ equation. Fix p € (0, I), define
_ l+a—gP(a+v) _ ag”(1—g”)(1—v)
T lrag/—gragT+) M (g =g (g7 H ) (T Fa—gr @+ )’
(1.9)

As a matter of convention, we endow the space C(R) and C ([0, 0co), C(R)) with the
topology of uniform convergence over compact subsets, and write “ = ” for the
weak convergence of probability laws. We present our main theorem.
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Theorem 1.6 Fix b e (;ifj, 1), I >2and J > 1, for small e > 0, wet g = evVe
14aq
14+a

{Ni (0, x)}e=0 is nearly stationary with density p (see Definition 5.5) and

and define o via b = . We call this weakly asymmetric scaling. Assume that

JE(N@(O, ey — ,oe_lx) — Hi°(x) in C(R) as € | 0,
then
JE(N:(G_ZI, e Ix+e ) — ple 'x + e_2uet)) —tlogie = H(t, x)
in C([0, 00), C(R)) as € | 0, (1.10)
where H(t, x) is the Hopf-Cole solution of the KPZ equation

JV. JV,
70 2*(3xH(t,X))2+¢JD*S(t,x), (1.11)
with initial condition H¢ (x), where the coefficients are given by

dU+Db—-U+J-2)

azH(I, .X') =

)%H(t, x) —

= , (1.12)
12(1 — b)
_pU—p) U+ Db~ +J—2)
Dy = = T . (1.13)
I1+J-2

Note that the restriction of b € (IJFJ_1 , 1) in Theorem 1.6 is necessary and suffi-
cient to ensure that Condition 1.1 holds for € small enough. In Appendix B, we will
demonstrate how our theorem agrees with the non-rigorous KPZ scaling theory used
in physics.*

Remark 1.7 In a different setting where 0 < g, v < 1 (in contrast to Condition 1.1,
there is no I € Z3 such that v = q_l) and ¢ > 0, one can show that Lg/) is a
stochastic matrix on Z>o x {0, 1, ..., J} (instead of {0, 1, ..., I} x {0, 1, ..., J} for
our case). In this regime, the SHS6V model allows arbitrary number of particles at
each site (instead of at most / particles for our case). Corwin and Tsai [21] proves the
weak universality of the SHS6V model® under a different type of weak scaling that
corresponds to taking b =3,z =1, — €6,k — €2k in (1.3). Under this scaling,
the number of particles at each site diverges to infinity with rate e ~!. This simplifies
considerably the control of the quadratic variation of the martingale in the discrete
SHE (1.14), which is the main complexity in our analysis.

Remark 1.8 Taking I = J = 1, Theorem 1.6 recovers [15, Theorem 1.1]. We assume
I > 2 in Theorem 1.6 merely due to some technical subtleties we met in Section 7.
The proof for I = 1 needs particular modification and we do not pursue it here.

4The KPZ scaling theory is a non-rigorous physics method used to compute the constants (the coefficients
of the KPZ (1.11) as in our case) arising in limit theorems for the models in the KPZ universality class
[31, 47], which has been confirmed in a few cases such as [23, 24].
SIn the context of [21], the authors prove the weak universality for the higher spin exclusion process
defined in [17, Definition 2.10], which is equivalent to the SHS6V model after a gap-particle transform.
We describe their result in the language of the SHS6V model here.
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The proof of Theorem 1.6 will be given in the end of Section 5, as a corollary of
Theorem 5.6.

1.4 Method

In this section, we explain the method used in proving Theorem 1.6. Although ini-
tially our methods follow [15], rather quickly, we encounter novel complexities that
are not present in [15] which require new ideas.

As illustrated in Section 1.2, via fusion, to study the fused SHS6V model, it suf-
fices to work with the unfused version. Similar to [15], the first step is to perform
a microscopic Hopf-Cole transform of the SHS6V model (5.6). The existence of
the microscopic Hopf-Cole transform is guaranteed by one particle version of the
duality (3.8) (which goes back to [17, Theorem 2.21]). The microscopic Hopf-Cole
transform Z (¢, x), which is essentially an exponential version of the unfused height
function N (¢, x), satisfies a discrete version of SHE

dZ = LZdt +dM. (1.14)

Here £ is an operator which approximates the Laplacian and M is a martingale.
Owing to the definition of the Hopf-Cole solution to the KPZ equation, Theorem
1.6 is equivalent to showing that the above discrete SHE converges to its continuum
version (Theorem 5.6). The proof of Theorem 5.6 reduces to three steps:

1). Showing tightness.
2). Identifying the limit of the linear martingale problem.
3). Identifying the limit of the quadratic martingale problem.

Steps 1) and 2) follow from a similar approach as in [15]. Step 3) is the difficult
part; Proposition 6.8 does this by proving a form of self-averaging for the quadratic
variation of the martingale M. We will focus on discussing the method for proving
this self-averaging result in the rest of the section. We remark that other recent KPZ
equation convergence results using the Hopf-Cole transform include ASEP-(q, j)
[20], Hall-Littlewood PushTASEP [24], weakly asymmetric bridges [36], open ASEP
[19, 44].

We will explain what is self-averaging in a moment, but first introduce two tools
used in proving it. The first tool is the Markov duality and the second is the exact
formula of two particle transition probability of the SHS6V model.

The stochastic six vertex model enjoys two Markov dualities [17, Theorem 2.21]
and [39, Theorem 1.5],% which are exploited in proving the self-averaging [15, Propo-
sition 5.6]. The Markov duality in [17, Theorem 2.21] also works for the SHS6V
model (Proposition 3.6 in our paper), yet it is unknown whether there exists a gener-
alization of [39, Theorem 1.5] for the SHS6V model. [35, Theorem 4.10] discovers

9The Markov duality proved in [39] first appears in [17, Theorem 2.23]. In fact [17, Theorem 2.23] claims
a more general Markov duality for the SHS6V model. In discussions with the authors of [CP16], we
recognized a gap in that proof as well as a counter-example to the result when 7 > 1, see [18] for detail.
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a general duality for the multi-species SHS6V model using the algebraic machin-
ery.” At first glance, the duality functional written in [35, Theorem 4.10] takes a
rather complicated form, but we only need a two particle version of this duality, in
which case the duality functional simplifies greatly (Proposition 3.7 in our paper) and
is applicable for proving the desired self-averaging. We remark that this is the first
application of [35, Theorem 4.10] as far as we know.

In [4, Theorem 3.6], an integral formula was obtained for general k particle tran-
sition probability of the stochastic six vertex model via a generalized Fourier theory
(Bethe ansatz), using a complete set of eigenfunction of the stochastic six vertex
model transition matrix obtained in [4, Theorem 3.4] together with the Plancherel
identity [49, Theorem 2.1]. [15] applies the steepest descent analysis to a two parti-
cle version of this formula to extract a space-time bound, which is the key to control
the quadratic variation of the martingale in (1.14).

For the SHS6V model, it is natural to expect that the similar method should apply,
since we also have a set of eigenfunctions from [17, Proposiiton 2.12] and a gener-
alized Plancherel identity from [5, Corollary 3.13]. However, the Plancherel identity
was originally designed only for 0 < ¢g,v < 1 and there is a technical issue in
extending this identity to ¢ > 1, v = ¢~ which has not been addressed in the exist-
ing literatures® (see Remark 4.5). Fortunately, we find that when / > 2 and there
are only two particles, such analytic continuation does work, which produces an inte-
gral formula for the two particle SHS6V model transition probability (Theorem 4.4).
In terms of large contours, the integral formula consists of two double contour inte-
grals and one single contour integral. We find that the single contour integral can be
expressed as a residue of one of the double contour integrals. This simplifies our anal-
ysis since via certain contour deformation, the single contour integral will be canceled
out.

We will analyze (a tilted version of) this integral formula (Corollary 5.3) in
Section 7 using steepest descent analysis and obtain a very precise estimate of the
(tilted) two particle transition probability V defined in (5.20). Compared with the
analysis for stochastic six vertex model in [15, Section 6], one difficulty is to find
(and justify) the contours for different /, J such that the steepest descent analysis
applies. Also in certain cases (Section 7.5) the steepest descent contour can only
be implicitly defined (compared with [15, Section 6] where all the steepest descent
contour are circles), which complicates our analysis.

Now let us explain what is self-averaging and how these two tools can be applied
to prove it. Denote the discrete gradient by V f(x) := f(x + 1) — f(x). Roughly
speaking, the terminology “self-averaging” refers to the phenomena that as € | 0
(A) For x| # x», the average of e "'V Z (¢, x1)VZ(t, x2) over a long time interval of
length O (e~2) will vanish.

7 As a remark, the functional in [35, Theorem 4.10] also serves as the duality functional for a multi-species
version of ASEP(q, j), see [14, 34].

8Corwin and Petrov [17, Proposition A.3] claims the Plancherel identity for v = ¢~/ can be obtained
by analytic continuation of [5, Corollary 3.13]. After discussions with the authors of [17], they agree that
there is an issue in this analytic continuation (and the resulting identity) due to poles encountered along
the way [18].

I
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(B) There exists a positive constant A such that the average of (e’%VZ (t, )c))2 —
LZ(t, x)* overa long time interval of length O(e2) will vanish.

The proofs of (A) and (B) are given in Lemma 8.2 and Lemma 8.3 respectively,
let us make a brief discussion about our strategy here. As we will see in (8.15), under
weakly asymmetric scaling,

e_%VZ(t, x) = (p — Nx+1())Z(t, x) + error term . (1.15)

where p € (0, I) is the density, 77, (t) = 1,4, (t) and fi(?) is some constant defined

in (5.4). Pointwisely, e_% VZ(t, x) is of the same order as Z(¢, x). But (A) tells that
after averaging over a long time interval (we will just say “averaging” afterwards for
short), e 'V Z(r, x1)VZ(t, x2) vanishes for x; # x», this explains the terminology
of “self-averaging”. To prove (A), by the first duality in Lemma 5.2 (which goes back
to Proposition 3.6), one is able to write down the conditional quadratic variation in
terms of the summation of (a tilted version of) two particle transition probability V,
i.e. forx; < x2

E[Z(@t, x)Z(t, x2)| F(s)] = Z V((x1,x2), (1, ¥2), 1. 5) Z(s, y1) Z(s, 2)
YISy2
(1.16)
This allows us to move the gradients from Z(¢, x1) and Z(¢, x2) to V. We proceed
by using a very precise estimate of V from Proposition 7.1 (which is proved by mak-
ing use of the steepest descent analysis of the integral formula of V). Referring to

Proposition 7.1, each gradient on V((xl, x2), (y1, y2), t, s) gives an extra decay of
1
Jt—s+1’

argument is actually simpler than that of [15]. Since we assume I > 2, (1.16) holds
for all x; < xp, while in the situation of the stochastic six vertex model (I = 1),
(1.16) holds only for x; < x3, due to the exclusion restriction (i.e. two particles can
not stay in the same site). In fact, [15] needs both of the duality [17, Theorem 2.21]
and [39, Theorem 1.5] to prove (A).

For (B), there are two tasks: Identifying A and proving the self-averaging. These
were done simultaneously for the stochastic six vertex model [15]: Note that by
(1.15),

which helps us to conclude (A). We remark that for demonstrating (A), our

(e*%VZ(t, x)? = (Me1() — ,o)ZZ(t, x)? + error term . (1.17)

For the stochastic six vertex model, 77, (t) € {0, 1} for all 7, x, hence 7y (£)% = 7. (¢).
Corwin et al. [15, Lemma 7.1] uses this crucial observation to obtain

(Tet1 () — P2 Z(t, x)* = p*Z(t, x)* + (1 = 20)Fx41 (D Z(2, X)
o1 = P)YZ(t, x)* + €72 (2p — )V Z(t, x) Z(t, x)

-+ error term .

By similar method used in demonstrating (A), it is not hard to prove that
G_%VZ(I, x)Z(t, x) vanishes after averaging, implying that A = p(1 — p).
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For our case, first we note that 7, (1) € {0, 1, ..., I} with I > 2, so the 7, (1)* =
7y (¢) identity obviously fails. We need to find another way to determine A and prove
the self-averaging. We proceed by first guessing the A. Via (1.17), the average of
e (VZ(t, x))? over a long time interval can be approximated by the average of
(T () — p)2Z(t, x)*. In Appendix A, we derive a family of stationary distribution
of the SHS6V model, which is a product measure ) 7, where 7, is a probability
measure on {0, 1, ..., I} indexed by its mean p € (0, I). Starting the SHS6V model
1(t) from 77(0) ~ @ 7, itis clear that 7j, (f) ~ 7, for all ¢, x. In a heuristic level, one
can approximate the average of (77y+1(t) — p)2Z(t, x)? by that of the E, [(ﬁx+l ) —
,0)2]Z (t, x)*. Under weakly asymmetric scaling, one computes that

_p—p)

: ~ 2
léliglEnp[(an(t) —-p)’] = —

which suggests A =

To prove (B) with A = M, note that the second duality in Lemma 5.2 (which
goes back to Proposition 3.7) implies

E[D(t. x.0)|F)] = Y Dis, y1. y)V((x. ), (1. y2). 1. 5) (1.18)
VIS

p—p)
-

where approximately”

[ 2630 =Ty ) (=1 =7y, ) ity =,
D(s, y1,y2) = { %Z(& YDZ(s, y) (I =Ty, () (I = 0y, () if y1 < y2
(1.19)

Note that the expression of D(s, y1, y2) is different depending on whether y; = y»,
which is crucial to our proof. Rewriting (e_% VZ(t, )c))2 — MZ (t, x)2 in terms
of the two duality functionals in (1.16) and (1.19)

(€ 3V Z(t, x))? — Mza, )2
= <(5x+1(t) —p)? = M)Z(L x)% + error term
- - I — 1D — p)?
- ((1 et O = 1= T (1)) — #)za,x L1y

—Q2p+1- 21)67%VZ(I, Xx)Z(t,x) + error term ,

_ _ 2
d-ba-pr 1)51 P) Z(t,x+1)2>

—2p+1-— 21)6_%VZ(1‘, x)Z(t, x) + error term .

= (D(t,x+1,x+l)—

91In fact, the functional D(s, y, y2) below is only an approximate version of the duality functional defined
in (5.19), we use this approximate version here to avoid extra notations and make our argument more
intuitive.
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It is not hard to show that the second term e’% VZ(t, x)Z(t, x) vanishes after aver-
aging. For the first term above, we combine both of the dualities (1.16), (1.18) and
get

- _ 2
E[D(t, x4+ Lx+1)— qu, X+ 1)2 ]-'(s)]
= Z V(x+1,x+1,y1,y,1,5)
Vi<
I — 1D - p)?
x(D(s, e ya) — #Z(xmzmm). (1.20)

The number of pairs (y1, y2) such that y; = y, compared with y; < y; is negligible
in the summation above so it suffices to study for y; < y»

I— 1D - p)?
DGy~ P w26,
I—1 ~ _ I— 1D - p)?
= (T(I — My (U =1y, () — #)Z(& Y1Z(s, y2)

= (I = Ty, () (€ IVZ(s, y))Z(s. y2) + (I — p)(€ 2V Z(s, y2) Z(s. y1)
—+ error term .

Inserting this expression into the RHS of (1.20) and using the summation by part
formula (see (8.39)), we can move the gradient from Z to V. Similar to the argument
for (A), applying the estimate in Proposition 7.1 completes the proof of (B).

1.5 Outline

The paper will be organized as follows. In Section 2 we give an equivalent defini-
tion of SHS6V model through fusion. At the beginning, we require the existence of
a leftmost particle. After that we extend the definition to a bi-infinite version of the
SHS6V model (Lemma 2.1), which is the object that we study for the rest of the
paper. In Section 3, we introduce two Markov dualities enjoyed by the model. The
first one is taken directly from the [17, Theorem 2.21]. The second one is a certain
degeneration from a general duality in [35, Theorem 4.10]. Section 4 contains the
derivation of integral formula for the two point transition probability of the SHS6V
model. In Section 5, we define the microscopic Hopf-Cole transform and prove that
it satisfies a discrete version of SHE. Due to the definition of the Hopf-Cole solution
to the KPZ equation, it suffices to prove that the discrete SHE converges to its con-
tinuum version. In Section 6, we prove this result in two steps. First, we establish the
tightness of the discrete SHE. Second, we show that any limit point is the solution to
the SHE in continuum, assuming the self-averaging property (Proposition 6.8). The
last two sections are devoted to the proof of Proposition 6.8. In Section 7, we obtain
a very precise estimate for the two point transition probability by applying steepest
descent analysis to the integral formula that we obtain in Section 4. In Section 8, we
prove Proposition 6.8 using the Markov duality and our estimate of the two point
transition probability.
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1.6 Notation

In this paper, we denote Z»; = {n € Z : n > i}. 1¢ denotes the indicator function
of an event E. We use E (respectively, P) to denote the expectation (respectively,
probability) with respect to the process or random variable that follow. The symbol
C, represents a circular contour centered at the origin with radius r. All contours,
unless otherwise specified, are counterclockwise.

2 The Bi-Infinite SHS6V Model

The main goal of this section is to extend the definition of the left-finite unfused
(fused) SHS6V model in Definition 1.3 (Definition 1.2) to the space of bi-infinite
configurations {0, 1,...,17 }Z. The motivation of such extension is to include one
important class of initial condition called near stationary initial condition as in [7].
We will proceed following the idea of [15], which goes back to [21]. By fusion
(Proposition 1.5), it suffices to extend the left-finite unfused SHS6V model #(z). The
extension of the fused version g(¢) follows easily by taking g(¢) = 7(Jt).

For the extension, the first step is to restate the SHS6V model in a parallel
update rule. To this end, we equip the probability space with a family of independent
Bernoulli random variables B(t, y, n), B'(t, y, n) such that

(a1 = g") / o (w) + vg”
B(I, y, T}) Ber <To{([)>’ B (t, y, T}) Ber< l +a(t) ), (21)

fort € Zso,y € Zandn € {0, 1, ..., I}, recall that a(t) = g™ ®.

Treating these Bernoulli random variables as a random environment, we find an
equivalent way to define the left-finite unfused SHS6V model, through recursion.
Given initial state 77(0) € G, define N(0, x) := N,(7(0)) — No(5(0)) (recall the
notation from (1.7)) and recursively fort =0, 1, ...,

N, y)— B, y,ny(@) ifNGEy-1)—-Nz+1y-1)=0,

N, y)—B'(t,y,ny() Nt y—1D)—-N@t+1,y—D=L

ny+1) :=Ne+1Ly)—Ne+1,y—1. (2.2)
It is straightforward to see that 7(t) = (1,(1)) yez is a left-finite unfused SHS6V

model and N (¢, x) is indeed its height function defined by (1.8).
The recursion (2.2) is equivalent to

N(@t+1,y):=

N =NG+1,3) = (Nt y=D=NG+1,y=1)
x(B(t,.my ()= B(t,y.1,(t) )+ B(t,y.0y (1) 23)
Iterating (2.3) implies
Y y
Ney=Ne+Ly = Y ] (Bezn0) - B zn.0))

y/'=—00z=y'+1
X B(t, z, n:(1)). (2.4)
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Note that the summation above is finite. The reason is that since 7(t) € G, there
exists w such that () = 0 for all z < w, which implies B(¢, z, n,(t)) = 0 for all
zZ<w.

In light of (2.4), we extend the Definition 1.3 to the space of bi-infinite particle
configuration {0, 1, ..., I}Z.

Lemma 2.1 For any bi-infinite particle configuration 7(0) € {0, 1, ..., I}%, define
the initial height function
N0, x) =1x=0) 2img 1i(0) — Loy D2 n—i (0).
Note that if 1(0) € G, N(0, x) defined above coincides with that defined in (1.8). We
inductively define the 1j(t) and N(t, x) fort =0, 1, ... via the recursion
y

Y
> T (Bt.zn) - Ba.zm)

y'=—00 z=y/+1
xB(t, z, n;(1)), (2.5
ny(+1) == Nt+1,y) =N+ 1,y—1). 2.6)

N(@,y)—N@t+1,y):

For p > 1, the infinite sum in (2.5) converges almost surely and in LP to a
{0, 1}-valued random variable. Furthermore, consider left-finite initial configuration
1"(0) = (i (0)1(;>w))icz and the height function N (t, y) inductively defined by
(2.5) and (2.6), then for allt € Z>oand y € Z

lim NY(t,y) = N(t,y) in L?.

w——00

Remark 2.2 1t is clear that via (2.5), one can recover the recursion (2.2) since

y y
Ney-Ne+ty= Y [T (BC.zn00) = B 2.0:00) Bt 2. n:(0)

y'=—00z=y'+1

= B(t.y. 1, (1) + (B0, y.1,(1) = B'(t, y. 0y (1))

y—1 y—1
x > 1 (Bezn0) - Be.znw)

y'=—00z=y'+1
= B(t,y. 1,1 + (B0, y.1,0) = B'(t, y. 0y (1))
(N y =1 = NG y).

In particular, if 7(0) € G, the 7(¢) defined in Lemma 2.1 is a left-finite unfused
SHS6V model. Therefore, Lemma 2.1 truly extends the scope of Definition 1.3.

Proof of Lemma 2.1 Define the canonical filtration

Fy =0 (i), B z,m, B'(s,2,m, 0 < s <t = 1)),
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It is not hard to see (via (2.5) and (2.6)) that N(¢, y) and 7(¢) are adapted to this
filtration.

Let us first justify the convergence of the infinite summation (2.5). To simplify
notation, we denote by E'[ - ] = E[ - | F(#)]. For x < y € Z, denote by

Y Y
Key®i= Y [T (B/0.20:0) = B2, 0:00)) B, ¥ ny 1)

y/:x 7=y/+1

Observing that K, ,(¢) € {0, 1} for all realization of B, B’ € {0, 1}. Therefore, as
x — —o0, the L? convergence of K y(¢) implies the almost sure convergence. Note
that B, B’ are independent Bernoulli random variables with mean given in (2.1). As
a consequence, there exists constant § > 0 such that

P(B'(t,z,n) — B(t,2,m) =0) > 8, Y (t,2,1) € Zzo x Zx {0, 1,...,1}.
Since |B'(t,z, 1) — B(t,z,n)| < 1,
E'[(B'(t, 2, n:()) — B(t, 2, n:(1))"] < 1= 8.

Furthermore, note that conditioning on F(¢), B(t, z, n;(t)), B'(¢, z, n;(t)) are all
independent, which yields

y p
E’[(B(r,y’, @) TT (B¢ 200 - Bz, nzm))”

z=y'+1

y
= E'[B¢. Yy ny@)”] ] E[(B'¢ z.n:(0) — B(t.z.n:(1)))"]
z=y'+1
<A=8Y. 2.7)

Taking expectation on both sides of (2.7), by tower property,

which implies the convergence of K, y(f) in L? as x — —oo.
We proceed to justify

lim N¥(t,y) = N(ty) inLP. (2.8)
w——00

<U-87,
P

y
( [T (B'¢.2n0) = Bt z.nc) B, Y, nyf(t»)

z=y'+1

We prove this by applying induction on . The ¢+ = 0 case is immediately checked.
Assuming that we have a proof for r = s, we show that (2.8) also holds for r = s + 1.
Note that for all y € Z,

Uyw(s) = N"(s,y) =N"(s,y—1) = N(s,y) = N(s,y = 1)
= ny(s)in L? asw — —oo.

Since both nyw (5), ny(s) take value in {0, 1, ..., I'}, we obtain

wEIPoo P(TI;)(S) = Uy(S)) =1.
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Taking w — —o00, one achieves

y y
NG, ) =N"6+1Ly= Y ] (B’(s,z,n;%s))—B(s,z,n;%’<s>)>

Y'=—00z=y'+1
xB(s, z, nY (5)).

Therefore, limy,— —oo N¥ (s, y) —N¥(s+1,y) = N(s,y)—N(s, y+1)in L?. Since
we have assumed (2.8) for r = s, we have

NY(s+1,y) > N(s+1,y) inL”,

which completes the induction. O

Definition 2.3 We call the 7(t) € {0,1,...,I}% defined in Lemma 2.1 the bi-
infinite unfused SHS6V model and associate it with the height function N (¢, x)
defined in Lemma 2.1. We simply define the bi-infinite fused SHS6V model g(7)
and its height function N'(z, x) via

g(t) :==1n(J1), N, x) = Nt x).

It is clear that to prove Theorem 1.6, it suffices to work with the bi-infinite unfused
SHS6V model. Unless specified otherwise, the SHS6V model now means the bi-
infinite unfused SHS6V model 7(¢t). We associate it with the canonical filtration

Fwy =0 (i), B, z,m, Bs,2,m, 0<s <1 = 1).

3 Markov Duality

One main tool that we rely on to prove Theorem 1.6 is the Markov duality. This is
a powerful property which has been found for different interacting particle systems
including the contact process, voter model and symmetric simple exclusion process
[37, 38]. Using Markov duality, Spitzer and Liggett showed that the only extreme
translation invariant measures for the SSEP on Z¢ are the Bernoulli product measure.

In this section, we first state two Markov dualities for the J = 1 version of left-
finite SHS6V model, which comes form [17, Theorem 2.21] and [35, Theorem 4.10]
respectively. The extension of them to the unfused left-finite SHS6V model is imme-
diate since the transition operators of the model are commute. Finally we explain
how to extend these dualities to the bi-infinite unfused SHS6V model constructed in
the previous section.

Let us recall the definition of Markov duality in the first place.

Definition 3.1 Given two discrete time Markov processes X (t) € U and Y (¢) € V
(might be time inhomogeneous) and a function H : U x V — R, we say that X (¢)
and Y () are dual with respect to H if forany x € U,y € V and s <t € Z3, we
have

E[H(X (), y)|X(s) =x] =E[Hx, Y)|Y(s) = y].
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The Markov dualities that we are going to present are between the unfused SHS6V
model and the k-particle reversed unfused SHS6V model location process. To define
the latter process, let us first introduce several state spaces.

Definition 3.2 Recall the space of left-finite particle configuration G from (1.6). We
likewise define the space of right-finite particle configuration

M={m=C(..,m_1,mg,mq,...): allm; € {0, 1, ..., I} and there exists
x € Z such that m; = O foralli > x}.

When there are finite number of k particles, we restrict G and M to

Gk={§€G:Zgi=k}, M":{r?zeM:Zmizk}_
i i
In terms of particle positions, the spaces GX and MF are in bijection with

Wl;z{;:(ylg"'g)’k):)_;ezk, max Cl<[}7

I<i<M(5)
where (c1, ..., cp3)) denotes the cluster number in yoiey=Qyr ==y, <
Ver+1 = = Yey4ep < ...). (y1 < -+ < yx) should be understood as the location

of k particles in a non-decreasing order. In particular, we denote by ¢ : W’; — Gk
and ¢ : W’; — MF to be the bijective maps respectively.

Definition 3.3 When J = 1, it is clear that Definition 1.2 and Definition 1.3
define the same Markov process. We call it the left-finite / = 1 SHS6V model.
In addition, we call 5 () = (Ex())xez € M the reversed J = 1 SHS6V model if
E'(t) = (E_x(®))xez € G is aleft-finite J = 1 SHS6V model.

Since the SHS6V model preserves the number of particles, we can consider
SHS6V model with k particles as a process on the particle locations.

Definition 3.4 We define the k particle J = 1 SHS6V model location process X (t) =
(x1(6) < -+ < x(t)) € Wh if o(3 (1)) (recall the bijective map ¢ : WA — G from
Definition 3.2) is the J = 1 left-finite SHS6V model. We say that y(¢) = (y1(t) <

- < (@) € W]; is a k-particle reversed J = 1 SHS6V model location process
if =) = (=) < --- < —y1(1)) is a k-particle J_= 1 SHS6V model location
process. In addition, for y, ¥y € W’;, we denote by B, (¥, ¥') to be the transition
probability from y to y’ of the k-particle reversed J = 1 SHS6V model location
process. As a matter of convention, B, could be seen as an operator acting on function
f: W’; — R in the manner that

Baf)F) =Y BuG. 5V ()

¥ e Wk
Definition 3.5 We define the k-particle unfused SHS6V model location process

X(t) = (x1(t) < -+ < xx(2)) so that ¢(X(2)) is the left-finite unfused SHS6V model.
We say y(t) = (y1(¢) < --- < y(2)) is a k-particle reversed unfused SHS6V model
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location process if —y(t) = (—yx(t) < --- < —y1(t)) is a k-particle unfused SHS6V
model location process.

Note that for the reversed k-particle SHS6V model y(¢), we denote by
Pseey (¥, . 7, 5) the transition probability from y(s) = ¥ to y(r) = y. Apparently,
one has N _

Pm(i’ 5;’ z, S) = (Ba(s) e Ba(t—l))()_év ;)
It follows from [17, Corollary 2.14] (or the Yang-Baxter equation [13, Section 3])
that By(;) commutes with itself for different values of i (i.e. By(i)Ba(j) = Ba(j)Bu(i))-

Consequently,

PSHS6V(£’ Y, ’*s) = (ga(t—l) ) "ga(s))()_é, y). 3.1

Let us first state the J = 1 version of Markov duality.

Proposition 3.6 [17, Proposition 2.21] For all k € Zx1, the J = 1 left-finite
SHS6V model 7(t) € G (Definition 3.3) and k-particle J = 1 reversed SHS6V

model location process y(t) (Definition 3.4) are dual with respect to the functional
H:GxY—>R

k
H(, 5 =]]qa ™, 3.2)
i=1
recall Ny (1)) = 3 < i-

In [35], the author discovers a Markov duality for a multi-species version of the
SHS6V model. For our application, we explain how to degenerate this result to a
two particle SHS6V model duality. Before stating the proposition, let us recall the
notation of g-deformed quantity

[n];

_4"—q" T ny
=g s E[’]"’ (k),, G

Proposition 3.7 The J = 1 left-finite SHS6V model 1i(t) and the two particle J = 1
reversed SHS6V model location process y(t) are dual with respect to

g O =y ] (1 =1 =] 4™ ify1 =y
G, (y1,y2)) = U1

q
o, 4

q2

=

=Ny () =N G

1, 1,
q I—ny] 1 —ny] 1g2™1q2™2 if y1 < yo.
q2 q2

(3.3)

We remark that there is a misstatement in [35, Theorem 4.10]. The particles in
the process Z and Z,., were stated to jump to the left and to the right respectively.
However, after discussing with the author, we realize that the right statement is that
the particles in Z jump to the right and those in Z,., jump to the left.

Proof This is a degeneration from [35, Theorem 4.10]. By taking the species number
n = 1, the spin parameter m, = [ for all x € Z as well as replacing g by q%, the
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multi-species SHS6V model considered in [35] degenerates to the / = 1 SHS6V
model (see Section 2.6.2 of [35] for detail). Then Theorem 4.10 of [35] reduces to:
The J = 1 left-finite SHS6V model 5 (¢t) and the J = 1 reversed SHS6V model #(¢)
are dual with respect to the functional

[I - T}x] 1 (I - Ex) lq_%g)C(ZZN‘ 277z+11x)'
Nx q2

1 1
q2 q2

GiE. i) =[] n.]

X€Z

Swapping the role of left and right, which makes the particles in é’ (t) jump to the
left and those in #(¢) jump to the right. Then 7(¢) becomes the J = 1 left-finite
SHS6V model and § (t) becomes the J = 1 reversed SHS6V model. They are dual
with respect to the functional

2

Go(i. &) = [l 11 =il
q2

X€ZL

<1 - Ex) q_%%‘x(21<x 2772+'7x)’
Mx /g

1
2

l_[[ﬂx] 1[1 ] ( ;g’C) lq_ExNx(ﬁ)+%§x7]x. (3.4)

x€7Z q2

Assuming g(t) has two particles, recall the bijective map ¢ : W% — M? (take k = 2)
in Definition 3.2, then y(r) = ¢! (g (#)) is the J = 1 reversed two particle location
process. The J = 1 left-finite SHS6V model 7 () and the two particle J = 1 reversed
SHS6V model location process y(#) = (y1(t) < y2(¢)) are dual with respect to

Ga(ii, ¢~ (31, 2)), where & = (&,)rez = ¢ (y1, y2) is given by

g = | =) if y1 = y2,
U Y=y Lamyny i1 < o

In addition, note that

11 if& =0,
q2
I-£ (I —ny] 1 if& =1,
o r=nd (0F) = (335)
q2 q2 Nx /g42 Mx q% qu% )
L itE, =2.
q2

When é = ¢(y1, y2), there are at most two values for x € Z so that ijé 0. To make

sense of the infinite product in (3.4), one needs to normalize G, (7, &) by dividing

each factor in the product (3.4) by [/] 1 After such normalization, it is straightfor-
q

ward via (3.5) that G2 (7, ¢ (y1, y2)) equals the functional G (i, (y1, ¥2)) in (3.3) up
to a constant factor. O

We note that the duality functionals in (3.2) and (3.3) do not depend on the param-
eter . By Markov property and the property that B, ;) commutes for different value
of i, it is clear that the same Markov dualities in Proposition 3.6 and Proposition 3.7
apply for the left-finite unfused SHS6V model.

Corollary 3.8 For all k € Zx, the left-finite unfused SHS6V model ij(t) € G
(Definition 1.3) and the reversed k-particle unfused SHS6V model location process
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() € WI; (Definition 3.5) are dual with respect to the functional H in (3.2). The
left-finite SHS6V model 1j(t) and the two particle reversed unfused SHS6V model
location process Y(t) are dual with respect to the functional G in (3.3).

Proof Due to Proposition 3.6, we see that for all j € G and y € le,
E[HG®). )i — 1) =i] = Y Bag-1y(§ HH( X). (3.6)
Fewk
Using Markov property and applying (3.6) repetitively, we see that
E[HG©). D]i©) = 7] = Y (Bats) - Bau-1)) G, H) H (i, %)

)?GW"
= Z P<—HS6 v, X, t, s)H(n,x)
erk

= E[H G, 51)[3(s) = 7].

Here, the second equality follows from (3.1). This proves the desired duality with
respect to the functional H. The duality with respect to the functional G follows by
a similar argument. O

For our application, we like to extend the dualities stated in Proposition 3.6 and
Proposition 3.7 to the bi-infinite SHS6V model. Denote by

g7V =y (0] U =1y ()] g™ if yi=y2:
D@ yryn=1 U1
g N NG =y 0] =0y, 0] g7 g i yy <y,
02 q q

3.7
Here 7(t) = (1x(t))rez is the bi-infinite unfused SHS6V model defined in
Definition 2.3 and N (¢, y) is the associated height function.

Corollary 3.9 For the bi-infinite unfused SHS6V model 1(t), for y = (y; < -+ <
k) € le one has

k

k
E[quN(t,,Vi)|f.'(s) Z PSH56V Y%, 1,8 1_[ —N(s.xi) (3.8)

i=1 xEW i=1
For y1 < y2 € Z (Since I = 2, this is equivalent to the condition (y1, y2) € W%)

E[D(t. yi. y)|F®)] = Y P31, 32). (x1.%2),1,8) D(s, x1, 12). (3.9)

X1 QXQEZZ

Proof Let us prove (3.8) in the first place. Given initial condition of the bi-infinite
unfused SHS6V model 7(0), we construct a sequence of left-finite SHS6V model
1" (¢) with initial condition 7" (0) := (; (0)1{;>w))icz. We denote by N (z, y) the
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associated height function. The first duality in Corollary 3.8 implies that for any
weZzZ
k

k
E[[Ta """ F©)] = Y Paeeo (3. 5. 1.5 ]_[ NG (3.10)

i=1 Fewk i=1

Let us show that the LHS and RHS of (3.10) approximate those of (3.8) as w — —oo.

For the approximation of the LHS, as |n,(0)] < [ for all x € Z, we have
IN"(0, yi)| < I]y;i|. Moreover, in a single time step, N* (¢, y;) may change by at
most one, hence for all w € Z,

INY(t, y)l <INV, y)l+1<yil +1. (3.11)

Therefore, for fixed t € Z»p and g > 1, I—[f=1 g~ N" @) is uniformly bounded.

Via Lemma 2.1, we know that NV (¢, y;) — N(¢, y;) in probability, by conditional
dominated convergence theorem, one has

k

lim E[ F[q‘N “0|F@] =E[[Tg™ | F )],

w——00
i=1 i=1

For the RHS approximation, according to Definition 3.5, when there is only one
particle in the reversed SHS6V model location process, it jumps to the left (at time #)
as a geometric random variables with parameter 11)138; When there are k particles,
they jump to the left (at time #) as k independent geometric random variables with
parameter li ag; except when one hits another. So there exists constant C such that
forallz, X,y

k |y17xt
. v+ a(t)
Pores (V. X1+ 1,1) <C | |] <1 +a(t)> :

Denote by 6 = sup;cz,_, ng one has

P (5, 5,14 1,1) He'yl—xl (3.12)

SHSGV(

For fixed s < t, observing that Pm (y, X, t, s) can be written as a (t — s)-fold
convolution of one-step transition probability. The convolution can be expanded into
a sum over all trajectories from y = (yy, ..., y) to X = (x1, ..., x¢). The contribu-
tion of each trajectories can be bounded by the product of # — s one-step transition
probability, which is upper bounded by the RHS of (3.12). As the particles in the
reversed SHS6V model can only jump to the left, the number of the trajectories can
be upper bounded by ]_[f: I (Ix,- —yiltt=s ). We obtain

t—s

s (7, X k iyl i —Xi
PSst(y’x’t’S) < Cllio (lx ,y_ljt gli—il, (3.13)
Furthermore, it is readily verified that under Condition 1.1,
1+qla
40 = sup +q a()

tEZ;O 1 +a(t)
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Using the bounds in (3.11) and (3.13), fix s <t € Z>¢ and y € W’;, we have for all
X e W,

k
P(—(y,X,t,S)q NY(s,x;) < C | | ('xl yl|+ S)0|y, x,|q[|x,|’

el t—s
& (ki —yil+1—s
< CH< s )%’9)'»""—“',
i=1
k
< Cl_[8|yi_xi|’
i=1

for some constant 0 < § < 1. Since N¥(s, x;) — N(s, x;) in probability, we find
that

k
Z Pm(i,f,t,s)nq—w(s,x,.>

k
- Z PSEHS6_V(§,;CJ,S)l_[qu(s’x") in probability.

er’; i=1

Therefore, We conclude (3.8). The proof of (3.9) is similar to (3.8), where we
consider instead

g N L=yt (0] U —1=1% 0] ;™" if y1 =ya:
q2 ’ q2

Ew(t,yl,yz)= =1 w w 1w 1w
g g R =g 0 1= 0] g7 g2 iy <2,

q2

Applying the second duality in Corollary 3.8, we find that

E[D"(t, yi, 2| F®)] = Y Pegeey (1,32, (x1,x2), 1,5) D" (5, x1, x2).

X1 gxzeZZ

By taking w — —o0 and using similar approximation, we conclude (3.9). O

4 Integral Formula for the Two Particle Transition Probability
In this section, we give an explicit integral formula for P ((x1,x2), (y1. y2), 1. 5)

(note that for the rest of the paper, we prefer to swap the order of (x1,x3) and
(y1, y2) in the notation compared with the RHS of (3.9)). Our approach is to utilize
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the generalized Fourier theory (Bethe ansatz) developed in [5]. Let us review a few
results obtained in [5] and [17] on which we rely to derive the integral formula.

Definition 4.1 For y € (y; < --- < y) € 7k, we define the left and right Bethe
ansatz eigenfunction'”

_ , —Yk+1-j
£z Wo(A) — qWo (B) — Wo(j) :
v =2 Il - H - :

l_vwg(])

— Wy
ves 1<B<a<k oA o(B)

- _ -1
VLG = CDF -t T mg, ) Y [ e o)

cesi 1<B<A<k o) T Wa(B)
x l_[ A —wogy \
1-— vwg(]) ’

where Sy is the permutation group of {1, ..., k} and
M i)
mg o (¥) = L .1
o E (: @)e;
where (cy, ..., cp(y)) denotes the cluster number in yiey=( == Ve <
Yei+1 = " = Yo+ < )

It turns out that \Dg} are the eigenfunctions of the operator Ea defined in
Definition 3.4.

Lemma 4.2 (Proposition 2.12 of [17]) Forallk € Z>1 and W= (wy,..., Wg) € Ck
such that foralli € {1, ..., l:w". “+”| < 1. Then,

(Bvl)G) = (ﬁ L) gt )
w i 1+ oaw; w

Borodin et al. [5] shows that the left and right Bethe ansatz eigenfunctions enjoy
the following bi-orthogonal relation.

Lemma 4.3 (Corollary 3.13 of [5]) For0 < q,v < landk € Z>, =01 <<
xp) € ZFand y = (yy <--- < y) € ZK,
200

44 dml(w)“(w,,q» o, V5 Vi) = L= 62

Ak

19Comparing with the original definition for Bethe ansatz function defined in (2.11) and (2.14) of [5],
we reverse the order of components in the vector: We prefer to write y = (y; < --- < yi) instead of
y=01 == wn).
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Some notations must be specified here: y is a very small circular contour around 1
so as to exclude all the poles of the integrand except 1. The Plancherel measure is
defined as

~ -1 k 1— k, —k(k—1)/2 1 L)k d
dm(i(w)=( ya-arq det|: :| qu i =1)/2, % GWi

mi'lmay!. .. wigh — w; Wi 2’
4.3)
where the sum in (4.3) is taken over the partition A of k, that is to say, . = (A >
-2 Ag) € ZS>1 with Zle Ai =k and L(\) = s is the length of the partition ). For
instance, the partitions of k = 3 are given by (2, 1) and (1, 1, 1). We denote by m ;

l

to be number of components that equal j in A so that A = 1"12"2 .. Furthermore,
we define
Wok:=wi,....,¢" " Twi,wa, ..., g wa, o wss o, g™ T wg).

We are in a position to present our formula.

Theorem 4.4 Assume [ > 2, for any x1 < x2 € Z and y1 < yp € Z, the two point
transition probability of reversed SHS6V model admits the following integral formula

PSHS6V((X1’ x2), (1, ¥2), 1, s)

2
~ 1—s |~ R dZ'

=c(y1, [ [P 7RGt 02 ==
c(y yz)[?ﬁ ?g (zi) (zi, 1, 5)Z; i

Rj=1

7{ f S, Zz>1_[®(z,)Lme(z,,z sy B

Pl 2miz;
i 1 d i
+Res,, s@f f G zz)]‘[@(zl)L TRz 0,9)77 ZM’Z} (4.4)

where Cg is a circle centered at zero with large enough radius R so as to include all
the poles of all the integrands. In addition,
1—¢qv 1
(1 +q)(1 V) {y1=}'2}’
A 4+aqg’)z— (v +ag?)

cOy, y2) = Ly <yy) +

D@ = I4+a)z—@WV+a)
t—1
~ _ I+ ak)g)z — v+ alk)q)
R 1,5) = H{_ 1+ o)z — (v +ak)
k=s+J115* )
X _gqv—v+ =g+ 1 —gv)z+(q@—Dzuzn
§(z1,22) ==

qv—v+W—q)z1 +1 —qv)zo+ (g — Dz122°
~ (I—-gqv)z—v(d—gq)

= . 4.5
R g )
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Note that 71 = 5(z2) corresponds to the pole produced by the denominator of
§(z1, z2) and

2miz;

2

= 03 Ly 4z

ReSZI=g(Z2)f % g@h&)ﬂ@(zi,l,s)z? i 7o
Cr JCr i=1

denotes the residue of the double contour integral above at the pole 71 =5(z2).

Proof of Theorem 4.4 The first step to prove Theorem 4.4 is utilizing the bi-
orthogonality of the Bethe ansatz function. Taking k = 2 in the previous lemma,
since the possible partition is either A = (1, 1) or A = (2), we obtain

2
1
1 _ = ygyﬁdm" (wi, wy)
{(x1,x2)=(y1,y2)} ) 1,1 E (1 = w)(1 —vw;)

X\y(ewhwz)(xl’ x2)\ll(rwl’w2)(y1, y2)

+ ?g dm?z)(w)

14
—(w’ 2200w, 9)2 \Ij(u,,qw)(xls x2)\p(rw,qw)()’1s ¥2).

(4.6)

Note that according to the previous lemma, (4.6) holds only for 0 < g, v < 1, we
want to extend this identity to ¢ > 1 and v = ¢ /. This extension can be justified
by analytic continuation. Note that the RHS of (4.6) is an analytic function of ¢, v
in a suitable domain which connects {(g, v) : (g,v) € (0, 1)?} and {(g,v) : ¢ >
1,v = g~ !}. The reason behind is that after plugging in v = ¢/, there is no new
pole of integrand generated inside y (Here we use the assumption / > 2, this analytic
continuation argument is not valid when / = 1, see Remark 4.5).

Let us now fix y; < y2 € Z on both side of (4.6) and treat both sides as functions
of (x1, x2). We denote by the operator

Ba(s, 1) := By(s) - - Byt — 1).
Applying the operator ga (s, t) on both side of (4.6). For the LHS, it is clear that
(Ea(s, D 1i=(y,y2)}) (X1, X2) = Pm(()ﬂ,xz), (1. y2), 1, 5).
For the RHS, we move ga (s, t) inside the integrand, which yields

2
1
« — q

X (B (5: DV ) 51 X)Wy ) (V15 12)

1 ~
dm! ——— ((Bu(s, )W
+7€ "0 ) G gt o D waw)

x (x1, 2) Wiy guny 1 ¥2)- 4.7
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Due to Lemma 4.2 (note that y is a small circle around 1, hence wi, wy satisfy the
condition of Lemma 4.2),

2 t—1

~ 1+ a(k)qw;
Ja £
(Bu (5. D0y, )12 x2) =[] (1‘[ TFe@u )w(wl,wz)(xl, x2),
i=1 “k=s

t—1 2
~ I +atk)gw 1+ ak)g w

£ £
(Ba(svt)q/(w,qw))(xlv xX2) = | | < 1+ a(ow : 1+ot(k)qw> (w],wz)(xl’ X2),

k=s
=l 1+ a(k)g’w

— 4

- H( 1+ a(w )qj(whm)(xl’xz)‘
k=s

We name the first term on the RHS of (4.7) I; and the second term I,

2 t—1
— q 1 1+06(k)qwi)
= jéﬁéd’"“vl)(w" wZ)E (T —w) (1 — vay) (E 1+ aw

X\I](Zwl,u&) (xl’ x2)q](wl,w2) (YI > )’2), (48)
1 — 1+a(k)q2w>
L=¢¢dnl (W) — M
’ ?gy e )(W,CI)Z(VIU,qhH( 1 +a(w
X\I/(Zw,qw)(xl’ X)Wy guy V15 ¥2)- (4.9)

We compute [; in the first place. In the integrand of (4.8), the function
\Iffwl wz)(xl , X2) is a symmetrization of

wy — qwy ﬁ 1—w; \
wy — Wi 1 —vw;

i=1

Furthermore, all other terms of the integrand (4.8) are symmetric function of w1, ws.
In addition, we are integrating w1, wp along the same contour, this allows us to
desymmetrize the integrand

t

2 —1
_ q 1 1+ot(k)qw,»>
= 2}£y 7€ iy wZ)E ((1 —w) (1 — vwy) g 1+ atow;

2 —X3—;
wy — qwi 1 — w; : ,
—l | v , V2). 4.10
X wy — Wi i <1 — vwl') (wl,wz)()’I y2) ( )

We readily calculate

2
(1—q)%q! R widw;
dm? ; = det
m oy (wi, wz) > e — ij:ull =

— 2 2 dw;
= (w1 = w2) e (4.11)
2(wz —qwi)(qwz —wy) - 27i
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We (A) — q_lwo(B)
Wo(A) — Wo (B)

Wi y) = q(—qP’me( Y ]

0eS) ISB<AL2
8 1_[ 1 — wa(l) Y3—i
I —vwe

qwz—wl2 L—w; \  quwi—w
= (1= q)’mg.u() II( ) +I——

0 1 —vw; w; — w2
1=

2 l—u),- i
XE(l—vwi) ) 4.12)

Replacing the terms dm((llsl)(wl, wy) and WL (y1, y2) in the integrand of (4.10) by
the RHS of (4.11) and (4.12), one sees that

1+ a(b)qu;
L=0-¢9) mqu(yl,m)[ygygn 1—w,)(1—vw,)<1_[ T )
( 1 —w; )y-*"'_x-""@ ‘(ff qw — wy l—[ 1
x 1 —vw; 2mi yJy qw2—wyp 2 2 (1 —w)(1 —vw;)

i=1

5 ﬁ L+ atqw \ [ 1—w; \" 5 duy
1 + ak)w; 1 —vw; 27i |

k=s

2
1+ a(bqu,
=(1-9) mqv(yl,m)[f/?gg(l_wl)(l_vw)<l:{ T atw )
(l—wi y"_x"@ %%qwl—wz 1
l—vw,-) 2mi y qug—wl,l_[(l—wi)(l—vw,-)

i=1
-1 S xa
X(’H 1 +a(k)qw,->< 1—w; )» xs_,d_wf} i
pli 1+ ak)w; 1 —vw; 2mi

For the second equality above, we changed (llfTwujl)y 3T o (f:—m)y T due to
the symmetry of wy, ws.
We proceed to compute I, by a straightforward calculation

(g —Dw dw
(2)(w) = T 1 A_
qg+1 2mi

P Il—w\ ™M/ 1—gqw\ ™™
Vi qw1,x2) = (1 +49) o T—vquw ,

1-— Y2 /1= Vi
Vw1 32) = (1= @)°mg (N1 +q) (1 . ) < o ) :
—Yw

1 —gvw

@ Springer



Math Phys Anal Geom (2020) 23: 1 Page290of 118 1

Inserting these expressions into the integrand of (4.9) gives

—1 _
@G> —Dw | (1 +a(k)q2w>( 1—w >y2 1
L=(-¢)*m : f
2= (= mgoln, 32) y(uth(WUAnzll T+atow J\T=vw
1 —qw \"" ™ dw
x| ——— —.
1 —qgvw 2mi

A crucial observation is that one can verify directly

2 qwi] — w2
L = —( —q)'mgy(y1, y2)ReSy,=gu, —
yJy qW2 — W]

13[ 1 ﬁ 1+ a(k)qw;
i 1 —w)(1 —vw;) Pl 1+ a(k)w;
1 — Yi—X3—i dw;:
x| — 2 . (4.14)
1 —vw; 2ri
Note that P<——

Sisey (81, %2), (1, 32),1,5) = [1 + Do, using (4.13) and (4.14) one
has

Pasey (1, x2), (01, 32), 1. 5)
2 t—1
! L+ a(k)qu;
=0 ofmon| ) § ( )
(I —g)mg (31 yz)[ Y yg(l—wi)(l—vwi) ]BS 1 + a(k)w;
X L—wi \"dwi f‘(ﬁqwl—wzl—[ 1
1 —vw; 2mi v Jy quz2 — wy (1 — w) (1 —vw;)

i=1

| + a(k)qw; 1—w; \V ’dwl qui — wy
l_[ — Resy,—qw,
fli 1+ atk)w; 1 —vw; 27

y qUW2 — Wi

2

1 1 + a(k)qw; 1—w; \V 5 dwy;
Xll](l—wz)(l—vw)<11 1+ot(k)wi><1—vw,~> %}

Recall that a(k) = ag™® for all k, we can simplify the telescoping product in
the integrand via

ﬁ I +ah)qw; (1 +otqul~)Lt_JxJ =l 1+ a(k)qw;
k

1+ ak)w; 1+ aw; 1+ ak)w;
=s k=s+J 5 |
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Furthermore, referring to the expression (4.1) and (4.5), we notice that (1 —
9)*mg.0(y1,y2) = c(y1, y2). Thereby,

PSHSGV((xlv x2), V1, y2), 1, 5)

) L5
1 1+ aq’w \'7
_C(yl7y2)|:££g(l_wl)(l_pwl)< 14+ aw; )

t—1

1+ a(k)qw; 1 —w; V" dw;
X l_[ i
1+ ak)w; 1 —vw; 2mi

k=s+J 5]

2

fqul—wzn 1 (1—}—otqju),-)vfsJ
ydyqwz—wy 2 2 (1 —w)(1 —vw) \ 1+ aw;

i=1

t—1

l_[ L+a()gw [ 1—w; "5 dw;
X —
1+ ak)w; 1 —vw; 2mi

k=s+J 5]
qw) — w2 2 1 1+agq’w; L7
—Resy, =qw, 1—[
y Jy qua —wi ;3 A —w)(d —vw)\ 14+ ocw;
r—1 e
1 k , 1—w: Y™ qw;
1 Arelaw 2 il ) (4.15)
1+ ak)w; 1 —vw; 2mi
k=s+J 52 ]

Lastly, we transform the small circle y surrounding 1 into the big circle Cr via a
change of variable

1—z; . 1 —vw; .
w; = B(z;) = (equivalently z; = ), i=1,2.
V—Zi 1-— wj

By the following relations

gB(z1) —B(z2) 1 — E(z) 1
——— =31, 22), ——=—— =7 ,
gE(z2) — B(z1) 1-vE(z)
-1
l+aq’B(z)  ~ 1 1+ a(k)gEE) =~
—— = 9(zj), —_— = R(z;, 1, ),
1+aE(z) @) HH 1+ ak)E(z) @ 1.5)
k=s+J1 5" ]
dE(z;) dz;

(1-8@)N1—vEG)  (d-vz’
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we obtain

Py (1, x2), ()’17 ¥2).1.5)

dz;
= c(y. ||© T IR @ 1,92 7
c(n yz)[ygch (@) 7RG 1) 5o

Rll

dz;
, ||®lL IR, 02T
fER% 31, 22) (zi)" 7 'Rz, t, 9)z; i

X dz;
+Resz._s<zz>7§ 55 S, zz)]‘[@(zlﬂﬂ%(zl,r )z y—z}

2miz;
i=1
(4.16)

This concludes the proof of Theorem 4.4. Note that we change the sign in front of
the residue from (4.15) to (4.16). This is due to the fact that, before employing the
change of variable, the set of the poles {gw; : w; € y} lies outside the w,-contour
y, while after the change of variable, the set of the pole {5(z1) : z1 € Cr} lies inside
the zo-contour Cg, since R is chosen to be sufficiently large. O

Remark 4.5 We remark that our argument in proving that (4.6) holds for ¢ > 1 and
v = ¢! does not work when I = 1. The reason is as follows: Note that the factor

m in the integrand of (4.6) gives a pole for the z;-contour at z; = v~'q. Before

the substitution of v = ¢!, this pole lies outside the contour y . Yet after substituting
Vv = q‘l, the pole becomes z; = 1, which runs inside the contour y, hence the
argument of analytic continuation fails. This issue is also addressed in [6], when
the authors tried to reproduce the integral formula for the k particle ASEP transition
probability (which first appears in [49, Theorem 2.1]) via analytic continuation of
(4.2). For a similar reason, our method does not yield the general k particle transition
probability formula of the SHS6V model.

5 Microscopic Hopf-Cole Transform and SHE

In this section, we first define the microscopic Hopf-Cole transform Z(¢, x), which
is an exponential transform of the height function N (¢, x). Using k = 1 version of
duality of (3.8), it turns out that Z(z, x) satisfies a discrete version of SHE. As the
Hopf-Cole solution to the KPZ equation is the logarithm of the mild solution of the
SHE, this reduces the proof of Theorem 1.6 to proving that Z(z, x) converges to the
solution of SHE. We will derive two Markov dualities for Z(¢, x) in Lemma 5.2, as
a tilted version of (3.8). This will be used in the proof of self-averaging property
Proposition 6.8.
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5.1 Microscopic Hopf-Cole Transform

We first study a one particle version of the unfused SHS6V model location process
(Definition 3.5). When there is only one particle, it performs a random walk X’(z) =
Zf;h R’(k) where R’(k) are independent (but not same distributed) Z>(-valued
random variables with distribution

1+qga(k) . — 0
W(k) | ifn = 0,
(k) =n) = 4 ad—q) vta(k) | (v+ak)\n—1 .
P(R'(k) = n) e (1= Trow) (Traw) ifneZ
else.

By tilting and centering R’(k) with respect to E[q”R,(k)l{ R/(k):.}], we define a tilted
random walk X (t) = Zf;lo R(k), where R(k) are independent Z>¢ — p(k) valued
with distribution!!

2 ) o itn=o,
—n— - *(1—q) +a (k)| (Ve \1— -
P(R(K) =n — pn(k)) = )‘(k)a1+a(k)q (1- Lz(k))(hi(k)) g™ ifn € Zx,
0 else.
5.1

Here, L (k) = (E[q”R(k)])71 is the normalizing parameter and (k) is the centering
parameter which makes E[R(k)] = 0. Under straightforward calculation, we see that
14 ak) —g°(ak) +v)

1 +alk)g —qr(ak)g +v)’

_ a(k)(1 —¢g)(1 —v)q”

(L +ak)g — gP(ak)g +v)(1 +ak) — gP(ak) +v))’
We remark that A(k) (respectively (k)) are J periodic in the sense that A(k) =
A(J + k) (respectively (k) = u(J + k)). Denote by

A(k)

(5.2)

(k)

(5.3)

t—1

t—1
oy =TTab. a0 =) uk),  E@.s) =L~ i)+ i),
k=0 k=0
E(r) := E(t,0). (5.4)

It can be verified that the parameter A, i defined in (1.9) satisfies

A=A,  p=a0),

hence, one has

AJE) = A, aJr) = ut. (5.5)
We define the microscopic Hopf-Cole transform for x € E(t) as
Z(t,x) = j;(t)q—(N(l,x+ﬂ(l))—,0(x+ﬁ(f))). (5.6)

I'The tilted and centered random walk X (r) provides the heat kernel p(¢ + 1, 7) for the discrete SHE (5.7)
satisfied by the microscopic Hopf-Cole transform (5.6), which is an exponential transform of the LHS
of (1.10).
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Forx € E(t,s), wesetp(t, s, x) := P(X (t) — X (s) = x). Denote by the convolution

(p(t, 5) * f(5))(x) = Z p(t, s, x —y) f(s,¥).

YEE(s)
We set
K(t,x):=N(t,x)—N@+ 1, x), K(t,x):= K(t,x) — E[K (t, x)|F(®)].

We sometimes call K (¢, x) the flux, since it records the number of particles (either
zero or one) that move across the position x between time ¢ and # 4 1. Now we present
the discrete SHE satisfied by the microscopic Hopf-Cole transform of the unfused
SHS6V model.

Proposition 5.1 Fort € Z>o and x € B(t), Z(t, x) satisfies the following discrete
SHE

Zt+ 1, x—u@)=pEt+1,t) %« Z(@))(x — u)) + M(, x), 5.7
where
M(t,x) = Mt)(g — DZ(t, x + Q@)K (t, x + (1)) (5-8)

Furthermore, M (t, x) is a martingale increment, i.e. E[M(t,x)|.7-'(t)] = 0. The
conditional quadratic variation of M (t, x) equals

[x1—x2]
EUHUWMUJMF@]=<W%$§%) 11, x1 A X2)Os (1, X1 A x2).
X1, X2 € E(1), 5.9)
where
O1(t, x) = qr)Z(t,x) — (Pt + 1, 1) x Z(1)) (x — (1)), (5.10)
Or(t,x) == —AZ(,x)+ (p(t +1,1) % Z(t))(x — u(1)). (5.11)

Proof We first show that M (¢, x) is a martingale increment. Note by (5.7),
M, x) =2 +1,x — @) = (P + 1, 1) * Z(1)) (x — n(2)).
Taking k = 1 in the duality (3.8), one has
E[Z(t +1,x — p()|F@O)] = (0@ + 1,1) % Z(0)(x = p(2)).
Hence,
M(t,x) =Z(t+1,x —pu®) —E[Z( + 1,x — p@)|F@®)], (5.12)

which implies E[M(t, x)|}'(t)] =0.
We turn to justify (5.8). Note that by (5.6)

Z@+1,x—p(t)) = A0 Z(t, x)gN EFHADN=NCHLIALO) 3 (1) Z (2, x)q K ¥+,
Since K (¢, x + [1(¢)) € {0, 1},
Z@+1,x — pt)) = MO Z(t, x) + 1(1) (g — DZE, )K (1, x + (). (5.13)
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Combining with (5.12) gives

M, x) = M(1)(q — DZ(, x) (K, x + (1) — E[K (1, x + £(1)| F(1)]),
= M0)(g — DZ, )K(t, x + (1)), (5.14)
which gives the desired equality.

We turn our attention to (5.9). Define the short notation E’ [ . ] = IE[ . ’]—" (t)]
and write Var’, Cov’ to be the corresponding conditional variance and covariance.
We assume without loss of generosity x; < x2 and use shorthand notation x; :=
xi+ @) eZ,i=1,2. Owingto (5.14),

E'[M(t, x)M(t, x5)] = »()*(q — D*Z(t, x1) Z(t, x)E [K (t, x ) K (£, x})],
= MD7(q = *Z(, x1) Z(1, x2)CoV (K (1, x)), K (1, x3)).

(5.15)
Define
)
Lx{,)é(t) = 1_[ <B/(t, z, (1)) — B(t, z, Uz(t))>,
z=x{+1

Kow®= Y ]I (B’(t,z,nz(t))—B(t,z,nz(t)>B(t,z,nz(t)),

y'=x{+1z=y'+1
(5.16)
where B, B’ are defined in (2.1). Since B, B’ are all independent, due to the
expression (2.5) of K(t,x]) = N(t,x]) — N(t + 1, x}) provided by (2.5), it is
straightforward that conditioning on F(¢), (Kx{,x§ (1), in’xé (¢)) are independent
with K (t, x{). Furthermore, (2.5) implies

K(t,x5) = Ky () + Ly (DK, x}).
By the independence, we see that
Cov'(K (1, x)), K(t,x3)) = E/[in,xé (t)]Var' (K (1, x})). (5.17)

Referring to (5.16),

%
E[Ly 0] = [] E[Bzn0.00) - B(t,z,n:(1))]
z=x]+1
v+al) G %
- () Tl

z=x]+1
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Inserting this into the RHS of (5.17), we find that

Cov’(K(t,xl), K, xz))

’

xh—xi M2
— (7s) T T O] - kel
=x]+1

’

xo—x1 %2
- (?IZE;;) [1 «*VE[K@D](1-E[KGD]).  (5.18)
=x]+1

Here, the last equality follows from the fact K (7, xi)2 = K(t, x}). Furthermore,
due to (5.13),

E[Z@ +1,x1 — p() — MO Z(t, x1) | F(1)]
) (g — DZ(t, x1)

(Pt +1,0) % Z(1)(x1 — () — M) Z(1, x1)
M) (g — DZ(t, x1) ‘

Inserting this into the RHS of (5.18) yields

E[K(t,x)] =

CoV'(K (1, x1), K(t, x2))
(v + a(ﬂ)““ (Pt + 1,1) % Z(1)) (x1 — () — A1) Z(1, x1)
1+a) At (g — DZ(t, x1)

8 (1 PG+ 1,0 Z0)(x1 — p(@) — MHZ(, x1)> ﬁ 47O,
A (g — DZ(z, x1)

z=x]+1
B u+a(t)>"2‘“ O2(1, x1) . O1(7, x1) ﬁ n:()
“\Few) 0@ -vze ) ioe-nzan 1L
Z—xl

Using the fact Z(z, xp) = g° "2V Z(t, x1) H?_xurl g~ "™ we obtain
1

COV/(K(t,xl),K(t,xz)) _ (qpv-l-a(l)) 2—X1 O, x1)

14+ a(t) Ait)(g — D Z(¢, x1)
_ O, (1, x1)
A1) (g — DZ(t, x2)

Combining with (5.15), we arrive at the desired (5.9). O
For x € E(t), define

e (t) = Nyppn (@)
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We consider a tilted version of the duality functional Din (3.7, for y;1 < y2 € E(2),
define
Z(t, y)? [1 =1y, ()]

D(t, y1,y2):=1 V=114 ~ ~ 50 Y@ e
T 2 D ZE U =i (0] U= O] 12 Qg2 iy <.

Y iy, () o
A [1—1-T7y, (t)]q% g™ if y1 =y,

q2
(5.19)
We further define for x, x; € E(¢) and y1, y» € E(s),
oS p(x1+x2—y1—y2+2(f1 () —1(5) p .
V((x1, x2), (y1, y2), 1,8) = ) q Pisev
x (x1 4+ @), x2 + a@), y1 + as), y2 + a(s), 1, s).
(5.20)

Observe that Z(t, x) is a tilted version of q_N (.%) thus it is clear that it inherits the
two dualities stated in Corollary 3.9.

Lemma 5.2 Fors <t € Zxoand x| < x2 € B(1),

E[Z(tx)Z(t )| F®] = D> V(@ x), 01 32). 1.5) Z(s, YD Z(s. y2),
VISY2€E(s)
(5.21)

E[D(t x1.x)|F®)] = Y V(@1 x2), (1. y2).t.5)D(s, y1. y2).
yI<y2€E(s)
(5.22)

Proof We use the shorthand notation xlf := x; + [i(t). Referring to (5.6),
E[Z(1, x1)Z(t, x2) | F(5)] = A(1)2qP 1t E[q N XD g~ N2 | F(5)] (5.23)
Using Corollary 3.9, we have
E[q NN | F(5)]

= > PGl 0f.).1.5)g
¥ <yheZ?

= > Py (G a0+ A0, 51+ AG), y2 + AG). 1. 5)
YIS Y2€E(5)?
Xq—N(s,yl+;2(S))q—N(s,yz+;l(S))’

= > Pao (G + A0, x2+ A(0), (1 + A(s), y2 + A(s), 1, 5)
YI<y2€E(s)?
LZGZ603D)
hs)? '
Inserting this into the RHS of (5.23), via a straightforward computation, we conclude

(5.21). The second duality (5.22) follows from a similar argument, we do not repeat
here. [

—N(s,yi)q—N(&yé)’
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The following corollary follows from Theorem 4.4.

Corollary 5.3 Forall x; < xp € E(t) and y1 < yy € E(s), we have

2
y xi—y; dZi
V(@1 22). G152 1.5) =c(y>[7§ f I ECRD

® JCr ] 2miz;

2 dz;
—?g ?g S [[DGi 6957 =
Cr JCr il 2mi

Zi
+Re321=5(12)¢ % S$(z1, 22)
Cr

dz;
x| | DGt )27 h—}. (5.24)
ﬂ ' 2miz;

where Cp is a circle centered at zero with a large enough radius R so as to include
all the poles of the integrands, c(y) is defined in (4.5) and

(1+aq))g™"z— (v +aq’)
R 1%
D(2):=Az Y= (5.25)

—1
(I+a(k)g)g Pz — (v +alk)g)
e (k)
Rz, 1,5):= ]‘[ r(k)z 0+ at)g"r— 0T at®) (5.26)

k=s+J 3%
v—v+(W—¢)qg P20+ (1—qv)g Pz14+(q—1g %7122
§G1, ) =1 179 979 T4 9 2122 (507)
qv—v+W—q)gPz1+(1—qv)g P2+(q—1g = z122
1—gv)g Pz —v(l —
5(Z):( qv)q (I-9q) (5.28)

(g—v)g=P+ (1 —q)q 2z

Proof Note that the integral formula for Px——
we find that

SHSev is given by (4.4), referring to (5.20),

V((x1, x2), (1. y2). 1, 9)

N 2
(i‘(t)) qP(X1+X2—y1—y2+2ft(l)—2/1(5))
A(s)

XP%(.}C] + ll(t)a X2 + ll(t)5 Y1 + ll(s)a 2 + [’\L(S)’ tv s)a

2
C (AMON ot b2 —2(s)) AN IF
C(y)'(A )qpxl Ty g % % D(z) 7Rz, L, 8)
i(s) cr Je [To l

Rj=1

dz; dz;
Xi—Yyi el D = 7 Jm t X3—i—Yyi el
T v féRyg 3(z1,zz)]_[ (zi) (zi, 1, 8)z; Tniz

Zi

. dzi
+Res; =5 f f Sm,zz)]"[@(z,ﬂﬂm(z,,t $)z T L }

2miz;
i=1
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We refer to the context of Theorem 4.4 for the notation. Multiplying the con-

stant (M)zq"("‘”r}"_Y2+2’1(’)_2’1(“)) to each term inside the square bracket

A(s)
above and applying change of variable z; — ¢ ”z; readily yield the desired
formula. O
5.2 The SHE

Consider the KPZ equation with parameter V, and D, given in (1.12) and (1.13),

H(t, x) = %aﬁmt, x) — %(BXH(L )’ +VDLE, x). (5.29)

As mentioned in Section 1.1, via formally applying Hopf-Cole transform, we say that
H(t, x) is a Hopf-Cole solution of (5.29) if

H(t,x) = —log Z(t, x),
where Z(t, x) is a mild solution of the SHE
V* 2
atZ(t9 -x) = Taxz(tv-x) + V D*s(l» x)Z(l‘,x)
in the sense that it satisfies the following Duhamel integral form
. t
Z(t,x) = /ﬂ-gp(V*t,x — M2 (ydy +/ /RP(V*(I —8),x—Yy)
0
xZ(s, y)v D& (s, y)dsdy,

where p(t,x) =

x2
21 te_? is the heat kernel. The stochastic heat equation has a
unique mild solution Z(¢, x), see [16] and references therein.
We recall the weakly asymmetric scaling for the SHS6V model stated in

Theorem 1.6:

I1+J-2
F 0, fix ] € Z>y,J €Z dbe|——,1),
or e > 1X >2 >1 an ([—|—J—1 )
Je . . 14+ ag
set g = eV °© and define o via b = . (5.30)
1+«

Such scaling corresponds to taking b = 2,z = % k — ./ex and keeping §, D
unchanged in (1.3). Note that all parameters in the SHS6V model rely on the generic
parameters ¢, b, I, J, p, since under weakly asymmetry scaling, b, I, J, p are all
fixed and ¢ = Ve, the evolution of the entire model depends on €. As we will let €
go to zero, it suffices to consider all € > 0 small enough, which means that we only
consider € € (0, €p) for some generic but fixed threshold €9 > 0.
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Lemma 5.4 Under weakly asymmetric scaling (5.30), we have the following asymp-
totics near € =0

v+a()  b(I+mody(#)) — (I +mod, () —1)

= +O(ed),
I+ a() bmod, (1) — (mod, (1) — 1)
v4qat) b +1+mody (1) — (I +mod, (1)) |
= + O(e2),
I+ a() bmod, (1) — (mod, (1) — 1)

1+qa() _ b(1+mody () — mod, ()

1
Tra@) — bmods () — (mod, () —1) T O

1

1 1 2
pio = ;+0@€),  M=1- % +O(e).

As notational convention, we denote O(a) to be a generic quantity such that
-1
SUPg<g<1 |O@)]a™" < oo.

Proof For every € > 0, we have ¢ = eVe,v = ¢ Ve and a(r) = g™ ) =
ﬁeﬁm‘)d/(”, where b, I, J, p are fixed. The relation of A(¢) and u(z) with
€ is implied by (5.2) and (5.3) The verification of the above asymptotic is then

straightforward. O

To highlight the dependence on ¢ under weakly asymmetric scaling, we denote
by the microscopic Hopf-Cole transform Z.(¢, x) := Z(z, x). Note that presently
Z.(t,x) is only defined for t € Z3p and x € E(t), we extend Z.(¢, x) to be
a C([0, 00), C(R))-valued process by first linearly interpolating in x € Z, then
int € Zxo. This is slightly different from exponentiating the interpolated height
function N (¢, x). Nevertheless, under the weak asymmetric scaling ¢ = eve , it s
straightforward to see that the difference between these two interpolation schemes is
negligible as € |, 0.

As a notational convention, we write ||X ||p = (E|X |p)% for p > 1. Following

the work of [BG97], we define the near stationary initial data for the unfused/fused
SHS6V model.

Definition 5.5 Fix p € (0,7), we call the initial data N.(0, x) (equivalently
N; (0, x)) near stationary with density p if for any n € Z>1 and a € (0, %), there
exists constant u := u(n, a) and C := C(n, a) such that forall x, x’ € Z

|Ze0, 0], < Ce'Hl, || Ze(0,x) = Ze(0,x)||, < Clelx — x/et<lHxD,
holds for € > 0 small enough.
Theorem 5.6 Under weakly asymmetric scaling, assuming that Ne(0, x) is near
stationary with density p and for some C (R)-valued process Z'“(x)
Ze(0,x) = Z€(0,x) in C(R) as € | 0,

then
Ze(et, €)= Z(t,x) in C([0, 00), CR)) as € | 0,
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where Z(t, x) is the mild solution to the SHE
V.
0/ Z(t,x) = 7*332@’ x) ++/ DE, x)Z(1, x), (5.31)
with initial condition Z¢(x).

As a consequence of the preceding theorem, we prove Theorem 1.6.

Proof of Theorem 1.6 Via the discussion in Section 5.2, H(t,x) = —log Z(t, x)
solves the KPZ equation
V. V.
dH(t, x) = 7*83%@, x) — f(axﬂ(t, 0)” + VDLEW, x).
One has by (5.7),
Zo(e 2. e lx) = )ALE(t)e—ﬁ(Ne(é‘zt,e_1x+e_2ﬂe(t))—p(e_lx—&-é_z;le(Z))

_ o V(N e e 2 ()~ p(e xe e (1)) Hog e ()

By Theorem 5.6 and continuous mapping theorem, we obtain
—log Zc (e %t, e 'x) = H(t, x) in C([0, 00), C(R)).
In other words,
Ve(Ne(e 7?1, x + € 20e() = p(e ™ x + € 2ae(1))) —log e (1)
= H(t, x) in C([0, 00), C(R)). (5.32)

Note that we have Né (t,x) = Nc(Jt, x) (although in fact, they only equal on the
lattice due to different linear interpolation scheme, but it is obvious that the difference
between them is negligible). Moreover, via (5.5)

he(Jy=2L,  fe(Jt) = pl.
Therefore, replacing the time variable ¢ with J¢ in (5.32),
\/E(N;(efzt, e lx + efzugt) - p(eflx + efzuet)) — tlog A¢
= H(1,x) in C([0, 00), C(R)),

where ’;EZO‘, x) = H(Jt, x). It is straightforward to check that ’;EZO‘, x) satisfies the
KPZ equation

~ V. ~ JV, ~
0 H(x) = ZHH( ) = S (0:H0) +VTDaE ),
which concludes the proof of Theorem 1.6. O

6 Tightness and Proof of Theorem 5.6

In this section, we prove Theorem 5.6 assuming Proposition 6.8, whose proof is post-
poned to Section 8. First of all, we prove the tightness of {Z (€72, 6_1-)}0<6<1,
which indicates that as € | 0, Z.(e 2+, e 1.) converges weakly along a subsequence.
To identify the limit as well as proving the convergence of the entire sequence, we
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appeal to the martingale problem of SHE that was first introduced in the work of
[7]. Using approximation from the microscopic SHE (5.7) to the SHE in continuum,
we show that any subsequential limit of Z (¢ 2, e ~!.) satisfies the same martingale
problem, hence is the mild solution of SHE.

Hereafter, we always assume that we are under weakly asymmetric scaling (5.30).
In general, we will not specify the dependence of parameters on €. We will also
write g, Ve, etc. when we do want to emphasize the dependence. The dependence on
1 €Zsy,J €Zs1,b= 11++“j € (F1=%. 1), p € (0. 1) will not be indicated as they
are fixed.

For the ensuing discussion, we will usually write C for constants. We might not
generally specify when irrelevant terms are being absorbed into the constants. We
might also write C(T), C(B, T), ... when we want to specify which parameters the
constant depends on. We say “for all ¢ > 0 small enough” if the referred statement
holds for all 0 < € < ¢( for some generic but fixed threshold ¢y > 0 that may change
from line to line.

6.1 Moment Bounds and Tightness

The goal of this section is to prove the following Kolmogorov-Chentsov type bound
for the microscopic Hopf-Cole transform.

Proposition 6.1 Assume that we start the SHS6V model with near stationary initial
data with density p € (0, I). Givenn € Zx1, a € (0, %), T > 0. There exists positive
constants C := C(n,a, T), u == u(n, a) such that

|z x)|,, < Ce e, (6.1)
|Z@t, x) — Z(t, x")||,, < Cle(x — x")|@etexHD, 6.2)
|Z@t, %) — Z(t', %)), < Cle?(t — 1)) 224, (6.3)

forallt,t' €[0,e2T]and x, x" € R.

We immediately deduce the tightness of Z (¢ ~2-, ¢ ~!.) once we have the moment
bound above.

Corollary 6.2 The law of C([0, 00), C(R))-valued process {Z (€ -, € 1 )}o<e<i
is tight.

Proof Equations (6.1), (6.2) and (6.3) indicate that with large probability
{(Ze(e72., €7 1) }g<e<1 is uniformly bounded, uniformly spatially and uniformly
temporally Holder continuous. Applying Arzela-Ascoli theorem together with
Prokhorov’s theorem [9] yields the desired result. ]

For the proof of Proposition 6.1, we will basically follow the framework developed

in [15]. Let us begin with a technical lemma which will be frequently used for the
rest of the paper.
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Lemma 6.3 Fix T > 0, for any u > 0, there exists Bo > 0 such that for all B > By
and C(B) > 0, there exists €q such that for all positive € < €, t € [0, E_2T] NZ and
x € E(t), the following inequality holds'?

__ Blx—yl
Z e ViATEe® e eVl < 2 /r 4 Teel,

YEE()

Proof Take By = 4+/Tu, for B > Bg and arbitrary C(B) > 0, due to ¢ € [0, €271,

one has
Blxl  __ Belx

Vi+1+CPB) ~ VT +e2+ CP)e

holds for € < €q, where is € is to be chosen small enough. Thereby,

> 2ue|x|

__ Blx—yl __ Blx—yl
Z e JitI+CP) gHelyl < otelx] Z e Vi@ gtelr =yl
YEE() YEE(?)
___ Byl
< elelxl Ze JFrCP) phelyl
YEZ
_ Blyl
< el Z e 2WiHTHCP)
vEZ
< 2V F Letetl,
Here, the last inequality follows from
_ Blyl 2
Z e 2VHHCE) < ; <241+ 1
xeB(1) 1 — ¢ 2Wit1+CP)
Thus, we conclude the lemma. O]

The following estimate for the one particle transition probability will be useful in
proving Proposition 6.1.

Lemma 6.4 For any u, T € (0,00) and a € (0,1), there exists constant C
(depending on a, u, T ) such that

()P, 5, 2) <CE—s+ D726 Y p.s,0eH < C,
xe&(t,s)

@iy Yo x5 0 M < Ot — s + 1,

xe&(t,s)
(iv) Ip(t, s, x) — p(t, s, x")] < Clx —x|"(r —s + 1)_%-
for € > 0 small enough and s <t € [0, esz] N 7Z.

2Here C(B) can be any positive constant, though for application, the choice of it usually depends on the
value of B.
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Proof The proof is more or less analogous to [15, Lemma 5.1]. We first claim that
p(z, s, x) admits the following integral formula

p(t, s, x) :% (’D(Z))LI_TXJER(Z, t,s)zxd—z_, (6.4)
Cr 2riz

where D (z), R(z, t, s) are defined in (5.25) and (5.26) respectively and R is large
enough so that the circle Cg includes all the singularities of the integrand. This claim
can be proved by observing

E[z7*®] = Y "P(R(k) = n — p(k)) ",
n=0

B L+ gak) ,u > < B 1+qoz(k))
= MO g & 2O -

«(1- v+a<k)><v+a<k>>”‘1 gt
ETBYAVERIY |

et 1 T e®g = 0+ a®g)arz !

B I+ ak) — (v +alk)grz!

(6.5)

This implies
1—1 ,
E[e~XOXO] = T]E[z F®] = (0(2)' 7 % 1, 9).
k=s

Via Fourier inversion formula, we have

d
p(t,s,x) = P(X(t) — X(s) :x)f ]E[Z—(X(t)—X(s)]Zx_Z‘
Cr 2riz
Lﬂj dz
= @ J m 9 b 9
?ﬁ (@) TRe L

In Section 7, we will obtain an upper bound of p(¢, s, x) by applying steepest descent
analysis to the integral formula above and we use this upper bound here in advance.
Referring to (7.21), by taking x; — y; — x, we obtain for all B, T > 0, there exists
positive constant C (), C(B, T) such that for € > 0 small enough

CR.T) B "
1§, x) L ———=¢ VItHe® tel0,e " TINZ. 6.6

which gives (i). Using (6.6) together with Lemma 6.3 gives (ii)

c@B, 1) - B
D et et < YT e VB et <
X (1,5) vegas VITs 1
For (iii), we see that

_ Blx|
> xlp(t s, x)e M <N CBLT)|x| e 2VTRCE)

x€E(t,s) x€E(1,5)

<CWi—s+1+c@) M <ci—s+1)T.
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For the second inequality above, we used the inequality

o
> uwyﬂﬂg(a/ x%e P dx < ch .
0

xe&(t,s)

Finally, to prove (iv), one has by (7.24) (taking f = 1)

c(T) ___u
|Vp(f,5,x)|=|p(f,S,x+1)—p(l,S,x)|<—l (—i)—le VissHlHC,
—s

Summing the above equation over [x, x" — 1] (assuming with out loss of generosity
that x < x’), we obtain

—1
C(T) Dl
lp(t. 5, %) = p(t, 5, x)| < ———= ) ¢ Vimiic
t—s+1 =

If we bound each term in the geometric sum by 1, we have |p(t, s, x) —p(t, s, x’)’ <

C
t—s+1

|x" — x|. In addition, we can bound the geometric sum by

S Y X bl
E e Vi—sti+C LD E e Vi—s+I+C —= —_—
y=x y=0 1 —e VimsiisC

2
<CVr—s+1,

which implies
C

VJi—s+1

‘p(tvsax) - p(tasvx,)‘ g

Thereby,

c c
t,s,x) —p(,s, x| < min —x—x’,—)
[pee.5.) = it 5| (t—s+l| SN =
< Clx — x| —s + 1)~ F,

which concludes the proof of (iv). O]

Recall the discrete SHE in Proposition 5.1

Zt,x) =P t—DxZt—-1)x)+ M@ —1,x 4+ u(t —1)). (6.7)
Iterating (6.7) for ¢ times yields
Z(t,x) = (p(t, 0) * Z(0))(x) + Zng (1), (6.8)

where the martingale Z,,,,(¢) equals

t—1
Zng(@) =Y (p(t, s + 1) % M(9))(x + pu(s)). (6.9)

s=0
To estimate Z (¢, x), it suffices to estimate (p(z, 0)*Z(0))(x) and Z,,, (¢) respectively.
In general, the former one is easier to bound due to Lemma 6.4, while controlling the
latter one is much harder. Following the style of [15], to estimate Z,,, (), we need

to establish the following two lemmas, which are in analogy with Lemma 5.2 and
Lemma 5.3 of [15].
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Let P»3(n) denote the set of the partitions into intervals of 2 or 3 elements. Here,
the interval refers to the set of form U = [a,b] := [a,b]NZ,a < b € Z. For
example,

Pa3(6) = {{[1, 2], [3, 4], [5, 6], {[1, 2], [3, 61}, {[1, 41, [5, 6]}, {[1, 3], [4, 6]}} .
Fory = (y; <--- <yy) and U = [a, b], we define |y|y = yp — ya.

Lemma 6.5 Fixn € Z~, forallt € Zxoand y1 < --- < yn € Z, we have

]-‘(t)]‘SC(n) > ]_[e—ﬁlilv,

nePyn) Uen

n
‘E[ K (1, yi)
i=1

Proof [15, Lemma 5.2] proved this inequality for / = 1. When I > 2, the proof is
almost the same. Let us denote by E'[ - | = E[ - | F(1)] and

y
16,9 = [[ (B z.n:6) =Btz n:(0) Bty ny (1))
z=y'+1

Due to (2.7), there exists C > 0 such that
E[1G/, ]| < Cem e ez
This gives bound similar to (5.10) in [15, Lemma 5.2]. The rest of the proof is the

same as in [15, Lemma 5.2], we do not repeat it here. O

Lemma 6.6 Fix n € Z3, recall the martingale increment M(t, x) from (5.7) and
let f(t, x) be a deterministic function defined ont € [t, 1] NZ and x € E(t). Write
Joo(t) := Supyeg( | f (£, X)|, we have

tnh—1

Yo fe, M@, x)

=11 xe&(t)

th—1

<eCm Y Y | fe f 0|2 0|3,

2
2n 1=t xeE(t)

Proof Using the previous lemma, the proof is the same as the one appeared in [15,
Lemma 5.3]. O]

Have prepared the preceding lemmas, we proceed to prove Proposition 6.1. Here
we use a slightly different approach compared with the proof of the moment bounds
in [15, Proposition 5.4].

Proof of Proposition 6.1 Recall that Z(¢, x) is defined on [0, co) x R through linear
interpolation. It suffices to prove the theorem for the lattice r € Z>¢ and x, x’ € E (7).
Generalization to continuum ¢, x follows easily.

Let us begin with proving (6.1). We have by (6.8)

|Z@. 0, < (. 0) % ZO) @) [, + [ Zmg @),
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Using (x + y)2 <202+ yz), we get

|z 0[5, <2|(p@. 0« Z0) W], + 2| Zu 0[5, ©.10)

For the first term on RHS of (6.10), by Cauchy-Schwarz inequality,
| (o, 0) % Z©@) ™) |3, < (P2, 0) % |ZO)]3,) ). 6.11)

For the second term H Zg (1) ||§n, by (6.9)

t—1

Zng(t) = Y (p(t, s + 1) % M(5)) (x + 11(s))

s=0

-1
= Z Z p(t,s+1,x+,u(s)—y)M(s,y).

s=0 yeE(s)
Applying Lemma 6.6, there exists a constant C, so that

t—1
|Zng @5, <Cee D" 3 ( sup plr.s+1,x+p2(5)=))

s=0 yeE(s) YEE®)

xp(t s+ 1, x + u(s) —y)HZ(s,y)”;n,

ZZ

s=0 yeE (s)

p(t, s+1, x+u() )| ZGs, W3, (6.12)

where the last inequality follows from Theorem 6.4 (i).
Replacing the RHS of (6.10) by upper bound obtained in (6.11) and (6.12), we
obtain

-1
2 2 Cye 2
||Z<r,x)}|2n<<p(r,0)*||Z<0>||2n><x)+§ m(p(t,s+1)*||Z(S)||2n)(x+M(S))~
(6.13)
Define the set A;,“ = {(s1,...,8,) € Z’;O 0< sy, <o <8y <t)forn e Zyg.

Iterating (6.13) yields
[2¢. 015, < 0@ 0% [20)]3,)0

.- (Cye)"
+Z Z \/t_slx/sl—sz...\/s,F]_Sn(p(t’sl """" Sn)

n=1(s1,..50) €A

|25+ > uisi). (6.14)

i=1
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where p(t, 51, ...,8,) = p(t,s1+ 1) xp(s1, s2+ 1) *x---xp(s,—1 + 1, 5,). Following
Lemma 6.4, we bound

(p(t, 0) * | ZO)5,)(0) < Ce? el

(P(t, 51, ..., 50) % | Z(0) Uﬁn)(x + ) usi) < ceetm o (6.15)

i=1

For the second term on the RHS of (6.14), note that via integral approximation, we
readily see that

Z (Cye)"
LAV =SS =82 ST — sn

(S150-58n) €AY
< / (Cye)dsy .. .dsy,
b 081 <<t VI = SIN/S1T =82 3/Sn—1 — Sn
1
1 1 (T ($)Cyetz)"
= (C et2)"/ ———d1...dt, = —=——"— (6.16)
' ittty <l VT T " T'(n/2)

where I'(z) is the Gamma function. Combining (6.15) and (6.16) yields

® (M()Crerz)n

2
”Z(t,x)||2 < Ce2u€|X| +Z T e2u€(|x|+n)
n=1
1 1
— eZuelx(C + i (F(E)lf‘::/[;)ezué)n>

n=1

Note that et% < NG (since t € [0, e_zT]), as the growth rate of F(%) is much faster
than that of x", the infinite series in the parentheses above converge, which concludes
(6.1).

The proof for (6.2) and (6.3) relies on (6.1). We proceed to prove (6.2), denote by

ZV(t, x,x") = Z(t,x) — Z(t, X)), pV(t, s, x,x") :=p(t, s, x) —p(t, s, x).

Using (6.8) (subtract Z(z, x") from Z(z, x)) , we have

2V x, 5y =Y pt,0,0Z70,x —y,x' = y) + Z, (1),
YEE()

where

t—1
Zrzg(t) = Z Z pv(t, s+ 1 x 4 u(s) —y, x" +uls) — y)M(s, y). (6.17)
s=0 ycE(s)

It is straightforward that

|2V %05, <2 2 P 0.9 27 0. x =y, 5" = 03, + 2] 23,3,

YEE()
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By the definition of the near stationary initial data (Definition 5.5), for a € (0, %),
there exists C such that

3 0.9 2%, x = y.x' = )5,

YEE()
< C Y p(t. 0, y)(elx — x'pHePuelryIF =D
ye&(t)
< C(elx — x/|)2“e2”€(|x\+|x/|) Z p(t, 0, y)e4u€|y|

YEE(r)
Further applying Theorem 6.4 (ii), one has
Z p(t, 0, y)er <l < C.
YEE()
We conclude that
> 0. 0.0 2¥0. x—y. x'=y)|5, <Clelx — 222D (6.18)
YEE(1)

To bound H Z,Zg ) “2n’ we appeal to Lemma 6.6. Note that due to Lemma 6.4 (iv),

sup [pV(t, s+ 1L, x+pt—1) —y,x +ut—1)—y)| < Clx—x'1*(@ —s)—%,
YEE&(s)
Applying Lemma 6.6 to (6.17) implies

t—1

|25, 03, < Cebr =3Py @ —97F
s=0

STV =5 = Lx+pls) = yox' + ) — )| 260 |5,

YEE(s)

Owing to Theorem 6.4 (i), we observe that

3 eV —s = Lx+ps) =y x' +us) - |26 0|3

yel(s)
<C Y Yt —s—1Lx+uls) =y, x +pus) — e < Couelxl+1xD)
YE&(s)
Consequently,
t—1 s
125,02, < Celr! — xPagkuela+ia 3 5=
s=0
< Clelx — x4 (e2r) 7 2ue(x+D
< Clelx — x/[)2 et (6.19)

We conclude (6.2) via combining (6.18) and (6.19).
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Finally, we justify (6.3), we have

Z(ta-x) - Z(t/’-x) - Z p(tvt/"x _)’)(Z(t/, )’) - Z(t/v-x)) +ng(t7t/)a

YEE[)

where Zyo (1,1") = Y01 Y ca o P —5 — 1, x + 1(s) — y) M s, y). Similar to the

s=t’
previous proof, we have
2 2 2
|zt.x)-z¢' 0|5, <2 Y et x=y) |2 y) = Z(t x)||5,+2] Zmg (0.1 ]5,-
YEE()
(6.20)
For the first term on the RHS of (6.20), we apply (6.2) and Lemma 6.4 (iii), for any
ae,y)

2
Y op.t x =z y) - Z2( 05,
YEE()
< CE Y plt it x = y)lx — yPerelHD
YEE()
< C€2a(t _ t/ + l)ae2ue|x\.

For the second term, invoking Lemma 6.6 gives

—1
1
||ng(t,t/)||§n < CGZ ﬁ Z p(t —s — Lx 4+ u(s) — )| ZG, y)“in

s=t’ yeE(s)

< Cee < CEX(t — 1)) T ePuel!, 6.21)

t—1 1
2uelx|
7=

s=t’

Combining (6.20)~(6.21), we obtain | Z(z, x) — Z(t", x)|,, < C(€2(t — 1)) 2],
We complete the proof of Proposition 6.1. O

Having shown the tightness of Z, (6’2-, el -), to prove Theorem 5.6, it suffices to
show that any limit point Z of Z, (¢72., e71.) is the mild solution to the SHE (5.31).
This is the goal of the Sections 6.2 and 6.3, where we will formulate the notion of
“solution to the martingale problem” (which is equivalent to the mild solution) and
prove that any limit point of Z, (¢ ~2-, 1) satisfies the martingale problem.

6.2 The Martingale Problem
We recall the martingale problem of the SHE from [7].

Definition 6.7 We say that a C([0, co), C(R))-valued process Z(¢, x) is a solution
of martingale problem of the SHE (5.31)

8 2(t,x) = %afza,x) + /D&, ) Z(t, x)
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with initial condition Z¢ € C(R) if Z(0, x) = Z/°(x) in distribution and
(1) Givenany T > 0, there exists u < oo such that

sup supe “FIE[Z(z, x)?] < oo.
t€[0,T] xeR

(ii) For any test function ¢ € C°(R),

My (1) =/Z(t,x)l//(x)dx—/Z(O,x)l//(x)dx
R R

V. t
——*/ /Z(s,x)l/f”(x)dxds
2 Jo Jr
is a local martingale.

(iii) For any test function ¢ € C°(R),

t
Qy (1) = My (1)* — D*/ / Z(s, x)2¢ (x)*dxds
0 JR

is a local martingale.

Bertini and Giacomin [7, Proposition 4.11] proves the the solution Z to the mar-
tingale problem is also the weak solution (equivalently, the mild solution) to the SHE.
Moreover, they show that there is a unique such solution.

To prove Theorem 5.6, it suffices to prove that any limit point of Z, (€72, e 1)
satisfies (i), (ii), (iii). We will do it in the next section. The main difficulty arises for
justifying the quadratic martingale problem (iii), we need the following proposition,
whose proof is postponed to Section 8.

Proposition 6.8 Fors € Z, define

_pUI—=p) b +2mod;(s)+ 1) — (I +2mod;(s) — 1)
I b(I + 2mody (s)) — (I + 2mody(s) — 2)
Start the unfused SHS6V model from near stationary initial condition, for given T >

0, there exists constant C and u such that (recall the expressions ®1 and ©, from
(5.10))

T(s)

(6.22)

t

ey (6_1(91@2 - r(s)zz) (5. 6" = () + La(s)])

s=0

forallt € [0,e *TINZ, x* € Zand € > 0 small enough.

< Cete¥l (6.23)
2

Remark 6.9 1In (6.23), we compensate the space variable x* € Z by 1(s) — Lt(s)] €
[0, 1) to ensure that x* — fi(s) + [[A(s)]| € E(s).

6.3 Proof of Theorem 5.6

The entire section is devoted to the proof of Theorem 5.6. As we mentioned ear-
lier, due to the tightness obtained in Proposition 6.1, if suffices to prove that for
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any limit point Z of Z.(e 2., e~!.) satisfies the martingale problem. The proof is
accomplished once we verify (i), (ii), (iii) for Z.

For the ensuing discussion, we denote by & (¢) to be a generic process (which may
differ from line to line) satisfying for all fixed 7 > 0

lim sup E@®|,=0.
€¢0re[o,e—2r]mZH <@l

We start by verifying (i). Due to (6.1) and Z, (€72t e 'x) = Z(1, x), by Skorohod
representation theorem and Fatou’s lemma, (i) holds.
We continue to prove (ii). To show that My (¢) is a local martingale, we consider
a discrete analogue. Define
t—1
My@) =€y Y M, 0)p(elx — u(s))). (6.24)
s=0 xe&(s)
Due to Proposition 5.1, M (¢, x) is a F(t)-martingale increment, which implies
My (t) is a F(¢)-martingale.
Define (Z(t), ¥)e := era(z) e (ex)Z(t, x). By (5.7),

Z(t,x) = Z pe(t,t—1,x—y)Z(t—1, )+ M(—1,x+u(—-1)), x € E(),

yeE(t—1)

we obtain

(Z(s), Ve =(Z(s = 1), ¥)e
Yzt x) = Y ePEnNZ—1.y)

xXe&(t) ye&(—1)

Y v Y pelss—Lx—»Zs—1y)

xe&(s) yel(s—1)
MG = Lxus =)= 3 ePENZis—1.y)
yeE(s—1)
= Y ez-1.0( X pelss = Lx = () - v(en))
yel(s—1) xeE(s)
+ Y eY(ex)M(s — Lx + pu(s — 1)) (6.25)
X€E(s)

Summing (6.25) over s € [1, t] N Z yields

My (1) = (Z(1), ¥)e — (Z(0), ¥)e Ze Y. Z6,y)

s=0 yeE(s)

(Y Pl Lsx—»@E) - vE)  (6.26)

xeB(s+1)
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Recall that R.(s) is the random variable defined in (5.1), as usual we put on the
subscript € to emphasize the dependence. Note that,

E[Re(s)] = > pe(s+1.5.x)x =0, Var[Re(9)] = Y pe(s+ 1.5, 0)x%
x€E(1) xeB(1)

By Taylor expansion

1
Y(ex) = Y(ey) + ey (ey)(x — y) + Eezw’/(ey)(x -2+ E03x -y,

whereby (6.26) becomes
—1

1
My (1) = (Z(1), ¥)e — (Z(0), ¥)e ZZVar Re()(Z(5), ¥")e + Ec(0).

s=0
Furthermore, we have

3 als)(1 — vra)\ [ v+a\ T
Var[Re(s)] = Als )Z 1+ als) (1 - 1+oz(s)>(1+a(s)) q"'n

a(s)(1 — v4als)\ /v +als)\ ! 2
A 1- pn
< ()Z T+ a() ( 1+a(s)>(1+a(s)) 1 ”)
I+1 + 2m0d1(s))b — (I +2mody(s) — 1) 1
= O(e2). 6.27
b +0(2).  (627)
In the last line, we used Lemma 5.4 to get asymptotics. Denote by
(I +142mod;(s))b — (I +2mod;(s) — 1)
I1%(1 — b)

Vs) =

Then
r—1

My (1) = (Z(1), ¥)e — (Z(0), ¥)e — —GQZV(S) (Z(5), ¥")e + Ee (D).

s=0

Note that {V (s)}72, is a periodic sequence with period J, by the time regularity of
Z(t, x) in (6.3), we can replace V (s) by

1 ZV(S)_(IJrJ)bz I+J-2)
I12(1 = b)

as defined in (1.12). Consequently,
t—1

1
My (1) ={Z1). ¥)e = (Z(0). ¥)e — 7€ 2V Y (Z(), ¥"Ve + Ec0).

s=0

Since lime 0 SUp; ¢[o.c-271nz H Ee(2) ” , = 0, by a standard discrete to continuous argu-
ment from the martingale My (¢) to My, (t), we conclude that My (¢) is a local
martingale.

We finish the proof of (iii) based on Proposition 6.8. Similar to what we did in
proving (ii), we want to find a discrete approximation of Qy (¢). This is given by
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My — (My)(t). Referring to (6.24), the martingale My (¢) possesses the quadratic
variation

t—1
M)y =€>> " Y Yleter—p©NY (e —u())E[M (s, x)M(s, x')| F(s)]
s=0x,x"€B(s)
t—1
=Y Y Ylele — )Y (e — u(s)))(

s=0 x,x’€E(s)

1 —{-ot(s)q
xO1(s,x AxNO2(s, x A X)) (6.28)

v _|_ (X(S) p)lxx/l

where the last equality follows from Proposition 5.1. Since i € C2°(R), there exists
a constant C such that

| (e(r — (P (e(x’ — () — Y(e(x Ax))?| < Ce(lx — x| + 1)

Consequently, the expression (6.28) is well-approximated with the corresponding

term ¥ (e (x — ()W (€(x” — u(s))) replaced by ¥ (e (x A x"))¥(e(x’ A x”)), which
yields

= v+ a(s) =]
(My))=€"Y " > vf(e(xAx/))z( )

g 1+ot(s)
s=0x,x’€E(s)
X O (s, x A xX)O2(s, x Ax') + E (t),
— 2 V4 a(s) 5
- gx;(m;m(lw( ) ) Y (€x)701(s, ¥)Oa(s, x) + & (1),

Loy 3 Lo tan

TG =0T at))g? ¥ @) @165 0020, 2) + £,

_. Z b(I + 2mody (s)) — (I + 2mod, (s) — 2)

1(1—b)
x Z ey (€x)?(e71O1 (s, X)Oa(s, X)) + Ec (1) (6.29)
X€BE(s)
Here, in the third equality we used Y oo x7 = }%ﬁ In the last equality, using
Lemma 5.4 for asymptotics expansion of ‘1’138, one has
+a@)+ 0 +a@)g? 1+ Tiesa”
— - +a(s)
l+a(s)—@+als)g” 1-— Trad”
_ b +2mody(s)) — (I +2mody (5) —2) oeh.
1(1—b)
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Using Proposition 6.8, we replace the term e~ 1O (s, x)O1(s, x) in (6.29) with
T()Z(s, x)%,

(My)(1) =

Z b(I +2mod;(s)) — (I 4+ 2mody(s) — 2)
I(1-b)

x Z WY (€x)*T()Z(s, ) + E (1),

xe’:‘(s)
_ Z ,o(I —p) b(I +2mod;(s) + 1) — (I +2mody(s) — 1)
- I(1—-0b)
x Z v (ex)>Z(s, x)* + E(1).
xX€e&(s)

Using again the time regularity of Z(z, x) in (6.3), we conclude that

t—1

(My)() =Di Y D e¥(ex)’Z(s, x)° + E),

s=0 xeE(s)

where

_ 1 Z ,o(I —p) b(I +2mod;(s) + 1) — (I +2mod, (s) — 1)
I(1-b)

B p(I—p)(I+J)b—(I+J—2)
h I 12(1 — b)

as defined in (1.13). Via a standard discrete to continuous argument from the martin-
gale My () — (My)(t) to Qy (1), we conclude that Q. (¢) is a local martingale. Since
we have proved that for any limit point Z of Z.(e~2-, e~1.), it satisfies (i), (ii), (iii)
in Definition 6.7, this concludes the proof of Theorem 5.6.

7 Estimate of the Two Particle Transition Probability
In this section, we prove a space-time estimate for the (tilted) two particle transition

probability V, using the integral formula provided in Corollary 5.3. This technical
result is crucial to the proof of Proposition 6.8.
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Recall from Corollary 5.3 that
VE ((xlv -xz)v (ylv )’2)7 t, S)

2
Re=3! xi—y 4z
= s De(zi ! Re (i 1, i i
cn y2)[7§ZR féR E (De(z) «(2ir 1, 9)z; 2miz;

2
s X3—i—Vi dZi
—f % &(ZL&)H(@G(Z[))L 7 JEJL%G(zi,t,s)zi3 yi T
Cr /Cr i=1

27Tizi

2T[izi
(7.1)

s iy 4z
RS, —e. (1) 7§ fc B, 2)(@e@) TR (i 1,92 ’—’},
R R

where Cr is a circle centered at zero with a large enough radius R so as to include all
the poles of the integrand, c(y1, y2) is defined in (4.5) and the functions in the inte-
grand above are defined respectively in (5.25) — (5.28). We put € in the notation of V¢
and other functions to emphasize the dependence on € under the weakly asymmetry
scaling.

We define the discrete gradients V,,, Vy,, Vy,, Vy,

Vi, Ve((x1,x2), (71, 2), 1.5) = Ve((x1 + 1, x2), (y1, y2), 1, 5)
—Ve((x1, x2), (31, y2), 1, 5),

Vi, Ve (1, x2), (1, y2). 1) = Ve((x1, x2 + 1), (1, 2), 1, )
—Ve((x1,x2), (1, y2). 1. 5),

Vy Ve((x1, x2), (y1, y2). 2, 8) = Ve((x1, x2), (1 + 1, y2). 1, 5)
—Ve((x1, x2), (1, y2). 1. 5),

Vi, Ve((x1,x2), (71, y2), 1.5) = Ve((x1,x2), (1, y2 + 1), 2, 5)
—Ve((x1. x2), (y1. y2). 1, 5).

Furthermore, we define the mixed discrete gradient

Voo Ve (01, 32), (01, 92), 105) = Vi (Vi Ve (1, x2), (1, 32, 1,5)
= Ve((x1 + 1L, x24+ 1), (y1,y2). 1, 9)
—Ve((x1 + 1, x2), (y1, y2). 1, 9)
—Ve((x1, x2 4+ 1), (y1, ¥2). 1, 9)
+Ve((x1.x2), (y1. y2). 1. 5)

We define the V-Weyl chamber (which is understood with respect to whichever
gradient is taken) to be

{(x1, %2, ¥1,y2) 1 x1 +1<x2 € E(t), y1 < y2 € E(s)} it V=V,

{(x1, x2, y1, y2) 1 x1<x2 € E(1), y1 < y2 € B(5)} if V=V,,,
{(x1,x2, y1, y2) :x1<x2 € E(1), y1 + 1 < y2 € E(s)} iftv=v,,
{(x1, %2, ¥1, y2) 1 x1<x2 € B(1), y1 < y2 € B(5)} itv=V,,. (7.2)
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We remark that Ve ((x1, x2), (v1, y2), £, 5) is defined only for x; < x € E(¢) and
y1 < y2 € E(s). In the definition of V-Weyl chamber, when V = V,,,V,,,V, |
the corresponding V-Weyl chamber is exactly where the quantities V,, Ve, Vy, V¢ or
Vy, Ve are well defined. But for V = V,,, we require y; + 1 < y, which is stronger
than y; + 1 < y» (where Vy, V. is well defined). The motivation of this requirement
is to ensure that (7.9) holds.

The following result is the main technical contribution of our paper.

Proposition 7.1 For all fixed B, T > 0, there exists positive constant C(B), C(B, T)
such that for € > 0 small enough and s < t € [0, 6’2T] NZ
(a) Forall x1 < x3 € E(t) and y1 < y2 € E(s),

B(lxy —y1l+lxp—y2D)
CE.T) Mool (7.3)
t—s+ 1 . .

(b) For all (x1, x2, ¥1, ¥2) in the V-Weyl chamber,

[Ve((r1,x2), 1, ). 1, 5)| <

Bl —yq [+l =y2D)

Ve, Ve ((x1, x2), (1, y2), 1, 8)| < SBD 7 VmsTed | = 1,2,
(t—s+1)2
C(B 7o) _ Blxi—yil+xo =y
|Vy Ve((x1, x2), 1, ), 1 5)| < —Bse Vimdd=e® . i =1,2.
(t— Y-H)2

(c) Forall x1 < x € E(t) and y1 < yp € E(s),

_ Blxp—yl+xo—yoD
C@.7) NE=Eran)

(t—s+1)2

|VX1,XZV€((-X1’ xz)’ (YI’ )’2)7 t’ S)| <

It is helpful to divide the proof of Proposition 7.1 depending on whether the time
increment ¢t — s is large enough. More precisely, we use the phrase ¢ — s is large
enough if the referred statement holds for all # — s > £y, where 7y is some generic
time threshold which may change from line to line (depend on B and 7', but does
not depend on ¢€). Note that this is not to be confused with the global assumption
0<s <t<e 2T, which implies 7 — s < € 27.

Given arbltrary fixed fo > 0, let us first prove the proposition for ¢t — s < #p.

Proof of Proposition 7.1 fort — s < ty According to Lemma 5.4,

vta@) (I +mody (t))b — (I +mody(t) — 1)
lim sup ———— sup <1, (74
10 1ez, 1 +a() t€Z>0 mod; (¢)b — (mody () — 1)
here we used the condition $£7=% < b < 1in (5.30). Taking k = 2 in (3.13) yields
2 (i = yil 1=
Pm((xl,xz),()’l, yz)at’s) < Cn( ' [l—s >9|Xi_)’i| (75)

where 0 = sup; .7, ‘figg; So there exists 0 < § < 1 such that for € small enough

and all s < # such thatt — s < to

Ps(—st((xl’ x2), (y1, y2), 1,5) < csPivil, (7.6)
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Referring to the relation (5.20) between V and Pe——
with (7.6), there exists 0 < §’ < 1 s.t.

STsev- By lim¢ o Ve =1 along

Ve((x1,x2), (1, y2), 1, 5) < s/ nltayl

Consequently, we can take C(, T) and C(P) in (7.3) large enough such that for
r—=s < lOs

C(B’ T) e_ Bxy=y11+lxp3—y2D

Ve (@1, x2), (1, y2), 1, 5) < e/l ¢ VigtTHCP
to+1
_ Blx—yl+Ix—yoD
< Mg Vi—s+1+C(B)

Sr—s+1
For the gradients, let us consider V,, V. for example. Note that
V)C|V€ ((-xlv XZ)’ (}’1’ y2)’ tv S) = VG((xl + l, x2)7 (y17 )’2)7 tv S)
_VE ((xlv x2)7 (ylv YZ)v t3 S)

Using the same argument as above, there exists constant C (B, 7') and C () such that
for all s < 7 satisfying t — s < 19,

VG((-xla xz)a (J’l’ )’2)’ z, S)a VG((-xl + 1,.x2)9 (ylv }’2)» z, S)

_ Blx—y1l+lxp—y2D)
< _£¥E:Zl?e Vi—s+1+C(B)
(t—=s+1)2

which gives the desired bound for V,, V, ((x1 , X2), (Y1, W), t, s). The argument for
the gradient V,, V¢, Vy, V¢, V,, Ve and Vy, », Ve is similar. O]

Having proved Proposition 7.1 for t — s < fy, it suffices to prove the same propo-
sition for t — s large enough. In other words, we need to show that there exists 75 > 0
such that the proposition holds for ¢ — s > f9. We decompose V¢ (7.1) by

Ve = c(y1, y2)(VE - Vi),
where

dZi
27nz,

VE(Grx. 01 1) 1= b § H 0. ) TR e 1, )
Cgr CR

. dz;
VI ((x1, x2), (v1, y2), 1, 5) = f % (Dc(zn)" TR @, $)z;

2miz;

1.7)

2 1—s

Res., o, (o) f f 3o [[ (@) 7

Cr JCp i=1

x3i—y; dZi

xRe(zi, 1, 9)Z; E (7.8)
1
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Referring to (4.5), c(y1, y2) equals 1 as long as y; < yj. It is straightforward that for
(x1, x2, y1, y2) in the V-Weyl chamber (7.2),

Vi Ve = c(v1, y2) (Vi VE =V, V),
Vy Ve =1, y2)(Vy V& = Vy, V). (7.9)
In addition, for x; + 1 < x € E(¢) and y; < y»» € E(s),
Vi Ve = 31, y2) (Vay 1, VI = Vi, 1, V).

Note that under weakly asymmetric scaling,

. I-1

limens y2) =<y + 7= l=np
which implies that c(y;, y2) is uniformly bounded for € small enough, This being the
case, to prove Proposition 7.1 for 7 — s large enough, it suffices to prove the same
result for VI and Vi respectively.

Proposition 7.2 For all B, T > 0, there exists positive constant ty ‘= to(B, T) and
C(B, T) such that for € > 0 small enough and 0 < s <t € [0, € 2T N Z satisfying
[t —s| =10

(a) forallxy < x2 € (1), y1 < y2 € E(s)

Blxg—y1l+lxp—y2D)
T cCPB,T) ————F—
IVE (Gt x2), 1, y2), 1) < SBD ™ Vimd

(b) Forall (x1, x2, y1, y2) in the V-Weyl chamber,

_ Blxy=yq [+l =y

j CB.T :
|inVJ;r((X1,X2), 1, y2), 1, 5)| < LB Le Vit i = 1,2,
(t—s+1)2
. Blxy=y11+lxp—y2D
cp.r) —crmidnmnb
V3 V2 (1, x2), O, yo), 1) < SBD ™ V= =12,

(t—s+1)2
(c) Forallx;+ 1< xp€ E(t)and y1 < y2 € B(5),

 Bx =y I+ —=y2D)
Vi—s+1

Cc(B,T
Ve VE(Cr1, 320, 01, 32), 1, 5) | < 28 ze
Proposition 7.3 For all B, T > 0, there exists positive constant ty ‘= to(B, T) and
C(B. T) such that for € > 0 small enough 0 < s <t € [0, 6’2T] N Z such that
[t — 5| 2> 10,

(a) forallxy < xy € E(t)and y1 < y2 € E(s),

Bxa—yil+lx—y2D)
. c@.) —Pmylt—nh
[V ((x1, x2), (1. y2). 1. 5)| < z—(E+1)e Vims+l

(b) Forall (x1, x2, y1, y2) in the V-Weyl chamber,

_ Blxp—yyl+Ix =yl

|V VI ((xr, x2), (1, y2), 1, 8)| < SBD 7= =1,
(t—s+1)2
. _ Blxp—yl+Ix; =yl
[V, Vin((x1, x2), 1, y2), 1, 8)] < SBD_ .~ U= = 1,2,

(t—s+1)2
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(c) Forallx;+ 1< x3€ E(t)and y1 < y2 € E(5),

) CB.T) _ BUxp—y+lx;—y2D
|Vir o VE (1, 02), (01, 32), D] < = pae AT

The reader might notice that in Proposition 7.3, we write |xo — y1| + |x] — y2| on
the RHS exponents (compared with |x; — y1| + |x2 — y2| in Proposition 7.1). This in
fact yields a stronger upper bound since by x; < x3 and y; < y;, one always has

lx1 — y1l + |x2 — y2l < |x2 — y1l + |x1 — y2l.

Hence, combining Proposition 7.2 and Proposition 7.3, we conclude Proposition 7.1.
7.1 Estimate of Vff

In this section, we will prove Proposition 7.2. Referring to (6.4),

—s)/J i~ dzi
pe(t, s, xi — i) = f (D) Rt 07 TS (710)
Cr 2 1Z;
where R is large enough so that C encircles all the poles of the integrand. Therefore,
from (7.7) we have

Vg((xlvxz)’ (YI’ )’2), t7 s) = pé(tv §, X1 — yl)pG(ts §, X2 — )’2) (711)

To estimate V. ((x1 ,x2), 1, 2), ¢, s), it suffices to analyze p¢(t, s, x; — y;). Refer-
ring to the expression (5.25) and (5.26),
(I1+ag”)g Pz — (v +aq’)

= n
De(2) := Az (tag i ta (7.12)

t—1

1 k Pz — k
R (2,1, 5) = 1—[ A(k)z M(k)( +ak)g)g Pz — (v +alk)q) L (7.13)
- (I +ak)g="z— (v +ak)
k=s+J[5]
Define the set of poles of the integrand in (7.10) to be P, it is clear that
RIFARLIONY v+ alk),
P C o p LT XY 0}.
—kL:JO{‘iH W' U{ T+at 2
Due to Lemma 5.4,
im q°(a(k) +v) (I +mod,(k))b— (I +mody(k) —1) c©.1)
0 l4ak) bmod, (k) — (mod; (k) — 1) T
Therefore, there exists 0 < ® < 1 such that for € small enough
P C [0, B]. (7.14)

To extract the spatial decay of p¢ (¢, s, x; — y;), we deform the contour of z; from Cg
to C,, where

ri = u(t — s, —sgn(x; — y;)P). (7.15)

@ Springer



1 Page60of 118 Math Phys Anal Geom (2020) 23: 1

Note that when ¢ — s is large enough, r; is close to 1, thus deforming the contour
from Cg to C,,, we do not cross the poles in the integrand. We parametrize C,, by
2i(6;) = rie%, 0 e (—m, w] and get

1 —S Xi—V;
Pet. s, = yi) = 7~ f (De (i 0)) IR (200, 1, )20 0V d6;

We want to bound each terms that appear in the integrand above. Note that by (7.15),
B iy
|2 (O[5 = ¢ Vet
To estimate $R¢(z;, t, s), referring to (7.13), Re(z, ¢, s) is a product of up to J
terms (since t —s — J L’*TSJ < J). For each term, by Lemma 5.4

(1 +ak)g)g "z — (v+ak)g)
A+ atk)g=Pz— (v +ak)
1 (b(1 +mody (k)) — mody(k))z — (b(I +mody (k) + 1) — (I + mody (k))
(bmod; (k) — (mody (k) — 1))z — (I + mod; (k)b — (I +mody (k) — 1))
(7.16)

lim |2 (k)z#®
€l0

= |z|

The singularities in (7.16) lie strictly inside the unit disk. Since 7; is close to 1 when
t — s is large, for € small enough and ¢t — s large enough, there exists constant C such
that for z € C, and k € Zxo

A +a®glg "z — v +ak)q)]| _

(k)
MO at)g =z — 0 F ah)

s

which implies
1Re(zis 1, 9) < C. (7.17)
Consequently,

T
pe(t, s, xi — yi) < / 1De IR (2:(0), 1, )12 ()1 d

—
B e [T _
< Ce TremThiil / D@ ao (7.18)
-

1

We expect to extract the temporal decay =

from the integral above. To this end,
we need to the following lemma.

Lemma 7.4 There exists positive constants C (B, T), C such that for 6 € (—m, 7]
1DO)] ™ < CPB, T COHIE T g) = u(t — 5, £B)e®

holds for € > 0 small enough and large enought —s < € T .

As a remark, we see from (7.12) that the function D, (z) is not globally analytic
due to the factor z* (u is not an integer), but it is analytic in a neighborhood of 1.
Furthermore, |”D€(z)} is a continuous function in a neighborhood of the unit circle.

Proof of Lemma 7.4 We only prove Lemma 7.4 for z(6) = u(t — s, B)e?, the
argument for Z(Q) = u(t — s, —B)eie is similar. By Writing |®e(Z(9))|t_S =
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e—$)Re logDe(2(®) it suffices to show that there exists positive constants C(B, T), C
such that for € > 0 small enough and t — s < € T large enough
C@.T)
t—s+1
where Re z denotes the real part of a complex number z.
We divide our proof into three cases. It suffices to show

Re log D, (u(t — s, P)el) < Cco?,

o (0=0):logD(ult —s,B)) < L&D

e (6 small): There exists { > 0 s.t.

C@.T)
t—s+1

® (6 large): There exists 8 > 0 such that [ D (u(r — s, B)el?)| < 1 — & for |0] > ¢.

Re log D (u(t — s, P)el?) < co>  for|o] <¢.

The proof for the first and second bullet point are done by using the local property of
D¢ (z) near 1 (applying Taylor expansion). Let O be a small neighborhood around 1
such that ®,(z) is analytic inside O.

(@ =0): We write D, (z) into terms of a telescoping product

J—1 —
1+ ak)g — v+ a(k)g)gPz !
() = e
2@ = [T @ + e

By (6.5), we see that

J—1
De(2) = [[ B[z %®] = B[z~ Zizo R®)],
k=0

thus
J—1
/(1) = —E[)_ R(k)] =0,
k=0
J-1 J-1
D(1) = Var[ Y " Re(k)] = > Var[Re (k).
k=0 k=0
Referring to (6.27),
J—1 J-1
: U+ 14+20b— (I +2k—1)
%;Var[&(k)] = kX_: 05 =JV,,

where V is given by (1.12). The above discussion implies that
log (1) =0, (logDe)'(1) = 0.

Moreover, there exists constant C such that uniformly for z € O and €
small enough,

|(log )" ()] < C.
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Since lim; s, oo u(t — 5, ) = 1, we see that u(t — s,B) € O fort — s
large enough. Thus, we taylor expand D (z) around z = 1 and get

c@BB, T
log D, (u(t — s, B))<C|u(l—s, [3)—1|2< t—(li——{—)l’ (7.19)

which justifies the first bullet point.
(0 small): Consider the function ©.(z(0)), we calculate for z(6) € O

3p(logDe(z@O)))|y_, €iR,
lim  95(10g De(2(O)],_y = —7 Vi

€l0,f—s—
|83 log D (z(0)))] < C.

Given these properties, we taylor expand log D, (z(0)) at 8 = 0, there
exists ¢ > 0 such that

JV,
Re log D¢ (z(0)) < Re log D (2(0)) — 2*92 0] <¢
In conjunction with Re log®(z(0)) < zC—(E+T1)
(7.19)), we conclude the second bullet point.
(0 large): We set

(which is shown by

s - =1+ Nb-U+J—-1)
z—Ub—(I—-1))

Referring to the expression of ®. in (7.12) and using Lemma 5.4, one

has

Ds(z) =z (7.20)

lim |9 (2)] = [D4(2)].
€l0

The convergence is uniform in an open neighborhood of unit circle.
Thereby,

lim |©€ (u(t —s, B)ei9)| = |©*(ei9)| uniformly over (—m, 7].
€l0,t—s—o00

As a result, we conclude the third bullet point as long as we verify the
following steepest descent condition

|D.(2)] <1 forzeC\{1} (SD.C1)

To prove (SD.Cy), we compute

D)
@I =(T =1’ —((I+Db—(I +J—1))
n e —(Ib—(1—1))

(I =T =D +(U+))b—U+J =1)*=2(bJ = (J = D) +])b—(I+J —1)) cos §
- 1+(Ib—(I—-1))>=2(Ib—(I—1)) cos §
_ | Y A=b)(—cosO)(U+Nb—(I+]~2))
B 1+(Ib—(I—1))2=2(Ib—(I—1)) cos

In the last step, we used the condition ﬁ[;j <b< 1.

2

0 € (—m, 7]\ {0}.
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Having proved Lemma 7.4, we proceed to finish the proof of Theorem 7.2.
Proof of Theorem 7.2 Due to Lemma 7.4,

b/ g
L5 / —C(15E | +1)62 CPB. 1)
DeziO)|' 7 ldo < | @ Ty LTI g9 < 2
[ﬂ| (@) - CB.) —

This being the case, by (7.18) we readily see that

cP, T By
Pe(t, s, xi — ¥i) < %6 Vi yl‘. (7.21)

Incorporating this bound into (7.11) concludes Theorem 7.2 part (a).
For the gradient, notice that one has

Vi, VE((x1, x2), (1, 32) 1, 5) = Vp(t, 5, x1 — y)P(t, 5, X2 — ¥2),
Vy VE (1, x2), (1. ¥2). 1. 5) = p(t. 5, x1 =y Vp(t, 5, x2—y2—1), (7.22)
Vi VE (1, x2), (31, 32). £.8) = Vp(t, s, X1 — y))Vp(t, s, x2 — y2). (7.23)
The proof for gradients V,,, V,, is similar to that for V,,, V, by symmetry. It

suffices to analyze

1 7 1—s
Vp(t, x1 —y1) = — | D@ O T IR (2101, 1, )21 (01 1 (21 (61) — 1)d6,

27 J_,
By the fact |21 (61) — 1] = [¢* 7= _ 1] < C(——— + |0 Tud
y the fact |z1(61) =|e V= < (m |61]), we conclude
90,3 = )| < CB. Ty T [ U o ity
s M l X ) _n [ —s + 1
T) —_B 4y
< EOD) by, (7.24)
t—s+1
where the last inequality follows by a change of variable 8; — \/ziﬁ' Incorporating
this bound into (7.22) and (7.23), we conclude the Theorem 7.2 (b), (c). ]
7.2 Estimate of ViE“, an Overview
Recall from (7.8) that
2
H =5
V& ((xr, x2), (15 32), 1, 5) =¢ ff Fez.2) [ [ D@t T
Cr JCr i=1
.y dz;
X%G(Zivtvs)szﬂ yl#
2miz;
2
t—s
_ReSZ]:5€(ZZ)|:f % 35(21,22)1_[336(21‘)L 7
Cr JCr i=1
xii—y 4z
xRe(zi, 1, 8)Z; — . (7.25)
! 2miz;
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We study the double contour integral in (7.25). Recall from (5.27) and (5.28) that

Fe(z1,22) = gy —v+ W —q)g P+ 0 —-qv)g P71+ (q — 1)q_2'°zlzZ
e\d1, <2 qv_v+(v_q)q_pzl+(1_ql))q_p12+(q_l)q_ZpZ]Zz’
(7.26)

which produces a pole at z; = s.(z2) where

(I—gv)gPz—v —q)
(@ =g+ —q)q2z
Referring to (7.14), the other poles of the integrand belong to [0, ®] for some 0 <

0 < 1.
We say the contour I' is admissible if

5¢(2) =

1
(1) : T contains [0, ®] but does not contain 1—1, (2):d(1-1,T) > 37 (7.27)

where the distance between a point z € C and a set A is define by d(z, A) :=
inf{|z — y| : y € A}. Figure 3 below gives several graphical examples of admissible
and not admissible contours.

Define
. I-1z+1
=1 =
54(2) 6111356 () T

Note that

lim s,(z) =1-1.
|z|>00
Note that zo € Cg, from above we have: For R large enough and € small enough, if I"
is admissible, deforming the z;-contour from Cg to I' will cross the pole s (z2) for all
72 € Cg. Moreover, such deformation does not cross any other poles in P. Therefore,

2
VI ((x1,x2), 1532, 1,5) = ﬁ:ﬁ 36(21122)1_196(21-)[?J
K i=1

vy 4z
i

Re(zi, 1, 5)z —.
2miz;

Fig. 3 Graphical examples of admissible and not admissible contour I"
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In practice, we deform the zj-contour to some contour I'(¢ — s, €) which depends
on both ¢+ — s and € so that it is admissible for + — s large enough and € small
enough.

Assuming that we have deformed zj-contour to I'(¢ — s, €), which is admissible.
The next step is to deform the z>-contour. Note that given z; € I'(¢ —s, €), §< (21, 22)
generates a pole at 72 = pe(z1) (pe is the inverse of s¢)

(I —qv+(g—v)g "z

71) = . 7.28
PeE) = G T Dz + (1 — qvig (729
We consider three potential radius
ry = u(t —s,sgn(x1 — ykaB), 5 = u(r — s, sgn(x — y2)2k2P),
ry = u(t — s, sgn(x; — y2)3k2p), (7.29)

where k> > 1 is a constant which is irrelevant with the current discussion. We deform
zo-contour from Cp to Crf(m, where

3@ =2l esr) T o<

In other words, if the pole p.(z1) lies outside Cré’ we choose zp-contour to be a
circle with radius r, < ré. If the pole pe(z1) lies inside Cré’ we choose z-contour

to be circle with radius 5 > rj. It is clear we always have for r — s large enough

that

B
Ji—s+1

Ipe(z1) — 22| > V22 € Crz(zy)- (7.30)

Referring to the expression of §¢(z1, z2) (7.26), we find that

Resz,—p.(z1)Te (21, 22)
_gqv-v+ W —q)g " pe(z1) + (1 — qv)g™z1 + (g — Dg > z1pe(z1)
(q—Dg 2 z1+ (1 —qv)g—" '

We set

Ne(z1) = De(21)De(Pe(21))s
Je(@1) = Resgmp (onTe (@1, 22)27 7 pe @) ™ Ly, o)1)
qv—v+ W —q)g "pe(z1) + (1 —qv)g"z1 + (g — Dg~ > z1pe(21)
(g —Dg=2°z1 + (1 —qv)g~"
X2 e @D T 55 (7.3
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From preceding discussion, we decompose Vit = Vbk | yres where
€ € €

VO ((r1, 22), (01, y2). 1. 5) =y§ y{ Se(z1, 22)
I'(t—s,e) JC,

2(21)

2 dz
=S| xa_i—vy; i
< [[ @@t 7z =,
i1 27‘[le
=

VE((x1, x2), (1., y2), 1,8) = ?g

1 11Je(21)
sy penl=riJe

dzi

[55]
X J d—
Aeer) 2mwiz1pe(z1)

(7.32)

Note that we integrate under the indicator 1, pez)|>r)) which arises in the case that
deforming the z;-contour from Cg to Cr; (z;) crosses the pole pe(z1).

We want to perform the steepest descent argument for VE”‘ and VI, similar to
what we have done in Section 7.1. More precisely, ast—s — ocoande | 0,'(t—s, €)
converges to some fixed contour I',.!3 We set

I+Dz-1

Ta-T (7.33)

P(2) == lélﬁ)lpe(z) =

Recall from (7.20) that

%(Jb—(J—1))z—((I+J)b—(I+J—1))

Du(d) =z —Ub—(—1)

and set

$4(2) = D () D (p+(2)).
Note that
D4(2)| = leiil(} [De(2)], 19:(2)| = léiﬁ)l [9(2)].

We require the contour I satisfying the steepest descent condition.

M)]D:()| <1, zeT,\{1} ()9 <1, zeTW\{l}. (7.34)

As we see from (SD.Cy) that if we take I'y = Cj, (i) holds. However, (ii) does not
hold. In truth, Fig. 4 indicates the region where |D.(z)| < | and [9.(z)| < 1 for
I =2 and b = 0.8. We see that C; lies fully inside |94 (z)| < 1, but partially outside
[9:(2)] < L.

Set M = { {z - I—Jlr1| = II?}, the following lemma says that M the satisfies the
steepest descent condition (7.34).

13We define the distance of two contours to be dist (I'y, I'2) = SUDycr, yer, (d(x,T2) v d(y,T1)). We
say a sequence of contours I';, converges to I if lim,,_, oo dist (I',, ') = 0.
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0.5

Fig.4 We choose » = 0.8 and / = 2. The figures on the left and right show respectively the region where
|’D*(z)| < 1 and |5’)*(z)| < 1, which is filled with gray color. The unit circle (with blue color) is drawn
for comparison

Lemma 7.5 We have

1Dx(2)] < 1,z € M\{1}, 19:(2)] < 1,z € M\{1}. (SDM)

Proof Parametrize M by z(0) = % + ﬁew, 0 € (—m, ], we compute

Ub—J =1)z@) - (T +Nb—-U+J
2(0) — (Ib— (I — 1))
’(Jb - =z - (U +Db—-U+J
z2(0) —(Ib— (I = 1))
’Ub - - 1))(%+1 + e = (U + Db — I+ T
1+1 + 1+le'9 Ib— (I —-1))
B 21271 =b)(I +J +Db— U +J — 1) —cose)
|1+1 + 1+1ee b - - 1))| A+1)?
0 € (—m, w]\{0}.

1D, zO)* < Iz (9)|‘

N

where in the first line we used the fact |z(#)] < 1 and in the last line we used
ﬁ;j < b < 1, note that when I > 2 and J > 1, we have

I+J-2 I+J—1
> > ,
I1+J-1 I1+J+1

which concludes the last inequality.
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For $.(z), note that
%(bJ—(J—1))z—((I+J)b—(I+J—1))

57)*(1)—1 Z—(Ib—(l—l))
o (o GI = = Dn@ = (U + b= U+ = 1)
: pu(z) — (Ib — (I — 1))
— (a0)? bJ —(J =1))z— (U +I)b—(T+J—1)

z—Ub—(I—-1))
(B = =D)ps(@) = (A + b - +J 1))
p«(2) —(Ub— (I —1))

A crucial observation is that ]z - ILH] = I+rl implies

(I+1)Z—1|_| Iz
z+U -1 z4+U-1

|ZP*(Z)| = ‘Z

which can be verified by inserting z(6) = ﬁ + Ilﬁei‘g. Consequently, we see that

2

’ﬁ*(z(e))|2 _ bz(0) — (I + Db —1 bps(z(0)) — (U + Db —1)
2(0) —Ub— (I —1) p«(z0) —Ub— (I —1))
I+ T =+ T+ Db+ (Tb—(J —1)e"
= | I — I+ )b+ €
U+Db—T+T =1+ =Db+J —2)?
' Ib— (I —1)+ (b —2)el?
4 —4b—-1)JQ2—-J —=14+b(J+1))(cos® — 1)(a; — byjcosB)
((b—2)é + (1 + (b — DD)|*|e® — b+ B — D]
(7.35)
where

a; = J>+JIDA=b)24+2+2b—=2)J + B> = DI + (b - 1)*1?
by =U*+JDA =b)>4+2b—2)J +(1+2b—b>)+ (=3+4b—b>)I

We claim that |b;| < ay, which implies a; — b cos 6 > 0. This claim is justified by
showing

aj+by = QIPH2JI+1HA—=b)>+@b—HU+J)+3+2b—b*
= (P =DU =0+ + Db —1)+2)* >0,
aj—b; =GB +20-1D I+ b -1)>=0B-1*U+1)?>0.
Therefore, by 454=F < b < 1 and (7.35)
[9:(z(0))] < 1, 0 € (—m, ]\{0},

which concludes our proof. O

We need to consider the following modification of M

1 1
| = —+u}n{lzl < 1)),

M(u)::8({z:|z—1—+1 7+1
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where u is some positive real number.

Lemma 7.6 There exists § > 0 such that for all 0 < u < 8, one has

D:()| < 1, z € Mu)\{1},

19:) <1, ze Mw\{1}. (SDM(u))

Proof The proof of this lemma uses similar techniques which appear in [15, Lemma
6.4]. By straightforward computation, one finds that

o.()=1; D=0  DLU)=JV.
S.D=1  HLOH=0  H=2JV.

Here, V, is given by (1.12). We taylor expand ©..(z) and $.(z) around z = 1 and get

1
Du@) = 145 Vale ~ 12+ 0(z - 1P),
9:2) = 14+ TViz — D>+ 0(z — 11%).

Notice that in the vertical direction where z — 1 € iR, %(z —D2is negative. This
implies that

D) <1 ze A\{l} 9. <1 ze A\{l}. (7.36)

where A is a hourglass region centered at one, A = {z : z = 1 + ve'®, |¢p —
71 < o, lvl < vo} with vo,¢p > O fixed. For z € M(u)\A, due to
limy, o dist (M (u)\A, M\ A) = 0 and Lemma 7.5, we find that there exists a small
S, suchthat forO < u < §

sup  [Dx(2)| < 1, sup 9« < 1.
ze M)\ A zeMu)\A
Combining this with (7.36) concludes the proof of Lemma 7.6. ]

We fix a constant 0 < uy < § A %, and set M’ := M(uy). From our discussion
above, M’ is admissible and satisfies (SDM (u)).

To prove Proposition 7.3, we need to choose our contour such that it controls both
V'E’lk and V*. The choice will depend on the sign of x, — y; and x; — y>. We need
to discuss separately for each of the following cases

(i): (+—)case:xy —y; >0andx; — y2 <0,
(ii): (——)case:xo —y; <O0and x; — y» <0,

(iii): (4++)case:xo —y; = 0and x; — y, > 0.

Note that we don’t need to consider the case where x; — y; < Oand x| — y» < 0,
since it contradicts our condition x; < x3 and y; < y».
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7.3 Estimate of VI", the (+—) case

In this case we shrink the z;-contour from Cg to

1 I B
M(t—s,—B)::{Z1:|Z1—I+1|:I+1_m}'

It is clear that for 7 — s large enough, M (¢t — s, —[) is admissible. Consequently, we
have

VI((x1, x2), (v1, y2), £, 5) = VE((x1, x2), (1, 32, 1, 8)+VES (1, x2), (31, ¥2), 2, 5),

where

VEK((x1, x2), (1, y2). 1, 5) = fﬁ fﬁ Se(z1, 22)
Cr;(q) M(t—s,—B)

2
s vy, dz;
[19) T Re (@it 902 - (7.37)
Zi

i 2mi

res _ ~ ==y
Ve (1, x2), (1, y2), 1, 5) = %M(ts,B) Lipeensrpde @D Nez) "7
dzi
xNRe(z1,t, $)NR, 21 8) -
6( 1 ) e(pe( 1) )27'[121]35(21)
(7.38)
Parametrizing z;(0)) = % + (,’? - tiﬂ )ei?1, we need the following lemma.

Lemma 7.7 There exists positive C(B, T), C such that

D zON™ < CB, T)e €D 15 (2(0))|™* < C(B, T)e CU—s+DP

with z(8) = ! + ( r _ P )e’
I+1 ‘41 Ji—s+1

for € > 0 small enough and t — s < € *T large enough.

Proof Similar to the proof of Lemma 7.4, it suffices to show there exists positive
constants C(B, T), C such that

C@.T) N C@B,T)
PRy Cco%; Re log $¢(z(8)) < et 1

— CoH>.
(7.39)

Re log D¢ (2(0)) <

We prove the lemma for (6 = 0), (6 small) and (6 large) respectively

(6 = 0) : Re D, (2(0)), Re e (z(0)) < E&I
(6 small): There exists { > 0 and constants C(3, T) and C > 0 such that (7.39)
holds for 0| < ¢.

e (0 large): There exists § > 0 such that |©€(z(9))},

101> ¢.

Hez©)] < 1 -8 for
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We consider the first two bullet points (¢ = 0) and (6 small). The analysis of (0 =
0) and (0 small) case for ®. is similar to Lemma 7.4, we do not repeat here. For
9e(2) = De(2)De (P (2)), by straightforward calculation,

He(1) = De(pe(1)),
H.(1) =D (pe(D)pL(1),

lim /(1) = 2J V. (7.40)
€l0
For the first equation above, we taylor expand D, (z) at z = 1 and according to (7.44),
1 JVi(pl — p?)? 5
9e() = 1H3DL (D pe(D =1 +O((pe(D)=1)?) = 14+—LF240(e).
(7.41)

For $.(1) = D, (pe(1))p. (1), taylor expanding D’ (z) around z = 1, according
to (7.44),

JVi(pl — p? 3
0L (e (1)) = D, (D! pe(D—D+0pe—1)* = TP oy,
Combining this with p.(1) = 1 + O(e?) yields

2
(1) = We + Oe). (7.42)
Using (7.41), (7.42) and (7.40), we get
JVi(pI — p*)? 5
(log He)(1) = Tez + O(e2),
JVi(pl — p? 3
(log ) (1) = %e +O(e),
lim, (log $0)" (1) = 2J V. (7.43)

Moreover, straightforward calculation gives |(log $¢)”'(z)| < C for z € O (which is
a small neighborhood of 1). Thereby, by Taylor expansion we find that
log e (2(0) = log He (1) + (log He)' (1)(z(0) — 1) + (log H)" (1)(z(0) — 1)*
+0((z(0) — D).
Using (7.43),z(0) = 1 — B and €2(t —s) < T, we see that there exists CB, T)

Jt—s+1
such that for ¢t — s large and € small,

CP.T)

log He((0) < —

’

which gives the first bullet point.
For (6 small), we readily calculate

99 (log He(z(0)))],_, € iR,
lm  93og 5. @], = 2LV,
€l0,t—s—>00 = I+ 1)2
|93 log He(z@)))| < €, for|o] <¢.
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Thus, via Taylor expansion, we find that for |#| < ¢
1’Jv, _CB.1) 1’JVy
20+12 T r—s+1 2(I+1)?
which conclude the second bulletin point.
For (0 large), recall z(0) = % + (,Iﬁ - %)eie, we notice that
lime y0,1—5—o00 | De (2(0))| = |’D*(11? + ILHeiB)L uniformly for 6 € (—m, 7].
lime 0.4 —s—o0 [ 2(O))| = [94(737 + 747€!

Thanks to Lemma 7.5, there exists § > 0 such that for # — s large enough and € > 0
small enough,

Re log H:(z(9)) < Re log H<(z(0)) —

’

uniformly for 6 € (—m, 7].

(z(O)] <1 =8 for [0] > ¢,

which completes our proof. O

For VI* (7.38), we show that the indicator 1 (pe(@)>r) prohibits 6 to be too small.

Lemma 7.8 We can choose k> large enough such that if |pe (z(9))| > ré with z(0) =

i _1
i+ (7 = )l then 101> (=5 + 074

Proof Note that 7} = u(t — s, 2k2B) > 1+ —228_ it suffices to show that

Ji—s+1
|Pe(Z(9))| > 1+ \/% implies |8| > C(t — s + 1)7%.
Referring to (7.28), we taylor expand p, (1) around € = 0
—IJe(] — gVe NG O NG — 02
pe(y = £ oD R me ey PTG,
(1 — e=DVeEYe=pVE — (1 — eVeé)e20V¢
(7.44)

We highlight that there is no /€ term in the expansion, which is important for our
proof.

We taylor expand pe(z) at z = 1. Using (7.44), z(0) = 1 — \/z—Bsﬁ and
lime o p. (1) = 1, we find that for r — s large enough and € small enough,
2(pl — p?) C
20) =pe (D +p. (D EO)—D+0(zO)—1)° <1+ P le i ————
Pe(2(0)) =pe (D +p, (D (z(0)—1)+0(z(0)—1) 7 NS
(7.45)

In the last inequality, we used the condition r — s € [0, e_2T]. In addition, it is
straightforward to see that % [pe(z(9))] | g—o = 0 and there exists ¢, C’ > 0 such that

\ 267 [pe (z(@))l| < C’ for 10| < ¢. Consequently, via Taylor expansion, for |0| < ¢

pez®)| < [pecOp| + E& <14 -S4 €&
2 JE—s+1 2
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Consequently, we have that when |0| < ¢

pecO)| > 14 2B impries 14 S C0 o, 2P

z > ——————— impli > e
¢ VNt —s+1 P Jt—s+1 2 JE—s+1
By choosing k5 large enough, we see that || > (r — s + 1)~ /4, O

We are ready to prove Theorem 7.3 for (+—) case. As VI? = VbIk 4 yres,
it is enough to bound respectively V¥ and V™. We begin with VP (7.37). The
proof consists a sequence of bounds on terms appearing in the integrand (7.37). We

parametrize by z1(61) = I+1 + (I+1 — \/zBT)eiel and z2(6>) = r*(Z1)ei‘9

+
(Vblk,sz 1 X] y2) Showthat |Z/1V2 1 xl y2| <C€ «/IT(‘xl )’2| [x2— yl‘)

Observe that |Z1(91)| - ‘1+1 + (1+1 \/,_Bﬁ) “ | reaches its maximum at ; = 0,
hence
B __B
lz10D] < |z1(0)]| =1 — — < e Ve,

which gives 2171 < e_%lxz_m.By 22| = u(t—s, B), we deduce |z2|¥1 772 <
e—%lxl—yzl‘

(VE', L): Show that || < C
Clearly, Il\ is bounded for z; € M(t — s, —PB) and 22 € Cpx(7)).

(VeX, Fe(z1, 22)): Show that [Fe (21, 22)| < C + Cvi =5+ 1(61] + [62]).
To justify this claim, write

qv—v+W—q)qg P22+ 1 —qv)g Pz +(q— g *z122

Be(e1, 22) = (g — g 2z1 + (I — qv)g )22 — pe(z1)
¢rUtou-h o]
G—Dg 2z +U—qug? - V)

(7.46)

Let us bound each factor on the RHS of (7.46). Referring to (7.30), we know that
> 1 < €1t — s + 1. Furthermore, we note that

|12_p5
- 1 I B :
_ — 1r2(21)92 _ _ i6;
woa=e e eV =S
. I B ; B
iry(z1)62 _ 1— _ 0 _ 1 I
¢ (I—i-l t—s—i—l)(e )+\/t—s+1’
which implies 22 — 21| < C(== + 1611 + 162).
In addition, we observe that
Y () VI
€l0 (g — l)q‘zf’m + (1 —qv)g= a+1-1

9~ (+q)(v—1) P— .
Thus, |(q—l)q’2pz|+(l—qv)q’p | is uniformly bound over M(r — s, —[). Incorporating

the bound for each factor on the RHS of (7.46) gives the desired bound.
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(VK 9%, (2,1, 5)): Show that | R, (z;, ¢, 5)| < C.
This is proved using the same reasoning for (7.17).

(VP D _(z;)L'7)): Show that | D (z; ()| 7! < C(B, T)e CU—s+DE.
The result D, (z;@)|LT < C(B, T)e~CI=5+D9 directly follows from Lemma
7.7. For |De(z2(62))|1' 71, note that either z2(62) = u(t, kaB)el® or u(t, 3koB)el®
(depending on the choice of zj). Lemma 7.4 implies |9, (12(92))|U;JSJ <
C(B, T)e—C(z—sH)eg.

Via change of variable 71 = z;(61) and z2 = 2z2(62) and incorporating the
preceding bounds, we arrive at

__B - —y
VIR (1, 02), (1, 32), 1, 5)] < CB, Tye” vimert (27D
T g
x/ I+t —s+1(161] + 1621)
- J—T

Xe_c(z—s+1)(9|2+022)d91d92-

Applying change of variable 8; — L = 60;, we conclude

A t—s

CB.T) ——b_(xo— _
|VElk((x1, x2), (y1, ¥2), ¢, s)l < t—([z——l—)le gt el —nb (747

We turn to study VI in (7.38). The proof consists of bounds on terms involved in the
B i0
e

integral (7.38). In the following we parametrize z1(61) = ﬁ + (ILH -

res 1 1
Ve, ZlPe(Zl)) Show that [z1pe(z1)] <€
U+Dz—1

By lim¢ g pe(z1) = T e deduce that m < Cforzy € M@t —s, —B).
(VECS, %E(Z17 ta S)%é(pé(zl)a t’ S)): ShOW that |9:{e(zla t’ S)%G(Pe(m), t, S)l §
C.
By (V% R, (z;, 1, 5)), we see that [Re (21,1, 5)| < C forz; € M(t — s, —B). We
are left to show for ¢+ — s large and € small,

[Re(pe(z1),2,5) < C, z1 € M(t =5, —P). (7.48)

Recall from (7.14) that when € > 0 is small enough, all the singularity of R (z, ¢, s)
belongs to the interval [0, @] for some ® < 1. As lim¢ o pe(z) = pa(2), it suffices
to show that

[ps(zD)| 2 1, 71 € M.

Lol e M,

To justify this, we parametrize by z;(6) = 1+_1 + 7

) (I +1)2
PG = o cose ©

Hence, we conclude (7.48).
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P (e —_y
(VES, Je(21)): Show that |3 (zp)] < Ce Vst 7m0,

€

Referring to (7.31),

qv—v+ @ —q)q Ppe(z1) + (1 — qv)gPz1 + (¢ — Dg ™ z1pe(z1)
(g —1)g=2z1 + (1 —qv)g—F

Xz)lcz_ylpe (z)=™" 1{\pe(21)|>r§}'

Je(z1) =

Let us first bound zfz_y'pe(zl)xl’yzl{‘pe(z])bré}. We know from the discus-

_ _ ___B
sion in (VOIK z{277120'7) that |z] < e vio#l. It is straightforward that

__B _
\Pe(Zl)xlfyzl{lpe(zl)lwé}| < e VM7l which implies

B (e -
22 ()12 e Ve RV RD, (7.49)

In addition, one can compute

i 42—V 0 =) pea) + (L —qv)g "2+ (g = g z1pe(z1)
el0 (g —1g=%z1+ (1 —qv)g=*

1=+ Dpa@ + (T — Dz +2p.(2)

N z+1-1 ’

recall py(z1) = % This implies that

|qU — v+ W —q)q P pe(z1) + (1 —qv)gPz1 + (¢ — Vg~ > z1pe(z1) |
(g—1)q2z1 + (1 —qv)g—"
< C, z1e€M(t—s,—P). (7.50)

Combining (7.49) and (7.50) yields

B
|3€(Z])| g Ce—ﬁﬂ)ﬁ_)’l |+|X1_.V2D'

(VE, 5c(z1(01)! 7 )): Show that |9 (21(01)|1 7] < C(B, T)e™ U=+,
This directly follows from Lemma 7.7.
Consequently, we find that

[V ((x1, x2), (1, ¥2), 2, 8)]

~ 1=s do
<c f Lo er ooy oy e (21 O 159 (21 017
M(t—s,—B)

pe (21 (O]

B b/
R Cl—s+1)p?
< C(B, Tye Vmrm e A /_ Ly cr@p=rppe “ 7 TV%a0,

efC(tferl)Gfdel’

B
< C@B, T)efﬁ(m*mﬂxlfyzl)/ |

011> (t—s+1)" 3
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01

where the last inequality is due to Lemma 7.8. Via change of variable 6; — Wi

we get

s

/ Clt—s+1)62 co? e CU=tD
e “U=S 1do; < / e d) < ————
011> (1—s+1)" 011> (r—s+1)2 Ji—s+1

C
< —.
t—s+1

. . 2 2
For the second inequality above, we used the fact |, boo e Y dx < %e‘b . Thereby,

, CB,T) ——L _(a—yil+lxi—»D
VI ((x1, x2), (1, y2), £, 8)| < ———=¢ Vi—s+l .
IVES ((x1. x2), (y1. 2) )I\t_stl

Combining this with the upper bound over VE"‘ (7.47) concludes Theorem 7.3
part (a).

For the gradient, note that applying V., or Vy, to (7.37) and (7.38) will gives
an additional zii — 1 in the integrand of VEH‘ and VI*, we bound |z;(6;) — 1| <
C (ﬁ + 16;]) and perform the change of variable 6; — ﬁ@i produces an
1

extra factor of Similarly, applying V,, r, will produce an additional factor

Vi—s+1°
(z1(61) — 1)(z2(62) — 1). We bound
|z1(61) — 1] - | (9)—1|<C(—1—+|9|) (—;HGI)
z1(01 22(602 < e 1 e 21),

performing change of variable 6; — ﬁ@i produces an extra factor of ﬁ

This completes the proof of Theorem 7.3 (b), (c).
7.4 Estimate of Vie“, the (——) Case

We turn to prove Theorem 7.1 when x; — y; < 0 and x; — y» < 0. This case is more
involved than the previous one. One stumbling block is that we prefer to deform the
z1-contour to be Cy(;—,p) to extract the spatial exponential decay. On the other hand,
as depicted in Fig. 4, the unit circle does not satisfy the steepest descent condition for
$e(z). We resolve this issue by first shrinking the zj-contour to M’(z — s, B), then
for V2K we re-deform the z;-contour from M'(t — s, B) to Cu(t—s,p)-

We define

M’(t—s,B):a{{lz—%l < I;H+u*}ﬂ{lzl <u(t —s, B)}},

recall u, is some fix constant which belongs to (0, § A %). Since M'(t —s, ) - M’
as f —s — 00, it is clear that for # — s large enough, M'(r — s, B) is admis-
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sible. Note that the parametrization of M’(t — s, B) is given by the right part of
Fig. 5. .
We decompose Vit = VbIk 4 yres,

VO ((x1, x2), (1. y2). 12 5) = 55 f 3e(z1. 22)
M’(I—S,B) Cr;(zl)
dz;

2
N . X3-i—Yi
) [[@e@) 7R 1,92 omiss”

i=1
res _ e [52]
Ve (1, x2), (1, y2), 1, 5) = fM/(t&B) Lipeenysrde@DHezn) 7
dzy

Re (z1,1,9)R IS iz 1)
XRe(21,1,5)Re (Pe(z1) S)Zmznﬂe(Zl)

(7.51)
Let us study VElk in the first place. As we mention at the beginning, when xo —y; < 0,
71 does not favor the contour M'(r — s, ) to extract spatial decay. We prove in the

following that we can re-deform the z;-contour from M'(t — s, B) to Cy(—s.p)-

Lemma 7.9 Fort — s large enough and € small enough,

2
=s _i—y dzi
$ o f s [[0@) TR sz
Mia=sB) JCs ) Pl 2riz;
2 dz
t—s pp— |
-4 § w9 TR T
Cugi—s.p) Cr;(q) im1 TT1Z;

Proof The contours M'(t — s, B) and Cy( ;) share a common part A(t — s) :=
M'(t —s5,B) N Cyy—s,p)- We denote by Aj(t — ) := M'(t — s, B)\A(t — 5) and

»
>

z(0)
u(t —s,8)
- 4 .
71 = 1 >
I+1 m
T+ U
M (t—s,0) M(t—s,0)

Fig.5 The contour M'(t — s, B) and its parametrization
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A (t —5) 1= Cy(—s,p)\A(t — ). Decompose the contour M'(t —s, ) = At —s)U
At —5), Cu(,_s,ﬁ) = At —s) U Ar(t — ), it suffices to prove

2
t=s . dz
f f Se(z15 22) | |’D€(z,-)L TN, (7, 1, s)gm o
AL(t=s) JC, P

2miz;
3@ i=1 Z

2
= _y. dz;
¢ 4 s ]9 TR a5
As(1—s) JC, 2mwiz;

3 (@) i=1

To prove the above equation, we first claim that for € small enough and f —s < € 2T
large enough,

ry(z1) = u(t — s, ko), Vzi € Ai(t —s)UAx(t —5) (7.53)

That is to say, the zx-contour is always Cy(;—g 1,p)» Which does not depend on the
choice of z7.
To justify this claim, we need to prove for € small enough and ¢ — s large enough

[pe(zD)| > u(t — s, 2k2).

We denote by A* = M’ NCy, AT = M'\A* and A} = C;\A*. Note that as
t—s—>ooande | 0,

A(t=s,B) = AT, Aa(t=s,B) > A5 pe(z1) = pulz), u(t—s,2kp) —> L

Therefore, it suffices to consider the limit case and show that there exists § > 0 s.t.

I+ 1z —1
=|——| > 1+, € ATUASZ.
[px(z1)] a+d—1 21 1 2
If z; € A%, we parametrize z;(0) = % + llﬁeie, where |6| > ¢ for some positive

constant ¢. We readily compute

(1+1)2 (1+1)2
0))|? = z
Ip«(21(6))] I24+14+2Icos® ~ I2+1+2Icos¢ ”

If z; € A%, we parametrize z;(0) = e where |0] > ¢’ for some positive constant ¢’.

(I+1D%>+1—2(I+1)cosb - (I+1D*>+1—-2(+1)cost’
= = >
(I—D24+142(—-1)cos® ~ (I —1D2+1+2( —1)cost’

Ip«(z1)|?

’

(I+1)24+1-2(I+1) cos §

(I—1)2152(I—1)cosg TCTCASES

where the first inequality above is due to the fact that

as |0| € [0, ] increases.
Having shown (7.53), by Fubini’s theorem, the desired identity (7.52) turns into

2
I=s . dZ'
% % 36(21’12” |©€(Zi)L[f WRe(zint, )z =
Cutt—s.kgy J A1(1=5) 27iz;

i=1
x3_i—y; dZi

2
1—s
=y§ f Fezi, ) [ [ D@ T 1R (iv 1, )77 =
Cur—s.kppy J A2(t—5) 27miz;

i=1
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In order to justify the identity above, it is sufficient to show that for all zp €
Cu(t—s,k2B)>

2
t=s o dz
At=s) i=1 2miz;
2 0
I=s RN -
= ?g 35(“’ZZ)HDG(ZULTJ%G(ZI',t,s)zf*—' i 4%
Az(e=s) i=1 2miz;
which is equivalent to
e —y, dzi
f Se(21, 22)De @D 7 Re 2y, 1, 5)27 7 —— =0, (7.54)
9G(1=s) 27izy

where 3G (¢t — s5) is the boundary of the crescent G(r —s) = {|z] < u(t —s, B)}\{|z —
ﬁ| = Ilj + u,}, which is depicted in Fig. 6 (note that 0G(t — s) = At —s) U
Ao (1 = 5)).

We set out proving (7.54). Since G (¢ —s) is a closed curve, according to Cauchy’s
theorem, we only need to prove that no pole of the integrand (7.54) lies inside of
G(t — 5). As we mentioned before, for € small enough, the pole either equals s (z2)
or belongs to [0, ®]. It is straightforward that [0, ®] N G(r — s) = @. Hence, we only
need to show that 5¢(z2) ¢ G(t — ) for all z2 € Cy(—s,x,p)-

IG(t — s)

Fig.6 The crescent G(t — s) and its boundary 3G (¢ — )
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We claim that for # — s large enough and € small enough,

inf Resc(z2) > sup Rez.
2€Cua—s.kyP) 21€G(1—5)
Note thatast —s — ocoand € | O,
Cati—s.opy = C1. Gt —5) = G, 5c(2) = 5.(2),

where G := {|z| < I\{|lz — 47| = 77 + 1.} and 5,(z) = LD Therefore, it
suffices to show that

inf Res,(z2) > sup Rez;.
72€Cy 216G

To justify the inequality above, we first observe that sup,, . Rez; < 1. In addition,

ie, we see that

-1 +1 24+ (I? —2)cosb -
I+1—¢? — (T+1)24+1-2(I+1)cosd ~

Consequently, we proved s.(z2) ¢ G(t — s), which completes the proof for Lemma
7.9. O

by setting zo = e

Res,(e?) =R

In summary, we can write VIt = VoIK 4 VI where

VE‘k(m,xz),(yl,yz>,t,s)=7§ f Se(z1, 22)
u(t—s,B)

C )

dz;
]—[9 @ T IR it T (7.55)
el 2711z,

and V* is given by (7.51).

Lemma 7.10 For the parametrization z(0) given in Fig. 5, we have fort —s < € 2T
large enough and € > 0 small enough

DO < CB, T)e OV 1D (2(0))]'" < C(B, T)e CU—s+D7",
z2(0) e M'(t — s, B).

Proof Similar to Lemma 7.7, it suffices to show that there exists C(B, T'), C > 0 s.t.

C(Bv T) 2 C(B7 T)

Re log® ) < ——— —CH~; Re 1 ) < ———

elog®e(z(0)) < T/ =7 e logHe(z(0) < /=7

We split out proof for (6 = 0), for (8 small) and for (6 large).

— o>

(6 = 0) : Re D, (2(0)), Re e (z(0)) < EEI
(6 small): There exists { > 0 and constants C(3, T) and C > 0 such that (7.39)
holds for |0| < ¢.

e (0 large): We can find § > O such that

(z(0))] < 1=5for 0] > ¢.

Recall that M'(r — s, B) is the same as Cu(r—s,p) in a neighborhood of 1, hence z(0) €
Cu(t—s,p) When 6 is small. This being the case, the proof for (¢ = 0) and (6 small) is
the same as in Lemma 7.7. For (0 large), since M'(r —s, B) — M’ whent—s — o0
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and M’ satisfies the steepest descent condition, we find that for r — s large and €
small,

1De(z(0)] < 134, 19e(z(0)] < 1 -8, for [0] > ¢.
This completes our proof. O

We begin to estimate VE"‘ in (7.55). In what follows, we check a sequence .of
bounds on terms @nvolved in the integral (7.55), we parametrize z; = u(t — s, B)e‘91
and zp = ré‘(zl)ew?.

B
- —V — — —_——t —V + —
(VElk,ZTZ YIZ? )2): Show that |Z)162 ylz)zcl yzl <e /—,ﬂﬂ(m yil+lxy yzl)-
Since z1 € Cyr—sp) and z2 € Cr;(m, we have |z;| > u(t — s, ). Along

with the condition x3_; — y; < 0 for i = 1,2, we obtain |z1 271 |z[F1 72 <
e—\/%ﬁ(lm—yl\-‘-m—yzl).

(VO T (21, 22)): Show that |Fe(z1,22)| < C 4+ Cv/t —s + 1(161] + |62]). The
argument for this part is the same as in the (4-—) case.

(VPR R (z, 1, 5)): Show that [R(z;, 1, 5)| < C.
The argument is the same as (+—) case (VEH‘, Re(zi, 1, 5)).

(VK D, (z)LT)): Show that [D.(z;(6)1T) < CB. T)exp(—C(r — s +
1)6?).

This is the content of Lemma 7.4.

As a consequence, we perform the same procedure as in the (4—) case and get

__B _ _y
IVER(Cerx2), (1, 92), 1,8)] < C(B, Tye vimser D

X/ (I + vt —s+ 1611 +1621))

.
X67C(tfs+])(0]2+922)d91d92

o CPB.T) e*L(lxzfylHlxlfyzl)'

< Vi—s+l (7.56)
t—s+1

We turn our attention to study VI°, the proof similarly consists of bounds on terms
involved in the integral (7.51). In the following we parametrize z; = z,(9) € M'(t —
s, B) as depicted in Fig. 5.
res 1 . 1

(Ve ] ZlPe(Zl))‘ Show that |m| < C.

This is by the same argument as in the (+—) case.

(VE, Re(z1, 1, $)Re(pe(21), 2, 5)): Show that [Re(z1, 1, $)Re(pe(z1). 1, 5)| <
C.

The argument for this part is the same as (V©°, Re (21, 1, )R (Pe(21), £, 5)) in the
(+—) case.

1=s = 2

(V. e (z1)L 7 1): Show that [ (217! < C(B, T)e=CU—sFDE",

This is the content of Lemma 7.4.
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(Vres, JE(ZI)) Show that |de(Zl)| Ce zmﬂxz yil+x1— yzl)
Similar to the discussion in (VI%, Je(z1)) for the (+—) case, it is sufflcient to show

| X2—=y1 J—(IM y2|+lx2— ynl)

e T sy | S 2

Since for z; € M(t — s, B), |z1| could be much less than 1, we can not bound z; and
pe(z1) separately. Instead, we write

|27 e @D T2y, ey oy | = 121Pe @D P DM TR e

Note that x; — x2 + y1 — y2 < 0 (since x; < y; and x2 < y7), hence
[pe(zp) 17220 }21{\p€(11)\>r2} u(r — s, By
We claim that
|z1pe (z1)| > u(® —s,B), z1 € M'(t —s,B). (7.58)
Once this is proved, by (7.57)

X2— — —v — ) —
|le YIPG(Zl)xl yzl{\Pe(Zl)IN’é}' < u(t s, B)Xz “u(t—s, B)xl X2+y1—y2
B (- _
<e 2 ey (K1 =y2l+le yn).

Let us justify (7.58). We decompose M’ (t — 5, B) = A(t — s) U A1(t — s), where
At —s) = M'(t —5,B) NCy—s,p) and A1(t —5) = M'(t — 5, B\A( —5). If
71 € A(t —5) S Cy(—s,p)» We reparametrize by z1(61) = u(t — s, B)el?. It suffices
to show that

Ipe(u(t — s, B)e')| > 1.

By straightforward computation, one sees that |p(u(t — s, [.’))eie1 )| reaches its
minimum at 8; = 0. Hence we only need to prove that

peu(t —s,p) =1

By (7.44), pe(1) = 1+ 2 I;p e + O(e%) In addition, direct computation yields
lim, o pL(1) = 1 and |p/(z)| uniformly bounded in a small neighborhood of 1.
Consequently, we taylor expand p.(z) at 1,

Pe(ut —5,B)) = pe(1) +pL(DHUE —5,B) = 1)+ O((ut —s,B) — D) > 1

for t — s large and € small.

If z; € A1(t — s), which means that |7] — Ii1| = 1 + u. We see that
' 21
1 = =+ Dz =1} | —7F
61i1()1|21p6(21)| lz1ps(z) = |(I + Dz1 = 1] |Zl+1—1‘
21
_ (] 41 o 7.59
= I+ U+ D) - | 5| (7.39)

We claim that for z; € A{(t — s), ’Zlfﬁ] > 7. This could verify by inserting
71 = % + (% +uy)el? into (7.59). A geometric way to prove this inequality is that
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one has |Z+ﬁ| = } for all z satisfying |z — 11?| = ﬁ If ones increase the radius
of circle |z — 11?| = 11?} (by u.), the value of ]ﬁ] will also increase. Thereby,
. I+ U+ Du
lim|zipe(z)| > ———— > 1.
€l0 1

This implies when z1 € A(t — s), |z1p(z1)| > 1 for ¢ — s large and € small, which
completes the proof of (7.58).
Similar to the proof of Lemma 7.8 in the (+—) case, we find that {|p.(z1(9))| >

u(t — s, 2kaP)} € {I6] > (t — s + 1)~ 1}, hence

IVES((x1, x2), (y1. y2), 1, 5

B T
— 57— (m2—yil+lxi—yb —C(t—s+1)6*
< CB, T)e it /_ Lipeioni=ryye (=D g

B (v —y
< CB, T)e svi el yzl)/ le_c(z_s+1)92d9

10]>(t—s+1)" 4

B
< CB.T) —stmrtmyiltixi—ynD (7.60)
r—s+1
Combining the bounds (7.56) and (7.60) implies Theorem 7.3 (a).
To estimate the gradient, the procedure is similar to in (+—) case, note that apply-
ing V,, or V,, to (7.55) and (7.51) gives an additional zl.jE — 1 factor, applying Vy, x,

produces an additional factor (z; — 1)(z2 — 1). By |z; (6;) — 1| < C( t—ls—i-l + 16; D),

we conclude Theorem 7.3 (b), (c).
7.5 Estimate of VI", the (++) Case
In this section, we fix kp = 1 in (7.29). Note that x; — y» > 0, the difficulty for this
case is to choose a suitable zj-contour ['(¢ — s, €) so as to extract the spatial decay
from 2}~ ”"pe (21)*1772 in the integrand VI (7.32). Let us write
1207 Pe ()17 = Jzipe (D) T2z R

We control respectively |z1p¢(z1)| and |z1|. We deform the z{-contour to

M (t =5, €, —kiB) = {z1 : |z1pe (z1)| = ut — 5, —=k1B)},
where k| is a positive constant that we will specify later. Note that when [ > 2, this
contour can only be implicitly defined (when I = 1 it is a circle). The following

lemma provides a few properties of the contour.

Lemma 7.11 Fort — s large enough and € small enough, given 6 € (—m, ], there
exists a unique positive r¢ ;g (0) such that

1 .
lz1pe (D] = ut —s, —kiP),  z21(0) = T Fea—s©)e". (7.61)
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re 1—s(0) is infinitely differentiable with ré,,fs (0) = 0. Moreover, one has uniformly
for0 € (—m, ],

Iim  ro;_4(0) =+,
€10,t—s—00 er=s 1+1

lim " (6) =0, VneZs.

€,1—s
€l0,t—s—o00

where ") (0) represents the n-th derivative of f(0).

Proof Letw =t —s,as w — oo and € | 0, the equation |z;pc(z1)| = u(w, —B)
converges to

2+ Dz =D}
a+d-10 |

(note pe(z1) = p«(z) and u(w, B) — 1). Setting z; = % +ré? in (7.62) yields

[z1px(z1)| = (7.62)

(I + DY+ 2 + 133 cos§ — 2121 + 1)rcosf — I* = 0. (7.63)
Factorizing the LHS of (7.63) yields
(I + D = 1*) (I + D*r* + I* +2(I + Drcosf) = 0.

Thus, (7.63) permits four root at

I —1%ivcosh? —I?
I+1 I+1 '
We only care about positive root, thus the contour (7.62) can be parametrized by

_ 1 I _io
a0 =7+ e
Similarly, inserting 2 = 747 + re’ in (7.61) yields

(7.64)

ap(e, w)r4 + 2aq (e, w)r3 cosf + aj(e, w)r2 + a3(e, w)rcosd + ag(e, w) =0,
where {a; (€, w)}?zo are constants depending on €, w that converge to the coefficient
in (7.63):

lim  (ao(e, w), ai(e, w), az(€, w), az(e, w), as(e, w))
€0, w—o00

= (I + D% 20 + 13,0, =212 + 1), —1*%). (7.65)
Denote by
PO,r) = (I + D**+2(I + 1)* cos® — 21*(1 + 1)rcos6 — I*
P, 0,r) = ao(e, w)r4 + 2aq (e, w)r3 cos O + aj(e, w)r2
+az(e, w)r cos O + as(e, w).

By (7.65), when € is small and w is large, Pe (6, 0) < 0 and Pc ,, (8, +00) = +00.
By continuity, for each 6 € (—m, 7], Pe (0, r) = 0 admits a positive root. Since
P (0, r) is a perturbation of P(0,r), as € | 0 and w — oo, the roots of P 4, (0, r)
converge to those in (7.64), which implies the the positive root of P ,,(0) is unique
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for € small and ¢ large. We denote this unique positive root by r¢ ., (0). It is also clear
that for 6 € (—m, ]

. I .
elo%t)riwre,w(e) =7 1 uniformly. (7.66)
Moreover, for all 0 € [—m, ], r = 1+r1 is a simple root of P(8,r) = 0. Hence,

%P(@, r) |r_ e # 0, using implicit function theorem shows that for € small and w
=Tr

large, re ;—s(0) is smooth over (—, 7r]. Furthermore,
g Pew® rew )]y,
o)
WPG,LU(O’ r)|r:rg‘w(0)
(—2a1(e, w)rew(0)3sin® + 212(I 4 Dre ,(0) sin )
L Pew(0, 1)

riw©0) =

oo _,,

r:ré,w(o)
In addition, by (7.66) and implicit function theorem, uniformly over 6 € (—m, 7]
1 (n)
lim B0 =(—~) =0
ew,gloore'w( ) I+1

this completes our proof. O

We adopt the parametrization z1 (61) = 1+_1+Ve,t—s (91)ei9‘ e M"(t—s, e, —kiP).
From the preceding lemma, as 1 — s — oo and € | 0, M" (¢t — s, €, —ki1}) —> M,
thus the contour M”(t — s, €, —k1) is admissible for € small and ¢ — s large. As
before, we decompose Vi = VOIK 4 VI where

VEK((x1, x2), (1, 32). 1, s):f ?g Stz
M (t—s,e,~k|B) Cré‘(zl)

2

t—s PR d [
[19:) T ' Reint.9)2 7 2 (7.67)
i 2miz;

VI'CS (Xl,xz),(yl,)’Z),lys Z% 1 ’ J (Z]).?J (ZI)LI—TYJ
€ ( ) M”(l—ssé,—klﬁ) {‘Fe(Zl)\>r2} € €

d
XRe (21, 1, )R Pe (1), 1, 8) b (7.68)
2mizipe(z1)

Lemma 7.12 There exists K > 0 (which depends on ki) such that fort —s < € 2T
large enough and € > 0 small enough, we have

_ _KB
z21(0) > 1 =T
kB
l210)] <1 - ¢ T
Proof Consider an alternate parametrization Z;(0) = 7e; (0)e? € M’(t —

s, €, —k1B), where the existence and uniqueness of 7¢,_s(0) are confirmed by
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Lemma 7.11. It suffices to show for r — s < € 2T large enough and € > 0 small
enough,

~ Kp ~ kip
Fei—s(0) 2 1 — ——; Fei—s0)| <1 = ———, VO € (—m,7].
ci-s(0) —— PO <1 - e (
(7.69)
We prove (7.69) in two steps.
. kip o KB
° FlrSt, W < 1 VE,I_S(O) < —l‘fs+1 .

e Second, |Fe;—5(0)] < Fe;—s(0) for @ € (—m, 7).

We verify the first bullet point. Note that uniformly in an neighborhood of 1,

16%1 pe(2) = px(2), 161113 Pe(2) = p,(2).

Referring to (7.33), dizzp*(z)|z:1 = 2. Thus, there exists § > 0 such that for € small
enoughand z € (1 — 4,1+ 9),

1
[(zpe(2)) — 2| < 3 (7.70)

We taylor expand zpe(z) around z = 1,

~ d ~
u(t—s,—ki B) =Tet—s (0)pe (Fe,tfs 0)) Zpe(l) + E(Zpe (2)) : (re,tfs O)—-1),

xe(l—26,14+50). (7.71)

Referring to (7.44), we see p. (1) > 1 for € small enough, which implies
d

L>ut—s,—kip) > 1+ d_(pr(Z))|z:x (Fe—s(0) = 1).
Z

Hence, 7 ;—5(0) < 1. We have by (7.70) and (7.71)

u(t — s, —kiB) = pe() + 3(Fe—s(0) — 1),
u(t —s, —kiB) < pe(D) + 3(Fe—s(0) — ).

The first inequality yields

~ 2 2 k1B
[ =TersO) > Spe—u@—s, —hP) > S(1-ut—s, —kP) > =m0

which gives the lower bound. The second inequality indicates that (by (7.44))

- 2 2 pl — p?
1 —7e;5(0) < g(pe(l) —u(t —s, —kip)) < 5(1 —u(t —s,—kip)) + 7 ¢
Owing to € < ,/%, we see that 1 — 7¢;—5(0) < \/% for constant K large

enough, which concludes the first bullet point.
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We move on proving the second bullet point. We set Fy(r) = |rpe(rei?)|. When €
small and ¢ — s large, we readily compute (note that 7¢ ;,—(0) is nearly 11? and p.
approximates )

2 2
- - - . ci +c¢5 — 2cicpcosb
FoGe1—sO)|? = Te 1—s(0)?|pe e —s (0)) > = L —2 ,
| 9( €,t 3( ))| €,t A( ) |pe( €,t 3( ) )l d12 d22 2d1d200$9

c1,¢2,dy,dy > 0,

which implies that | Fg(r¢ ;—s(0))| reaches its minimum at 6 = 0. In other words,
Fo(re.t—s(0)) = Fo(re 1—5(0)) = u(t —s, —kB). In addition, Fy(0) = 0. By interme-
diate value theorem, for each fixed 6 € (—m, 7], the equation Fy(r) = u(r—s, —k )
admits a root r € (0, 7¢ ;—;(0)]. By uniqueness, this root equals 7 ;s (9), thereby
Fe—s(0) < Tey—5(0) forall 6 € (—m, 7]. O

Lemma 7.13 For ki large enough, t — s < € 2T large enough and € > 0 small
enough, the condition |pc(z(0))| > r) with z(0) = 1+_1 + res—s(©)e? € Mt —

s, €, B) implies 0] > (t — s + 1)*%.

Proof The proof is similar to Lemma 7.8. Since k2 = 1, we have ) = u(r —s, —2p).

Hence, ) > 1 — %. It suffices to show that
Ipe(z(O)] > 1 P ez a—sen
z > 1 - — > (t—s :
Pe JE—s+1

Referring to (7.45), we see that

Pe(z(0) = pe() +pc(D(z(0) = 1) + O(2(0) — 1)2-

By (7.44), we see p(1) < 1+ ﬁ for some positive constant C, together with
the fact

—kiB
SVt—s+1

2(0)—1< 13?&‘“;(1) =1,

we obtain

C ki
(z(0)) <1 — .
Pe(2(0) +«/t—s+1 10t —s+1

(0) = 0. Using this, it is straightforward to com-

/
€,1—s

pute %|p€(z(9))| |9=0 = 0 and there exists ¢, C' > 0 such that |;‘i—922|p€ (z(@))|’ <
for |#| < ¢. Consequently, one has by taylor expansion

10C — k1B

In addition, by Lemma 7.11, r

20)] < pe(z(0) + C'0? <1+ ————— + C'62.
IPe (2O < Pe(2(0)) 0V —s+1
. B
Thereby, we can pick k; large enough s.t. |p(z(0))] > 1 — implies |0 >
: Jit—s+1
(t—s+1)"4. O
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Lemma 7.14 Fort — s large and € small, there exists positive constants C(B, T), C
such that

DO < CB. T)e CO+D 15 (z(0)))

1 .
< C(B’ T)e—C(t—S-'rl)Oz with 2(9) — I_—H + "e,zfs(e)elg.

Proof Similar to Lemma 7.7, it suffices to show that there exists C(B, T), C > 0 s.t.

m Cco ; Re logyjé(Z(G)) < —[ P 1

We split out proof for (6 = 0), for (8 small) and for (6 large).

Re log D, (z(0)) < — CH>.

(6 = 0) : Re D, (2(0)), Re e (z(0)) < EEI
(6 small): There exists { > 0 and constants C(3, T) and C > 0 such that (7.39)
holds for |0| < ¢.

e (0 large): There exists § > 0 such that |”D€(z(9))’,

9He(z(©)| < 1 =6 for

0] > ¢.
. K N ki
Owing to Lemma 7.12, N <1-2z20) < STSTT hence the argument for
(@ = 0) is similar to Lemma 7.4.
For (6 small), using Lemma 7.11, one has
ré’t_s ©=0. eiO,}ifns]%ooré/’t_s ©) =0, el(),}ifns]%ooré/fl—s ) =0.
Using this, after a tedious but straightforward calculation (recall z(8) = 1+r1 +
I
Tiletr—s 9)),
99 (log D (2(0)))],_, € iR, 99 (log He (2(0)))],_, € iR
127V, 2127V,
. a2 _ * . a2 _ _ *
Lolim 5 (log D z(0)))],_y = TiDE colm % (log ¢ (2(0))) |,y T317
|07 log D z(0))| < C. |83 log Hc z(0))| < C.

The last line holds for all |8| < ¢ where ¢ > 0 is a constant. Hereafter, the argument
is same as in Lemma 7.7, we do not repeat it here.
For (0 large), since

I
li _s0) = ——, iformly for 0 € (—m, ],
e¢0,z1—T—>oor€’t (@) T uniformly for (—m, ]

we have

Ew}ig;%o@e(z(e)) = Du(77 + 72q€?).  uniformly over 6 € (—x, 7],

. _ 1 [0 .
Ew}l_r?_)oofje(2(9)) = 937 + me‘ ), uniformly over 8 € (—m, ].

By the steepest descent condition (SD.M), we conclude (6 large). O
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Now we are ready to bound VE“‘ and V. We begin with V'glk given by (7.67).
The proof consists of bounding each terms involved in the integrand (7.67). We
parametrize z1(01) = re,—s(01)€%!, 22(62) = r;(z1)el.

e o Bl
(VoI Z1272125177%): Show that [z} 7'2)' 72| < e v itk

By Lemma 7.12, we see that [z1] < e vi—s+l, since r;‘(m) equals
B

u(t — s, —P) or u(z — s, —3p), we find that |z| < e Vi—s+1, which implies

— _ — 2 (Ixp—yq|+|x;—
|Z)1C2 Y1Z)261 N <e Tt =il yz\).

(VOIK Ze(z1, 22)): Show that |Fe (21, 22)| < C + Cv/t — s + 1(161] + [62]).
By the argument in (V2. § (21, z2)) in (+—) case. It suffices to show that |z, —
211 < C(g== + 61| + 162]). Note that

122(62) — 21 (01)] < 121(01) — 1| +122(62) — 1] < [re r—s (01 — 1|+ |r*(z1)e” — 1].
(7.72)

c and

t—s+1

By Lemma 7.11 and Lemma 7.12, we know that |r¢;—s(0) — 1| <
lime 0,15 00 7, (0) = O uniformly for 6 € (-, 7], we see that

Fe.r—s (01 — 1] < [res—s(01) = res—s(O)] + [res—s(0) — 1] 4 e — 1]

1
< Cl—— +10 773
( el 1611) (7.73)
Since r*(z1) = u(t — s, B) or r*(z1) = u(r — s, 3B), we have
Ir*(z)e'” — 1] < C(—1 + 1621) (7.74)
Vt—s+1

Incorporating the bound (7.73) and (7.74) into the RHS of (7.72), we conclude
122(62) = 21(0)| < C7==5 + 101] + [62)).

(VPR R (7,1, 5)): Show that [R(z;, 1, 5)| < C.
This is the same as (+—) case (VE“‘, Re(zi, t,9)).

(VO D (2)17)): Show that D (z)|-7) < C(B, T) exp(—C(r — 5 + 1)6?).
This is the content of Lemma 7.14.
Consequently, we perform the same procedure as in the (+—) case and get

e b
VIR < OB, T) / (1+ Vi =5 T 1361 | + [62D))e U HDE2) 6, a6,
- J-m

< CBD -Fhmtn-nitn-n)
t—s+1

Let us move on bounding V¢ with integral expression (7.68). We parametrize by
210) = re—s(0)e” € M"(t — s, €, —kiB).
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TeS
Ve, Zlﬂ (21)) Show that |Z] (Z])|
This is by the same argument as 1n the (+— ) case.

(VE5, Re(z1, 1, $)Re (Pe(z1), £, 5)): Show that [R(z1, 1, s)Re (Pe(z1), 1, 8)]
C.

The argument for this is the same as (VI°, Re (21, 1, $)Re(Pe(21), ¢, 5)) in the
(+—) case.

(VES, §(z1)L7")):Show that |5 (z1)|17") < C(B, T)e CUs+D*,

This is the content of Lemma 7.14.

(VIS 3 (21)): Show that 3 (z1)] < Ce” 3o 27l
By the discussion in (VI Je(z1)), It is sufficient to show that

B
_ _ — 2 (lx; =2+ — .
|Z)162 Npe(z1)51772| < e Wistl (Ix1—=y2l+lx2 yll).VVe write
Xo— — _ _ v
1277 pe @)1 T2 = |zipe (z1) [T 2 gy [T

__B
Since z; € M"(t—s, €, —k1P), |z1pe(z1)]| = u(t—s —ki1B) < e V=51, Inaddition,

referring to Lemma 7.12, one has |z1| < e Vi~ S+1 . Consequently,
Xy3— S Y o)) —— B -y
|Z12 YIpe(Zl)XI_y2| g e Ji—s+1 e Vi—s+1 =e Vi—s+1
i ,
< e*ﬁ(“Z*YﬂHM*)ZD.

Thereby, using the same manner as (+—) case,

B b/
— 57— (R2=y1l+lx1—y2D —C(t—s+1)0?
IVE ] < C(B. The 2/ / ipei@pizre 07 do,

<CE T)e—wtﬁéj(lm—yll-‘-m—yzl)/ e—%(z—s—t—l)ezdg
) 1
10]|>(t—s+1)" 4
« CB.D s rtnyita—n

Sr—s+1

We conclude Theorem 7.3 (a).

To estimate the gradient, the procedure is similar to in (+—) case, note that apply-
ing V,, or Vy, will give an additional factor zii— 1, while applying V, ., will produce
an additional factor (z1 —1)(z2—1). By |z; (6;) — 1] < C(ﬁ +16; 1), we conclude
Theorem 7.3 (b), (¢).

8 Proof of Proposition 6.8 via Self-Averaging
In this section, we apply the two Markov dualities in Corollary 3.9 and the estimate

of V¢ in Theorem 7.1 to conclude Proposition 6.8. The first step is to expand the term
®1(t, x) and Oy (t, x).
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8.1 Expanding ©(t, x) and ©5(t, x)

We use B (¢, x1, ..., x,) to denote a generic uniformly bounded (random) process,
which may differ from line to line. Define

ue(t,i) ==Y pe(t + 1,1, j — pe(n)).
j=i

Referring to (5.10) for the expression of ®1 (¢, x)

o0
€201 x) = € 3 qeheDZ(t,x) = Y € pelt + 11,0 — pe()Z(t,x — i),

i=1

= €E(gehe () = DZ( ) + D€ pelt + 11— pet)

i=1

x(Z(t,x) = Z(t, x —i)),

= € 2(gehe(t) = DZ(t, 1) + Y uc(t,D)(€ IVZ(t,x — ).

i=1

Here, we used the relation Z(t,x) — Z(t,x — i) = 23:1 VZ(t,x — j) and then
changed the order of summation in the last equality.
Likewise, by the expression (5.11) of ®, (¢, x)

_1 _1 > _1
€7205(t,x) = € 2(1 — Ae()Z(t. x) — Y uet, )€ 2VZ(t,x —i)).

i=1

Using Lemma 5.4, one has e_% @ere@®) =1 =1-— § —}—O(E%) and 6_% (1—=2xe(2)) =
? + O(E%). Consequently,

€104 (t, x) = (1 - §>Z(t,x) + ) uelt, )€ IVZ(t,x — i)

i=1
€2 Bo(t, ) Z(t. x), (8.1)

IOy (1, x) = ?Z(t,x) — S et i€ IVZ(, x — D))
i=1

e B(t, 1) Z(1, x). (8.2)
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For x1 < xp € E(¢) and x € E(t), we denote by

1
Zy(t,x1,x2) := € 2VZ(t, x1)Z(t, x2),
Zyv(t,x1,x2) 1= € 'VZ(t,x))VZ(t, x2),

Wt x) == Y uc(t,i)Zy(t,x —i,x), (8.3)
i€l>
Yov(t,x) = D uelt,Duclt, NZvv(t,x —i,x = j), (8.4)
l'>j€Z>1
V. x) = gue(t, 2 (Zo.wttx —ix—i) - Mzu, x=0)?).
(8.5)

Lemma 8.1 Recall from (6.22) that

p(I—p) b +2mod; (1) +1) = (I +2mod, (1) — 1)

0 =—"73 b(I 4+ 2mod; (#)) — (I +2mod, (t) — 2)

’

we have
'Ot )0 (1, x) — T() Z (1, x)*

2 ~
= <Tp — 1>yv(t,x) +2Vvv(t,x)+ V(t, x) +E%B€(I,X)Z(l,x)2.

Proof We name the three terms on the RHS of (8.1) (from left to right) as
A1z, A1 v, Al er respectively and those on the RHS of (8.2) as Ay z, A2 v, A2enr-
Multiplying (8.1) by (8.2) gives

€011, x)Oa(t,x) = (A1, + A1v + Aten) - (A2.7 + A2y + Aderr).

Expanding this product, it is straightforward that

p P 2 2p
A,zAy 7z = 7(1 - Y)Z(t,x) , AivArz+AyvAiz = T 1) Vv(t, x),

00
ALvAsy = =Dy v(t,x) = Y uc(t,k)>Zy v (t, x —k,x — k).
k=1
The sum of the rest of terms equals
A1 zAs e + AL VA2err + AlenA2,z + AlenrA2 v + AlennA2 errs
= 2Bt X)Z(t, x)(€ 201 (1, x) + € 2On(t, X)) — eBe(t, X) Z(1, x)>
— 2B.(1,x)Z(t, x)%.
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Therefore, we find that

€101, x)0s(1, x) = ?(1 - ?)Z(I,X)2 + Wyt x) = Vv v, x)

o0
> et 0? Zy vt x — ke x — k) + €2 Be(t, ) Z(t, x).
k=1
Thus,
=10, (t, x)Os (1, x) — ?(1 — g)za, x)>2

= Vot ) =Yuy (6. 0) = > ue(t, k) Zy v (¢, x—k, x—k)+€2 B (1, 0) Z (1, ).
k=1

Adding p(lfp) S 02 ue(t, k)>Z(t, x — k)? to both sides yields

o0

D ue(t k2t x—k)?

k=1

1010, 0021, 020122, 02+ L0

= yV(f,x) _yv,v(tvx) - Zue(f,k)2<ZV,V(t’x _kvx _k)

k=1

_Mz(a X — k)2> + €2 Be(t, 1) Z(2, %)’

= Vo(t.x) — Yy.v(t.x) — V(. x) + €2 Be(t, x) Z(t, x)2. (8.6)

We claim that

- 2 N2 1-b 2
kgué(“ B2, x = ) = T T amod; () — (I & 2mod, (1) — 2)) 2+ )
e B(t, x)Z(t, x)% (8.7)
If (8.7) holds, note that
I— 1—b
=00 20 :
(b(I 4+2mody (1)) — (I +2mody(t) — 2))

Replacing the term Z,fil uc(t, k)ZZ(t, X — k)2 in the LHS of (8.6) by the RHS of
(8.7), we prove Lemma 8.1.
To justify (8.7), we write

Zué(t, 2Z(t, x —k)? = Zue(t, 0*(Z(t, x — )% — Z(t,x)?)

k=1 k=1

+> uet k2, 0% (8.8)
k=1
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Let us analyze the first and second term on the RHS of (8.8) respectively. For the
second term, we compute

00 _ k—1
wet k)= pet+ 1,1, j) = 2L =9 (” +“(I)> .89

14+ o) 14+ a(r)

Here, we used pc(t + 1,7, j) = P(R(#) = j), the expression of which is given in
(5.1). Using the preceding equation, we find that

1+qa(t)
Z uc(t, k) ( 1+qot(t) )

1 ()

Due to Lemma 5.4,

o0

1-b
> uelt k) = +O(eD).
— 1((I 4+ 2mod; (1))b — (I 4+ 2mod, (1) — 2))
Thereby, for the second term on the RHS of (8.8),
Zue(t k)?*Z(t, x)? Z(t, x)
P I(b([ 4+ 2mody (1)) — (I + 2mody (t) — 2))
e Be(t, \)Z(1, ) (8.10)

For the first term on the RHS of (8.8), noticing Z(#, x — k) = e’ﬁZf=I(EX*f+1(t>’p)
Z(t, x) (recall 7 (z) = ne(x + [1(2))), hence

Z(t,x — k) = Z@t,x)* = Z(, x)2(6_2‘&(@(’)_p)+"'+(ﬁ“—"+1(’)_")) — 1)

Since [ (1) — p| < 1

(1) — p)' Skl

Note that for any K > 0, there exists a constant C such that
le¥* — 1| < Clx|, for |x| < K
Thus, if k£ < e_%, one has
|e=2VE St i1 (0=0) _ 1| < CJekl,

Ifk > 6’%, one simply has
{efzﬁzle(ﬁmmwfp) —1) < RING
Therefore,

2/ Yk (i1 (D—p) _ 1l<c kIl 2k1/eq .11
le | < C(ve peed 7O e ). (811

2}
Referring to (8.9) for the expression of u. (¢, k), using (7.4) we see that there exists
0 < § < 1 s.t. for € small enough and for all ¢, k

uc(t, k) < 881 (8.12)
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Combining this with (8.11) gives

D uct k) (Z(t. x — k) — Z(t, x)?)

k=1

Z(, x)2<z uc(t, k)z(6—2\525'(:1(%_1“(!)—;)) _ 1)>’

k=1

Le_%J oo
CZ(t,x)z( o Jekst+ Y ez“ﬁak),
k=1

|
k=le 2 ]+1

/N

— 2B.(t, x)Z(1, x)°.
Combining this with (8.10), we prove the desired claim (8.7). O]

By Lemma 8.1, we reduce the proof of Proposition 6.8 to the following lemmas.

Lemma 8.2 For any given T > 0, there exists positive constants C and u such that
forallt €[0,e *TINZ, x* € Z

t
Y Vo x* ()| < Ceterel, (8.13)
s=0 2
d 1
GZZyv,vm,x*(s»H < Cexe?ell, (8.14)
s=0 2

where we used the shorthand notation x*(s) := x* — i(s) + [1(s)].

Lemma 8.3 Fix T > 0, there exists positive constants C and u such that for all
t €[0,e*TINZ and x* € Z,

1 *
T 2
< Ced el
2

t
€2y Vs, x*(5))
s=0

We will prove Lemma 8.2 and Lemma 8.3 in the next two sections. Let us first
conclude Proposition 6.8 based on them.

Proof of Proposition 6.8 Referring to Lemma 8.1, we have

t
ey <el®1®2 - r(s)Zz> (s, x*(s))
s=0

t t t
=) W x 6 + €Y Wy x () + €2y Vs, x*(s)

s=0 s=0 s=0

t
+€2 3" €2Be(s. 1) Z (s, x* ()%
s=0
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By Lemma 8.2 and Lemma 8.3, together with the bound ” Z(s, x*(s)) ”2 < Cetell
(which follows from Proposition 6.1), one has

t
ey (e—1®1®2 - r(s)Zz)(s, X*(s))

s=0 2
1 t t -

< (€D Vel x*(s)) . ) IWv.vls, x*(5)) . €2 Vs, x*(s) X
s=0 s=0 s=0

‘
+€? Z G%Be (s, 0)|| Z(s, x*(s)) ;

s=0

1 * 5 *
< C(64e2ue\x | +62t62ue|x I).

Using t < €~2T, we obtain

1 *
< Ced el
2

t
= (e—‘®1®2 _ t(s)Z2) (5, X*(5))

s=0

This completes the proof of Proposition 6.8. O
8.2 Proof of Lemma 8.2

Recall the notation 77y (1) = 1,4()(t), we see that by Taylor expansion

VZ(t,x)=Z(t, x) (e VEBr1O=P) 1) = /e Z(1, ) (p-Tfxs1()) +€Bet, x) Z(1, x).
Hence,
€TIVZ(t,x) = (p = Ferr (D Z(t, %) + €2 Be(t, D Z(t, %), (8.15)
Z(t,x+1) = Z(t,x)+VZ(t,x) = Z(t,x) + e%Be(r,x)Z(t, x). (8.16)
We will use these elementary relations frequently in the sequel.

The following lemma is crucial for the proof of Lemma 8.2.

Lemma 8.4 Given T > 0 andn € Z3 1, there exists constant C and u such that for
all s <t €[0,e 2T NZ such that for x1 < xp € E(t),

1
Ce™2
E|Zv(t, x1, x2)| F(s < ——— e+l 8.17
H[v( 12)\()]11 NEres (8.17)
For x; < xp € E(2),
Ce™! retmltinal
E[Zv,v(t, x1, x2)| F(s)] <me ) (8.18)
n

Proof Let us first justify (8.17). Recall the two point duality (5.21),

E[Z(l,xl)z(l,xz)lf(s)] = Z V((xh x2), (y1, y2), 1, S)Z(S, YDZ(s, y2).
y1<n€EB(s)?
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As Zy(t, x1,x2) = 6’%VZ(t, Xx1)Z(t, x2), it is straightforward that by this duality,
if x1 < xo,

1
E[Zy(t, x1, x)|F()] = €72 Y Vi Ve((x1,x2), (1, 32, 1, 5)
VISY2€E(s)
XZ(s, y1)Z(s, y2). (8.19)
If x; = xp,
1
E[Zy(t.x1. x)|F)] = €2 Y V,Ve((r1.x1). (1. y2). 1. 5)
VISY2€E(s)
XZ(s, y1)Z(s, y2).

We assume x| < xp without loss of generosity, the proof of (8.17) for x; = x, will be
similar (one only needs to replicate the estimate of Vi, V¢ to V,, V). By the estimate
of V,, V¢ provided in Theorem 7.1 (b), we see that

_ Bdxg—yl+lxo =yl
Me Vi—s+1+CB)
t—s+1)2

This, together with the moment bound of Z(z, x) in (6.1) yields

’V)Clvé((xla xz)a ()’1, YZ)a t’ S)’ g

D Ve Ve((r1, x2), (61, 32), £,5) Z(s, y1) Z(s, y2)
YISy

n

Me_w

< Vi—sH+CP) eVl puelyal

3
n<yeae =5+ 1)2

Due to Lemma 6.3, we see that we can choose [ large enough so that

_ BUx—yil+lxp—y2D) Byl
Z e Jste®  euenlFnh Z e JistitCP) eyt

Y1, 2€E(s) YIEE(s)
__ Byl
x( Z e i—stI+CP) eue(lyzl)>,
»EE(s)
< C(t — s + Detetmltxnb,
Thus,

¢ CBD_puctmpsim),
Vit

D Vi Ve(Gr1, x2), 01, ¥2), 1, 8) Z(s, y1) Z (s, y2)
YIS
Referring to (8.19), we conclude (8.17).

We turn our attention to prove (8.18). With the aid of (5.21), one has for x; < x, €
E(1),

E[Zv.v (1, x1,x2)| F(s)]
= e 'E[VZ(t,x)VZ(t, x2)|F(s)],

= > Vi uVe((rn,x2), (51, 32), 1, 5) Z(s, yD) Z(s, y2). (8.20)
VIS2€E(s)

@ Springer



1 Page98of 118 Math Phys Anal Geom (2020) 23: 1

Note that (8.20) does not hold when x; = x; (see Remark 8.5 below). Theorem 7.1
(c) implies

CPB, T _ Blx—yil+lxp—y2D)
|Vx1,x2V€<(-xl’ X2), (yl’ y2)’tv S)| < ([—5——{-1)26 Vims+1+CP) .

By same argument used in proving (8.17), one has

—1
< O uetni+ian,

HE[ZV’V(t’XI’XZ)’I(S)] t—s+1

n

This concludes the proof of the lemma. O
With the help of the preceding lemma, we proceed to prove Lemma 8.2.

Proof of Lemma 8.2 Referring to (8.3), (8.4) that

t
> Vos,xt ) = <sz - 1) Sicnn, Thootels, DZy(s, x*(s) — i, 2*(5),

s=0

t
DWW X)) =X jens, Lamgliels, Ducls, ) Zy,v (s, x =i, x = j).

s=0

By triangle inequality, one has

t
eZZyv(s,x*(s»H < (27p—1> >
s=0 2

16221

t

2 Zue(s, i)

s=0

xZy (s, x*(s) — i, x*(5))

t
) Wvs, x*(s))H < Y
s=0 2

i>j€lx

2

13
€Y uels, uels, )

s=0

2

XZy,v (s, x*(s) —i,x"(s) — )

To prove Lemma 8.2, it is sufficient to show that there exists constant C, u such that
forallz € [0, e 2T]1NZ, x* € Z and some constant 0 < § < 1,

t
Y uc(s, 1) Zy(s, x*(s) — i, x*(5))

s=0
< Cedet @ IHgi i e 7y, 8.21)

2

t
€Y (s, Duels, j)Zv,v(s, x*(s) — i, x*(s) — j)
s=0

< Ceiue@X TSIt i s e 7. (8.22)

2
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Note that here, we include i = 0 in (8.21), which is not needed to prove Lemma 8.2.
We are going to use this in the proof of Lemma 8.3.
We begin with proving (8.21), by writing

t

Y (s, )Zy(s, x*(s) — i, x*(5))

s=0

=2 Y E[uem,i)m(sz,i)zv(sl,x*(sl)

0<s < <t

2

2

—i, X" (s1))Zv (52, x*(s2) — i, x*(S2))]

t
+ ) Eluc(s, )2 Zy (s, x*(s) — i, x*(5))*]

s=0

1> uem,i)ue(sz,wﬂf[zv(sl,x*(sl)—Lx*(sm

0<S1 <5<t

XE[Zv(s2, x*(s2) — i, x*(sz))lf(n)]}

t
+ ) ue(s, )’E[Zy (s, x*(s) — i, x*(5))°]

s=0
Using (8.12) to bound u, (s, i), one has

2

2

t
D ue(s, ) Zy (s, x*(s) — i, x*(5))
s=0

< cs Z E[Zv(sl,x*(ﬂ)—i,x*(ﬂ))

0<s <5 <t

XE[Zv(s2, x*(52) — i, x*(82))|5’:(51)]]‘

t
+Cs% Z]E[Zv(s, X*(s) — i, x*(s))?] (8.23)
s=0

Let us analyze the two terms on the RHS of (8.23) respectively. For the first term, via
Cauchy-Schwarz inequality [E[XY]| < | X|,|Y,. one has

‘]E[Zv(m, x*(s1) — i, x*(s))E[ Zv (s2, x*(s2) — i, x*(sz))I}"(n)]]’

< | Zv i, x*(s1) — is x*(s0)) |, | E[ Zw (52, x*(s2) — i, x*(2))| F (s,
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By the moment bound in Proposition 6.1, we have HZv(s,xl,xz)”2 <
Cetc(Mil+x2D  Combining this with (8.17),

‘E[Zv(n,x*(ﬁ) — i, X*(s1)E[Zv (52, x"(52) — 1, x*(S2))|]:(Sl)]”

_1
2

< Cerelrtn=il+h ) € e (52) =i |+1* (52)])

sy —s1+1

_1
< Ce2 G2ue(x* |+l —il)
NI |

Consequently, the first term in (8.23) is upper bounded by

Z E| Zy(s1, x*(s1) — i, x*(s1)E[ Zv (s2, x*(52) — i,X*(Sz))|f(Sl)]]‘

05 <5 <t

Ce™2 * *_:
< Z —eZue(lx [+ ]x*—i])

0sy<so <t Y §2—S1+ 1
1 3 * . 7 * .
< Cefitjehe(zlx [+i) < C67762ue(2\x |+1). (8.24)

where in the second inequality above we used the integral approximation

([0}

=Ct

Z 1 <C/ dS]dSz
Vor—si+1  Jo<si<s<t V52 — 51

0<sy <5 <t
and in the last inequality we used r < ¢ ~2T.
Using again H Zv(s, x1,x2) ||2 < Ceelxl+aD | the second term in (8.23) is
readily upper bounded by

t t
D E[Zy(s.x*(s) — i, x* ()] < €Y ePueTIHD

= s=0
< Ce 22" I+i) (8.25)

Incorporating the bounds (8.24) and (8.25) into the RHS of (8.23), we get (8.21).
We proceed to justify (8.22), the method is similar to the proof of (8.21). Write

2

t
D uels, Duc(s, HZv.v (s, x*(s) — i, x*(s) = j)
s=0

=2 > ue(S1,i)ue(SLj)ue(sz,i)ue(S2,j)E[Zv,v(S1,X*(S1)—i,

0<s1 <5<t

2

x*(s1) — DE[Zv,v(s2, x*(s2) — i, x*(52) — j)|f(51)]]

t
+ > ues. i) ucls, ))E[Zv,v (s, x*(s) — i, x*(s) — j)*].
s=0
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Using again (8.12), one has

t 2
D uels, Duc(s, HZv, (s, x*(s) — i, x*(s) = j)
s=0
< C§2G+D) Z

0y <o <t

2

E[Zv,v(ﬂ,x*(sl) — i, x*(s1) — J)
XE[Zv,v (52, x*(s2) — i, x*(s2) — j)|]:(S1)]]‘

t
+CS DN B[ Zy vls, 2% () — i, x*(5) = )7 (8.26)
s=0

Let us analyze the two terms on the RHS of (8.26) respectively. For the first term, by
Cauchy Schwarz,

‘E[Zv,v(h, x*(s1)—i, x*(s1) = HE[Zv v (52, x*(s2) =i, x*(52) — j)|J:(S1)]]‘

< | Zo.vst, x*(s1) =i, x*(s1)— ) ||, |[E[Zv.v (52, x* (s2) =i, x*(52) — ) | F(sD)] |,

Using the bound H Zv(s, x1, x2)||2 < Cerel+1x2D and (8.18), we have

'E[Zv,v(n, x*(s1)—i, x*(s1) = HE[Zv,v (52, x*(52) —i, X*(sz)—j)\f(sn]} ‘

—1 —1
_CeT uete-ite—jn _ _ C€

< 6M6(|X*—i|+|X*—f\) -
sp—s1+1 sp—s1+1

*x__ *__ 7
Qe —il+x* =)

Therefore,

2

0<s <5 <t

E[Zv,v(ﬂ,x*(ﬂ) — i, x%(s1) — J)

XE[Zv,v(s2, x*(52) — i, x*(52) — j)|]"(S1)]”

-1
< ¥ etk
sp—s1+ 1

01 <5 <t

< Ce (1 + Dlog(t + 1)e2ueF" =i+ =i « 03 2ue@iIHi+) (g 27)

In the second inequality above, we used the integral approximation

1 1
— < C/ ——dsidsy < C(t + D)log(r + 1).
Z s2—s1+1 0<si <ot 2 — 81+ 1

0<sy <5 <t
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For the second term in (8.26), it is clear that

t
ZE[ZV v(S,x*(S) _ i,x*(s) _ ])2] < C[62u6(2|x*|+i+j) < C€—2e2ue(2\x*|+i+j)_
s=0

(8.28)
Incorporating the bounds (8.27) and (8.28) into the RHS of (8.26), we prove the
desired (8.22). O]

Remark 8.5 In the argument above, we showed Zy v (¢, x1, x2) = (e_%VZ(t, X1))

(e’% VZ(t, x3)) vanishes after averaging over a long time interval when x; # x;. The
readers might wonder whether the same holds for x| = x,? The answer is negative.
In the case x; # x2, we used two particle duality (5.21) to move the gradient from Z
to Ve

E[ZV’V(I,.X],XZ)LF(S)] = 6_1 Z VX],)QVG((-xlvxz)’ (yla y2)at7s)
YISY2€E(s)
XZ(s, yZ(s, y2).

However, if x; = x», the same two particle duality gives instead

E[Zv,v(t, x1, x2) | F ()]

=<' ) (Ve((x1+17X1+1)»(y1,yz),t,s)
VISMEE(S)

X =2V ((x1, 20+ D, (1 92), 105) + 1) ZGs, D Zs, o).
The same argument fails because we do not have an effective estimate of

V(@1 + Lxi 4+ 1, (31, y2). 1, 8) =2V ((x1, x1 + 1), (y1, y2). 1, s) + 1.

In fact, when x; = x2, Zv v(¢, x1, x2) does not vanish after averaging. One quick
way to see this is to use

_1 2
Zv’v(t,xl,xl) = (E 2VZ([,X1))
~ 1
= (T 41(6) — 0)2Z(t, x1)* + €2 B Z(t, x1)*
> min (1 - {p}. {p)) Z(t, x)* + €3 B Z(1. x1)?

where {p} represents the fractional part of p. This implies that Zv v (¢, x, x) is lower
bounded by a constant times Z(z, x)2, which does not vanish after averaging.

8.3 Proof of Lemma 8.3

The aim of this section is to justify Lemma 8.3, which indicates that Zv v (¢, x, x) —
MZ (t, x)? vanishes after averaging over a long time interval. This was proved
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for the stochastic six vertex model [15] (which corresponds to I = 1, J = 1). Note
that when I = 1, for all ¢, x one has 7,(t) € {0, 1}, which yields 75, (t)> = 7. (t).
Corwin et al. [15] utilizes this crucial observation to show that

Zyv(t.x.x) = (e (1) — )22t x)2 + €1 Be(t, X) Z(t, x)2,
= p2Z(t,x)* + (1 = 2p) T 1(D Z (1, x)%,
p(1 = P)Z(t. x)* + 2p — DZy(t. x. x) + €2Bc(t, x) Z(t, x)%,

where in the last line above, we used (8.15). We have seen in the previous section
that Zy (¢, x, x) vanishes after averaging, which implies that Zv v (¢, x, x) — p(1 —
p)Z(t, x)? will also vanish.

When I > 2, 77, (t) can takes more than two values so the 7y (£)? = 7 (¢) relation
no longer holds. Notice that in the proof of Lemma 8.2, we have only leveraged the
first duality (5.21) in the Lemma 5.2. To conclude Lemma 8.3, we will combine both
of the dualities (5.21) and (5.22).

Before moving to the proof, we first offer a heuristic argument to explain why
the A = M is the value which makes Zv v(t, x, x) — AZ(t, x)2 vanish after
averaging.

Heuristic argument for Lemma 8.3 Note that

Zyv(t.x.x) = (Fer1(6) — p)2Z(t, x)* + €2Be (1, ) Z(1, )™

In Theorem A.3, we find that the stationary distribution of the (bi-infinite) SHS6V
model is given by Q) 77,,, where 7, is defined in (A.1). It is straightforward to verify
that Q) 77, is near stationary with density p (Definition 5.5). Start the SHS6V model
from 77(0) ~ @ 7, by stationarity n,(r) ~ m, forall t € Z>( and x € Z. Heuristi-
cally, we can approximate (7x+1(t) — p)2Z(t, x)? by Ex, [(ix41(t) — p)?]Z(1, x)%.
Note that

Ex, [(Tes1() — p)*]Z(t, x)* = Var[n, ] Z(t, x)*

where Var[np] represents the variance of the probability distribution 7,. Referring
to Lemma A.2, we have

! 2
X
Var|m,|=p — _—
2] ; (q' — x)?
where x is the unique negative real number satisfying 21!:1 x+q" = p. It is straight-
forward that under weak asymmetric scaling (5.30), one has lim¢ o xe = %.
Therefore,
: pU —p)
lim Va = —
el i) I
which explains A = M. O
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We proceed to prove Lemma 8.3 rigorously. The first step is to express
Zyv(t,x,x)— M Z(t, )c)2 in terms of the two duality functionals in Lemma 5.2,

(t, x)?

o —p)
I

I_
Zyv(t,x,x)— uz

= ((ﬁx+1(r) —p)* — >Z<t,x>2 + 1Bt X)Z(1, x)?

(- — p)2>
I
X Z(t, )2 — p+ 1 =21 Zv(t, x, x) + €2 B (1, x) Z(t, x)

I — 1) — p)?
— ((I = M1 (O — 1 =5 41(1)) — #)

XZ(t, x + 12 = 2p+1—=20)Zv(t, x,x) + €2 Be(t, X) Z(1, ) (8.29)

= ((1 — et ()T — 1 =71 (1) —

In the last equality, we replaced Z(t, x) by Z(¢,x + 1), according to (8.16), this
procedure produces an error term which can be absorbed in the G%BG (t, x)Z(, x)2.

Recall that [n] | = 4229 ° Under weak asymmetric scaling, ¢ = eV¢, one has
q q2—q 2

] , —n+0@E?), g"D =140 (8.30)
q

These approximations imply that

(I =Tt )T =1 = o1 (D Z (1, x +1)°
= Fent O] J U =1 =101 1 Z0,x + D270 4 3Bt 021, %)%,
q q

D, x+1,x+ 1)+ €2 B(t, 1) Z(t, x)* 8.31)

where we recall the expression of the functional D from (5.19). Inserting (8.31) into
the RHS of (8.29)

o —p)

Z(t, x)?
7 (t, x)

2
U-DHU-p)",
1

Zyv(t,x,x)—

=D, x+1,x+1)— (t,x—l—1)2—(2p+1—21)Zv(t,x,x)

e Be(t, ) Z (1, )2 (8.32)
Recall that our goal is to show

|

t
> Vs, x*()
s=0

1
1 2ue
< Cedetelx
2
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Referring to the expression of jiv (s, x*(s)) in (8.5), we need to prove that there exists
some 0 < § < 1 such thatforalli € Z>1,

t

I —
@Y ucts ) (Zowis 6 — i) —i) = L 750 - ?)
s=0 2
< CE%eZME\xﬂSi'
Using (8.32), it suffices to show that for all i € Z,
t
D uels, D(Dls, ¥ () + 1 =i x% () + 1= 1)
s=0
I — 1D — p)?
U DU 6 ) 11 —i)?)
I 2
< CedPuellgi, (8.33)
and
t ' '
Z Ue (s, ) Zy (s, x*(s), x*(5))|| < Cexe2ellst, (8.34)
2

s=0

Note that (8.34) is proved by taking i = 0in (8.21). Therefore, we only need to prove
(8.33). Similar to the proof in Lemma 8.2, to conclude (8.33), it suffices to prove the
following lemma for upper bounding the conditional expectation. We do not repeat
the rest of the proof here.

Lemma 8.6 For T > 0 andn € Z31, there exists constant C and u such that for all
x€E(W) ands <t €0, 2TINZ,

_1
< C€7 e (35
n t—s+1

V(T — o)2
d-Hd=-p),

; (t, x)?

”]E[D(t,x,x)—

]'"(S)]

Proof Combining both of the dualities (5.21) and (5.22), one has
I -1 — p)?
( U — p) 7
1
= > Ve(@.x). Gy 1)

YIS€eE(s)

E[D(t,x,x) - (t, x)?

}"(S)}

(I = - p)*

7 Z(LYI)Z(L)’Z))

X(D(Sv Y1, y2) -
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We split the summation above according to the range of the value of |y; — y»|,

_ 2
(1 1)51 P,

= Y Ve((x,x), 01,32 1. 5)

YI<Y2€E(s)
[y1—y2123

X(D(s,yl,yz) -

E[D(l,x,x) — (t, x)*

]"(S)]

(I — (I - p)?
1

+ Z Ve((x, x), (1, 2). 1, 9)

YI<)2€E(s)
[yi—»2l<2

X(D(S,yl,yz) -

Z(S,yl)Z(S,yz))

(I — DI — p)?

7 Z(s, y1)Z(s, yz))- (8.36)

We name the terms on the RHS of (8.36) E; and E; respectively and we bound them
separately. It follows from Proposition 6.1 that

I — 1) — p)?
HD(s, iy — L2 DE =P 26, v

< Cetel+ly20)
1

n

Invoking Theorem 7.1 (a) and Lemma 6.3, we find that

—Blyg —xl+lya—x
”Ez”n < Z M(; Vi—st1+CE) ge(il+y2D)

f—s+1
yimesw ! 8T
[y1—y21<2
c
S (837

We proceed to bound Ej, recall that when y; < y»,

[1—1] i
q
[1] 1

q?

[S]

D — ¥ 5 37Ty (5) g 37Ty (5)
(s,y1,y2)= Z(s,yl)Z(s,yz)[I—nyl(S)]q%[1—17y2(S)]q%q2 1¥g 2

which could be rewritten as (using (8.30))

I—-1 ~ ~
D(s.y1.y2) = —— I =0y, () =0y, () Z(s. y1) Z(s. y2)

1
+GEB€(S9 yla yZ)Z(S, YI)Z(Sa y2)
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Consequently, we write

I—1
E; = — Z Ve((x, x), (1, 2). 1, 5)
YI<MEE(S)
[y1—y2123

X (= DU =TT (6) = (I = p)?) Z(s, y)Z (s, 32)
€

+e2 Y Ve((x,x), (1, ¥2), 1, 5)Be(s, y1, y2) Z(s, Y Z(s, 2)
YI<y2€E(s)
[y1—y2123

I—-1

= — D V(G x), (1,32, 1 8)

Y1<y2€E(s)
[y1—=y2123

x((0 = T U = () + U = P)(p = Ty (5))) Z(5 Z (s, ¥2)
1
+er Y V(06 x0), (01, 32), 1, 8) Bes, v, 32)

YI<y2€E(s)
[y1—=y2123

XZ(s, YD Z(s, y2) (8.38)
It Is straightforward by (8.15) and (8.16) that

(0 = Ty (SN Z (s, 1) = (0 — Ty (NZ(s, y1 — 1) + €2Be(s, y) Z (s, y1)
— ¢ IVZ(s, yi — D) + €2 Be(s, y) Z(s, 1),
(0 = Ty (SNZ (s, ¥2) = (0 — Ty (NZ(s, y2 — 1) + €2 Be(s, y2) Z(s, y2)
— ¢ IVZ(s, y2 — 1) + €2 Be(s, y) Z(s, y2).
Inserting these into the RHS of (8.38),

I—-1 ~ 1
Ei= " ) Ve((r0). 0132 1.5) U = Ty ()€ TVZ(s. ) Z(s. 32)

Y1<)2€E(s)

[yi—y21>2
I1—1 _1
= 2 Vel 0, 01, 32), 1,8) U = p)ETTVZ(s, y2) Z(s, 1)
YI<»2€E(s)
[y1=y21>2
1
+ Y V(06 x), 01,32, 1,8)Bels, yi, y) Z(s, YD Z(s, y2).
YI<Y2€E(s)
[y1—y21>2

Let us name respectively the three terms on the RHS above to be J1, J2, J3. Recall
the summation by part formula (with notation V f (x) = f(x + 1) — f(x))

S Vr@ g = fg -1 =Y fx)- Vg — 1),

x<y x<y
Y Vi@ g = —f(y+Dgly+ D =Y flx+DVg@). (839)
x>y x>y
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Note that
I—-1 ~ 1
JIZT Z Ve(()ﬁx),(yl, YZ),tvs)(I_rlyz(S))(e ZVZ(Sa yl))Z(S, y2)7
YI<)2€E(s)
[y1—=y21>2

by (8.39), we move the gradient from VZ(s, y;) to Ve,

I—1 ~
Jl = T[ Z 6_%V6((x7x)7(y2_37 y2)»t’5)(1_77y2(5))z(5’ y2_3)Z(S7 y2)

V2€E(s)

_1 ~
- ) e 2vylve(<x,x),<y1,y2),r,s)(1—nyz(s»Z(s,y])zc,yz)].
YI<»2€E(s)
[y1=y21>2

Using Theorem 7.1 part (a) and part (b) to control V¢ and V'V, respectively, we see
that forn € Z31,

€ 2 —Blyp—xl+1yp=3=x (y2—31+132D)
hf, < €@ T — e Ni—stiHCP®)  HEUN27IlTI2
I, <cen( X
Y2€E(s)
1
-2 By —x11+ly2—x0)
+ %emeue(lyuﬂvﬂ))'
n<megr =5+ 12

1
Applying Lemma 6.3 yields |[Jq|, < %ez”e|x|. Likewise, we obtain |Jz, <

Csf%
Vit—s+1
For J3, applying Theorem 7.1 part (a) and Lemma 6.3 implies that

eZuelxl .

1
7 _Blaoyltl—yb
135], < D C@. The? —ETZLmi juelyi+i

t—s+1
YIS
1
1 Ce™ 2
< C67€2u6|X| < —62ue|x\‘
Jt—s+1

In the last inequality above, we used the fact s < ¢ € [0, e 2T], which implies
t—s<e’T.

Combining the bounds for ||J1 0 J2 0 |J3|n, we have
1
Ce 2
Ep]| < ——e2ckl, 8.40
I 1||n Ji—s+1 (8.40)
Recall from (8.36) that
I — 1 — p)?
E[D(t,x,x) - #Z(L x)? f(S)} =E1 + E,
combining the bounds for E; and E; in (8.40) and (8.37), we conclude the
desired (8.35). O]

@ Springer



Math Phys Anal Geom (2020) 23: 1 Page 109 of 118 1

Acknowledgments The author heartily thanks his advisor Ivan Corwin for suggesting this problem, his
encouragement and helpful discussion, as well as reading part of the manuscript. We thank Jeffrey Kuan for
the helpful discussion over the degeneration of [35, Theorem 4.10] to the stochastic higher spin six vertex
model. We also wish to thank Promit Ghosal and Li-Cheng Tsai, who provided very useful discussions
about the technical part of the paper. We are also grateful to two anonymous referees for their valuable
suggestions. The author was partially supported by the Fernholz Foundation’s “Summer Minerva Fellow”
program and also received summer support from Ivan Corwin’s NSF grant DMS:1811143.

Appendix A: Stationary Distribution of the SHS6V Model

In this section, we provide a one parameter family of stationary distribution for the
unfused SHS6V model. It is worth to remark that in the recent work of [30], a
translation-invariant Gibbs measure was obtained (using the idea from [2]) for the
space-time inhomogeneous SHS6V model on the full lattice, see Proposition 4.5
of [30]. However, It is not obvious that the dynamic of SHS6V model under this
Gibbs measure coincides with the one of the bi-infinite SHS6V model specified in
Lemma 2.1. This being the case, we choose to proceed without relying on the result
from [30].
We start with a well-known combinatoric lemma.

Lemma A.1 (g-binomial formula) Setv = ¢~/
forallq € C,

as usual, the following identity holds

= .
(@ (z @)oo

XI: WP, W Qoo

Proof According to g-binomial theorem [1],

i Wi @y _ (03 Do
Z@ o @@

Whenv = ¢~ !, (v, ), = 0forn > I. Therefore,

Z Vs @n o= Z s @n = (VZ;Q)OO

. @D ¢ (g D G O

Lemma A.2 Fixqg > 1,v =q ! and p € (0, I), define a probability measure o
on{0,1,...,1}:

qp i) = Koo Wi iy gy, (A1)

(xv, oo (q, q)i

where x is the unique negative real number satisfying

(A2)

-

—_
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Furthermore, we have

E[np] =p, Var[rrp] =p— Xl: - X

— y)2'
= @ =X

2

Proof We first show that 7, is indeed a probability measure. Itis clear that 7, (i) > 0
foralli € {0, 1,...,7}. By Lemma A.1,

1

o (XD v, q)i o = G Doo WX Poo
27D = (xv,q>ool.z(q D" T WD Ko

i=0

Next, we compute the expectation and the variance of 7,. Using again Lemma A.1,
the moment generating function is given by

6 Do v, )i v = X @Poo VX2 @)oo
A =
@ XV, 9o ; (q, q)z (X Do (X2 @)oo
(X Do —1
= 1— . A3
0. D)o ,1:[( vg'x2) (A.3)
It is clear that
E[n,] = A'(1),

Var[r,] = A”(1) + A'(1) — A'(1)%
Via (A.3), one has

' (X @oo ( ! i—1
A = = | | 1 —
© XV, 9o ._1( Ve XD

() = oD (H(l—vq ‘xz))

XV, 9o

Note that

X Do i1
AR 1- =1,
XV, @)oo H( Ve X

combining this with (A.2) yields

~

ND=p,  AND=p"=) —"—s (q, - X)2

i=1

which concludes the lemma. O]
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Theorem A.3 For p € (0,1), the product measure Q 7, is stationary for the
unfused SHS6V model 1 (t) (Definition 2.3).

Proof Tt suffices to show that if 7(t) ~ @ 7,, then (t + 1) ~ @ 7.
Recall that K (¢, y) = N(¢, y) — N(¢+1, y) records the number of particles (either
zero or one) that move across location y at time ¢. We first show that K (¢, y) ~

Ber (a‘(’g%l) (recall that a () = ag™°% ). To this end, referring to (2.4),

K, y) = Z H (B’(r,z,nzm)—B(r,z,nAr)))B(r,y’,ny/(r)). (A4)

y=—00z=y'+1

Recalling from (2.1), B(t,z,n) ~ Ber (%), B'(t,z,n) ~ Ber(“fﬁié’tq)n).

Since the random variables B, B’ are all independent,

y
E[ [ <B/(”Z’ ne(0) = B(t. 2, w»)B(t,y’, ny’(t))‘}'(t)}
z=y'+1

14+ a(t) eyt 14+ a(r)

Therefore, by tower property

- Loa( g™ ) A (@@ 4 g
]E[K(tay)] = Z E|: 1_[ l—l-Ot(t) Zzl;!H 1+Ol(t) :|a

/

y=—00 z=y'+1

y y=y' /
- Y s (fh) @y ),

P EXTOMNER0)
(A.5)

As ny(t) ~ 7, we obtain using Lemma A.1

E[¢"®] = X Do Z W @i i - UV D0 KD 1= X
(Xv, 9o =2 (g, o (X4 Do (XVi@oo 1 —xv’

Inserting the value of E[q ny(t )] into the RHS of (A.5) yields that

a0 [ @@+ —x) 1—x
Elxu ] = _X_:oo1+a<t><(1+a(z>)(1—xv)> (1_ 1—xv>

,V,
_ _a@x
at)y +1°
Since K (t, y) € {0, 1}, we conclude that
a(t)x
K(t,y) ~ Ber(——————). A.6
(,y) (ot(t))(+1) (A.6)
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The next step is to show that the marginal of 7(¢ + 1) is distributed as 7, for each
coordinate. Referring to (A.4), it is straightforward that the following recursion holds

K y) = By, my @) + (B¢, v 0y (0) = B, v, my @)K,y = DAT)
Therefore,
ny() —ny(t+1) = Nt,y) =N,y —D+Nt+1Ly—-1)—=Nt+1y),
=K@, y)—K@,y—-1),
= K,y = D(B'@.y,my0) = By, my (1) 1)
+B(t, y, ny(1)).
For the second equality above, we used K (¢, y) = N(¢, y) — N(t + 1, y). Therefore,

ny() — B(z, y, ny(1)), K@, y—1)=0,

(@) +1— Bty ny@0), Kt.y—D=1. &Y

ny(t+1) ={

Due to (A.4), we see that K (1, y — 1) € a(B(t,z, ), Bt 2, ), n.(t) 1 2 <y —

1,ne{0,1,..., I}). Note that we have assumed 7(1) ~ @) 77,, which implies the
independence between 7, (¢) and n,(t) for z # y. Therefore, n,(¢) and K(¢,y — 1)
are independent. Using (A.8) we get
P(ny@t+1) =i) = P(K(t,y — 1) = 0)P(ny (1) — B(t, y, ny(t)) = i)
+P(K (1, y — 1) = 1)P(ny(1) — B'(t. y. ny() =i — 1).

ByK(#,y—1)~ Ber(a‘(’;()t;)il) and 1y (t) ~ 7,, one readily has

1 1+aq’ a1 —g'th
=7 a0 |:np(z) T a) + (i + 1)—1 o) j|
a(f)x _a(r) 4+ vg' S
1+ al)y [”"(’) T4aq U D 1+a(1)}
= mp(i).

To conclude Theorem A.3, it suffices to show the independence among 7, (t + 1) for
different value of y. It is enough to show that

ny(t + 1) is independent with {ny1(t + 1), ny42( + 1), ...} forally € Z. (A.9)

We need the following lemma.
Lemma A4 Forally € Z, ny(t + 1) is independent with K (t, y).
Let us first see how this lemma leads to (A.9). We have via (A.4),

K(t,y) e G(B(t, z,m), B'(t,z,m). 0 (1) 12 < y,n € {0, 1, ...,I})-
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Combining this with (A.8),

ny(@+1) € G(B(t,z, m, B'(t,z,n),n(t) 1z < y,ne€{0,1, ..-,I}).
Since n; (¢) are all independent for different i, one has
(B(I, ), Bt z,n),n(t) 1 z<y,nel0,1,..., I}) is independent with

(77y+1(t)s ’7y+2(1)» oo )

We achieve
(K(t, ), ny(t + 1)) is independent with (ny+1 @), ny42(0), ... )
Using Lemma A.4, we conclude
ny(t + 1) is independent with (K (¢, y), ny4+1(t), ny2(t). ...).
Therefore,
ny(t + 1) is independent with O'(K(t, y), n.(t), B(t,z,m), B'(t,z,n) : 2=y + 1,
ne{O,l,...,I}). (A.10)

On the other hand, by (A.7) and (A.8), we conclude for all y € Z

(1 + Doyt + 1), ) € o (K@), Bz, B, zmne) 12>
+1,ne{o,1,...,1}). (A11)
Combining (A.10) and (A.11), we find that for all y € Z
ny(t + 1) is independent with (ny+1 t+D,ny2@+ 1), ... )
which concludes (A.9). O

Proof of Lemma A.4 As K(t,y) € {0, 1}, it suffices to show that for all j €
{0,1,..., I}, one has

IP’(ny(t +1)=j,K(t,y) = 1) = IF’(ny(t +1) = j)IF’(K(t, y) = 1).
Due to (A.7),

B(tv Y, ﬂy(t))7 K(t’y - l) = 07
B'(t,y,ny(®), K(t,y —1) = L.

Together with (A.8), we obtain thatif K(t,y — 1) =0,

K(t,y)={

(ny(t + 1), K(t, y)) = (J, 1) is equivalent to (ny(t), B(t,y, ny(t))) =G +11.
K@t y—1) =1,

(ny(@ + 1), K(t,y)) = (j, 1) is equivalent to (n, (1), B(t, y, ny(®))) = (j, D).
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The discussion above yields (using the independence between 1y (7) and K (¢, y — 1))

P(ny(t 4+ 1) = j, K(1,y) = 1),
P(K(@t,y—1) =0)P(ny(t) =j+1,Bt. y,ny(®)=1)+P(K(t,y—1)=1)
xP(ny(t) = j, B'(t, y. ny(1)) = 1),

1 a1 -g/™ at)x  a) +vg!

= 1+a®x 14+a(@) T,(j+ 1D+ ety 14 al) 7,(j),

_ axmp) _ o )

T oax+1 P(ny+1(r+1) = j)P(K (1, y) = 1),

which concludes Lemma A.4. L)

Remark A.5 Since g(t) = n(Jt), it is clear that for all p € (0, 1), @, is also
stationary for the fused SHS6V model g(z).

Appendix B: KPZ Scaling Theory

The KPZ scaling theory has been developed in a landmark contribution by [31]. The
scaling theory is a physics approach which makes prediction for the non-universal
coefficients of the KPZ equation. In this appendix, we show how the coefficients of
the KPZ (1.11) arise from the microscopic observables of the fused SHS6V model
using the KPZ scaling theory.

Recall that Theorem 1.6 reads

\/E(Nl(e_zt, e x e pet) — ple x + e 2pet) — 11og Ae)
= H(t, x) in C([0, 00), C(R)) as € | 0.

Here, N é (¢, x) is the fused height function and #(z, x) solves the KPZ equation
o o
OH(1,x) = 0T, x) = (A 2))” + VasEE ),

where

— -2
o :(XZZJV*ZJ((I—i-J)b (I+J-2)

12(1 — b) '
ws = ID, = pUd —p) J((I+J)b—(I+J—2)).
I 12(1 — b)

The first step in the KPZ scaling theory is to derive the stationary distribution of the
fused SHS6V model, which is exactly what we did in Appendix A (see Remark A.5).
Under stationary distribution Q) 77, we proceed to define two natural quantities of
the models:

e The average steady state current j(p) is defined as

J(p) =€ E((N".x) = Nt x + 1)), = ppe). (B.1)
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where (-) , means that we are taking the expectation under stationary distribution
& 7, and p is given in (1.9). Note that under stationary distribution, the average
steady state current j(p) depends neither on space or time. Let us explain the
meaning of (B.1). Note that N'(z, x)— N'(t41, x) records the number of particles
in the fused SHS6V model that move across location x at time #, we subtract o,
here because we are in a reference frame that moves to right with speed p ..

e  The integrated covariance is defined as

A(p) := lim %<N‘(r, x+r) = N'(t,x=r)=(N'(t,x + r)=N'(t,x—r)) > .
r—00 P o
The KPZ scaling theory (equation (12) and (15) of [31]) predicts that

. T .1 .o % T
(i) oz = lelféjf (0)s )y o lelfaAe(p),

Ac(p) and jc(p) depend on € under weakly asymmetry scaling (5.30).

Let us first verify (ii), note that under stationary distribution, Né (t,x +r) —
Ng (t, x — r) is the sum of 2r i.i.d. random variables with the same distribution 7,
hence Ac(p) = Var[rrp]. By Lemma A.2, we know that

Varn =p— )
d l;(ql—xﬂ

where x is the unique negative solution of
1

A= (B.2)

i1 X 4

Under weakly asymmetric scaling, one has g = eV€, which yields lim¢ o xe = —2+.

p—I
Therefore,
I —
hmA (p) = 11m Var[np] M
This matches with the value of £ E
We proceed to verify (i). First, note that by N'(¢, x) = N(Jt, x),
(J+Dr—1
Nt x) =N+ 1, x) =Nt x) = N((J + Dt.x) = Y K(s,x),
s=Jt
where K(s,x) = N(s,x) — N(s + 1, x). We have shown in (A.6) that K (s, x) ~
Ber (-29% ) where a(s) = ag™%®), Therefore,

14a(s)x
(J+Di—1 J-1 g x
E[N'(t,x) = Nt + 1,x)] = E[ > KGs x)i| =y — =
9 9 b k b
s=Jt k=0 1 + xqX
which yields

J—1 k

. 1 aqg-X
=€ 2 - .
J(p) <1§201+°‘qu pu)
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We proceed to taylor expand j.(p) around € = 0. Note that x is implicitly defined
through (B.2), we expand x, around € = 0

P I+ Dp
p—1 2p—1)

Note that o depends on € through o, = b:«bﬁ' Via straightforward calculation, one

has

Ve + 0.

Xe =

aq®x acefVey, (Ip—p>)(Qk+T+1)b+ 1—1-2k)

0
= = — O ’
l+aghy  14+aeekvey, 1 * 2(b — 1I? e+ o
which implies
J-1 k 2
aq®x Jp J(Ip—p)((I+J)b—(I+J—2))
A A P O(e).
k;) Tradty 1 T 26— D12 Vet 0@

Referring to the expression of w in (1.9), one has the asymptotic expansion

J JU =202+ B-DUI+ )
7 26— DI? Vet o).

Me =

Consequently,

1 k

J—1 5
, -1 JU+D)—(I+] -2 1
Je(p) =€ 2 (k_EO liZeq)’Ex — p,u) = £ (Z(b—)l);Z ) + O(e?).

We have

_JGU+T) - U+ T —2))
o (1=>b)12

El

which coincides with the value of «5.
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