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Probability Distributions of Multi-species
g-TAZRP and ASEP as Double Cosets
of Parabolic Subgroups

Jeffrey Kuan

Abstract. We write explicit contour integral formulas for probability dis-
tributions of the multi-species ¢-TAZRP and the multi-species ASEP
starting with g-exchangeable initial conditions. The formulas are equal
to the corresponding explicit contour integral formulas for the single-
species ¢-TAZRP (Korhonen and Lee in J Math Phys 55:013301, 2014.
arXiv:1308.4769v2, Wang and Waugh in SIGMA 12:037, 2016.
arXiv:1512.01612v5) and ASEP (Tracy and Widom in Integral formu-
las for the asymmetric simple exclusion process, 2007. arXiv:0704.2633),
with a factor in front of the integral. For the multi-species ¢-TAZRP, we
use a decomposition theorem for elements of double cosets of parabolic
subgroups in a Coxeter group. The set of distinguished double coset rep-
resentatives with minimal length is viewed as a particle configuration. For
the multi-species ASEP, we use a more direct proof.

Mathematics Subject Classification. Primary 05E15; Secondary 60C05.

1. Introduction

ASEP (asymmetric simple exclusion process, introduced in [18]) and ¢-TAZRP
(totally asymmetric zero range process, introduced in [16]) are examples of in-
tegrable models for which exact formulas for the transition probabilities can be
written. When considering the models on the infinite line, these formulas are
expressed as explicit N-fold contour integrals, where N is the number of parti-
cles in the system, and were found in [22] (for ASEP) and [14] (for ¢-TAZRP;
see also [25] for the inhomogeneous case) using Bethe Ansatz methods.
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There are multi-species (also called multi-class) generalizations of ASEP
and ¢-TAZRP, introduced in [15,19], respectively. In these multi-species mod-
els, there are n species of particles, such that the projection onto the first k
species is Markov. In [23], the authors consider multi-species ASEP and prove
explicit contour integral formulas for the location of the second class particle
when the initial condition consists of a single second class particle located at
0 and first class particles located at {1,2,...}. In subsequent work [24], the
same authors prove contour integral formulas for the transition probabilities
for any initial condition and any number of species, assuming the number of
particles is finite. However, the integrand is not explicitly written, except in a
few cases, but is instead defined as a solution to certain consistency relations
which are written in terms of the braid relations.

In this paper, we consider multi-species ASEP and ¢-TAZRP with ¢-
exchangeable initial conditions. These are initial conditions in which switching
two nearest neighbor particles of different species multiplies the probability
by a factor of ¢. We find explicit contour integral formulas for the probability
distributions, which are equal to the corresponding formulas for the single-
species models, with a multiplicative factor in front of the integral.

To prove the result for the multi-species ¢-TAZRP, we use a result from
the theory of Coxeter groups, which uniquely decomposes elements of double
cosets of parabolic subgroups. Roughly speaking, the left cosets correspond to
allowing more than one particle to occupy a site, and the right cosets corre-
spond to having more than one species of particles. The decomposition pre-
serves the length function, and the dynamics can also be written in terms of
the length function. For the multi-species ASEP, only one particle may occupy
a site, so a more direct proof from Markov process generalities is used.

In Sect. 2, we state and prove some lemmas involving Coxeter groups.
Section 3 shows the result for multi-species ¢-TAZRP, and Sect. 4 shows the
result for multi-species ASEP.

2. Background and Preliminary Lemmas

2.1. Coxeter Groups

We recall some results about finite Coxeter groups; see, e.g., [6]. A finite Coz-
eter group is a group W with a presentation

W=(seS:s>=cforall s €S and (s;5;)"*%) = ¢ for all s;,5; € S)

where m(s;, s;) is the order of s;s;.
If S has [ elements, there is a representation 7 of W onto an [-dimensional

vector space V. Let ay,...,a; be a basis of V' and define a bilinear form on V'
by
T
(e, o) = —cos .
mij

The map 75, is defined by

Ts; (V) = v — 2{cv;, V).
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This is the reflection across the hyperplane perpendicular to «;. The set A =
{a1,...,q;} is called the set of simple roots, and ® = W(A) is the set of all
roots. Each root o« € ® has the form o = 22:1 A\;a; where either all \; > 0 or
all \; < 0. Define the set & of all positive roots to be the a € ® for which all
Ai > 0.

The length function I(w) is the minimal length of an expression of w as
a product of generators s; € S.

Proposition 2.1. (a) The only positive root made negative by T, is c.
(b) For any w, the length l(w) is the number of positive roots made negative
by w.
(¢) For any w, the l(ws;) is either l(w) + 1 or l(w) — 1. Similarly, I(s;w) is
either l(w) + 1 or l(w) — 1.

Proof. Parts (a), (b), (c) follow from Propositions 2.2.6, 2.2.7 and 2.2.8 of [6],
respectively. 0

Given a subset J C S, let W be the subgroup of S generated by J. Sub-
groups of this type are called parabolic subgroups and are themselves Coxeter
groups. Let Ay C A be the set of simple roots a; such that s; € J.

Proposition 2.2. Fiz a parabolic subgroup Wy in W. Then:

(a) Every left coset of Wy has a unique representative with the fewest number
of inversions in that coset.

(b) Let D denote the set of distinguished coset representative from part (a).
Every w € W has a unique decomposition w = w'w where w € Wy and
w® € Dy, which satisfies l(w) = I(w®) + |(W).

(¢) The set Dy can be described by {w € W : 7,(A;) C ®T}.

(d) Every right coset of W has a unique representative with the fewest num-
ber of inversions in that coset, and D;l is the set of these coset repre-
sentatives. Furthermore, there is a unique decomposition w = wwqy where
w € Wy and wy € D} which satisfies l(w) = (W) + I(wy).

Proof. This is Proposition 2.3.3 of [6]. O

We will also need some results about double cosets. Let W be another
parabolic subgroup of W, and define D g = D;l N Dg. Also see Corollary
2.8 of [5], which references Proposition 8.3 of [8] and Theorem (1.2) of [7], for
similar statements.

Proposition 2.3. (a) Each double coset WywWg contains a unique element
of Dy, and every w € D j i 1s the unique element of minimal inversions
in its double coset WywWi .

(b) Let w € Dy and let L be the parabolic subgroup defined by Ay =
Ay Nw(Ag). Every element of the double coset WywWi is uniquely
expressible in the form awb, where a € W; N Dy, and b € Wy . Further-
more, l(awd) = l(a) + I(w) + 1(b).

(¢) The elements a and b can be constructed as follows. For zwy, let x =
az’ be the decomposition arising from W; = (W; N D)L, and let b =

wlz'wy.
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(d) If wy € D', then in the decomposition wo = awb in (b), the element a
is the identity.

(e) If w’ € D, then in the decomposition w® = awb in (b), the element b is
the identity.

Proof. Part (a) is Proposition 2.7.3 of [6].

Part (b) is Proposition 2.7.5 of [6].

Part (c) follows from the first paragraph of the proof of Proposition 2.7.5
in [6].

In part (d), there is a unique w € Dy i such that wy € WywWg, so
take wg = awb as in (c). Since wy € D}l, it is the unique element of its
right coset W wy with the fewest number of inversions. But the right coset
Wywo equals Wiawb = Wywb, which implies that I(wg) < I(wb) . Since w €
Dy C Dk, then by the previous proposition I(wb) = l(w) + I(b). Therefore,
l(wg) = l(a) + l(w) + 1(b) < l(w) + 1(b), so l(a) = 0, implying that a is the
identity.

The proof of (e) is identical to the proof of (d). O

Note that the previous proposition is not true if a is only required to be
an element of W.

Part (a) implies that |Dj x| = |W;\W/Wk]|. By the Cauchy-Frobenius
lemma,

WAW/Wi| = — 3 wiz|

‘WJHWKl (z,y) EW s x Wk

where W(*¥) is the set of w € W such that zwy ' = w. Because W (:¢) =
we must have |Dj x| > |W|/(]W;||Wk|). In particular, the map from (d)

D;l — DL])K X Wk

wo — (w7 b)

w,

is an injection but in general not a surjection. However, we do have:
Lemma 2.4. The decomposition from (e) defines a map

Dig — H (WJQDL)X{’LU}
’UJGD‘],K
w’ = (a,w),
where L depends on w, which is a bijection satisfying l(w®) = I(a) + I(w).

Proof. Tt is injective due to the uniqueness property in (b). To show it is
surjective, it suffices to construct an inverse. In other words, we want to show
that zw € Dk for any w € Dj g and © € W; N Dy. Indeed, by part (c), one
takes the unique decomposition = az’ from W; = (W; N D)W, but we
must have a = x because x € W; N Dy. Therefore, zw = aw = awb for a
unique b € Wi, but clearly this means that b = e. O

The next lemma will be useful at a later conjecture, but since it is true
for Coxeter groups in general, we state it here.
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Lemma 2.5. Suppose that 0 € Dy, and l(s;0) = l(os;) =1(0) — 1. Then s;o
and os; are both in Dj k.

Proof. Suppose that os; ¢ D ;. Then there exist x € W; and y € Wg such
that [(zos;y) < l(os;). This implies that {(zoy) < l(zos;y) + 1 < I(os;) <
(o), which contradicts the assumption that o € D k. The proof for s;o is
identical. O

When the Coxeter group W is the symmetric group S(N) and the gen-
erators S = {s1,...,S$n_1} are the transpositions s; = (i i+ 1), the parabolic
subgroups are called Young subgroups. We will write Young subgroups as
H = S(my) x S(ma) x --- x S(m,), where S(my) acts on {1,...,mq}, S(m2)

acts on {my +1,...,m1 +ma}, and so on. The positive integers my,...,m,
will be assumed to sum to N, so terms S(1) are not excluded. Given a se-
quence of integers m = (mgy,...,m,), let S(m) denote the Young subgroup

S(my) x S(ma) X -+ x S(m,).

By a slight abuse of notation, when W; = H’ and Wx = H, the sets
DJ7K, Dy, A; will be denoted DH’,H; Dy, Ag:. The length function Z(O') on
S(N) is the number of inversions of a permutation, that is, the number of pairs
(4,7) such that i < j and o (i) > o(j).

Ezample 1. Let H = S(1) x S(2) x S(2) x S(3) and H' = S(1) x S(2) x
S(2) x S(2) x S(1). The set of simple roots are Ay = {9, a4, ap, a7} and
Ap = {ag,aq,06}. Set 0 = $55483818685. Then
ToS2 = S1 + 82+ 83 + 54 + 55
ToS4 = 83 + 84+ S5 + S6
ToS6 = S4
ToS7T = 85 + 86 + 57
(75) " 's4 = s6
(70)7182 = 51 + S92 + S3
(76) 's6 = s34 54
showing that 7,(Ay) C ®* and 7, '(Ap/) C ®T, and thus, 0 € Dy g. The
subgroup L is defined by A;, = Ay N7,(Ag), and from the above calculations
we see that L is the Young subgroup generated by the single element s4, and
therefore, by Proposition 2.2(b), H' N Dy, = {s2, $¢}. In the next section, we

will see how o can be constructed by using the state space of multi-species
¢-TAZRP.

2.2. g-Notation
Fix 0 < ¢ < 1. For any k > 0, let

=1+q+q*+-+4"!
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be the g-deformed integer. Let [k]; = [1]; - - - [k]q be the g-deformed factorial.
The g-Pochhammer symbol is

(@) =010-a)1—qa)---(1-¢"ta), 0<k<oo.

Observe that (1 — q)*[k]} = (¢; @)

For each integer » > 1 and each finite sequence of nonnegative inte-
gers m = (my,ma,...,m,) whose sum is N = my + -+ + m,., define the
g-multinomial

T

m mi, Mg, ..., My m

[N] ::[m1+--~+m7-] _ Ny

Given a subgroup G of S(N), let
Glq = Z ql(g)
oG

Proposition 2.6. Suppose H is the Young subgroup S(my)x---xS(m,) C S(N)
where m1 +---+m, = N. Then

Z ql(ag): |:m1+"'+mr:| _ |S(N)|q
q

mi, Mo, ..., My |H|q

o%eDy

If additionally H' is also a Young subgroup and o is some fized element of
Dy g, then

Z 4@ = |H'|,
|Lq

aceH'NDp,

where L is the Young subgroup generated by A, = A No(Ag).

Proof. The first statement is equivalent to the ¢-Binomial theorem (see, e.g.,
Theorem 3.6 of [2]). It also follows from Proposition 2.2. Namely7

Z qz(a) — Z Z ql(b)+l(ao) _ [m1 Z q1(a°)

oceS(N) beH c9€ Dy UOEDH

For the second statement, consider the decomposition H' = (H'NDy)L. Then
arguing similarly,

|H/ Z ql(o) _ Z Z ql(a)—i-l(a:/) _ |L|q Z ql(a)_

oc€S(H') acH'NDyp a’€L acH'NDf,

2.3. Interpretation as Multi-species g-TAZRP State Space

The state space for n-species ¢-TAZRP consists of particle configurations on a
one-dimensional lattice. Here, we take that lattice to be Z. At each lattice site,
there may be arbitrarily many particles, with n different species of particles.
The state space is therefore (Z’;O)Z. Each n € (ZQO)Z can be written as
n=n7),forreZand1<i< n, where ny denotes the number of particles
of species i located at lattice site x.
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In general, a particle configuration can have infinitely many particles.
When restricting to states with finitely many particles, there is another con-
venient way of writing particle configurations. Assume there are Ny particles
of species k (1 < k < n). Set N = Ny +---+ N, to be the total number of
particles. Let N denote (Ny, ..., N,). For i < j let Nj; ;) denote N; +---+ Nj.
A particle configuration can be expressed as a pair (x,0), where

x=(x >x2> - >2N)

indicates the location of the particles (Fig. 3). Let ¢ € S(NN) denote the
ordering of the species, in the sense that if o is written in two-line notation as

o1 09 PN ON

1 2 ... N J°
so that o; = o7!(j), then the N, particles of species k are located at the
lattice sites

Tongy poyyerr s Tong o (1)

An equivalent description of the particle configuration (x, o) is as follows.

For
x€Wn ={(z1,...,2n5) 21 > ... >y} CZV,
define m(x) = (my,...,m,) so that
:L':l:...:ajml >xm1+1:"':mm1+m2 >.’L‘m1+m2+1:...:...
> Tmytetme_1+1 = " = IN,

where m,. is defined by m; + --- + m,. = N. Also define ky,...,kny by k1 =

o =kn, = 1,kny41 = - = kny4+nN, = 2,.... Then the particles located at
the lattice site Ty, 4...am 41 =" = Tmy+...4m,,, have species
kU(M1+-~+ms+1)v A ko(m1+~-+ms+1)' (2)

Note that o(j) is not the same as o, in this notation.
Because more than one particle can occupy a site, the map Wy x S(N) —
(Zgo)Z is not injective.

Ezample 2. Consider the particle configuration shown in the left side of Fig. 1.
There is more than one ¢ € S(IV) which defines this particle configuration,
and it is not hard to see that ¢ = 21467358 has the fewest inversions. In
fact, this o is the element s55453515655 € Dy g from the previous example,
where the H = S(m(x)) = S(1) x S(2) x S(2) x S(3) and H' = S(N) =
S(1) x 5(2) x S(2) x S(2) x S(1).

It is straightforward to see that the permutations 21476358,21567438,
and 35178426 also describe the same particle configuration as o, but have more
inversions. These turn out to be in the double coset H'o H of o, because it can
be seen through direct calculation that the decompositions from Proposition
2.3(b) take the form
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®

3@ (@ co=2 1 4 6 7 3 5 8
HOONO© BlOlB©©/0/0©),

F1cURrE 1. Particle configuration referenced in Example 2

21476358 = e - 555453515655 - S6,
21567438 = S6 *+ 855453515655 * S4,
35178426 = S652 * 855453515655 * S7565452.

Note that 21476358 is also equal to s4 - $55453515655 - €, demonstrating that
s4 ¢ Dy,. These calculations can be found at the end of the document.

The above example is true in general.

Proposition 2.7. (a) Set H = S(m(x)) and H = S(N). Consider a fized

(b)

(c)

particle configuration with particles located at x, and then, consider the
set of all permutations T € S(N) such that (x,7) expresses the particle
configuration. This set is a double coset H'oH for some 0 € Dy g
Suppose that the particle configuration defined by (x,0) for some o €
Dy g has two particles of the same species k; = ki1 at the same lattice
site. Then s; € L where Ar := A N7, (Ap).

Conversely, suppose that o € Dy g and s; € L, where Ap := Ay N
To(Ag). Then the particle configuration defined by (x, o) has two particles
of the same species k; = k;11 at the same lattice site.
Suppose that s; satisfies the same assumptions as in (b). Suppose there
is some s; € H such that 7,5; = s;. Then s;0 = 0s;.

Conversely, suppose that s;o = os; for some s; € H. Then 1555 = s;.

Proof. (a) By (2), (x,0) and (x,0b), define the same particle configuration

(b)

if and only if b € H. By (1), (x,0b) and (x, acb), define the same particle
configuration if and only if @ € H’. This shows part (a).

Suppose that the lattice site is ©; = x;41. Then s;0 = os;, violating
the uniqueness condition in 2.3(b), which can only hold if s; ¢ Dy,. Since
s; ¢ Dy, then by Proposition 2.2(b) it can be written as s; = ax for some
a € Dy, and some nonidentity « € L, such that I(s;) = I(a) + I(x). But
{(s;) =1 and I(z) > 1, which must imply that @ = e, and thus, s; € L.

Conversely, suppose that s; € L. Then s; ¢ Dy, and so by the uniqueness
property of Proposition 2.3(b), s;0 = acb where either a € H' N Dy, or
b € H. The element b cannot be the identity element e, for otherwise
s; = a € Dy. Therefore, I(s;0) = l(a) + (o) + 1(b) > l(o) + 1, so by
Proposition 2.1(c) the element a must be the identity and the element b
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must be some s; € H. Therefore, the lattice site x; = x;41 contains two
particles of species k; = kjy1.
(c) Assume that 7,5; = s;. Then 74,,5; = —s;, so by Proposition 2.1(b),
I(s;0) = l(0) + 1. By the unique decomposition, s;0 = os; for some
s; € H. But this implies that 7,7y,5; = T5,5; = Ts,05; = —Si, s0 by
assumption 7,,5; = —s;. This can only hold if s; = s;, as needed.
For the converse implication, we have that I(s;0) = 1 + [(0). Therefore,
75, takes a positive root in 7,(®T) and makes it negative. By Proposition
2.1(a), this root must be s;. In other words, s; € 7,(®") and s; & 75,,(®") =
Tos, (®1). Therefore, 7;'(s;) € @+ and 7,7, '(s;) ¢ ®*. This implies that

T, 8i = S;, as needed. O

g
Remark. Part (a) of the proposition appears to be equivalent to results in [11],
where the bijection is stated in terms of arrays rather than particle configura-
tions. Part (c) can also be seen by comparing Theorem 2.7.4 of [6] and Lemma
2 of [17], which had been previously announced in [20], p. 26 and appeared (in
geometric form) in [21], section 12.2.

The previous theorem motivates the following definition. Given a particle
configuration (x, o), where m(x) = (mq,...,m,) and the species numbers are
given by (Ny,...,N,), let L;; denote the number of species j particles located
at the lattice site @, 4...4m,. Here the ranges of 7 and j are given by 1 <¢ <r
and 1 < j <n.

3. ¢-TAZRP

3.1. Dynamics

Let us define the dynamics of the multi-species ¢-TAZRP. A visual example is
shown in Fig. 2.

For a particle configuration £ = (£7), the jump rates for an ith species
particle at lattice site = to jump one step to the right are

by - gttt [€as

where (b, ).ez are the inhomogeneity parameters, which we assume to be pos-
itive uniformly bounded.

Let us define the generator explicitly. If n = (n7) and £ = (&) are related
by

1 1 y+1
=& -1, it =g 1

for some j,y, with all n¥ = &7 for all other values of i, x, then write n = £(4, y).
Then the generator is defined by

Lunqrazep (§,€(j,y)) = bygs T8 [€5a-

If the particle configuration £(j, y) does not exist, then formally set £(j,y) = &.
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©) ONRO

1-q

FIGURE 2. Example of jump rates for the homogeneous g¢-
TAZRP, with time scaled by 1—¢q. The left image shows single
species, and the right image shows multi-species. Note that
q*[Ug +¢*2]¢ + 2] = [3]q
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3.2. Initial Conditions

We now define a class of probability measures on the multi-species ¢-TAZRP
state space. By Proposition 2.7, a particle configuration with N particles can
be written uniquely as (x,0) where 0 € Dy g, H = S(N), H = S(m(x)).

Definition 3.1. A probability measure on H o {x}xDpy g is g-exchangeable
X N
if
¢ ") . Prob(x,0) = g ). Prob(x,o")

for all x € Wy and 0,0’ € Dy .
If a g-exchangeable probability measure satisfies

¢\
Prob(x,0) = l{x:y}7,

then we say that it is supported on y.

See [9,10] for a general treatment of g-exchangeable measures.

3.3. Markov Projections
From the identity

[alg + ¢*[blg = [a + by, (3)

it is not hard! to see that there is a Markov projection property. Namely,
suppose II is a partition of {1,...,n} into k blocks of consecutive integers:

IT= {Hla"'vnk} = {{1a"'ap1}7{p1 +17"'7p1 +p2}7
{p1+-+pe—1+1,....n}t}
Then there is a corresponding projection
™ (ZZO)Z - (Zgo)z
such that for n = 7 (),
=Y &, forl<i<k
JEIL;
The Markov projection property here says that

Lgrazrp(7(€),n) = > Lmgrazre(§,9), 1€ (ZE)%, €€ (2%))"
pem—1(n)

Mt was first explicitly stated and proved in [12] for the homogeneous case (see also [13] for a
more general totally asymmetric zero range process), but the proof for the in homogeneous
multi-species ¢-TAZRP is not hard.
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3.4. Previous Results from Single-Species g-TAZRP

3.4.1. Stationary Measures. For a (single-species) zero range process with cer-
tain mild conditions, the stationary measures can be found (see [1]). When
n = 1, and all b, are equal (i.e., in the homogeneous case), the stationary
measures are given by

ok

P&y =k) = (a§Q)oom

; (4)

where « € [0,1) is a parameter. Note that when « — 1, the normalization
factor (a; q)s equals 0. Thus, even though P! still defines a measure preserved
by the generator, but it is not a probability measure.

3.4.2. Transition Probabilities for the Single-Species g-TAZRP. Here, let

qug — Wy
Sigoy = -0«
R
and set
Ay = [ ] S@.a)-

(B,) is an inversion of o

By Theorem 1.1 of [25], which generalizes the homogeneous case proved in

Theorem 2.6 of [14], given an initial condition Y = (y1,...,yn) and another
particle configuration X = (z1,...,2x), the transition probabilities are
N
1 N 1
Py(X;t) = — [ ] () / / S A,
[N]q m(X) q 271 Cr Cr oSN
N Z b
k —w;t
X —_ it dwy -+ - dwy. 5
R e R KR
1= =Yo (i)

where the contours are counterclockwise circles centered at the origin with
large radius R. The poles b, and qw; need to be enclosed, but not ¢~ ‘wy,
where 7 < j and [ > j. Recall that the by need to be bounded. The usual

definition of the product is extended to

n fem f(B), ifn>m

I re) =11, ifn=m-—1
_ m—1 .
fe=m | ﬁ, ifn<m-—1.

1
In Remark 1.2 of [25], it is remarked that the pre-factor —+ [ N }
(V] [m(x) ],
is related to the stationary measures of the ¢-TAZRP, with a brief explanation
given. A similar statement will hold for the multi-species ¢-TAZRP.
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3.5. Statement of Main Theorems
Recall the definition of L;; at the end of Sect. 2.
Theorem 3.2. Let N = (Ny,...,N,). Fixy = (y1,...,yn) and x = (z1,...,

xzN), and let o € Dy g where H = S(N) and H = S(m(x)). Given g¢-
exchangeable initial conditions supported at 'y,

‘ B ql(U) ' H?Zl[NJ]:I
Prob((x,0) at time t) = [V]! (H?_l H;_l[Lij]51>

a
1\Y shi b
X — / .../ AT (71‘:) e*’u)]-t dwl...dwN
(27”) cn  Jen TGZSN ]1;[1 k:gm b — wr(j)

Remark 3.3. When N = (), the product in the denominator simplifies to
[T;_i[mil,, and Dy = {e}, so the theorem reduces to the single-species
case. If N = (1,...,1), then the g-multinomial terms are all equal to 1.
Theorem 3.4. For a € [0,1), let P be the stationary measure for homoge-
neous single-species q-TAZRP, defined by (4). Then the g-exchangeable prob-
ability measure defined by
U(o)

Prob(x,0) = q7

is a stationary measure for the homogeneous multi-species q- TAZRP.

P (x)

3.6. Proof of Main Theorems

3.6.1. The Simplest Case. Consider the simplest case, when there is exactly
one particle of each species. From a probabilistic perspective, one might expect
the “simplest” case to be when there is only one particle of species number 2
with other particles of species number 1. However, from the algebraic perspec-
tive, the subgroup H' = S(N) C S(N) is trivial when H' = {e} or S(NNV), and
the former situation corresponds to having exactly one particle of each species,

while the latter situation corresponds to having only species 1 particles.

By the Markov projection property, the more general case follows from
this simple case immediately. To see this, suppose that we have already shown
Theorem 3.2 when N = (1,...,1). Then 0° can take any value in Dy, and for

any 0° € Dy,

Prob((x, %) at time t)

Tj

ql(ao) 1 N N by t
_ L A, O ) et dwy - duw
[N], (27ri> /cR /c > IT| 11 b — wr(j) ! N

R reSy i=1 | k=y.¢)

Now consider the general case of N = (Ny,...,N,) and set H' = S(N).
The projection map (ZY,)% — (Z%,)% can be expressed in terms of permu-
tations in S(N) in the following way. By Lemma 2.4, any ¢ € Dy can be
uniquely decomposed as ¢ = ao where a € H' N Dy, and o € Dy g, and in
this decomposition

7(x,0%) = (x,0)
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Lemma 2.4 also implies that for any fixed ¢ € Dy g the set of all 0¥ such that
7(x,0%) = (x,0) is precisely the set of 0 € Dy which can be decomposed as
0% = ao for a € H' N Dy,. Thus, the Markov projection property then implies

that
Prob((x,0) at time t) = Z Prob((x,ao) at time t)

a€H'NDy,
l(ao) 1 N
_ q () / / 4
o B \2) ey e
N xj b
X H <bk> e~ Wit dwy - dwy
J=1 [ k=y,¢) AO)
Wa) 7 1 \N
— @ q() / / A
=4q - T
PO ACEI R S P
N xj b
X H H <bk> e~ Wit dwy - - dwy
J=1 1 k=y-(5) kT WrG)

Applying Proposition 2.6 to the sum over H' N Dy shows the more general
case.
It thus remains only to prove Theorem 3.2 when N = (1,...,1).

3.6.2. Master Equation When N = (1,...,1). The dynamics can also be
defined by stating the master equation. Recall from the definition of the gen-
erator that for a particle configuration &, the particle configuration obtained
by moving a species j particle from y to y + 1 is denoted £(j,%). Let £~ G:¥)
denote the particle configuration obtained by moving a species j particle from
y to y — 1. The master equation is then (where the “at time” is omitted)

d
%Prob((x, 0);t) = —wt(x)Prob((x,0);t)

+Y Lngrazre((x,0) 9%, (x,0)) - Prob((x, o) ~U¥);1),

where the sum is taken over all (j,y) such that the corresponding particle
configuration is still well defined. The quantity wt(x) is the inverse of the
expected amount of time the particle configuration spends at (x,0) and is
equal to

-
wt(x) = Z bxm1+---+ms [mS]tr (6)

s=1
When N = (1,...,1), the master equation and generator have a nice
expression in terms of permutations o € S(N). Given x € Wy and 1 < k <
N, the sequence (z1,...,T5_1,Tk — 1, Tps1,...,2n) is generally not in Wy.

However, rearranging the terms in the sequence produces a unique element of
Wy, which we denote x* (Fig. 3). Consider

0 = 0Sk+dSk+d—1 """ Sk,
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FI1GURE 3. Particle configuration on the left corresponds to
(x,0) where x = (5,4,4,2,2,2,1) and o = 4351672

@
e &6 @ 6
SONOGONEOONE .

FIGURE 4. Particle configuration on the left corresponds to
o = 2164357. Set k = 4. Then 7 := o0 - s4 = 2165347, which
describes the same particle configuration on the left. (One
should imagine that the @ and the @ have switched places.)
The particle configuration on the right corresponds to & =
2156347, and note that ¢ = & - s5. The jump rate can be
determined entirely from & and &

where d is the largest integer such that sg,...,sk+q are all in H. Let H =
S(m(x~*)). In general, & need not be an element of Dy = Dp. Let &
be the unique element of Dy such that its coset H’ 6H = 6H contains @.
Then @ = &b for some b € H, and () = I(6) + I(b). The generator has the

expression
LquAZRP((Xik, (3’), (x7 a')) = ql(b) _ ql(?)fl(&)

The particle configuration (x~*, ) should be understood as being obtained

from x,4) by moving the kth particle one step to the left. See Fig. 4 for an
example.

Lemma 3.5. Let 7 = os; and suppose that [(17) = (o) — 1. Then
¢"7 Lingrazrp((x*.7), (x,7)) = 47" Lingrazrp((x*,6), (x,0))
Proof. Tt suffices to show that
I(7) =1(@) -

By definition, T = 05j5k4q---5k. By Lemma 2.5, both o and os; are in
DH/,H = DH, SO

I(7)=1(osj)+d+1, l(o)=I(0)+d+1.

Since I(0;) = l(0) — 1 by assumption, this proves the lemma. O
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We now show that
g ') . Prob((x,0);t) = ¢ ') - Prob((x, 7); t).

Proceed by induction on the value of x1+- - -+x . The base case is when x =y,
in which case the result follows because the initial condition is g-exchangeable.

It suffices to consider the case when 7 = os; and {(7) = {(0) — 1. In order
to apply the induction hypothesis, we use the lemma to rewrite the master
equation as

d
&Prob((x, 0);t) = —wt(x)Prob((x, 0); t)

N
+ Y Lingrazre((x%,8), (x,0)) - Prob((x~*,5);1)
k=1

N
= —wt(x)Prob((x,0);t) +q Y ¢ Lypgrazre (x7%,7), (x,7))
k=1

- Prob((x~%,5);1).

And now applying the induction hypothesis shows that

d
aProb((x7 0);t) = —wt(x)Prob((x, 0); t)
N
+¢ ) Lngrazrp((x %, 7), (x,7)) - Prob((x*,7);1)
k=1

At the same time, the master equation tells us directly that

% [gProb((x,7);t)] = —wt(x) - [¢Prob((x,7);t)]

N

+¢ > Lgrazrp((x %, 7), (x,7)) - Prob((x ¥, 7); 1)

k=1
Therefore, Prob((x,0);t) and ¢Prob((x,7);t) satisfy the same differential
equation, and because the initial condition is g-exchangeable, they must have
the same value at ¢ = 0. Therefore, they are equal for all values of ¢, completing
the inductive step.

By the first part of Theorem 2.6 and the Markov projection property,

this reduces the theorem for N = (1,...,1) to the single-species case, which is
already known, thus completing the proof.

3.6.3. Proof of Theorem 3.4. To show that this defines a stationary measure,
it suffices to apply the differential operator which defines the master equation
and show the result is 0.

Suppose m(x) = (mq,...,m,). Suppose that the lattice site z,,_, there
are my particles of species j. Then the stationary measures are given by

ql(a)

1 2 2 n n
V) L L ] [ T
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Therefore, using (3) to expand wt(x), and using the same notation for the
master equation as in the previous section, we want to show

N
Z 0" Lngrazre (x7F,6), (x,0))
k=1

V] - i) Im

) S
- O O

2 n n
@ -Vn£H;~-hn§H;~~hn£H;
n mUTD 4o pm(m j
S g e D)
[m

1]q~-hn9W;~~hn?ﬁz~~hn?Wé

On the left-hand side, the (7, s) is related to k in that the kth particle is of

species j located at lattice site @, 4....4m, . The [m (j)] occurs in the numerator

because the corresponding term in the denominator is replaced with [mgj ) 1]51.
By inserting the expression for the generator, it suffices to show that

1) +ml)y 4+ 4+ mUY = 1(0) +miHD 4w

However, this is straightforward from the definition of the dynamics.

4. Multi-species ASEP
Let us begin by recalling a few results of the single-species ASEP.

4.1. Single-Species ASEP
Let 3 C Z be a finite or infinite subset of the set of integers. Given X € 23
(the subsets of 3) and x € X, define

Xo7rH = (X\{zh) U {z + 1}, if z + 1 € 3\ X,

X = (X\{zp)u{z -1}, ifx — 1 € 3\ X.

In every other case, formally set X*~?%! to be undefined.
Define ASEP on 3 to be the continuous-time Markov process on state
space X € 23 with generator
1, if X' = X*"**! for some = € X,
Laspp3)(X, X') = ¢ ¢, if X' =X""%"1 for some z € X,
0, if X' # X, X*>** forall x € X,

and let Laggp(3) (X, X) be the unique number such that every row of L sums to
0. The set X describes the locations where the sites are occupied by particles.
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When 3 = Z, there is an explicit formula for the transition probabilities
of ASEP. Set

1+ qgaﬁﬁ —&a
1+ qéafﬁ - gﬁ 7

where €(£) = ¢~ + ¢¢ — 1. Then for ASEP[Z] with jumps to the right of rate
1 and jumps to the left of rate ¢, the transition probabilities were found in
[22)%:

PéSEP (X; t)

1 x 1
:<27r> Z/ ], 4o [Leriy et rmmrta, - ay,

where the contour integrals are very small.

4.2. Definition of Multi-species ASEP

Let us define the generator for the multi-species ASEP (mASEP) on 3 C Z.
Additionally fix N = (Ny,..., N,). In this case, the state space will consist of
pairs (x,0), where

a,l = =

x WY ={(z1>z2>>an): 2, €3} 3V

and o € D]_{}, where H' = S(N). By a slight abuse of notation, x will be
equivalently considered as a subset of 3. The generator is then defined by
having off-diagonal entries

LmASEP[:’)] ((Xa U)v (X/a U/))
1, if x' =x®*7*t! for some z € X and 0 = ¢/,
g, ifx' =x*"*"! for some z € X and ¢ = ¢,
=<1, ifx'=xand o =co(rr+1)for somer and l(c/) =1(c) — 1,
q, ifx'=xando’ =00 (rr+1)forsomer andl(c’) =1
0, else.

The diagonal entries Ly,asep[3)((X, ), (x,0)) are defined so that the rows sum
to 0. The set x indicates the locations where the sites are occupied by particles
and o indicates the ordering of the particles. The multi-species ASEP also
satisfies the property that the projection to the first k species is again a multi-
species ASEP.

The main theorem is:

Theorem 4.1. Given g-exchangeable initial conditions supported at'y, the multi-
species ASEP on 7. satisfies

Prob((x,a);t)_<2jri>N[Nl]lq}<a> - eS/ /

i - 1 ce(&;
« Hff( )y @~ 1+a) X, (5")td§1 - déy,
2

2In [22], the formula is written where the probability of a right jump is p and the probability
of a left jump is ¢, where p + ¢ = 1. To match the notation, one simply replaces the p with
1 and rescales time by a factor of 1 + ¢.
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4.3. Proof of Theorem 4.1

4.3.1. Generalities. Suppose that (X (), S(¢)) is a Markov process on the state
space X x &, which we assume to be countably infinite or finite. In general,
S(t) need not be Markov, but assume that X (¢) is a Markov process on X.
Let Lx be the generator of X (t). The generator Lxg of (X(¢),S(t)) can then
be written as

Lys((z,5), (', 8") = Lx(z,2")M&) (s, ),

where M ém/) is some S x S matrix which depends on z,z’ € X. More specifi-
cally, define

LXS((xv S), (xlv S/))

! , L ) ! 0,
Mém)(s,sl): Lx(z,2) (z,2") #
Lis=sr}s Lx(v,2') =0
Proposition 4.2. (a) If Lx(z,2') # 0, then the matriz elements of Mém/)
satisfy
Mézm,)(s,s/)

Eli%l+ P(S(t+¢€) =s" |X(t+e)=2a' and (X(t),S5(t)) = (z,s)), =x#a,
) im et P(S(t+e)=s" |X(t+e€) ==z and (X(t),S(t)) = (z,5))

e—0*t

z=xa',s#s',

Lxgx,x)
14 lim €,IIP’(S(tJre):s | X(t+¢€) =z and (X(t),S(t)) = (z,s)) — 1 e s s

e—07t Lx (z71)

In particular, (—1)'==2" (Mgr/ — Id) is the gemerator of a continuous-

time Markov process S@*)(t) on S for all x,2’ € X.
(b) Let v be a probability measure on S. Then VML(gm )/ = v if and only if v
is a stationary measure of the Markov process S (t).

(c) Suppose that v is a stationary measure of the Markov process S(”')(t)
for every (z,2') € X x X. Then for any probability measure p on X,

(L®v)Lxs = (uLlx) @ v.

(d) Suppose that v is a stationary measure of the Markov process S(”/)(t) for
every (z,2') € X x X. Then for every (2',s') € X x S and any x € X,

Y VEP((X().5(1) = (2,') | (X(0),5(0) = (z,5))

seS
=v(s"P(X(t) = 2'|X(0) = z).
Proof. (a) Recall the well-known identity

P(AN B|C)
P(B|C)

which holds as long as P(B N C') # 0. Letting A, B, C be the events
A={St+e) =5} B={X(t+e)=2"}, C={(X(),50)= (2,9}

P(A|BNC) =
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we see that P(B N C) # 0 because Lx (x,2') # 0. By definition,
P((X(t+€),S(t+¢€) = (2',8) [ (X(t),S(t) = (2,5))
= lo—o s=s} + Lx (2,2 )]\/.I'Sm (s, s')e + O(e?).
Thus, we have that (using the Markov property of X (t))
P(S(t+¢€) =5 |X(t+¢)=2"and (X(t),S(t)) = (x,5))
 Vowsmoy + Lx () MG (s, 8)e + O()
Liz=ory + Lx(z,2')e + O(€2)

This immediately implies the first two cases. Setting x = z’, s = s’ results
in

(
(

P(S(t+¢)=s |X(t+¢€) =z and (X(t),S()) = (z,s)) — 1
_ Lx(z, 2) (M (s,5) — 1)e + O(e?)
1+ Lx(z,2)e+ O(€?)

which implies the third case.

The last statement follows by noticing that each row sums to 1 and that
the off-diagonal entries are nonnegative.

(b) This follows immediately from the definition of S@*")(¢).

(¢) We can compute that

(r®v)Lxs](@',s') = > n(@)v(s)lxs((@s), (@'s))

(z,5)€XXS
=303 n@) L (w2 () MY (s, ')
T€EX s€S

= [puLx](z")v(s").
(d) The left-hand side equals
(6, @ v)e'txs] (2, 8').
By part (c), this then equals
[(0.e™) @ v] (2, 8)),
which equals the right-hand side.
U

4.3.2. ASEP with Distinct Species. The stationary measures of multi-species
ASEP on a finite interval with closed boundary conditions were classified in
Theorem 3.1 of [4], as well as blocking measures on the infinite lattice. See also
the comment at the end of section 2 of [3].

In the special case when 3 = {1,...,N} and N = (1,...,1), so that
every site is always occupied and there is only one particle of each species, the
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1 q 1
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1 2 3 4 5 6 7 8 9 10 11

FIGURE 5. ASEP on 3, when 3 ={1,2,5,6,7,8,9,11}

stationary measure has a simple expression. Namely, let v, be the probability
measure on S(N) defined by
(o)
q
ve(o) = N

q

Then for 3 ={1,...,N},

VgLmasep[3) = 0.
In other words, v, is a stationary measure.

We consider a slightly more general case, where 3 C Z consists of k dis-
joint intervals, each of length Lj; and separated from each other by at least
one lattice site. In this case, ASEP on 3 evolves as k independent ASEPs,
one on each interval (Fig. 5). Suppose that Ly + -+ + Ly = N and again
N = (1,...,1), so that again every lattice site is always occupied and there
is only one particle of each species. We have an embedding of subgroups
S(Ly) x -+- x S(Lk) € S(N), so S(N) can be written as a disjoint union
of cosets

S(N) = | ] 7(S(Ly) % -+ x S(Ly)).
TES(N)/(S(L1)x-xS(Ly))
In this case, we have the following lemma:
Lemma 4.3. Let ¢(-) be any probability measure on the set S(N)/(S(L1) % - - X
S(Lg)). Then the probability measure on S(N) defined by
P(r(o1,...,0k)) = c(T)vg(o1) - - vy(og)
is a stationary measure for ASEP on 3. In particular, the probability measure

v, on S(N) is a stationary measure.

Proof. The first part of the lemma follows from the previous lemma, because
mASEP[3] is independent copies of mASEP on each interval.
For the second part of the lemma, we take

e(r) oc g7,

where 7 is the coset representative with the fewest inversions. By Proposition
2.2(d), this results in the probability measure v, on S(N). O

Now we relate the multi-species ASEP to the framework of Proposition
4.2. The role of X will be played by Wj{, and the role of § will be played by
D;{}7 where H' = S(N). Let S(xx/)(t) be the Markov process on D;{}.
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Lemma 4.4. Let N = (1,...,1), and consider the Markov process S®¥)(t) on
Dyt = S(N). Then the Markov process (x,S®¥)(t)) is a mASEP on x, with
time rescaled by —Lx (X, X).

Proof. This follows immediately from Proposition 4.2(a) and the explicit ex-
pression for the generator of mASEP. g

Proposition 4.5. Assume N = (1,...,1). Suppose that the initial condition Y
is g-exchangeable. Then for o,0° in Sx, and for all t > 0,

q~7) - Prob((x,0):1) = ¢~ - Prob((x.0"): ).

Proof. The theorem follows immediately from Proposition 4.2(c), Lemma 4.3
and Lemma 4.4. Namely, the two lemmas tell us that the g-exchangeability
of the initial conditions implies that the initial condition is of the form (u ®
v). Proposition 4.2(c) then implies that the probability distribution is still
of the same form at all times, which means that the distribution is still ¢-
exchangeable. This is exactly the statement of the theorem. O

4.3.3. The General Case. By Proposition 4.2(d) and the result for the single-
species ASEP, when N = (1,...,1) the probability distribution is given by

Prob((X,UO)Qt)(271m> (R Z/ /

y ngl Yr(i)—1 e+ 3, E(f"')td& cdEy,

7(2)

where 0% € S(N). The more general case when N is arbitrary now follows
from the Markov projection property and Proposition 2.6: for o € D7, H,,

Prob((x,0);t)= Y Prob((x,0");?)
a"eS(N)
o’=ac,acH’
1 l(a)+l(a)
-3 () WS Lo
a€H'’ TESN

Ti—Yr 1 €
x Hf‘r(z Yr()— e(1+q)Z Etge, .. de,

yielding the theorem.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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Appendix

The calculations used in Example 2. For instance, the second image in the top
row shows 21476358 = s5545351565586. The transposition s; switches the braids
in the ith and (¢ + 1)th column. To read the multiplication of $55455515655S6,
read from top to bottom in the diagram, starting from sg on the right and
ending with s; on the left. To read the permutation 21476358 in one-line
notation, simply follow the numbering of the strands from top to bottom.

12345678 12345678
12345678 J J

J S

( (
2 1467358 21476358

2 15674338
123456 78
/

/]

(
356178 4 26
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