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Probability Distributions of Multi-species
q-TAZRP and ASEP as Double Cosets
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Abstract. We write explicit contour integral formulas for probability dis-
tributions of the multi-species q-TAZRP and the multi-species ASEP
starting with q-exchangeable initial conditions. The formulas are equal
to the corresponding explicit contour integral formulas for the single-
species q-TAZRP (Korhonen and Lee in J Math Phys 55:013301, 2014.
arXiv:1308.4769v2, Wang and Waugh in SIGMA 12:037, 2016.
arXiv:1512.01612v5) and ASEP (Tracy and Widom in Integral formu-
las for the asymmetric simple exclusion process, 2007. arXiv:0704.2633),
with a factor in front of the integral. For the multi-species q-TAZRP, we
use a decomposition theorem for elements of double cosets of parabolic
subgroups in a Coxeter group. The set of distinguished double coset rep-
resentatives with minimal length is viewed as a particle configuration. For
the multi-species ASEP, we use a more direct proof.
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1. Introduction

ASEP (asymmetric simple exclusion process, introduced in [18]) and q-TAZRP
(totally asymmetric zero range process, introduced in [16]) are examples of in-
tegrable models for which exact formulas for the transition probabilities can be
written. When considering the models on the infinite line, these formulas are
expressed as explicit N -fold contour integrals, where N is the number of parti-
cles in the system, and were found in [22] (for ASEP) and [14] (for q-TAZRP;
see also [25] for the inhomogeneous case) using Bethe Ansatz methods.
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There are multi-species (also called multi-class) generalizations of ASEP
and q-TAZRP, introduced in [15,19], respectively. In these multi-species mod-
els, there are n species of particles, such that the projection onto the first k
species is Markov. In [23], the authors consider multi-species ASEP and prove
explicit contour integral formulas for the location of the second class particle
when the initial condition consists of a single second class particle located at
0 and first class particles located at {1, 2, . . .}. In subsequent work [24], the
same authors prove contour integral formulas for the transition probabilities
for any initial condition and any number of species, assuming the number of
particles is finite. However, the integrand is not explicitly written, except in a
few cases, but is instead defined as a solution to certain consistency relations
which are written in terms of the braid relations.

In this paper, we consider multi-species ASEP and q-TAZRP with q-
exchangeable initial conditions. These are initial conditions in which switching
two nearest neighbor particles of different species multiplies the probability
by a factor of q. We find explicit contour integral formulas for the probability
distributions, which are equal to the corresponding formulas for the single-
species models, with a multiplicative factor in front of the integral.

To prove the result for the multi-species q-TAZRP, we use a result from
the theory of Coxeter groups, which uniquely decomposes elements of double
cosets of parabolic subgroups. Roughly speaking, the left cosets correspond to
allowing more than one particle to occupy a site, and the right cosets corre-
spond to having more than one species of particles. The decomposition pre-
serves the length function, and the dynamics can also be written in terms of
the length function. For the multi-species ASEP, only one particle may occupy
a site, so a more direct proof from Markov process generalities is used.

In Sect. 2, we state and prove some lemmas involving Coxeter groups.
Section 3 shows the result for multi-species q-TAZRP, and Sect. 4 shows the
result for multi-species ASEP.

2. Background and Preliminary Lemmas

2.1. Coxeter Groups

We recall some results about finite Coxeter groups; see, e.g., [6]. A finite Cox-
eter group is a group W with a presentation

W = 〈s ∈ S : s2 = e for all s ∈ S and (sisj)m(si,sj) = e for all si, sj ∈ S〉
where m(si, sj) is the order of sisj .

If S has l elements, there is a representation τ of W onto an l-dimensional
vector space V . Let α1, . . . , αl be a basis of V and define a bilinear form on V
by

〈αi, αj〉 = − cos
π

mij
.

The map τsi
is defined by

τsi
(v) = v − 2〈αi, v〉αi.
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This is the reflection across the hyperplane perpendicular to αi. The set Δ =
{α1, . . . , αl} is called the set of simple roots, and Φ = W (Δ) is the set of all
roots. Each root α ∈ Φ has the form α =

∑l
i=1 λiαi where either all λi ≥ 0 or

all λi ≤ 0. Define the set Φ+ of all positive roots to be the α ∈ Φ for which all
λi ≥ 0.

The length function l(w) is the minimal length of an expression of w as
a product of generators si ∈ S.

Proposition 2.1. (a) The only positive root made negative by τsi
is αi.

(b) For any w, the length l(w) is the number of positive roots made negative
by w.

(c) For any w, the l(wsi) is either l(w) + 1 or l(w) − 1. Similarly, l(siw) is
either l(w) + 1 or l(w) − 1.

Proof. Parts (a), (b), (c) follow from Propositions 2.2.6, 2.2.7 and 2.2.8 of [6],
respectively. �

Given a subset J ⊆ S, let WJ be the subgroup of S generated by J . Sub-
groups of this type are called parabolic subgroups and are themselves Coxeter
groups. Let ΔJ ⊆ Δ be the set of simple roots αj such that sj ∈ J .

Proposition 2.2. Fix a parabolic subgroup WJ in W . Then:
(a) Every left coset of WJ has a unique representative with the fewest number

of inversions in that coset.
(b) Let DJ denote the set of distinguished coset representative from part (a).

Every w ∈ W has a unique decomposition w = w0w where w ∈ WJ and
w0 ∈ DJ , which satisfies l(w) = l(w0) + l(w).

(c) The set DJ can be described by {w ∈ W : τw(ΔJ ) ⊆ Φ+}.
(d) Every right coset of WJ has a unique representative with the fewest num-

ber of inversions in that coset, and D−1
J is the set of these coset repre-

sentatives. Furthermore, there is a unique decomposition w = ww0 where
w ∈ WJ and w0 ∈ D−1

J which satisfies l(w) = l(w) + l(w0).

Proof. This is Proposition 2.3.3 of [6]. �
We will also need some results about double cosets. Let WK be another

parabolic subgroup of W , and define DJ,K = D−1
J ∩ DK . Also see Corollary

2.8 of [5], which references Proposition 8.3 of [8] and Theorem (1.2) of [7], for
similar statements.

Proposition 2.3. (a) Each double coset WJwWK contains a unique element
of DJ,K , and every w ∈ DJ,K is the unique element of minimal inversions
in its double coset WJwWK .

(b) Let w ∈ DJ,K and let L be the parabolic subgroup defined by ΔL =
ΔJ ∩ w(ΔK). Every element of the double coset WJwWK is uniquely
expressible in the form awb, where a ∈ WJ ∩ DL and b ∈ WK . Further-
more, l(awb) = l(a) + l(w) + l(b).

(c) The elements a and b can be constructed as follows. For xwy, let x =
ax′ be the decomposition arising from WJ = (WJ ∩ DL)L, and let b =
w−1x′wy.
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(d) If w0 ∈ D−1
J , then in the decomposition w0 = awb in (b), the element a

is the identity.
(e) If w0 ∈ DK , then in the decomposition w0 = awb in (b), the element b is

the identity.

Proof. Part (a) is Proposition 2.7.3 of [6].
Part (b) is Proposition 2.7.5 of [6].
Part (c) follows from the first paragraph of the proof of Proposition 2.7.5

in [6].
In part (d), there is a unique w ∈ DJ,K such that w0 ∈ WJwWK , so

take w0 = awb as in (c). Since w0 ∈ D−1
J , it is the unique element of its

right coset WJw0 with the fewest number of inversions. But the right coset
WJw0 equals WJawb = WJwb, which implies that l(w0) ≤ l(wb) . Since w ∈
DJ,K ⊆ DK , then by the previous proposition l(wb) = l(w) + l(b). Therefore,
l(w0) = l(a) + l(w) + l(b) ≤ l(w) + l(b), so l(a) = 0, implying that a is the
identity.

The proof of (e) is identical to the proof of (d). �
Note that the previous proposition is not true if a is only required to be

an element of WJ .
Part (a) implies that |DJ,K | = |WJ\W/WK |. By the Cauchy–Frobenius

lemma,

|WJ\W/WK | =
1

|WJ ||WK |
∑

(x,y)∈WJ×WK

∣
∣
∣W (x,y)

∣
∣
∣

where W (x,y) is the set of w ∈ W such that xwy−1 = w. Because W (e,e) = W ,
we must have |DJ,K | ≥ |W |/(|WJ ||WK |). In particular, the map from (d)

D−1
J → DJ,K × WK

w0 
→ (w, b)

is an injection but in general not a surjection. However, we do have:

Lemma 2.4. The decomposition from (e) defines a map

DK →
∐

w∈DJ,K

(WJ ∩ DL) × {w}

w0 
→ (a,w),

where L depends on w, which is a bijection satisfying l(w0) = l(a) + l(w).

Proof. It is injective due to the uniqueness property in (b). To show it is
surjective, it suffices to construct an inverse. In other words, we want to show
that xw ∈ DK for any w ∈ DJ,K and x ∈ WJ ∩ DL. Indeed, by part (c), one
takes the unique decomposition x = ax′ from WJ = (WJ ∩ DL)WL, but we
must have a = x because x ∈ WJ ∩ DL. Therefore, xw = aw = awb for a
unique b ∈ WK , but clearly this means that b = e. �

The next lemma will be useful at a later conjecture, but since it is true
for Coxeter groups in general, we state it here.
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Lemma 2.5. Suppose that σ ∈ DJ,K , and l(siσ) = l(σsj) = l(σ) − 1. Then siσ
and σsj are both in DJ,K .

Proof. Suppose that σsj /∈ DJ,K . Then there exist x ∈ WJ and y ∈ WK such
that l(xσsjy) < l(σsj). This implies that l(xσy) ≤ l(xσsjy) + 1 ≤ l(σsj) <
l(σ), which contradicts the assumption that σ ∈ DJ,K . The proof for siσ is
identical. �

When the Coxeter group W is the symmetric group S(N) and the gen-
erators S = {s1, . . . , sN−1} are the transpositions si = (i i+1), the parabolic
subgroups are called Young subgroups. We will write Young subgroups as
H = S(m1) × S(m2) × · · · × S(mr), where S(m1) acts on {1, . . . , m1}, S(m2)
acts on {m1 + 1, . . . ,m1 + m2}, and so on. The positive integers m1, . . . ,mr

will be assumed to sum to N , so terms S(1) are not excluded. Given a se-
quence of integers m = (m1, . . . ,mr), let S(m) denote the Young subgroup
S(m1) × S(m2) × · · · × S(mr).

By a slight abuse of notation, when WJ = H ′ and WK = H, the sets
DJ,K ,DJ ,ΔJ will be denoted DH′,H ,DH′ ,ΔH′ . The length function l(σ) on
S(N) is the number of inversions of a permutation, that is, the number of pairs
(i, j) such that i < j and σ(i) > σ(j).

Example 1. Let H = S(1) × S(2) × S(2) × S(3) and H ′ = S(1) × S(2) ×
S(2) × S(2) × S(1). The set of simple roots are ΔH = {α2, α4, α6, α7} and
ΔH′ = {α2, α4, α6}. Set σ = s5s4s3s1s6s5. Then

τσs2 = s1 + s2 + s3 + s4 + s5

τσs4 = s3 + s4 + s5 + s6

τσs6 = s4

τσs7 = s5 + s6 + s7

(τσ)−1s4 = s6

(τσ)−1s2 = s1 + s2 + s3

(τσ)−1s6 = s3 + s4

showing that τσ(ΔH) ⊆ Φ+ and τ−1
σ (ΔH′) ⊆ Φ+, and thus, σ ∈ DH′,H . The

subgroup L is defined by ΔL = ΔH′ ∩τσ(ΔH), and from the above calculations
we see that L is the Young subgroup generated by the single element s4, and
therefore, by Proposition 2.2(b), H ′ ∩ DL = {s2, s6}. In the next section, we
will see how σ can be constructed by using the state space of multi-species
q-TAZRP.

2.2. q-Notation

Fix 0 < q < 1. For any k ≥ 0, let

[k]q =
1 − qk

1 − q
= 1 + q + q2 + · · · + qk−1
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be the q-deformed integer. Let [k]!q = [1]q · · · [k]q be the q-deformed factorial.
The q-Pochhammer symbol is

(α; q)k = (1 − α)(1 − qα) · · · (1 − qk−1α), 0 ≤ k ≤ ∞.

Observe that (1 − q)k[k]!q = (q; q)k.
For each integer r ≥ 1 and each finite sequence of nonnegative inte-

gers m = (m1,m2, . . . ,mr) whose sum is N = m1 + · · · + mr, define the
q-multinomial

[
N
m

]

q

:=
[

m1 + · · · + mr

m1,m2, . . . ,mr

]

q

=
[N ]!q

[m1]!q · · · [mr]!q
.

Given a subgroup G of S(N), let

|G|q =
∑

σ∈G

ql(σ).

Proposition 2.6. Suppose H is the Young subgroup S(m1)×· · ·×S(mr) ⊆ S(N)
where m1 + · · · + mr = N . Then

∑

σ0∈DH

ql(σ0) =
[

m1 + · · · + mr

m1,m2, . . . ,mr

]

q

=
|S(N)|q

|H|q
If additionally H ′ is also a Young subgroup and σ is some fixed element of
DH′,H , then

∑

a∈H′∩DL

ql(a) =
|H ′|q
|L|q

where L is the Young subgroup generated by ΔL = ΔH′ ∩ σ(ΔH).

Proof. The first statement is equivalent to the q-Binomial theorem (see, e.g.,
Theorem 3.6 of [2]). It also follows from Proposition 2.2. Namely,

[N ]!q =
∑

σ∈S(N)

ql(σ) =
∑

b∈H

∑

σ0∈DH

ql(b)+l(σ0) = [m1]!q · · · [mr]!q
∑

σ0∈DH

ql(σ0).

For the second statement, consider the decomposition H ′ = (H ′ ∩DL)L. Then
arguing similarly,

|H ′|q =
∑

σ∈S(H′)

ql(σ) =
∑

a∈H′∩DL

∑

x′∈L

ql(a)+l(x′) = |L|q
∑

a∈H′∩DL

ql(a).

�

2.3. Interpretation as Multi-species q-TAZRP State Space

The state space for n-species q-TAZRP consists of particle configurations on a
one-dimensional lattice. Here, we take that lattice to be Z. At each lattice site,
there may be arbitrarily many particles, with n different species of particles.
The state space is therefore

(
Z

n
≥0

)Z. Each η ∈ (
Z

n
≥0

)Z can be written as
η = (ηx

i ), for x ∈ Z and 1 ≤ i ≤ n, where ηx
i denotes the number of particles

of species i located at lattice site x.
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In general, a particle configuration can have infinitely many particles.
When restricting to states with finitely many particles, there is another con-
venient way of writing particle configurations. Assume there are Nk particles
of species k (1 ≤ k ≤ n). Set N = N1 + · · · + Nn to be the total number of
particles. Let N denote (N1, . . . , Nn). For i ≤ j let N[i,j] denote Ni + · · ·+Nj .
A particle configuration can be expressed as a pair (x, σ), where

x = (x1 ≥ x2 ≥ · · · ≥ xN )

indicates the location of the particles (Fig. 3). Let σ ∈ S(N) denote the
ordering of the species, in the sense that if σ is written in two-line notation as

(
σ1 σ2 · · · σN

1 2 · · · N

)

,

so that σj = σ−1(j), then the Nk particles of species k are located at the
lattice sites

xσN[1,k−1]+1 , . . . , xσN[1,k]
. (1)

An equivalent description of the particle configuration (x, σ) is as follows.
For

x ∈ WN := {(x1, . . . , xN ) : x1 ≥ . . . ≥ xN} ⊂ Z
N ,

define m(x) = (m1, . . . ,mr) so that

x1 = · · · = xm1 > xm1+1 = · · · = xm1+m2 > xm1+m2+1 = · · · = · · ·
> xm1+···+mr−1+1 = · · · = xN ,

where mr is defined by m1 + · · · + mr = N . Also define k1, . . . , kN by k1 =
· · · = kN1 = 1, kN1+1 = · · · = kN1+N2 = 2, . . .. Then the particles located at
the lattice site xm1+···+ms+1 = · · · = xm1+···+ms+1 have species

kσ(m1+···+ms+1), . . . , kσ(m1+···+ms+1). (2)

Note that σ(j) is not the same as σj in this notation.
Because more than one particle can occupy a site, the map WN ×S(N) →

(Zn
≥0)

Z is not injective.

Example 2. Consider the particle configuration shown in the left side of Fig. 1.
There is more than one σ ∈ S(N) which defines this particle configuration,
and it is not hard to see that σ = 21467358 has the fewest inversions. In
fact, this σ is the element s5s4s3s1s6s5 ∈ DH′,H from the previous example,
where the H = S(m(x)) = S(1) × S(2) × S(2) × S(3) and H ′ = S(N) =
S(1) × S(2) × S(2) × S(2) × S(1).

It is straightforward to see that the permutations 21476358, 21567438,
and 35178426 also describe the same particle configuration as σ, but have more
inversions. These turn out to be in the double coset H ′σH of σ, because it can
be seen through direct calculation that the decompositions from Proposition
2.3(b) take the form
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Figure 1. Particle configuration referenced in Example 2

21476358 = e · s5s4s3s1s6s5 · s6,

21567438 = s6 · s5s4s3s1s6s5 · s4,

35178426 = s6s2 · s5s4s3s1s6s5 · s7s6s4s2.

Note that 21476358 is also equal to s4 · s5s4s3s1s6s5 · e, demonstrating that
s4 /∈ DL. These calculations can be found at the end of the document.

The above example is true in general.

Proposition 2.7. (a) Set H = S(m(x)) and H ′ = S(N). Consider a fixed
particle configuration with particles located at x, and then, consider the
set of all permutations τ ∈ S(N) such that (x, τ) expresses the particle
configuration. This set is a double coset H ′σH for some σ ∈ DH′,H .

(b) Suppose that the particle configuration defined by (x, σ) for some σ ∈
DH′,H has two particles of the same species ki = ki+1 at the same lattice
site. Then si ∈ L where ΔL := ΔH′ ∩ τσ(ΔH).

Conversely, suppose that σ ∈ DH′,H and si ∈ L, where ΔL := ΔH′ ∩
τσ(ΔH). Then the particle configuration defined by (x, σ) has two particles
of the same species ki = ki+1 at the same lattice site.

(c) Suppose that si satisfies the same assumptions as in (b). Suppose there
is some sj ∈ H such that τσsj = si. Then siσ = σsj.

Conversely, suppose that siσ = σsj for some sj ∈ H. Then τσsj = si.

Proof. (a) By (2), (x, σ) and (x, σb), define the same particle configuration
if and only if b ∈ H. By (1), (x, σb) and (x, aσb), define the same particle
configuration if and only if a ∈ H ′. This shows part (a).

(b) Suppose that the lattice site is xj = xj+1. Then siσ = σsj , violating
the uniqueness condition in 2.3(b), which can only hold if si /∈ DL. Since
si /∈ DL, then by Proposition 2.2(b) it can be written as si = ax for some
a ∈ DL and some nonidentity x ∈ L, such that l(si) = l(a) + l(x). But
l(si) = 1 and l(x) ≥ 1, which must imply that a = e, and thus, si ∈ L.

Conversely, suppose that si ∈ L. Then si /∈ DL, and so by the uniqueness
property of Proposition 2.3(b), siσ = aσb where either a ∈ H ′ ∩ DL or
b ∈ H. The element b cannot be the identity element e, for otherwise
si = a ∈ DL. Therefore, l(siσ) = l(a) + l(σ) + l(b) ≥ l(σ) + 1, so by
Proposition 2.1(c) the element a must be the identity and the element b
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must be some sj ∈ H. Therefore, the lattice site xj = xj+1 contains two
particles of species ki = ki+1.

(c) Assume that τσsj = si. Then τsiσsj = −si, so by Proposition 2.1(b),
l(siσ) = l(σ) + 1. By the unique decomposition, siσ = σsl for some
sl ∈ H. But this implies that τστsl

sj = τσsl
sj = τsiσsj = −si, so by

assumption τsl
sj = −sj . This can only hold if sl = sj , as needed.

For the converse implication, we have that l(siσ) = 1 + l(σ). Therefore,
τsi

takes a positive root in τσ(Φ+) and makes it negative. By Proposition
2.1(a), this root must be si. In other words, si ∈ τσ(Φ+) and si /∈ τsiσ(Φ+) =
τσsj

(Φ+). Therefore, τ−1
σ (si) ∈ Φ+ and τsj

τ−1
σ (si) /∈ Φ+. This implies that

τ−1
σ si = sj , as needed. �

Remark. Part (a) of the proposition appears to be equivalent to results in [11],
where the bijection is stated in terms of arrays rather than particle configura-
tions. Part (c) can also be seen by comparing Theorem 2.7.4 of [6] and Lemma
2 of [17], which had been previously announced in [20], p. 26 and appeared (in
geometric form) in [21], section 12.2.

The previous theorem motivates the following definition. Given a particle
configuration (x, σ), where m(x) = (m1, . . . ,mr) and the species numbers are
given by (N1, . . . , Nn), let Lij denote the number of species j particles located
at the lattice site xm1+···+mi

. Here the ranges of i and j are given by 1 ≤ i ≤ r
and 1 ≤ j ≤ n.

3. q-TAZRP

3.1. Dynamics

Let us define the dynamics of the multi-species q-TAZRP. A visual example is
shown in Fig. 2.

For a particle configuration ξ = (ξx
i ), the jump rates for an ith species

particle at lattice site x to jump one step to the right are

bx · qξx
1+···+ξx

i−1 [ξx
i ]q,

where (bx)x∈Z are the inhomogeneity parameters, which we assume to be pos-
itive uniformly bounded.

Let us define the generator explicitly. If η = (ηx
i ) and ξ = (ξx

i ) are related
by

ηy
j = ξy

j − 1, ηy+1
j = ξy+1

j + 1

for some j, y, with all ηx
i = ξx

i for all other values of i, x, then write η = ξ(j, y).
Then the generator is defined by

LmqTAZRP(ξ, ξ(j, y)) = byqξy
1+···+ξy

j−1 [ξy
j ]q.

If the particle configuration ξ(j, y) does not exist, then formally set ξ(j, y) = ξ.
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Figure 2. Example of jump rates for the homogeneous q-
TAZRP, with time scaled by 1−q. The left image shows single
species, and the right image shows multi-species. Note that
q4[1]q + q2[2]q + [2]q = [5]q
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3.2. Initial Conditions

We now define a class of probability measures on the multi-species q-TAZRP
state space. By Proposition 2.7, a particle configuration with N particles can
be written uniquely as (x, σ) where σ ∈ DH′,H , H ′ = S(N),H = S(m(x)).

Definition 3.1. A probability measure on
∐

x∈WN

{x}×DH′,H is q-exchangeable
if

q−l(σ) · Prob(x, σ) = q−l(σ′) · Prob(x, σ′)

for all x ∈ WN and σ, σ′ ∈ DH′,H .
If a q-exchangeable probability measure satisfies

Prob(x, σ) = 1{x=y}
ql(σ)

Z
,

then we say that it is supported on y.

See [9,10] for a general treatment of q-exchangeable measures.

3.3. Markov Projections

From the identity

[a]q + qa[b]q = [a + b]q, (3)

it is not hard1 to see that there is a Markov projection property. Namely,
suppose Π is a partition of {1, . . . , n} into k blocks of consecutive integers:

Π = {Π1, . . . ,Πk} = {{1, . . . , p1}, {p1 + 1, . . . , p1 + p2}, . . .

{p1 + · · · + pk−1 + 1, . . . , n}}.
Then there is a corresponding projection

π : (Zn
≥0)

Z → (Zk
≥0)

Z

such that for η = π(ξ),

ηx
i =

∑

j∈Πi

ξx
j , for 1 ≤ i ≤ k.

The Markov projection property here says that

LmqTAZRP(π(ξ), η) =
∑

ψ∈π−1(η)

LmqTAZRP(ξ, ψ), η ∈ (Zk
≥0)

Z, ξ ∈ (Zn
≥0)

Z.

1It was first explicitly stated and proved in [12] for the homogeneous case (see also [13] for a
more general totally asymmetric zero range process), but the proof for the in homogeneous
multi-species q-TAZRP is not hard.
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3.4. Previous Results from Single-Species q-TAZRP

3.4.1. Stationary Measures. For a (single-species) zero range process with cer-
tain mild conditions, the stationary measures can be found (see [1]). When
n = 1, and all by are equal (i.e., in the homogeneous case), the stationary
measures are given by

P
α(ξx

1 = k) = (α; q)∞
αk

(q; q)k
, (4)

where α ∈ [0, 1) is a parameter. Note that when α → 1, the normalization
factor (α; q)∞ equals 0. Thus, even though P

1 still defines a measure preserved
by the generator, but it is not a probability measure.

3.4.2. Transition Probabilities for the Single-Species q-TAZRP. Here, let

S(β,α) = −qwβ − wα

qwα − wβ

and set

Aσ =
∏

(β,α) is an inversion of σ

S(β,α).

By Theorem 1.1 of [25], which generalizes the homogeneous case proved in
Theorem 2.6 of [14], given an initial condition Y = (y1, . . . , yN ) and another
particle configuration X = (x1, . . . , xN ), the transition probabilities are

PY (X; t) =
1

[N ]!q

[
N

m(x)

]

q

(
1

2πi

)N ∫

CR

· · ·
∫

CR

∑

σ∈SN

Aσ

×
N∏

j=1

⎡

⎣
xj∏

k=yσ(j)

(
bk

bk − wσ(j)

)

e−wjt

⎤

⎦ dw1 · · · dwN . (5)

where the contours are counterclockwise circles centered at the origin with
large radius R. The poles bk and qwi need to be enclosed, but not q−1wl,
where i < j and l > j. Recall that the bk need to be bounded. The usual
definition of the product is extended to

n∏

k=m

f(k) =

⎧
⎪⎨

⎪⎩

∏n
k=m f(k), if n ≥ m

1, if n = m − 1
∏m−1

k=n+1
1

f(k) , if n < m − 1.

In Remark 1.2 of [25], it is remarked that the pre-factor
1

[N ]!q

[
N

m(x)

]

q

is related to the stationary measures of the q-TAZRP, with a brief explanation
given. A similar statement will hold for the multi-species q-TAZRP.
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3.5. Statement of Main Theorems

Recall the definition of Lij at the end of Sect. 2.

Theorem 3.2. Let N = (N1, . . . , Nn). Fix y = (y1, . . . , yN ) and x = (x1, . . . ,
xN ), and let σ ∈ DH′,H where H ′ = S(N) and H = S(m(x)). Given q-
exchangeable initial conditions supported at y,

Prob((x, σ) at time t) =
ql(σ)

[N ]!q
·
( ∏n

j=1[Nj ]
!
q

∏n
j=1

∏r
i=1[Lij ]!q

)

×
(

1

2πi

)N ∫

CR

· · ·
∫

CR

∑

τ∈SN

Aτ

N∏

j=1

⎡

⎣
xj∏

k=yτ(j)

(
bk

bk − wτ(j)

)

e−wjt

⎤

⎦ dw1 · · · dwN

Remark 3.3. When N = (N), the product in the denominator simplifies to∏r
i=1[mi]!q, and DH′,H = {e}, so the theorem reduces to the single-species

case. If N = (1, . . . , 1), then the q-multinomial terms are all equal to 1.

Theorem 3.4. For α ∈ [0, 1), let P(α) be the stationary measure for homoge-
neous single-species q-TAZRP, defined by (4). Then the q-exchangeable prob-
ability measure defined by

Prob(x, σ) =
ql(σ)

Z
P

(α)(x)

is a stationary measure for the homogeneous multi-species q-TAZRP.

3.6. Proof of Main Theorems

3.6.1. The Simplest Case. Consider the simplest case, when there is exactly
one particle of each species. From a probabilistic perspective, one might expect
the “simplest” case to be when there is only one particle of species number 2
with other particles of species number 1. However, from the algebraic perspec-
tive, the subgroup H ′ = S(N) ⊆ S(N) is trivial when H ′ = {e} or S(N), and
the former situation corresponds to having exactly one particle of each species,
while the latter situation corresponds to having only species 1 particles.

By the Markov projection property, the more general case follows from
this simple case immediately. To see this, suppose that we have already shown
Theorem 3.2 when N = (1, . . . , 1). Then σ0 can take any value in DH , and for
any σ0 ∈ DH ,

Prob((x, σ
0
) at time t)

=
ql(σ0)

[N ]!q

(
1

2πi

)N ∫

CR

· · ·
∫

CR

∑

τ∈SN

Aτ

N∏

j=1

⎡

⎣
xj∏

k=yτ(j)

(
bk

bk − wτ(j)

)

e
−wjt

⎤

⎦ dw1 · · · dwN

Now consider the general case of N = (N1, . . . , Nn) and set H ′ = S(N).
The projection map (ZN

≥0)
Z → (ZN

≥0)
Z can be expressed in terms of permu-

tations in S(N) in the following way. By Lemma 2.4, any σ0 ∈ DH can be
uniquely decomposed as σ0 = aσ where a ∈ H ′ ∩ DL and σ ∈ DH′,H , and in
this decomposition

π(x, σ0) = (x, σ)
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Lemma 2.4 also implies that for any fixed σ ∈ DH′,H the set of all σ0 such that
π(x, σ0) = (x, σ) is precisely the set of σ0 ∈ DH which can be decomposed as
σ0 = aσ for a ∈ H ′ ∩ DL. Thus, the Markov projection property then implies
that

Prob((x, σ) at time t) =
∑

a∈H′∩DL

Prob((x, aσ) at time t)

=
∑

a∈H′∩DL

ql(aσ)

[N ]!q

(
1

2πi

)N ∫

CR

· · ·
∫

CR

∑

τ∈SN

Aτ

×
N∏

j=1

⎡

⎣
xj∏

k=yτ(j)

(
bk

bk − wτ(j)

)

e−wjt

⎤

⎦ dw1 · · · dwN

= ql(σ)
∑

a∈H′∩DL

ql(a)

[N ]!q

(
1

2πi

)N ∫

CR

· · ·
∫

CR

∑

τ∈SN

Aτ

×
N∏

j=1

⎡

⎣
xj∏

k=yτ(j)

(
bk

bk − wτ(j)

)

e−wjt

⎤

⎦ dw1 · · · dwN

Applying Proposition 2.6 to the sum over H ′ ∩ DL shows the more general
case.

It thus remains only to prove Theorem 3.2 when N = (1, . . . , 1).

3.6.2. Master Equation When N = (1, . . . , 1). The dynamics can also be
defined by stating the master equation. Recall from the definition of the gen-
erator that for a particle configuration ξ, the particle configuration obtained
by moving a species j particle from y to y + 1 is denoted ξ(j, y). Let ξ−(j,y)

denote the particle configuration obtained by moving a species j particle from
y to y − 1. The master equation is then (where the “at time” is omitted)

d

dt
Prob((x, σ); t) = −wt(x)Prob((x, σ); t)

+
∑

LmqTAZRP((x, σ)−(j,y), (x, σ)) · Prob((x, σ)−(j,y); t),

where the sum is taken over all (j, y) such that the corresponding particle
configuration is still well defined. The quantity wt(x) is the inverse of the
expected amount of time the particle configuration spends at (x, σ) and is
equal to

wt(x) =
r∑

s=1

bxm1+···+ms
[ms]q. (6)

When N = (1, . . . , 1), the master equation and generator have a nice
expression in terms of permutations σ ∈ S(N). Given x ∈ WN and 1 ≤ k ≤
N , the sequence (x1, . . . , xk−1, xk − 1, xk+1, . . . , xN ) is generally not in WN .
However, rearranging the terms in the sequence produces a unique element of
WN , which we denote x−k (Fig. 3). Consider

σ = σsk+dsk+d−1 · · · sk,
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k

k

Figure 3. Particle configuration on the left corresponds to
(x, σ) where x = (5, 4, 4, 2, 2, 2, 1) and σ = 4351672

Figure 4. Particle configuration on the left corresponds to
σ = 2164357. Set k = 4. Then σ := σ · s4 = 2165347, which
describes the same particle configuration on the left. (One
should imagine that the 4© and the 6© have switched places.)
The particle configuration on the right corresponds to σ̂ =
2156347, and note that σ = σ̂ · s5. The jump rate can be
determined entirely from σ and σ̂

where d is the largest integer such that sk, . . . , sk+d are all in H. Let Ĥ =
S(m(x−k)). In general, σ need not be an element of DH′,Ĥ = DĤ . Let σ̂

be the unique element of DĤ such that its coset H ′σ̂Ĥ = σ̂Ĥ contains σ.
Then σ = σ̂b for some b ∈ Ĥ, and l(σ) = l(σ̂) + l(b). The generator has the
expression

LmqTAZRP((x−k, σ̂), (x, σ)) = ql(b) = ql(σ)−l(σ̂)

The particle configuration (x−k, σ̂) should be understood as being obtained
from x, σ̂) by moving the kth particle one step to the left. See Fig. 4 for an
example.

Lemma 3.5. Let τ = σsj and suppose that l(τ) = l(σ) − 1. Then

ql(τ̂)LmqTAZRP((x−k, τ̂), (x, τ)) = q−1ql(σ̂)LmqTAZRP((x−k, σ̂), (x, σ))

Proof. It suffices to show that

l(τ) = l(σ) − 1.

By definition, τ = σsjsk+d · · · sk. By Lemma 2.5, both σ and σsj are in
DH′,H = DH , so

l(τ) = l(σsj) + d + 1, l(σ) = l(σ) + d + 1.

Since l(σj) = l(σ) − 1 by assumption, this proves the lemma. �
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We now show that

q−l(σ) · Prob((x, σ); t) = q−l(τ) · Prob((x, τ); t).

Proceed by induction on the value of x1+· · ·+xN . The base case is when x = y,
in which case the result follows because the initial condition is q-exchangeable.

It suffices to consider the case when τ = σsj and l(τ) = l(σ)−1. In order
to apply the induction hypothesis, we use the lemma to rewrite the master
equation as

d

dt
Prob((x, σ); t) = −wt(x)Prob((x, σ); t)

+

N∑

k=1

LmqTAZRP((x
−k, σ̂), (x, σ)) · Prob((x−k, σ̂); t)

= −wt(x)Prob((x, σ); t) + q

N∑

k=1

ql(τ̂)−l(σ̂)LmqTAZRP((x
−k, τ̂), (x, τ))

· Prob((x−k, σ̂); t).

And now applying the induction hypothesis shows that

d
dt

Prob((x, σ); t) = −wt(x)Prob((x, σ); t)

+q

N∑

k=1

LmqTAZRP((x−k, τ̂), (x, τ)) · Prob((x−k, τ̂); t)

At the same time, the master equation tells us directly that

d
dt

[qProb((x, τ); t)] = −wt(x) · [qProb((x, τ); t)]

+q
N∑

k=1

LmqTAZRP((x−k, τ̂), (x, τ)) · Prob((x−k, τ̂); t)

Therefore, Prob((x, σ); t) and qProb((x, τ); t) satisfy the same differential
equation, and because the initial condition is q-exchangeable, they must have
the same value at t = 0. Therefore, they are equal for all values of t, completing
the inductive step.

By the first part of Theorem 2.6 and the Markov projection property,
this reduces the theorem for N = (1, . . . , 1) to the single-species case, which is
already known, thus completing the proof.

3.6.3. Proof of Theorem 3.4. To show that this defines a stationary measure,
it suffices to apply the differential operator which defines the master equation
and show the result is 0.

Suppose m(x) = (m1, . . . ,mr). Suppose that the lattice site xms
, there

are m
(j)
s particles of species j. Then the stationary measures are given by

ql(σ)

[m(1)
1 ]!q · · · [m(1)

r ]!q[m
(2)
1 ]!q · · · [m(2)

r ]!q · · · [m(n)
1 ]!q · · · [m(n)

r ]!q
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Therefore, using (3) to expand wt(x), and using the same notation for the
master equation as in the previous section, we want to show

N∑

k=1

ql(σ̂)LmqTAZRP((x−k, σ̂), (x, σ))

× [m(j)
s ]q

[m(1)
1 ]!q · · · [m(1)

r ]!q[m
(2)
1 ]!q · · · [m(2)

r ]!q · · · [m(n)
1 ]!q · · · [m(n)

r ]!q

= ql(σ)

∑r
s=1

∑n
j=1 qm(j+1)

s +···+m(n)
s [m(j)

s ]q

[m(1)
1 ]!q · · · [m(1)

r ]!q[m
(2)
1 ]!q · · · [m(2)

r ]!q · · · [m(n)
1 ]!q · · · [m(n)

r ]!q
.

On the left-hand side, the (j, s) is related to k in that the kth particle is of
species j located at lattice site xm1+···+ms

. The [m(j)
s ]q occurs in the numerator

because the corresponding term in the denominator is replaced with [m(j)
s −1]!q.

By inserting the expression for the generator, it suffices to show that

l(σ̂) + m
(1)
s+1 + · · · + m

(j−1)
s+1 = l(σ) + m(j+1)

s + · · · + m(n)
s .

However, this is straightforward from the definition of the dynamics.

4. Multi-species ASEP

Let us begin by recalling a few results of the single-species ASEP.

4.1. Single-Species ASEP

Let Z ⊆ Z be a finite or infinite subset of the set of integers. Given X ∈ 2Z

(the subsets of Z) and x ∈ X, define

Xx→x+1 = (X\{x}) ∪ {x + 1}, if x + 1 ∈ Z\X,

Xx→x−1 = (X\{x}) ∪ {x − 1}, if x − 1 ∈ Z\X.

In every other case, formally set Xx→x±1 to be undefined.
Define ASEP on Z to be the continuous-time Markov process on state

space X ∈ 2Z with generator

LASEP[Z](X,X ′) =

⎧
⎪⎨

⎪⎩

1, if X ′ = Xx→x+1 for some x ∈ X,

q, if X ′ = Xx→x−1 for some x ∈ X,

0, if X ′ �= X,Xx→x±1 for all x ∈ X,

and let LASEP[Z](X,X) be the unique number such that every row of L sums to
0. The set X describes the locations where the sites are occupied by particles.
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When Z = Z, there is an explicit formula for the transition probabilities
of ASEP. Set

Sα,β = −1 + qξαξβ − ξα

1 + qξαξβ − ξβ
,

where ε(ξ) = ξ−1 + qξ − 1. Then for ASEP[Z] with jumps to the right of rate
1 and jumps to the left of rate q, the transition probabilities were found in
[22]2:

PASEP
Y (X; t)

=
(

1
2πi

)N ∑

σ∈SN

∫

Cr

· · ·
∫

Cr

Aσ

∏

i

ξ
xi−yσ(i)−1

σ(i) e(1+q)
∑

i ε(ξi)tdξ1 · · · dξN ,

where the contour integrals are very small.

4.2. Definition of Multi-species ASEP

Let us define the generator for the multi-species ASEP (mASEP) on Z ⊆ Z.
Additionally fix N = (N1, . . . , Nn). In this case, the state space will consist of
pairs (x, σ), where

x ∈ W+
N = {(x1 > x2 > · · · > xN ) : xi ∈ Z} ⊂ ZN

and σ ∈ D−1
H′ , where H ′ = S(N). By a slight abuse of notation, x will be

equivalently considered as a subset of Z. The generator is then defined by
having off-diagonal entries

LmASEP[Z]((x, σ), (x′, σ′))

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if x′ = xx→x+1 for some x ∈ X and σ = σ′,
q, if x′ = xx→x−1 for some x ∈ X and σ = σ′,
1, if x′ = x and σ′ = σ ◦ (r r + 1) for some r and l(σ′) = l(σ) − 1,
q, if x′ = x and σ′ = σ ◦ (r r + 1) for some r and l(σ′) = l(σ) + 1,
0, else.

The diagonal entries LmASEP[Z]((x, σ), (x, σ)) are defined so that the rows sum
to 0. The set x indicates the locations where the sites are occupied by particles
and σ indicates the ordering of the particles. The multi-species ASEP also
satisfies the property that the projection to the first k species is again a multi-
species ASEP.

The main theorem is:

Theorem 4.1. Given q-exchangeable initial conditions supported at y, the multi-
species ASEP on Z satisfies

Prob((X,σ); t) =
(

1
2πi

)N
ql(σ)

[N1]!q · · · [Nn]!q

∑

τ∈SN

∫

Cr

· · ·
∫

Cr

Aτ

×
∏

i

ξ
xi−yτ(i)−1

τ(i) e(1+q)
∑

i ε(ξi)tdξ1 · · · dξN ,

2In [22], the formula is written where the probability of a right jump is p and the probability
of a left jump is q, where p + q = 1. To match the notation, one simply replaces the p with

1 and rescales time by a factor of 1 + q.
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4.3. Proof of Theorem 4.1

4.3.1. Generalities. Suppose that (X(t), S(t)) is a Markov process on the state
space X × S, which we assume to be countably infinite or finite. In general,
S(t) need not be Markov, but assume that X(t) is a Markov process on X .
Let LX be the generator of X(t). The generator LXS of (X(t), S(t)) can then
be written as

LXS((x, s), (x′, s′)) = LX(x, x′)M (xx′)
S (s, s′),

where M
(xx′)
S is some S × S matrix which depends on x, x′ ∈ X . More specifi-

cally, define

M
(xx′)
S (s, s′) =

⎧
⎨

⎩

LXS((x, s), (x′, s′))
LX(x, x′)

, LX(x, x′) �= 0,

1{s=s′}, LX(x, x′) = 0

Proposition 4.2. (a) If LX(x, x′) �= 0, then the matrix elements of M
(xx′)
S

satisfy

M
(xx′)
S (s, s

′
)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

lim
ε→0+

P(S(t + ε) = s
′ |X(t + ε) = x

′
and (X(t), S(t)) = (x, s)), x �= x

′
,

lim
ε→0+

ε
−1 P(S(t + ε) = s′ |X(t + ε) = x and (X(t), S(t)) = (x, s))

LX(x, x)
, x = x

′
, s �= s

′
,

1 + lim
ε→0+

ε
−1 P(S(t + ε) = s |X(t + ε) = x and (X(t), S(t)) = (x, s)) − 1

LX(x, x)
, x = x

′
, s = s

′

In particular, (−1)1{x=x′}
(
Mxx′

S − Id
)
is the generator of a continuous-

time Markov process S(xx′)(t) on S for all x, x′ ∈ X .
(b) Let ν be a probability measure on S. Then νM

(xx′)
S = ν if and only if ν

is a stationary measure of the Markov process S(xx′)(t).
(c) Suppose that ν is a stationary measure of the Markov process S(xx′)(t)

for every (x, x′) ∈ X × X . Then for any probability measure μ on X ,

(μ ⊗ ν)LXS = (μLX) ⊗ ν.

(d) Suppose that ν is a stationary measure of the Markov process S(xx′)(t) for
every (x, x′) ∈ X × X . Then for every (x′, s′) ∈ X × S and any x ∈ X ,

∑

s∈S
ν(s)P ((X(t), S(t)) = (x′, s′) | (X(0), S(0)) = (x, s))

= ν(s′)P(X(t) = x′|X(0) = x).

Proof. (a) Recall the well-known identity

P(A|B ∩ C) =
P(A ∩ B|C)
P(B|C)

,

which holds as long as P(B ∩ C) �= 0. Letting A,B,C be the events

A = {S(t + ε) = s′}, B = {X(t + ε) = x′}, C = {(X(t), S(t)) = (x, s)},
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we see that P(B ∩ C) �= 0 because LX(x, x′) �= 0. By definition,

P((X(t + ε), S(t + ε)) = (x′, s′) | (X(t), S(t)) = (x, s))

= 1{x=x′,s=s′} + LX(x, x′)M (xx′)
S (s, s′)ε + O(ε2).

Thus, we have that (using the Markov property of X(t))

P(S(t + ε) = s′ |X(t + ε) = x′ and (X(t), S(t)) = (x, s))

=
1{x=x′,s=s′} + LX(x, x′)M (xx′)

S (s, s′)ε + O(ε2)
1{x=x′} + LX(x, x′)ε + O(ε2)

.

This immediately implies the first two cases. Setting x = x′, s = s′ results
in

P(S(t + ε) = s |X(t + ε) = x and (X(t), S(t)) = (x, s)) − 1

=
LX(x, x)(M (xx)

S (s, s) − 1)ε + O(ε2)
1 + LX(x, x)ε + O(ε2)

,

which implies the third case.

The last statement follows by noticing that each row sums to 1 and that
the off-diagonal entries are nonnegative.

(b) This follows immediately from the definition of S(xx′)(t).
(c) We can compute that

[(μ ⊗ ν)LXS ] (x′, s′) =
∑

(x,s)∈X×S
μ(x)ν(s)LXS((x, s), (x′s′))

=
∑

x∈X

∑

s∈S
μ(x)LX(x, x′)ν(s)M (xx′)

S (s, s′)

= [μLX ](x′)ν(s′).

(d) The left-hand side equals
[
(δx ⊗ ν)etLXS

]
(x′, s′).

By part (c), this then equals
[
(δxetLX ) ⊗ ν

]
(x′, s′),

which equals the right-hand side.
�

4.3.2. ASEP with Distinct Species. The stationary measures of multi-species
ASEP on a finite interval with closed boundary conditions were classified in
Theorem 3.1 of [4], as well as blocking measures on the infinite lattice. See also
the comment at the end of section 2 of [3].

In the special case when Z = {1, . . . , N} and N = (1, . . . , 1), so that
every site is always occupied and there is only one particle of each species, the
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Figure 5. ASEP on Z, when Z = {1, 2, 5, 6, 7, 8, 9, 11}

stationary measure has a simple expression. Namely, let νq be the probability
measure on S(N) defined by

νq(σ) =
ql(σ)

[N ]!q
.

Then for Z = {1, . . . , N},

νqLmASEP[Z] = 0.

In other words, νq is a stationary measure.
We consider a slightly more general case, where Z ⊂ Z consists of k dis-

joint intervals, each of length Lk and separated from each other by at least
one lattice site. In this case, ASEP on Z evolves as k independent ASEPs,
one on each interval (Fig. 5). Suppose that L1 + · · · + Lk = N and again
N = (1, . . . , 1), so that again every lattice site is always occupied and there
is only one particle of each species. We have an embedding of subgroups
S(L1) × · · · × S(Lk) ⊆ S(N), so S(N) can be written as a disjoint union
of cosets

S(N) =
⊔

τ∈S(N)/(S(L1)×···×S(Lk))

τ(S(L1) × · · · × S(Lk)).

In this case, we have the following lemma:

Lemma 4.3. Let c(·) be any probability measure on the set S(N)/(S(L1)×· · ·×
S(Lk)). Then the probability measure on S(N) defined by

P(τ(σ1, . . . , σk)) = c(τ)νq(σ1) · · · νq(σk)

is a stationary measure for ASEP on Z. In particular, the probability measure
νq on S(N) is a stationary measure.

Proof. The first part of the lemma follows from the previous lemma, because
mASEP[Z] is independent copies of mASEP on each interval.

For the second part of the lemma, we take

c(τ) ∝ ql(τ),

where τ is the coset representative with the fewest inversions. By Proposition
2.2(d), this results in the probability measure νq on S(N). �

Now we relate the multi-species ASEP to the framework of Proposition
4.2. The role of X will be played by W+

N and the role of S will be played by
D−1

H′ , where H ′ = S(N). Let S(xx′)(t) be the Markov process on D−1
H′ .
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Lemma 4.4. Let N = (1, . . . , 1), and consider the Markov process S(xx)(t) on
D−1

H′ = S(N). Then the Markov process (x, S(xx)(t)) is a mASEP on x, with
time rescaled by −LX(x,x).

Proof. This follows immediately from Proposition 4.2(a) and the explicit ex-
pression for the generator of mASEP. �

Proposition 4.5. Assume N = (1, . . . , 1). Suppose that the initial condition Y
is q-exchangeable. Then for σ, σ0 in SN , and for all t ≥ 0,

q−l(σ) · Prob((x, σ); t) = q−l(σ0) · Prob((x, σ0); t).

Proof. The theorem follows immediately from Proposition 4.2(c), Lemma 4.3
and Lemma 4.4. Namely, the two lemmas tell us that the q-exchangeability
of the initial conditions implies that the initial condition is of the form (μ ⊗
ν). Proposition 4.2(c) then implies that the probability distribution is still
of the same form at all times, which means that the distribution is still q-
exchangeable. This is exactly the statement of the theorem. �

4.3.3. The General Case. By Proposition 4.2(d) and the result for the single-
species ASEP, when N = (1, . . . , 1) the probability distribution is given by

Prob((x, σ0); t) =
(

1
2πi

)N
ql(σ0)

[N ]!q

∑

τ∈SN

∫

Cr

· · ·
∫

Cr

Aτ

×
∏

i

ξ
xi−yτ(i)−1

τ(i) e(1+q)
∑

i ε(ξi)tdξ1 · · · dξN ,

where σ0 ∈ S(N). The more general case when N is arbitrary now follows
from the Markov projection property and Proposition 2.6: for σ ∈ D−1

H′ ,

Prob((x, σ); t) =
∑

σ0∈S(N)

σ0=aσ,a∈H′

Prob((x, σ0); t)

=
∑

a∈H′

(
1

2πi

)N
ql(a)+l(σ)

[N ]!q

∑

τ∈SN

∫

Cr

· · ·
∫

Cr

Aτ

×
∏

i

ξ
xi−yτ(i)−1

τ(i) e(1+q)
∑

i ε(ξi)tdξ1 · · · dξN ,

yielding the theorem.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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Appendix

The calculations used in Example 2. For instance, the second image in the top
row shows 21476358 = s5s4s3s1s6s5s6. The transposition si switches the braids
in the ith and (i + 1)th column. To read the multiplication of s5s4s3s1s6s5s6,
read from top to bottom in the diagram, starting from s6 on the right and
ending with s5 on the left. To read the permutation 21476358 in one-line
notation, simply follow the numbering of the strands from top to bottom.

1 2 3 4 5 6 7 8

2 1 4 6 7 3 5 8

1 2 3 4 5 6 7 8

2 1 4 7 6 3 5 8

1 2 3 4 5 6 7 8

2 1 5 6 7 4 3 8
1 2 3 4 5 6 7 8

3 5 1 7 8 4 2 6
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