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Abstract. We study the correlation functions of the Pfaffian Schur process. Borodin and
Rains [J. Stat. Phys. 121 (2005), 291–317] introduced the Pfaffian Schur process and de-
rived its correlation functions using a Pfaffian analogue of the Eynard–Mehta theorem. We
present here an alternative derivation of the correlation functions using Macdonald difference
operators.
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1 Introduction

In the last decade, we have seen a great success of the applications of the Schur process in prob-
ability and other related fields. Okounkov [33] introduced the Schur measure. Later, Okounkov
and Reshetikhin [35] generalized it to the Schur process. Schur process have been proved useful
in number of different occasions, including, harmonic analysis of infinite symmetric group [22],
Fredholm determinant formula for Toeplitz determinants [21], relative Gromov–Witten theory
of the Riemann sphere P1 [34], random domino tilings of the Aztec diamond [8, 11], poly-
nuclear growth processes [29], anisotropic random growth models in 2 + 1 dimensions [18] etc.
See [20] and the reference therein for other applications of the Schur process. Later, Borodin
and Corwin [12] further extended the scope by introducing the Macdonald processes where the
underlying measure is defined using the Macdoanld (q, t)-polynomials [32]. Macdonald processes
have been applied in computing the asymptotics of the one-point marginals of O’Connell–Yor
semi-discrete directed polymers [12, Chapter 5], [14]; log-gamma discrete directed polymer [12,
Chapter 5], [16]; Kardar–Parisi–Zhang and stochastic heat equation [14]; q-TASEP [12, 13, 17];
q-PushTASEP [23, 26]; in showing the Gaussian free field fluctuations in β Jacobi corner pro-
cess [19] and in constructing a multilevel version of the Dyson Brownian motion [28]. We refer
to [25] for the discussion on many other aspects of the Macdonald processes.

Schur process is a measure on a sequence of partitions defined using Schur functions. The
correlation functions of the Schur process can be expressed as determinants of some positive
definite matrices [35]. Baik and Rains [4] generalized the Schur measure for studying the longest
increasing subsequences of symmetrized random permutations. Subsequently, [36] (see also [27])
computed the correlation functions of a Pfaffian point process associated to symmetrized increas-
ing subsequence problem and the geometric weight half-space last passage percolations (LPP).
Later, generalizing the works of [36, 37], [24] introduced the Pfaffian Schur process. Unlike the
Schur process, the correlation functions of the Pfaffian Schur process can be expressed as the
Pfaffians of minors of a single infinite skew symmetric matrix. That matrix is referred to the
kernel of the correlation functions. In a recent work, [3] used the Pfaffian Schur process to deter-
mine the exact distribution of geometric LPP in the half space. Furthermore, they also extended
the results of [27, 37] to the exponential weight LPP and their results work for any choice of
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boundary parameters. They further broadened the scope by relating the exponential LPP in the
half space with facilitated TASEP in [2]. Recently, [9] considered a further generalization of the
Schur process which they named as free boundary Schur process. This new stochastic process
comes with two free boundaries. From the free boundary Schur process, [9] recovered the original
Schur process by fixing both the boundaries and obtained the Pfaffian Schur process when one
of the boundaries is kept fixed. We also refer to a recent work of [6] where they inroduced the
half-space Macdonald processes to study the stochastic six vertex model in half-quadrant and
the asymmetric simple exclusion process, the Kardar–Parisi–Zhang equation in half-space. We
came across some interesting works which have few overlaps with ours since this paper had been
posted. Here, we mention two of them. In [5], the authors studied the half-space Macdonald
processes which is a generalization of the Pfaffian Schur process. They computed the moments
and the Laplace transform formula for general half-space Macdonald observables using Mac-
donald difference operators. More recently, [7] found the correlation functions of the symplectic
and the orthogonal Schur measures using two different approaches. One of his approach is based
on Macdonald difference operators and uses some of the computations of our present work.

Okounkov and Reshetikhin [33] derived the correlation functions of the Schur process using
the infinite wedge formalism. Borodin and Rains [24] provided another derivation of the cor-
relation functions of the Schur process using the Eynard–Mehta theorem. Furthermore, they
proposed a Pfaffian analogue of the Eynard–Mehta theorem and used that to find the correla-
tion functions for the Pfaffian Schur process. In this paper, we present a new derivation of the
correlation functions of the Pfaffian Schur process.

In their work, [24] mainly used some tools from linear algebra. We will use Macdonald
difference operators which emerges in the theory of symmetric functions. In the past few years,
Macdonald difference operators has been proved immensely useful in the study of stochastic
processes over the sequence of partitions. In Borodin and Corwin’s work [12] (see also [15]), it
plays a crucial role in deriving the Fredholm determinant formula of the q-exponential moments
for the q-Whittaker process. Later, building on [12, Remark 2.2.15], [1] gave another derivation
of the correlation functions of the Schur process using Macdonald difference operators. Apart
from its application in probability, Macdonald difference operators have been widely used in
algebraic combinatorics especially for deriving various identities of the symmetric functions
namely, Kirillov–Noumi–Warnaar identity [41]; Lassalle–Schlosser identity [30, 31] etc. See [10]
and the reference therein for other useful identities derived using Macdonald difference operators
and its connection to other fields.

One of the key properties of Macdonald difference operators is that they are diagonalized by
the Macdonald polynomials (see [32]) on the space of symmetric functions. One of the other
important properties is that the action of the difference operators on the partition function of
Macdonald processes has a nice representation in terms of the contour integrals (see [12]). These
two facts yield integral forms (amenable to further analysis) for the expected value of some of the
interesting observables of the Macdonald processes (see [15]). From these formulas, in order to
extract the form of the correlation functions, one needs to perform some algebraic manipulations
inside the integrals [1, Section 2.3]. To find the correlation functions of the Pfaffian Schur
process, we take the same route. The main contributions of the present work are to derive the
contour integral formulas for the action of the difference operators on the Pfaffian Schur partition
function and then, to use those for finding the correlation kernel for the Pfaffian Schur process.

2 Models and main result

In this section, we first define all the necessary terms and notations which we follow in the rest
of the paper. Subsequently, we give a formal definition of the Pfaffian Schur process. Then, we
proceed to state the main result of this paper.
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2.1 Partitions and symmetric functions

A partition λ is defined as a sequence of ordered non-negative integers λ1 ≥ λ2 ≥ · · · such that its
weight |λ| :=

∑
i=1 λi is finite. We call λ an even partition when all of its components (λi’s) are

even integers. Any partition λ can also be represented graphically as a Young diagram with λ1

left justified box in the top row, λ2 in the second row and so on. The set of all partitions (or
Young diagrams) is denoted by Y. The Cartesian product of m sets Y× · · · ×Y will be denoted
as Ym. The transpose of a Young diagram is denoted by λ′ and defined by λ′i := |{j, λj ≥ i}|.
The length l(λ) of a partition λ is the number of nonzero entries in the sequence. We denote
the set of all partitions whose weights are n by Yn. Thus, we have Y = ∪∞n=0Yn. For any two
partitions λ and µ, if we have λ ⊃ µ (as the set of boxes), we call λ−µ as a skew Young diagram.
Often λ− µ is denoted as λ/µ.

Any polynomial of the variables x1, . . . , xn is called symmetric if it is invariant under the
action of the permutation group Sn. The set of all symmetric polynomials of the variables
x1, . . . , xn is a subalgebra inside the algebra C[x1, . . . , xn] of polynomials. For any n-tuple of
integers α = (α1, . . . , αn) ∈ Zn≥0, we can associate monomial symmetric polynomial as

mα(x1, . . . , xn) =
∑

σ∈S(n)

∏
i

x
ασ(i)
i .

For any Young diagram λ with length less than n, one can define mλ in the same way as above
by considering λ as a n-tuple. The set of all mλ where |λ| = k spans a subalgebra Symk

n

inside the algebra C[x1, . . . , xn]. Furthermore, there exists an algebra homomorphism between
Symk

n and Symk
m for any m > n ∈ N by mapping f(x1, . . . , xn, . . . , xm) to f(x1, . . . , xn, 0, . . . , 0).

Thus, one can define the direct limit Symk of the sequence of subalgebras
{

Symk
n

}
n∈N for each

fixed k. The direct sum of all such subalgebras Sym := ⊕kSymk is referred as the algebra
of symmetric functions with countably many variables. In fact, it can be noted that Sym
is a Z≥0-graded algebra. Some typical examples of the symmetric functions includes, (a) the
elementary symmetric functions er := m1r ; (b) the complete homogeneous symmetric functions
hr :=

∑
|λ|=rmλ; (c) the power sum symmetric functions pr(x1, . . . , xn) :=

∑
i x

r
i and pλ :=∏

λi
pλi etc. Let us also point out that {pλ}λ∈Y form a basis of the space Sym. Schur and skew

Schur functions are special kind of symmetric functions which are defined as

sλ := det(hλi−i+j), and sλ/µ := det(hλi−µj−i+j).

The topological completion Sym of the space Sym is defined as the set of all formal power
series

a =

∞∑
k=0

ak, ak ∈ Symk.

For any a ∈ Sym, its lower degree ldeg(a) is defined as the maximal K such that ak = 0 for all
k < K. Furthermore, one can also consider a graded topology in Sym by defining b := lim

n→∞
bn

when ldeg(b− bn) converges to ∞ as n tends to ∞.
We denote the algebra of symmetric functions of any set of variables X = (x1, x2, . . . ) as

Sym(X). For any f ∈ Sym, one can represent f(X,Y ) ∈ Sym(X,Y ) as a sum of products of
symmetric polynomials of X and symmetric polynomials of Y where X and Y are two sets of
variables and (X,Y ) denotes their union (X∪Y ). This defines a comultiplication from the space
Sym to Sym⊗ Sym which turns Sym into a bi-algebra. Moreover, the topological completion of
the space Sym(X)⊗ Sym(Y ) is given by Sym(X)⊗ Sym(Y ).

Any algebra homomorphism from the space Sym to C is referred as specialization. For
instance, the evaluation of any f ∈ Sym at any set X comprised of finitely many elements
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from C is an example of specialization. We often call these as finite specializations. For any two
specializations ρ1 and ρ2, their disjoint union ρ1 ∪ ρ2 is defined by

pk(ρ1 ∪ ρ2) := pk(ρ1) + pk(ρ2),

which implies it is also a specialization. We will often denote ρ1 ∪ ρ2 by (ρ1, ρ2).

Definition 2.1. Consider any specialization ρ. We call ρ Schur non-negative if sλ/µ(ρ) is
positive for all µ ⊂ λ where µ, λ ∈ Y.

Schur functions are pairwise orthogonal with respect to a bilinear form given as

〈pλ(X), pµ(X)〉X := 1λ=µ

∏
i≥1

imi(λ)(mi(λ))!,

where λ = 1m12m2 · · · . This defines an inner product in the space Sym(X). In particu-
lar, we have 〈sλ(X), sµ(X)〉X = 1λ=µ and for any two set of variables X and Z, we get
〈sλ(Z,X), sµ(X)〉X = sλ/µ(Z) (see [1, Corollary 2.1.2]) where the inner product is considered
in the space Sym(X). One can also restrict the inner product over the set of partitions with
bounded weights. For instance, one can define

〈pλ(X), pµ(X)〉Xu := 1λ=µ1|µ|≤u
∏
i≥1

imi(λ)(mi(λ))!

for any u ∈ N. In terms of the finite inner product, the orthogonality of the Schur functions
translates to 〈sλ(X), sµ(X)〉Xu = 1λ=µ1(|µ| ≤ u). Furthermore, one can also write

〈sλ(Z,X), sµ(X)〉Xu = sλ/µ(Z)1(|µ| ≤ u). (2.1)

For more detailed expositions, see [13, Chapter 2], [15, Section 2], [32, Chapter 1, Section 5].
Let us also point out that we will often use the notations ∨ and ∧ to denote the maximum and
minimum between any two real numbers.

2.2 Schur and Pfaffian Schur process

For any m ∈ N, the Pfaffian Schur process is a probability measure on a sequence of partitions

∅ ⊂ λ(1) ⊃ µ(1) ⊂ λ(2) ⊃ · · · ⊂ µ(n−1) ⊂ λ(m) ⊃ ∅ (2.2)

given by the following product form

Ppsp(λ̄, µ̄; ρ+, ρ−) := cτλ(1)(ρ
−
0 )sλ(1)/µ(1)(ρ

+
1 )sλ(2)/µ(1)(ρ

−
1 ) · · ·

× sλ(n)/µ(m−1)(ρ−m−1)sλ(m)(ρ+
m), (2.3)

where sλ, sλ/µ are the Schur and skew Schur functions, ρ±i are Schur non-negative specializations
and τ is defined by τλ =

∑
µ′ even sλ/µ. Here, we have used the following shorthand notations

ρ± := ∪iρ±i , λ̄ =
(
λ(1), . . . , λ(m)

)
and µ̄ =

(
µ(1), . . . , µ(m−1)

)
. The fact that all those specializa-

tions are non-negative implies that all the weights are non-negative. Furthermore, in order to
define a measure using the weights in (2.3), we assume that the series

∑
(λ̄,µ̄) Ppsp(λ̄, µ̄; ρ+, ρ−)

is absolutely convergent. In that case, the value of the constant c in (2.3) is equal to the inverse
of the partition function,

Z(ρ+; ρ−) :=
∑

(λ̄,µ̄)∈Ym×Ym−1

τλ(1)(ρ
−
0 )sλ(1)/µ(1)(ρ

+
1 )sλ(2)/µ(1)(ρ

−
1 ) · · ·

× sλ(m)/µ(m−1)(ρ−m−1)sλ(m)(ρ+
m).
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The probability measure of any set Ā (containing sequences of partitions) under the Pfaffian
Schur process is given by

Ppsp(Ā) :=
∑

(λ̄,µ̄)∈Ym×Ym−1

Ppsp(λ̄, µ̄; ρ+, ρ−)1(λ̄ ∈ Ā).

We denote the expectation of any function f of sequence of partitions by Epsp(f) where

Epsp(f) :=
∑

(λ̄,µ̄)∈Ym×Ym−1

Ppsp(λ̄, µ̄; ρ+, ρ−)f(λ̄).

To see the contrast between the Pfaffian Schur process and the Schur process, let us also look
at the definition of the latter. Like in Pfaffian Schur process, the Schur process on the sequence
of partitions considered in (2.2) is proportional to

sλ(1)(ρ
−
0 )sλ(1)/µ(1)(ρ

+
1 )sλ(2)/µ(1)(ρ

−
1 ) · · · sλ(n)/µ(m−1)(ρ−m−1)sλ(m)(ρ+

m)

and the associated partition function will be denoted as F (ρ+; ρ−). If ρ1 and ρ2 are any two
non-negative specialization, then the Schur process defined over the set of all single partitions
is referred to the Schur measure which is given as

Psm(ρ1, ρ2)(λ) :=
sλ(ρ1)sλ(ρ2)

F (ρ1; ρ2)
.

Likewise, the Pfaffian Schur measure for a single plane partition λ is defined as

Ppsm(ρ1, ρ2)(λ) :=
τλ(ρ2)sλ(ρ1)

Z(ρ1; ρ2)
. (2.4)

We denote the probability measure of any set A and the expectation of any function f of
partitions (under the Pfaffian Schur measure) by Ppsm(A) and Epsm(f) respectively. For any
two sets X and Y where X = (x1, x2, . . . ) and Y = (y1, y2, . . . ), we define the following two
functions

H0(X) :=
∏
i<j

1

1− xixj
and H(X;Y ) :=

∏
i,j

1

1− xiyj
. (2.5)

Using the expansion (1− x)−1 =
∑∞

k=0 x
k, one can note that H0(X) ∈ Sym(X) and H(X,Y ) ∈

Sym(X)⊗ Sym(Y ). Furthermore, using the identity (1 − x)−1 = exp
(∑∞

k=1 k
−1xk

)
, we write

H0(X) = exp

( ∞∑
k=1

p2
k(X)− p2k(X)

2k

)
and H(X;Y ) = exp

( ∞∑
k=1

pk(X)pk(Y )

k

)
.

In general, for any two Schur non-negative specializations ρ1 and ρ2, we define

H0(ρ1) := exp

( ∞∑
k=1

p2
k(ρ1)− p2k(ρ1)

2k

)
, H(ρ1; ρ2) := exp

( ∞∑
k=1

pk(ρ1)pk(ρ2)

k

)
, (2.6)

when the respective series
∑∞

k=1(2k)−1(p2
k(ρ1) − p2k(ρ1)) and

∑∞
k=1 k

−1pk(ρ1)pk(ρ2) converge
absolutely.
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Proposition 2.2 ([24]). Fix any two sequence of Schur non-negative specializations ρ+ =
(ρ+

1 , . . . , ρ
+
m) and ρ− = (ρ−0 , . . . , ρ

−
m−1) such that

∑
(λ̄,µ̄) Ppsp(λ̄, µ̄; ρ+, ρ−) converges absolutely.

Then, one can write the partition functions Z(ρ+; ρ−) and F (ρ+; ρ−) of the Pfaffian Schur
process and the Schur process as

Z(ρ+; ρ−) =
m∏
i=1

H0(ρ+
i )

∏
0≤i<j≤m

H
(
ρ−i ; ρ+

j

)
, (2.7)

F (ρ+; ρ−) =
∏

0≤i<j≤m
H
(
ρ−i ; ρ+

j

)
. (2.8)

2.3 Main result

We first define the correlation functions of the Pfaffian Schur process. To any sequence of
partitions defined in (2.2), one can associate a point configuration in [1,m]× Z as{(

1, λ
(1)
i − i

)}
i∈N ∪

{(
2, λ

(2)
i − i

)}
i∈N ∪ · · · ∪

{(
m,λ

(m)
i − i

)}
i∈N, (2.9)

where [i, j] := {i, i + 1, . . . , j} for any two numbers i < j ∈ N and
(
λ(1), . . . , λ(m)

)
is a set of

m-tuple of partitions. Moreover, one can note that the point configuration in the display (2.9)
uniquely determines the sequence

(
λ(1), . . . , λ(m)

)
.

Definition 2.3 (correlation functions). Fix m ∈ N. For any set of the form T := ∪mi=1Ti
where Ti’s are given as Ti := {(i, ti,1), . . . , (i, ti,di)}, the correlation functions with respect to the
Pfaffian Schur process is defined as

ρpsp(T ) := Ppsp
(
ti,j ∈

{
λ(i)
κ − κ

}
κ∈N | 1 ≤ i ≤ m, 1 ≤ j ≤ di

)
. (2.10)

The correlation functions of the Pfaffian Schur process are expressed in terms the Pfaffian of
a skew symmetric matrix which is the prime object of the study in this paper. Recall that the
Pfaffian of any skew symmetric matrix A2d×2d is defined as

Pf(A) =
1

2dd!

∑
σ∈S(2d)

(−1)σ
d∏
i=1

Aσ(2i−1),σ(2i),

where S(2d) is the group of all permutations of the numbers in the set [1, 2d]. In what follows,
we present our main result. We consider the Pfaffian Schur process defined in (2.3) with two
sets of finite Schur non-negative specializations ρ+ := {ρ+

1 , . . . , ρ
+
m} and ρ− := {ρ−0 , . . . , ρ

−
m−1}.

Define ρ+
S := ∪i∈Sρ+

i and similarly, ρ−S for any set S ⊆ [1,m]. We assume that the series∑
(λ̄,µ̄) Ppsp(λ̄, µ̄; ρ+, ρ−) is absolutely convergent.

Theorem 2.4. Fix m ∈ N, Ti = {(i, ti,1), . . . , (i, ti,di)} for i = 1, 2, . . . ,m and define T :=
∪mi=1Ti, d :=

∑m
i=1 di. Then, the correlation functions ρpsp(T ) is given by Pf

(
K(T )

)
, i.e., Pfaffian

of the 2d × 2d skew symmetric matrix K(T ) (see Remark 2.5 for detailed description of K(T )).
The coefficients of K(T ) are given explicitly by the contour integrals

K(T )
1,1 (i, u; j, v) =

1

(2πi)2

∮
C1

∮
C2

z − w(
z2 − 1

)(
w2 − 1

)
(zw − 1)

×
H
(
ρ+

[i,m]; z
)
H
(
ρ+

[j,m];w
)

H
(
ρ+

[1,m] ∪ ρ
−
[0,i); z

−1
)
H
(
ρ+

[1,T ] ∪ ρ
−
[0,j);w

−1
) dzdw

zti,uwtj,v
, (2.11)
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where both C1 and C2 are circles with radius greater than 1,

K(T )
1,2 (i, u; j, v) =

1

(2πi)2

∮
C3

∮
C4

z − w
w
(
z2 − 1

)
(zw − 1)

×
H
(
ρ+

[1,m] ∪ ρ
−
[0,i);w

)
H
(
ρ+

[j,m]; z
)

H
(
ρ+

[i,m];w
−1
)
H
(
ρ+

[1,m] ∪ ρ
−
[0,j); z

−1
) dzdw

zti,uwtj,v
, (2.12)

where the closed contours C3 and C4 satisfy (a) |z| > 1 and |zw| < 1 for all z ∈ C3 and w ∈ C4

whenever i ≤ j, and (b) |z| > 1, |zw| > 1 for all z ∈ C3 and w ∈ C4 whenever i > j,

K(T )
2,1 (i, u; j, v) = −K(T )

1,2 (i, v; j, u),

and

K(T )
2,2 (i, u; j, v) =

1

(2πi)2

∮
C5

∮
C6

z − w
zw(zw − 1)

×
H
(
ρ+

[1,m] ∪ ρ
−
[0,i); z

)
H
(
ρ+

[1,m] ∪ ρ
−
[0,i);w

)
H
(
ρ+

[i,m]; z
−1
)
H
(
ρ+

[j,m];w
−1
) dzdw

zti,uwtj,v
, (2.13)

where C5 and C6 are circles with radius less than 1. In addition, all the contours considered in
this theorem are oriented anticlockwise.

Remark 2.5. The matrix K(T ) of Theorem 2.4 can be partitioned into m2 submatrices. The size
of the (i, j)-submatrix of K(T ) is 2di×2dj where i, j ∈ [1,m]. Moreover, each of the submatrices
are composed of 2×2 block matrices. For instance, there are di ·dj blocks in the (i, j)-submatrix.
We denote the (u, v)-block matrix of the (i, j)-submatrix by K(T )(i, u; j, v). The matrix K(T ) is
completely specified by knowing the values of all K(T )(i, u; j, v) where

K(T )(i, u; j, v) :=

(
K(T )

1,1 (i, u; j, v) K(T )
1,2 (i, u; j, v)

K(T )
2,1 (i, u; j, v) K(T )

2,2 (i, u; j, v)

)

for 1 ≤ i, j ≤ m and for any given i, j ∈ [1,m], u and v vary in between [1, di] and [1, dj ]
respectively.

Remark 2.6. It should be noted that the expression of K(T )
22 in (2.13) is in disagreement with

the expression given in [24, Theorem 3.3]. Inside the integral, [24] has (1−zw) instead of (zw−1)
in the denominator. However, their proof suggests that such a change of sign is indeed needed.
This ambiguity has been pointed out in [3, Remark 4.1] and our analysis gives a rigorous account

in favor of this change of sign in K(T )
22 .

2.4 Outline of the proof

We discuss here a brief sketch of the proof of Theorem 2.4. The organization of the rest of the
paper will also be indicated concurrently. In Section 3, we introduce Macdonald difference ope-
rators. In the next section, we will derive contour integral formulas (see Corollary 4.2 and Theo-
rem 4.3) of the action of Macdonald (q, q)-difference operators on the partition function Z(ρ1; ρ2)
of the Pfaffian Schur measure where ρ1 and ρ2 are two Schur nonnegative specializations. In
Section 5, we find the correlation functions of the Schur measure over the set of partitions by
leveraging on the contour integral formulas of Section 4 and the fact that the Schur polynomials
are the eigenfunction of the difference operators. However, the same strategy does not work to
find the correlation function of the Pfaffian Schur process over the set of all finite sequences of
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partitions. This is because the skew Schur functions do not always belong to the set of eigen-
functions of Macdonald difference operators. To get around this, we use the representation of
the skew Schur functions in terms of the inner product of the Schur functions. Then, we let
the difference operators act on the Schur functions inside the inner product. This brings in
many contour integrals inside the inner products. Using bilinearity of the inner product, we
pull the integrals outside and consequently, get a contour integral representation which yields
the correlation functions of the Pfaffian Schur process in the same way as in the case of Pfaffian
Schur measure. We elaborate on each of these steps more clearly in Section 6. We would like
to point out that similar method has been also used in [1] to deal with the case of the Schur
process. Also, [15] expressed the skew-Macdonald polynomials as the scalar inner product of the
Macdonald polynomials to get the expectation of the multi-level observables. However, to deal
with the Pfaffian version of the Schur case, we need to develop some additional tools (namely,
Theorem 4.1, Lemma 6.5 etc.) which might be of independent interests. Finally, we complete
the proof of Theorem 2.4 in Section 6.1.

3 Macdonald difference operators

The main purpose of this section is to define some linear operators D in the space Symn such that
D can be diagonalized using the Schur polynomials. More precisely, this new set of operators
are expected to yield Dsλ = dλsλ where dλ is some scalar. As a consequence, one may write

DXZ(X;Y ) =
∑
λ

dλsλ(X)τλ(Y ) = Epsm[dλ].

It was observed in [32] that Macdonald difference operators are diagonalized by the Schur poly-
nomials. In what follows, we introduce Macdonald difference operators for a finite set of variables
X = {x1, . . . , xn} and discuss its properties.

Definition 3.1. For any q ∈ C and 1 ≤ i ≤ n, define the shift operators Tq,i by

Tq,i(F )(x1, . . . , xn) = F (x1, . . . , qxi, . . . , xn).

For any subset I ⊂ {1, . . . , n}, define

AI(x; t) =
∏

i∈I,j /∈I

txi − xj
xi − xj

.

Now, for r = 1, 2, . . . , n define the Macdonald (q, t)-difference operators as

Dr,q,t
n,X := qr(r−1)/2

∑
|I|=r

AI(x; t)
∏
i∈I

Tq,i,

where X = {x1, . . . , xn}.

Remark 3.2. Throughout the rest of paper, we only use Macdonald (q, q)-difference opera-
tors. For convenience, we refer Macdonald (q, q)-difference operators as Macdonald q-difference
operators and denote Dr,q,q

n,X by Dr,q
n,X .

The next lemma and the following discussion aim towards justifying the motivation behind
the use of the Macdonald operators in stochastic processes.

Lemma 3.3 ([32, Chapter 6, Proposition 4.15]). For any partition λ such that l(λ) ≤ n, we
have

Dr,q
n,Xsλ(X) = er

(
qλ1+n−1, qλ2+n−2, . . . , qλn

)
sλ(X),

where er is the r-th elementary symmetric function.
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Owing to Lemma 3.3, the action of D1,q
n,X on the partition function Z(X;Y ) of the Pfaffian

Schur measure yields

D1,q
n,XZ(X;Y ) =

∑
λ

τλ(Y )sλ(X)

n∑
i=1

qλi+n−i. (3.1)

Rewriting (3.1) in terms of the Pfaffian Schur measure, we get

Epsm

(
n∑
i=1

qλi+n−i

)
=
D1,q
n,XZ(X;Y )

Z(X;Y )
. (3.2)

By the successive actions of D1,q
n,X for multiple values of q on the partition function Z(X;Y ), we

arrive at m∏
j=1

D
1,qj
n,X

Z(X;Y ) =
∑
λ

τλ(Y )sλ(X)
m∏
j=1

n∑
i=1

qλi+n−ij . (3.3)

To find the correlation functions (see the definition in (2.10)) of some finite subset T = {tj}j∈[1,m]

of Z, we need to sum the Pfaffian Schur measure of all those partitions λ for which the set
{λi − i}i∈N contains T . But, this sum is essentially given by the coefficient of

∏
j q

tj+n
j (up to

some constant) in the right side of (3.3). The goal of the next two sections is to find contour

integral formulas of the coefficient of
∏
j q

tj+n
j . We elaborate more on the correlation functions

in Section 5.

4 Contour integral formulas

The main aim of this section is to derive a contour integral formula for the action of Mac-
donald difference operators on the partition function of the Pfaffian Schur measure. It can
be anticipated from (3.3) that the action of Macdonald operators computes the expectation
of
∏m
j=1

∑n
i=1 q

λi+n−i
j under the Pfaffian Schur measure. For similar exposition in the case of

Macdonald process, see [12, Section 2.2.3] and for Schur process, see [1, Section 2.2].
Consider a function G : Cn → C which has the following form

G(X) =
∏
i<j

f(xixj)
n∏
i=1

g(xi) (4.1)

for X := (x1, . . . , xn). We start with deriving a contour integral formula for the action of
the Macdonald operators on G(X) where the function G has the form shown above. Similar
formulas for the action of Macdonald (q, t)-operators recently appeared in [5, Proposition 3.3].
Whenever f is the identity function, one can find an analogous formula in [12, Proposition 2.2.11].

Theorem 4.1. Consider any function G of the form shown in (4.1). We assume xi 6= xj and
qxi 6= xj if i 6= j. Let f be a holomorphic function such that it is non-zero in some neighborhoods
around {xixj}1≤i,j≤n and it does not contain any poles near

{
q2xixj , qxixj

}
1≤i,j≤n for some

q ∈ C with |q| < 1. Furthermore, let us assume that g is also a holomorphic function such that it
is non-zero in the neighborhoods of {x1, . . . , xn} and does not have any pole near {qx1, . . . , qxn}.
Then, we have

Dr,q
n,XG(X) =

G(X)qr(r−1)/2

(2πi)rr!(q − 1)r

∮
C
· · ·
∮
C

∏
1≤i 6=j≤r

(zi − zj)
(qzi − zj)f(qzizj)

∏
1≤i<j≤r

f
(
q2zizj

)
f(zizj)
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×

(
r∏
i=1

f
(
z2
i

)
f
(
qz2
i

)) r∏
i=1

n∏
j=1

(qzi − xj)f(qzixj)

(zi − xj)f(zixj)

r∏
i=1

g(qzi)

g(zi)

dzi
zi
, (4.2)

where in the right hand side, we have r-fold integral and the contour C is defined as the union
C1 ∪ · · · ∪ Cn and Ci is a closed contour around the point xi satisfying

(i) qCi sits outside the contour C,

(ii) Ci contains no other poles of the integrand

for i ∈ [1, n]. For illustrations, see Fig. 1.

Proof. We begin with a detailed description on the choice of the integration contours. We
need n non-intersecting positively oriented circles C1, . . . , Cn centered at the points {x1, . . . , xn}
respectively such that qCi is not contained in any of the contours Cj for j ∈ [1, n]. To see why
such contours exist, we choose q ∈ C such that |q| < 1 and then select n positive real numbers
s1, . . . , sn such that qB(xi, si) ∩ B(xj , sj) is empty for all i, j ∈ [1, n]. This is possible since we
have assumed qxi 6= xj for xi 6= xj . Here, B(x, s) denotes the ball of radius s centered around
the point x ∈ C. Now, we choose Ci to be the circle of radius si centered around xi. Recall
that f has no zero near the points xixj and has no poles near at

{
q2xixj , xixj

}
1≤i,j≤n and g has

no zero near the points xj and no poles near qxj . Thus, for all 1 ≤ i ≤ n, one can choose each of
the elements of the set {s1, . . . , sn} small enough such that C = ∪iCi does not contain the zeros
of f(qzizj), f(zixl) and f(ziyl) for any zi ∈ Ck, zj ∈ Cl where k, l ∈ [1, n] and 1 ≤ i < j ≤ r.

Now, we turn to compute the integral in (4.2) and will show it exactly matches with the
left side of (4.2). First, we take the integral with respect to the variable z1. The integral can
be written as the sum of the residues at the poles enclosed by C. Recall that C is union of n
contours {Ci}i. Moreover, Ci contains xi inside. But, there is no other singularity inside the
contour Ci. This is due to the facts that (1) qCj sits outside of Ci for all j ∈ [1, n] (shows qz1 lives
outside C) and (2) Ci contains no other poles coming from the functions f and g. Furthermore,
each of the points in the set {xi}i∈[1,n] is a simple pole of the integral. Henceforth, the integral
which is the sum of n residues is given as

2πi(q − 1)
n∑
k=1

g(qxk)

g(xk)

n∏
j=1,j 6=k

(qxk − xj)f(qxkxj)

(xk − xj)f(xkxj)

∮
C
· · ·
∮
C

∏
2≤i 6=j≤r

(zi − zj)
(qzi − zj)f(qzizj)

×
∏

2≤i<j≤r
f
(
q2zizj

)
f(zizj)

(
r∏
i=2

f
(
z2
i

)
f
(
qz2
i

)) r∏
i=2

(xk − zi)
(qxk − zi)

×
r∏
i=2

n∏
j=1,j 6=k

(qzi − xj)f(qzixj)

(zi − xj)f(zixj)

r∏
i=2

g(qzi)f
(
q2zixk

)
g(zi)f(qzixk)

dzi
zi
. (4.3)

Note that for any k ∈ [1, n], k-th term in the above sum no longer has any pole at the
point xk for the variables zi where i now varies in [2, r]. Furthermore, the properties (i) and (ii)
of the integration contours imply that in order to compute the remaining integrals in the k-th
term in (4.3), we only need to evaluate the residues at the points {x1, . . . , x̂k, . . . , xn} where x̂k
implies xk is not present in the set. As we continue taking the integrals with respect to the
other variables, this phenomenon would greatly simplifies the successive computation. For con-
venience, we define a set S := {(Ci1 , . . . , Cir) | it 6= is for t 6= s}. We observe that the integral
in (4.2) can be restricted over all such r-tuple of contours in S. If we denote A := {i1, . . . , ir},
then integral over the contour Ci1×· · ·×Cir with respect to the variables z1, . . . , zr will be equal
to

(q − 1)r(2πi)r
∏

i∈A,j /∈A,i<j

qxi − xj
xi − xj

f(qxixj)

f(xixj)

∏
i∈A,j∈A,i<j

f
(
q2xixj

)
f(xixj)

∏
i∈A

g(qxi)

g(xi)
. (4.4)
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xt

Ct

qCt
qxt

xs

Cs

qCs
qxs

Figure 1. Plot of the contours {Ct, qCt} and {Cs, qCs}.

We get the simplified form in (4.4) due to the telescopic cancellations of the terms at each of
the stages of the integration. We demonstrate here how such cancellations come into play by
computing the integrals with respect to z1 and z2. First, note that the integral with respect to z1

along Ci1 is given by i1-th term of the sum in (4.3). Furthermore, the integral with respect z2

along Ci2 will contribute a factor given as

(q − 1)(2πi)f
(
q2xi1xi2

) (xi1 − xi2)

(qxi1 − xi2)f(qxi1xi2)

n∏
j=1,j 6=i1,i2

(qxi2 − xj)f(qxi2xj)

(xi2 − xj)f(xi2xj)

outside the remaining integrals. Thus, the following term

(qxi1 − xi2)f(qxi1xi2)

(xi1 − xi2)

will get canceled from the product. This suggests that the term like

∏
1≤p<q≤k

(qxip − xiq)f(qxipxiq)

(xip − xiq)

will be canceled after taking integrals with respect to z1, . . . , zk (for k < r) along the contours
Ci1 , . . . , Cik respectively. Owing to such repeated cancellations, we get (4.4) as the end result of
the integral. In fact, we get back the same value of the integral for r! different choices of the
contours from the set S. This justifies the presence of the factor r! in the right side of (4.2).
Thus, the sum of the contributions like in (4.4) when multiplied with G(X)(q)r(r−1)/2(2πi(q −
1))−r(r!)−1 would exactly be equal to Dr,q

n G(X). Hence, the claim follows. �

Owing to (2.5), the partition function Z(X;Y ) for any two Schur non-negative finite special-
ization X = (x1, . . . , xn) and Y = (y1, . . . , yn) can be written as in (4.1) for f(x) = (1 − x)−1

and g(x) =
∏n
i=1(1− xyi)−1. Using Theorem 4.1, we get the following contour integral formula

in the context of Pfaffian Schur measure.
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Corollary 4.2. Consider the action of the Macdonald operators Dr,q
n,X on the partition function

Z(X;Y ). Fix two positive real numbers t, s. Assume that the following two sets of distinct
non-negative real numbers X = {x1, . . . , xn} and Y := {y1, . . . , yk} satisfy the relation

t < min
1≤j≤n

{xj} < max
1≤j≤n

{xj} < s ≤ min
1≤j≤n

{
|xj |−1

}
∧ min

1≤j≤n

{
|qyj |−1

}
. (4.5)

Let us also assume that {x1, . . . , xn} are pairwise distinct. Thus, we get

Dr,q
n,XZ(X;Y ) =

Z(X;Y )(q)r(r−1)/2

r!(2πi)r(q − 1)r

∮
C
· · ·
∮
C

∏
1≤i 6=j≤r

(zi − zj)(1− qzizj)
(qzi − zj)

r∏
i=1

1− qz2
i

1− z2
i

×
∏

1≤i<j≤r

1(
1− q2zizj

)
(1− zizj)

r∏
i=1

n∏
j=1

(qzi − xj)(1− zixj)
(zi − xj)(1− qzixj)

r∏
i=1

k∏
j=1

1− ziyj
1− qziyj

r∏
i=1

dzi
zi
, (4.6)

where the contour C := C1 ∪ · · · ∪ Cn satisfies the properties mentioned in Theorem 4.1.

Proof. The condition in (4.5) implies that there exist small neighborhoods around {x1, . . . , xn}
which do not contain any element in the sets

{
(qy1)−1, . . . , (qyk)

−1
}

and
{
x−1

1 , . . . , x−1
n

}
. Since

we have assumed xi’s to be distinct, one can choose non-intersecting balls around each member
of the set {x1, . . . , xn} exactly in the same way as we did it in the last theorem. Therefore, one
can get (4.6) using Theorem 4.1. �

Theorem 4.3. Consider the action of D1,.
n,X on the partition function Z(X;Y ) for d different

complex numbers namely, q1, . . . , qd. For the sake of notational convenience, we assume X
and Y has same number of elements (equal to n). Fix some positive real numbers υ, s and a set
of ordered positive real numbers {r1 > · · · > rd} such that {υ, s} ∪ {r1 > · · · > rd} ∪ {q1, . . . , qd}
satisfy the following relations

dist

(
∪i∈[1,n]
j∈[1,d]

{
qjxi, q

−1
j xi, (qjxi)

−1, (qjyi)
−1, x−1

i

}
, {xi}i∈[1,n]

)
≥ r1 + s (4.7)

and

r1 < sυ2 ∧ s min
j∈[1,m]

{
|qj |−1 ∧ |qj |

}
, (4.8)

where

υ := min
1≤j≤m−1

1≤i≤n

{∣∣q±1
j x±1

i

∣∣ ∧ xi}.
Here, dist(A,B) denotes the Euclidean distance between two sets A and B, i.e., dist(A,B) =

min
x∈A, y∈B

‖x− y‖. Moreover, we assume xi’s are all distinct positive real numbers less than 1 and

0 ≤ yi ≤ 1 for all i ∈ [1, n]. Then, we have

d∏
j=1

D
1,qj
n,XZ(X;Y )

Z(X;Y )
=

1

(2πi)d

∮
C1
· · ·
∮
Cd

d∏
j=1

1

qjzj − zj

d∏
j=1

n∏
i=1

qjzj − xi
zj − xi

×
∏

1≤j<k≤d

(qjzj − qkzk)(zj − zk)
(zj − qkzk)(qjzj − zk)

∏
1≤j<k≤d

(1− qkzkzj)(1− qjzkzj)
(1− qjqkzjzk)(1− zjzk)

×
d∏
j=1

n∏
i=1

(1− zjxi)(1− zjyi)
(1− qjzjxi)(1− qjzjyi)

d∏
j=1

1− qjz2
j

1− z2
j

dzj , (4.9)

where the contour Cj consists small circles of radius rj around {x1, . . . , xd} for 1 ≤ j ≤ d.
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Proof. In the case when d = 1, the result follows from Corollary 4.2. To prove the other cases,
we use induction. Let us assume that the above formula is valid for d = m − 1. In order to
complete the proof, let us define

Z(m−1)(X;Y ) :=
1

(2πi)m−1

∮
C1
· · ·
∮
Cm−1

Z(X;Y )

m−1∏
j=1

1

qjzj − zj

m−1∏
j=1

n∏
i=1

qjzj − xi
zj − xi

×
∏

1≤j<k≤m−1

(qjzj − qkzk)(zj − zk)
(zj − qkzk)(qjzj − zk)

∏
1≤j<k≤m−1

(1− qkzkzj)(1− qjzkzj)
(1− qjqkzjzk)(1− zjzk)

×
m−1∏
j=1

n∏
i=1

(1− zjxi)(1− zjyi)
(1− qjzjxi)(1− qjzjyi)

m−1∏
j=1

1− qjz2
j

1− z2
j

dzj . (4.10)

We assume
∏m−1
j=1 D

1,qj
n,XZ(X;Y ) is given by Z(m−1)(X;Y ). One can note that the integrand

in (4.10) looks like cG(X) for some G as in (4.1) and the variable c does not depend on X. To
be precise, we can write down the integrand as the product of

∏
1≤i<j≤n(1−xixj)−1 (= H0(X))

and
∏n
i=1 g1(xi) (= G(X)) where

g1(x) := Ξ ·
m−1∏
j=1

(1− zjx)(qjzj − x)

(zj − x)(1− qjzjx)

n∏
i=1

1

1− yix
,

where Ξ depends on z1, . . . , zm−1. To compute D1,qd
n,XZ

(m−1)
n , we take the integral in (4.10) after

letting the difference operators D1,qm
n acts on the integrand. Note that such interchange of

the integral and the summation is possible because there are only finitely many terms in the
summation. Now, we need to get a contour integral representation of D1,qm

n,X H0(X)G(X). To
begin with, we elaborate on the choice of the contours. Contour for the new integral must avoid
the poles of g1(qmX)/g1(X) at{

(qmyi)
−1
}
i∈[1,n]

∪
{
z−1
j

}
j∈[1,m−1]

∪ {qjzj}j∈[1,m−1]

∪
{
q−1
m zj

}
j∈[1,m−1]

∪
{

(qjzj)
−1
}
j∈[1,m−1]

as well as the poles at
{

(qmzj)
−1
}
j∈[1,m−1]

which correspond to the factor H0(X). Moreover, the

contour should include the set of points {x1, . . . , xn} inside it. From the conditions, it follows
that we can choose qm such that for all i ∈ [1, n], qmxi, q

−1
m xi, (qmxi)

−1 and (qmyi)
−1 stay outside

at least at a distance s > 0 (fixed a priori) away from the circles of radius r1 centered around each
of the points in the set {x1, . . . , xn}. Furthermore, recall that r1 < sυ2 ∧ s min

j∈[1,m]

{
q−1
j ∧ qj

}
.

Thus, if we would have chosen the contours of {zj}j∈[1,m−1] to be {Cj}j∈[1,m−1] where Cj is
composed of circles of radius rj around the points xi, then none of the poles from the union{

z−1
j

}
j∈[1,m−1]

∪ {qjzj}j∈[1,m−1] ∪
{
q−1
m zj

}
j∈[1,m−1]

∪
{

(qjzj)
−1
}
j∈[1,m−1]

comes inside the contour Cm for the variable zm. This is due to the following two facts: whenever
zj = xi + rje

iθj , then

(a) qjzj or q−1
j zj will be within the distance rj

(
qj ∨ q−1

j

)
from the point qjxi or q−1

j xi, thus,

|qjzj − qjxi| ∨
∣∣q−1
j zj − q−1

j xi
∣∣ ≤ rj(q−1

j ∧ qj
)
≤ s,

(b) (qjzj)
−1 or qjz

−1
j will be within the distance rjυ

−2 from the point (qjxi)
−1 or qjx

−1
i , thus,∣∣(qjzj)−1 − (qjxi)

−1
∣∣ ∨ ∣∣qjz−1

j − qjx
−1
i

∣∣ ≤ rjυ−2 ≤ s.
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At this point, using Theorem 4.1 for r = 1 and q = qm, we get

D1,qm
n,X Z(X;Y )

n∏
i=1

m−1∏
j=1

(1− zjxi)(qjzj − xi)
(zj − xi)(1− qjzjxi)

=
1

(2πi)

∮
Cm
Z(X;Y )

1

qmzm − zm

m−1∏
j=1

n∏
i=1

(1− zjxi)(qjzj − xi)
(zj − x)(1− qjzjxi)

n∏
i=1

(qmzm − xi)
(zm − xi)

×
m−1∏
j=1

(qjzj − qmzm)(zj − zm)

(qjzj − zm)(zj − qmzm)

m−1∏
j=1

(1− qmzmzj)(1− qjzjzm)

(1− qmqjzmzj)(1− zmzj)

× 1− qmz2
m

1− z2
m

n∏
i=1

(1− zmxi)(1− zmyi)
(1− qmzmxi)(1− qmzmyi)

dzm.

Combining (4.10) and (4.2) yields the contour formula for
∏m
j=1D

1,qj
n,XZ(X;Y ) as given in (4.9)

with d = m. This completes the proof. �

One can also derive the analogues of Corollary 4.2 and Theorem 4.3 for the partition function
of the Schur process. For that, one needs to plug in f(x) = 1 and g(x) =

∏n
j=1(1 − xyj)−1 in

Theorem 4.1. One can see [1, Propositions 2.2.4 and 2.2.7] for the details of the derivation. For
the purpose of using it later, we just state the result here.

Theorem 4.4. Consider the action of D1,.
n,X on the partition function F (X;Y ) for d different

complex numbers namely, q1, . . . , qd. Fix s > 0 and a set of ordered positive real numbers
{r1 > · · · > rd} such that the union {s} ∪ {r1 > · · · > rd} ∪ {q1, . . . , qd} satisfies the following
relations

dist

(
∪ i∈[1,d]
j∈[1,m]

{
(qjyi)

−1, qjxi, q
−1
j xi

}
, {xi}i∈[1,n]

)
> r1 + s

and min
i∈[1,n]

{|xi|} > r1. Assume that {xi}i∈[1,n] and {yi}1∈[1,n] are two sets of distinct positive real

numbers less than 1. Then,

d∏
j=1

D
1,qj
n,XF (X;Y )

F (X;Y )
=

1

(2πi)d

∮
C1
· · ·
∮
Cd

d∏
j=1

1

qjzj − zj

d∏
j=1

n∏
i=1

qjzj − xi
zj − xi

×
∏

1≤j<k≤d

(qjzj − qkzk)(zj − zk)
(zj − qkzk)(qjzj − zk)

d∏
j=1

n∏
i=1

(1− zjyi)
(1− qjzjyi)

d∏
j=1

dzj , (4.11)

where the contour Cj consists small circles of radius rj around {x1, . . . , xd} for 1 ≤ j ≤ d.

5 Correlation functions of a single partition

In this section, we find out the correlation functions of a single partition under the Pfaffian
Schur measure. We will primarily use finite Schur non-negative specializations in the definition
of the Pfaffian Schur measure given in (2.4). For the sake of notational convenience, we assume
both the specializations in (2.4) have the same length n. To motivate the discussion of this
section, we start with the definition of the correlation functions for the single partition. For any
random partition λ = (λ1, λ2, . . . ) where λ1 ≥ λ2 ≥ · · · and a fixed set of integers {t1, t2, . . . , tj},
the correlation function ρpsm(t1, t2, . . . , tj) is defined as

ρpsm(t1, . . . , tj) = P(λi1 − i1 = t1, . . . , λij − ij = tj for some i1, . . . , ij ∈ [1, n]). (5.1)
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Note that ρpsm(t1, . . . , td) is the sum of the coefficients of the terms like
∏d
j=1 q

tj+n
j in the r.h.s.

of (3.3). In what follows, we present a simple recipe to obtain the correlation functions based
on this eloquent fact.

Theorem 5.1. Consider the Pfaffian Schur measure with two finite Schur non-negative spe-
cializations X := {x1, . . . , xn} and Y := {y1, . . . , yn} such that

∑
λ sλ(X)τλ(Y ) is absolutely

convergent. Then, the correlation function ρpsm(T ) of the set T := {t1, . . . , td} is the coeffi-

cient of QT in the series expansion of Z−1(X;Y )
∏d
j=1D

1,qj
n,XZ(X;Y ) where QT =

∏d
j=1 q

tj+n
j .

Furthermore, one can write

ρpsm(T ) =
1

(2πi)d

∮
C′
· · ·
∮
C′
Z−1(X;Y )

d∏
j=1

D
1,qj
n,XZ(X;Y )q

−tj−n−1
j dqj , (5.2)

where the contour C′ is a circle of radius rq < 1 oriented in the anticlockwise direction around 0.

Proof. The fact that ρpsm(T ) is equal to the coefficient of QT in Z−1(X,Y )
∏d
j=1D

1,qj
n,XZ(X;Y )

follows by combining (3.2) with (3.3).

Now, we turn to show the right hand side of (5.1) is equal to ρpsm(T ). Since the con-
tour C′ is a circle of radius rq < 1 oriented counterclockwise around 0, the absolute value

of
∏d
j=1

∑n
k=1 q

λk+n−k
j is bounded above by nrdq for any partition λ. By our assumption,∑

λ sλ(X)τλ(Y ) is absolutely convergent. Therefore, the following series

∑
λ∈Y

sλ(X)τλ(Y )

d∏
j=1

n∑
k=1

qλk+n−k
j (5.3)

is also absolutely convergent. Now, we substitute Z−1(X,Y )
∏d
j=1D

1,qj
n,XZ(X;Y ) by the sum

in (5.3) (since this is equal to Epsm
[∏d

j=1

∑n
k=1 q

λk+n−k
j

]
) inside the integrals of (5.3) and

interchange1 the sum (over λ) and the integrals. For any partition λ, the integrals with respect
to q1, . . . , qd will be equal to Z−1(X;Y )sλ(X)τλ(Y ) if λi1 − i1 = t1, . . . , λid − id = td for some
i1, . . . , id ∈ [1, n] and otherwise, it will be equal to 0. Hence, the sum of those integrals over all
partitions λ ∈ Y is equal to ρpsm(T ). This completes the proof. �

The rest of the discussion in this section is devoted to prove that the contour integral formula
of the correlation functions in (5.2) can be expressed as the Pfaffian of a 2d×2d skew symmetric
matrix. For our next result, consider the Pfaffian Schur measure given in (2.4) with two Schur
nonnegative specializations X and Y where X = {x1, x2, . . . , xn} and Y = {y1, . . . , yn} are two
sets of positive real numbers less than 1 and the series

∑
λ sλ(X)τλ(Y ) is absolutely convergent.

Theorem 5.2. Suppose T = {t1, . . . , td} ⊂ Z are pairwise disjoint integers. Assume n is an
integer greater than max{d, d − minT}. Then, we have ρpsm(T ) = Pf

(
K(T )

)
where K(T ) is

a 2d× 2d skew symmetric matrix (see Remark 5.3 for more description on the structure of the
matrix K(T )). The coefficients of K(T ) are given explicitly by the contour integrals shown as
follows:

K(T )
11 (k, l) :=

1

(2πi)2

∮
C1

∮
C2

(z − w)(
z2 − 1

)(
w2 − 1

)
(zw − 1)

×
n∏
i=1

(
1− z−1xi

)(
1− w−1xi

)(
1− z−1yi

)(
1− w−1yi

)
(1− zxi)(1− wxi)

dzdw

ztkwtl
,

1This interchange is justified by the dominated convergence theorem.
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where C1 and C2 are positively oriented closed contours containing the singularities at
{
x−1
i

}
i∈[1,n]

and furthermore, |z| > 1 and |w| > 1 for all z ∈ C1 and w ∈ C2 respectively,

K(T )
21 (k, l) := − 1

(2πi)2

∮
C3

∮
C4

(z − w)

w
(
z2 − 1

)
(zw − 1)

×
n∏
i=1

(
1− w−1xi

)(
1− z−1xi

)(
1− z−1yi

)
(1− zxi)(1− wxi)(1− wyi)

dzdw

ztkwtl
,

K(T )
12 (k, l) := −K(T )

21 (l, k),

and

K(T )
22 (k, l) :=

1

(2πi)2

∮
C5

∮
C6

(z − w)

zw(zw − 1)

n∏
i=1

(
1− z−1xi

)(
1− w−1xi

)
(1− zxi)(1− wxi)(1− zyi)(1− wyi)

dzdw

ztkwtl
.

All of C3, C4, C5 and C6 are closed, positively oriented contours. Furthermore, C3, C4 contain

the singularities at
{
x−1
i

}
i∈[1,n]

inside. In addition, C3 and C4 in K(T )
12 (r, s) are such that |z| > 1

and |zw| > 1 are satisfied for all (z, w) ∈ C3 × C4 and in the case of K(T )
22 , z and w must satisfy

|z| < 1 and |w| < 1 for all pairs (z, w) from the set C5 × C6.

Remark 5.3. The matrix K(T ) of Theorem 5.2 consists of a number d2 of 2× 2 block matrices.
For any k, l ∈ [1, d], the (k, l) block matrix of the matrix K(T ) is denoted as K(T )〈k, l〉. One can
completely determine K(T ) by specifying K(T )〈k, l〉 for all 1 ≤ k, l ≤ d where

K(T )〈k, l〉 :=

(
K(T )

11 (k, l) K(T )
12 (k, l)

K(T )
21 (k, l) K(T )

22 (k, l)

)
.

For instance, if K(T )
8×8 is given as follows

K(T ) =



∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∆11 ∆12 ∗ ∗ ∗ ∗ ∗ ∗
∆21 ∆22 ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


,

then, K(T )〈2, 1〉 =

(
∆11 ∆12

∆21 ∆22

)
.

Proof of Theorem 5.2. To begin with, let us single out the following product

d∏
j=1

1− qjz2
j

zj − qjzj

∏
1≤j<k≤d

(qjzj − qkzk)(zj − zk)
(zj − qkzk)(qjzj − zk)

∏
1≤j<k≤d

(1− qkzkzj)(1− qjzkzj)
(1− qjqkzjzk)(1− zjzk)

(5.4)

from the integrand in (4.9). We claim that the product in (5.4) is the Pfaffian of a skew
symmetric matrix M where

M〈k, l〉 =

(
M11(k, l) M12(k, l)
M21(k, l) M22(k, l)

)
=


zk − zl
1− zkzl

1− qlzlzk
zk − qlzl

−1− qkzkzl
zl − qkzk

qkzk − qlzl
1− qlqkzlzk

 .
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To see this, let us substitute2

zj = u2j−1 and qjzj = u−1
2j ,

where U = {u1, . . . , u2d} is a set of complex numbers. Under this substitution, the product
in (5.4) is transformed as∏

1≤j<k≤2d

uj − uk
1− ujuk

and the matrix M is transformed to M̃ where

M̃ =

((
uj − uk
1− ujuk

)
j,k∈[1,2d]

)
.

It remains to show that

Pf(M̃) =
∏

1≤j<k≤2d

uj − uk
1− ujuk

. (5.5)

This follows from the Pfaffian Schur identity (see [38, p. 225], [39, p. 104], [40]).

Recall that ρpsm(T ) is expressed in Theorem 5.2 as a contour integral where the integrand

is written in terms of Z−1(X,Y )
∏2d
j=1D

1,qj
n,XZ(X;Y ). Substituting the contour integral formula

for Z−1(X,Y )
∏2d
j=1D

1,qj
n,XZ(X;Y ) (4.9) inside the integral of the r.h.s. of (5.2) yields

ρpsm(T ) =
1

(2πi)d

∮
C′

dq1 · · ·
∮
C′

dqd

∮
C1

dz1 · · ·
∮
Cd

dzd Pf(M)
d∏
j=1

q
−tj−n−1
j

1− z2
j

×
d∏
j=1

n∏
i=1

(qjzj − xi)(1− zjxi)(1− zjyi)
(zj − xi)(1− qjzjxi)(1− qjzjyi)

. (5.6)

One may ask whether the conditions of Theorem 4.3 are satisfied in the above substitution.
To satisfy the conditions in Theorem 4.3, we first restrict the contours C′ of the variables qj .
After restricting C′, we show that there exists contours {Cj}j∈[1,d] such that those satisfy the
conditions (4.7) and (4.8). To see how it is possible, we first choose a real number η > 0 such
that

η <
1

3

(
min

i 6=j∈[1,n]

{
|xi − xj | ∧

∣∣xi − x−1
j

∣∣} ∧ min
i,j∈[1,n]

{
|xi − yj | ∧

∣∣xi − y−1
j

∣∣}). (5.7)

where we have assumed that the right hand side of (5.7) is strictly positive. Now, we define
υ0 := mini∈[1,n]{|xi| ∧ |xi|−1 ∧ |yi| ∧ |yi|−1}. Note that υ0 ≤ 1. We choose the contour C′ to be
the circle of radius 1− ηυ0 around 0. Using nonnegativity of the variables {xi}i∈[1,n], we get

|qjxk − xi| ≥ max{|Re(qjxk)− xi|, |Im(qjxk)|}.

Furthermore, we know |Im(qjxk)| ≥ (1 − ηυ)xk − |Re(qjxk)| > 0. As a consequence, we get
|qjxk − xi| ≥ 2−1|(1 − ηυ)xk − xi| owing to the inequality max{|a|, |b|} ≥ 2−1|a + b| for any
a, b ∈ R. One can also see that we have |(1− sυ0)xk − xi| ≥ |xk − xi| − ηυ0|xk| > 2η whenever

2This substitution is suggested by Guillaume Barraquand.
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k 6= i. Moreover, qjxi and xi must be at least ηυ0|xi| far apart from each other. Henceforth, on
defining s := 2−1ηmini{υ0xi}, we get

dist

(
∪j∈[1,d]
i∈[1,n]

{qjxi}, {xi}i∈[1,n]

)
> 2s.

Likewise, for the same choice of s and υ0, one can prove a more general statement given as

dist

(
∪i∈[1,n]
j∈[1,d]

{
qjxi, q

−1
j xi, (qjxi)

−1, (qjyi)
−1, x−1

i

}
, {xi}i∈[1,n]

)
≥ 2s. (5.8)

Now, note that the minimum value of |q±1
j x±1

i | over all values of j ∈ [1, d] and i ∈ [1, n] lies very

close to υ0. Now we fix a positive real number r1 such that r1 < sυ2
0. This choice of r1 satisfies

the condition (4.8). Furthermore, owing to (5.8) and that fact that υ0 < 1, the condition (4.7)
is also satisfied. Now, we are ready to choose the contours {Cj}dj=1. As in Theorem 4.3, we
choose Cj for j ∈ [1, d] composed of n non-intersecting circles around the points {x1, . . . , xn}
of radius rj from the set {r1, . . . , rd} where the choice of r1 is given above and {r2, . . . , rd} are
chosen from (0, r1) under the restriction rd < rd−1 < · · · < r1. Now, we focus on Pf(M). We
may expand Pf(M) as

Pf(M) =
1

2dd!

∑
σ∈S(2d)

(−1)σ
d∏
j=1

M(σ(2j − 1), σ(2j)). (5.9)

Substituting (5.9) inside the integral of (5.6), we see that the integrand can be written as

1

2dd!

∑
σ∈S(2d)

(−1)σ
d∏
j=1

M(σ(2j − 1), σ(2j))

d∏
j=1

q
−tj−n−1
j

z2
j − 1

×
d∏
j=1

n∏
i=1

(qjzj − xi)(1− zjxi)(1− zjyi)
(zj − xi)(1− qjzjxi)(1− qjzjyi)

. (5.10)

Let us fix a permutation σ and consider the term in the above summation indexed by σ.
Let us make a substitution z̃j = (qjzj)

−1. Notice that each term of the sum (5.10) can be
written in terms of the following set of variables {z1, . . . , zd, z̃1, . . . , z̃d}. The Jacobian of the
transformation is given by

∏d
j=1

(
−q−2

j

)
z−1
j . We need to multiply the integrand with the inverse

of the Jacobian which we do after rewriting
∏d
j=1

(
−q−2

j

)
z−1
j as

∏d
j=1

(
−q−1

j

)
z̃j . This will kill

the factor q−1
j of the term q

−tj−n−1
j in (5.10). Furthermore, we note

qjzj − xi
zj − xi

= qj
1− z̃jxi

1− z−1
j xi

, ∀ i ∈ [1, n], j ∈ [1, d].

This piles up a factor qnj in the integrand and thus, accounts for the cancellation of the term∏d
j=1 q

−n
j from the product in the r.h.s. of (5.10). Now, we substitute

∏d
j=1 q

−tj
j =

∏d
j=1 z

tj
j z̃

tj
j

and as consequence, the r.h.s. of (5.10) is expressed completely in terms of {z1, . . . , zd, z̃1, . . . , z̃d}.
Our next task is to derive the elements of the matrix K(T ) by manipulating the terms in the
product in the r.h.s. of (5.10). For notational convenience, we denote dσ(t)/2e by σ2(t) for any
t ∈ [1, 2d] in the rest of the proof. If both σ(2j−1) and σ(2j) are odd integers, thenM(σ(2j−1),
σ(2j)) = (zσ2(2j−1) − zσ2(2j))(1− zσ2(2j−1)zσ2(2j))

−1. Putting together M(σ(2j − 1), σ(2j)) and
other terms involving zσ2(2j−1) and zσ2(2j) from the product, we arrive at

−
∮ ∮

dzσ2(2j−1)dzσ2(2j)

z
−tσ2(2j−1)

σ2(2j−1) z
−tσ2(2j)
σ2(2j)

(zσ2(2j−1) − zσ2(2j))(
1− z2

σ2(2j−1)

)(
1− z2

σ2(2j)

)
(1− zσ2(2j−1)zσ2(2j))
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×
n∏
i=1

(1− zσ2(2j−1)xi)(1− zσ2(2j)xi)(1− zσ2(2j−1)yi)(1− zσ2(2j)yi)(
1− z−1

σ2(2j−1)xi
)(

1− z−1
σ2(2j)xi

) , (5.11)

where the contours of the integral are oriented anticlockwise and contain the singularities at
the points {xi}i∈[1,n]. In addition, the following two conditions |zσ2(2j−1)| < 1 and |zσ2(2j)| < 1
are satisfied over all region on the contours. This allows us to avoid the poles at ±1 and
z−1
σ2(2j−1) (or z−1

σ2(2j)) for the variable zσ2(2j) (or zσ2(2j−1)). Furthermore, the (−) sign which

appears in (5.11) comes from the Jacobian of the transformations (zj , qj) 7→
(
zj , (qjzj)

−1
)
. In

the next step, we substitute the variables zσ2(2j−1) with z−1 and zσ2(2j) to w−1. This leads to
the expression

K(T )
11 (σ2(2j − 1), σ2(2j)) =

∮
C1

∮
C2

dzdw

ztσ2(2j−1)wtσ2(2j)
(z − w)(

z2 − 1
)(
w2 − 1

)
(zw − 1)

×
n∏
i=1

(1− z−1xi)
(
1− w−1xi

)(
1− z−1yi

)(
1− w−1yi

)
(1− zxi)(1− wxi)

. (5.12)

Due to the above substitution, the contours C1 and C2 are closed containing all the singularities
at
{
x−1
i

}
i∈[1,n]

and furthermore, |z| > 1 and |w| > 1 must be satisfied for all (z, w) ∈ C1 × C2.

Next, we consider the case when σ(2j − 1) is even and σ(2j) is odd. One can also consider
the opposite scenario namely, σ(2j − 1) is odd and σ(2j) is even. In both of these two cases,
the analysis would be similar. For brevity, we would only discuss the first case. Rewriting
M(σ(2j − 1), σ(2j)) in terms of {z1, . . . , zd, z̃1, . . . , z̃d} yields

M(σ(2j − 1), σ(2j)) =
1− zσ2(2j)z̃

−1
σ2(2j−1)

zσ2(2j) − z̃−1
σ2(2j−1)

.

Owing to this new form of M(σ(2j − 1), σ(2j)), K(T )
21 (σ2(2j − 1), σ2(2j)) can be written as

−
∮ ∮

dzσ2(2j−1)dzσ2(2j)

z
−tσ2(2j−1)

σ2(2j−1) z
−tσ2(2j)
σ(2j)

(
1− zσ2(2j)z̃

−1
σ2(2j−1)

)
z̃σ2(2j−1)

(
1− z2

σ2(2j)

)(
zσ2(2j) − z̃−1

σ2(2j−1)

)
×

n∏
i=1

(1− z̃σ2(2j−1)xi)(1− zσ2(2j)xi)(1− zσ2(2j)yi)(
1− z−1

σ2(2j)xi
)(

1− z̃−1
σ2(2j−1)xi

)(
1− z̃−1

σ2(2j−1)yi
) ,

where the contours for the integrals are closed and contain inside all the singularities of the
integrand except those at zσ2(2j) = ±1 and zσ2(2j)z̃σ2(2j−1) = 1. Not that these conditions
will be satisfied for any two positively oriented closed contours such that |zσ2(2j)| < 1 and
|zσ2(2j)z̃σ2(2j−)| < 1. We now make a substitution z̃σ2(2j−1) = z−1 and zσ2(2j) = w−1. Rewriting

K(T )
21 (σ2(2j − 1), σ2(2j)) in terms of z and w, we get

K(T )
21 (σ2(2j − 1), σ2(2j)) = −

∮
C3

∮
C4

dzdw

ztσ2(2j−1)wtσ2(2j)
(z − w)

z
(
w2 − 1

)
(zw − 1)

×
n∏
i=1

(
1− z−1xi

)(
1− w−1xi

)(
1− z−1yi

)
(1− zxi)(1− wxi)(1− zyi)

, (5.13)

where C3 and C6 are closed positively oriented contours containing the singularities at
{
x−1
i

}
i∈[1,n]

.

Furthermore, |z| > 1 and |zw| > 1 are satisfied for all (z, w) ∈ C3 × C4.
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The last case is when both σ(2j − 1) and σ(2j) are even. Substituting the expression of

M(σ(2j − 1), σ(2j)) inside the integral of K(T )
22 (σ2(2j − 1), σ2(2j)) yields

−
∮ ∮

dzσ2(2j−1)dzσ2(2j)

z
−tσ2(2j−1)

σ2(2j−1) z
−tσ2(2j)
σ2(2j)

(
z̃−1
σ2(2j−1) − z̃

−1
σ2(2j)

)
z̃σ2(2j−1)z̃σ2(2j)

(
1− z̃−1

σ2(2j−1)z̃
−1
σ2(2j)

)
×

n∏
i=1

(1− z̃σ2(2j−1)xi)(1− z̃σ2(2j)xi)(
1− z̃−1

σ2(2j−1)xi
)(

1− z̃−1
σ2(2j)xi

)(
1− z̃−1

σ2(2j−1)yi
)(

1− z̃−1
σ2(2j)yi

) , (5.14)

where the contours of the integral must contain inside the singularities at {xi}i∈[1,n], but avoid

the pole at z̃σ2(2j−1) = z̃−1
σ2(2j). These conditions will be fulfilled for any two positively oriented

contours which contain inside {xi}i∈[1,n] and further, satisfies |z̃σ2(2j−1)| > 1 and |z̃σ2(2j)| > 1.
Substituting z̃σ2(2j−1) = z−1 and z̃σ2(2j) = w−1 in (5.14), we arrive at

K(T )
22 (σ2(2j − 1), σ2(2j)) =

∮
C5

∮
C6

dzdw

ztσ2(2j−1)wtσ2(2j)
(z − w)

z(w2 − 1)(zw − 1)

×
n∏
i=1

(
1− z−1xi

)(
1− w−1xi

)
(1− zxi)(1− wxi)(1− zyi)(1− qyi)

, (5.15)

where the contours C5 and C6 are closed, positively oriented and contain the poles at {xi}1∈[1,n].
Furthermore, for all (z, w) ∈ C5 × C6, we have |z| < 1 and |w| < 1.

Now, note that σ is an arbitrary permutation in the symmetric group S(2d). Therefore,
combining (5.10), (5.12), (5.13) and (5.15), one observes that

ρpsm(T ) =
1

2dd!

∑
σ∈S(2d)

(−1)σ
d∏
j=1

K(T )(σ(2j − 1), σ(2j)),

where the right hand side is equal to Pf(K(T )). This completes the proof. �

6 Correlation function of the Pfaffian Schur process

The main goal of this section is to prove Theorem 2.4 which we do in the following subsection.
Our proof will require some additional results on the nested inner products of the Schur functions
whose proofs are deferred to the subsequent subsections.

6.1 Proof of Theorem 2.4

Recall that Ti = {(i, ti,1), . . . , (i, ti,di)} for 1 ≤ i ≤ m. Consider ρ+
1 , . . . , ρ

+
m and ρ−0 , . . . , ρ

−
m−1

two sets of finite Schur non-negative specializations of symmetric polynomials such that

ρ+
i = {xi,1, xi,2, . . . , xi,ni} (6.1)

and

ρ−i−1 = {yi,1, yi,2, . . . , yi,ni} (6.2)

for 1 ≤ i ≤ m. We assume that {xi,j}i∈[1,m],j∈[1,di] and {yi,j}i∈[1,m],j∈[1,di] satisfy the following

min |ρ−i−1| := min
j∈[1,ni]

{|xi,j |} < max |ρ−i−1| := max
j∈[1,ni]

{|xi,j |} < 1,

min |ρ+
i | := min

j∈[1,ni]
{|xi,j |} < max |ρ+

i | := max
j∈[1,ni]

{|xi,j |} < 1
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for all i ∈ [1,m]. Using analytic continuation, one can prove Theorem 2.4 for any other finite
Schur non-negative specializations which satisfies the assumption of the theorem. Denote ρ+ =
{ρ+

1 , . . . , ρ
+
m} and ρ− = {ρ−0 , . . . , ρ

−
m−1}. Let us also fix two sets of positive integers u1 :=

{ui,1}i∈[1,m−1] and u2 := {ui,2}i∈[1,m−1]. We will often denote u1 and u2 together as u. For
a finite non-negative specialization X = {x1, . . . , xn}, we introduce the following shorthand
notations:

H(1)
q (X; z) :=

n∏
i=1

1− zxi
1− qzxi

, (6.3)

H(2)
q (X; z) :=

n∏
i=1

1− (qz)−1xi
1− z−1xi

. (6.4)

We consider the following generalization of the r.h.s. in (3.3)

C(ρ+; ρ−;u) :=
∑

(λ̄,µ̄)∈Ym×Ym−1

Ppsp(λ̄, µ̄; ρ+, ρ−)

m−1∏
i=1

1(|µ(i)| ≤ ui,1 ∧ ui,2)

×
m−1∏
i=1

di∏
j=1

ni+ui,1−1∑
k=1

q
λ
(i)
k +ni−k
i,j

dm∏
j=1

nm−1∑
k=1

q
λ
(m)
k +nm−k
m,j , (6.5)

where Ppsp(λ̄, µ̄; ρ+, ρ−) is an abbreviation used to denote the Pfaffian Schur process

Z−1(ρ+; ρ−)τλ(1)(ρ
−
0 )sλ(1)/µ(1)(ρ

+
1 )sλ(2)/µ(1)(ρ

−
1 ) · · · sλ(m)/µ(m−1)(ρ−m−1)sλ(m)(ρ+

m).

We divide the rest of the argument into four main steps. In Step I, we will show that the
correlation function ρpsp(T ) is a limit of some contour integral formula involving C(ρ+; ρ−;u).
In Step II, we state a contour integral formula of the limit of C(ρ+; ρ−;u). The proof of this
last formula will be deferred to Sections 6.2–6.4. In Steps II and III, we show that ρpsp(T ) can
be written as the Pfaffian of some skew symmetric matrix of size

(∑m
i=1 2di

)
×
(∑m

i=1 2di
)

and
identify the corresponding matrix respectively.

Step I. Here, we claim and prove that

ρpsp(T ) = lim
u→∞

1

(2πi)
∑m
i=1 di

∮
C′
· · ·
∮
C′
C(ρ+; ρ−;u)

m∏
i=1

di∏
j=1

q
−ti,j−ni−1
i,j dqi,j , (6.6)

where the contours of qi,j are anti-clockwise oriented circles |z| = η for some η < 1 and by
limu→∞, we mean

lim
u→∞

:= lim
um−1,2→∞

lim
um−1,1→∞

· · · lim
u1,2→∞

lim
u1,1→∞

. (6.7)

Proof of (6.6). Under the assumption max
i,j
|qi,j | < 1, it can be noted that the series in (6.5) is

absolutely convergent when
∑

λ̄,µ̄ Ppsp(λ̄, µ̄; ρ+, ρ−) converges absolutely. Moreover, we observe

that the coefficient of
∏m
i=1

∏di
j=1 q

ti,j+ni
i,j in C(ρ+; ρ−;u) is given by

∑
(λ̄,µ̄)∈Ym×Ym−1

Ppsp(λ̄, µ̄; ρ+, ρ−)

m−1∏
i=1

1
(∣∣µ(i)

∣∣ ≤ ui,1 ∧ ui,2)m−1∏
i=1

di∏
j=1

1
(
ti,j ∈

{
λ

(i)
k − k

}
1≤k≤ni+ui,1−1

)
×

dm∏
j=1

1
(
tm,j ∈

{
λ

(m)
k − k

}
1≤k≤ni−1

)
. (6.8)
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Using the absolute convergence of the series
∑

λ̄,µ̄ Ppsp(λ̄, µ̄; ρ+, ρ−), we write (6.8) as

(
1

(2πi)

)∑m
i=1 di

∮
C′
· · ·
∮
C′
C(ρ+; ρ−;u)

m∏
i=1

di∏
j=1

q
−ti,j−ni−1
i,j dqi,j ,

where the contour C′ is a circle of radius η centered around 0. Notice that the correlation
function ρpsp(T ) of the Pfaffian Schur process is the limit of (6.8) when ui,1 ∧ ui,2 tend to ∞ for
all i ∈ [1,m− 1]. This proves the claim. �

Step II. Here, we will derive a contour integral formula of lim
u→∞

C(ρ+; ρ−;u).

Theorem 6.1. Consider the Pfaffian Schur measure given in (2.4) where ρ+ = {ρ+
1 , . . . , ρ

+
m}

and ρ− = {ρ−0 , . . . , ρ
−
m−1} are two sets of finite Schur non-negative specialization of the plane

partition (see (6.1)–(6.2)). Let {qi,j}j∈[1,di],i∈[1,m] be a sequence of complex numbers such that

0 < min
i,j
{|qi,j |} ≤ max

i,j
{|qi,j |} < 1 (6.9)

holds. Let C be a contour which is composed of a clockwise circle |z| = r and a counterclockwise
circle |z| = R where r,R satisfy

r < min
i∈[1,m]

{min |ρ+
i |} ≤ max

i∈[1,m]
{max |ρ+

i |} < R < 1. (6.10)

Then, we have

lim
u→∞

C(ρ+; ρ−;u) =
Z(ρ+; ρ−)

(2πi)
∑m
i=1 di

∮
C
· · ·
∮
C

m∏
i=1

di∏
j=1

qnii,j
(qjzj − zj)

×
m∏
i=1

di∏
j<k

(qi,kzi,k − qi,jzi,j)(zi,j − zi,k)
(zi,j − qi,kzi,k)(qi,jzi,j − zi,k)

×
m∏
i=1

 ∏
1≤j<k≤di

(1− qi,jzi,jzi,k)(1− qi,kzi,kzi,j)
(1− qi,kqi,jzi,kzi,j)(1− zi,jzi,k)

di∏
j=1

1− qi,jz2
i,j

1− z2
i,j


×

m∏
k=1

m∏
i=1

dk∏
j=1

H(1)
qk,j

(ρ+
i ; zk,j)

×
∏

1≤m1<m2≤m

dm1∏
j=1

dm2∏
k=1

(1− qm2,jzm2,kzm1,j)(1− qm1,jzm1,jzm2,k)

(1− qm1,jzm1,jqm2,kzm2,k)(1− zm2,kzm1,j)

×
m∏
k=1

k−1∏
i=0

dk∏
j=1

H(1)
qk,j

(ρ−i ; zk,j)

×
∏

1≤m1<m2≤m

dm1∏
j=1

dm2∏
k=1

(qm1,jzm1,j − qm2,jzm2,k)(zm1,j − zm2,k)

(zm1,j − qm2,kzm2,k)(qm1,jzm1,j − zm2,k)

×
m∏
k=1

m∏
i=k

dk∏
j=1

H(2)
qk,j

(ρ+
i ; zk,j)

m∏
i=1

di∏
j=1

dzi,j , (6.11)

where lim
u→∞

is defined in the same way as in (6.7).
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The proof of Theorem 6.1 is rather long and will span over three subsections. In the first of
these three subsections (Section 6.2), we represent C(ρ+; ρ−;u) as a nested inner products of
Schur functions. In the second subsection (Section 6.3), we will compute the limit of the nested
inner products as u → ∞ and the final subsection (Section 6.4) will contain the derivation of
a contour integral formula of the corresponding limit. In the following two steps, we assume the
result of Theorem 6.1 to complete the proof of Theorem 2.4.

Step III. Here, we claim and prove that

ρpsp(T ) =
1

2dd!

∑
σ∈S(2d)

(−1)σK(T )
σ̃(1),σ̃(2)

(
σ(1)1, σ(1)2;σ(2)1, σ(2)2

)
× · · ·

× · · · × K(T )
σ̃(2d−1),σ̃(2d)

(
σ(2d− 1)1, σ(2d− 1)2;σ(2d)1, σ(2d)2

)
(6.12)

for some skew symmetric matrix KT where

σ(ζ)1 := i, if 2d1 + · · ·+ 2di−1 < σ(ζ) ≤ 2d1 + · · ·+ 2di,

σ(ζ)2 = σ(ζ)−
σ(ζ)1−1∑
k=1

2dk.

Furthermore, for any σ ∈ S(2d) and i ∈ [1, 2d], we have used the notation σ̃(i) in (6.12) to
denote 1 in the case when σ(i) is an odd integer and 2 when it is an even integer.

Proof of (6.12). For showing (6.12), we use the formula in (6.6). The limiting value of
C(ρ+; ρ−;u) as u → ∞ (in the sense of (6.7)) will be computed in Theorem 6.1 which we
use here. In order to use the limiting value of C(ρ+; ρ−;u) given in (6.11), one need to justify
the interchange of the limit and the integral in (6.6). To carry out this interchange, one may
use the dominated convergence theorem (DCT) and to apply DCT, it suffices to show that the
integrand is uniformly bounded. To this end, we choose η such that

max
i∈[0,m−1]

{max |ρ−i |} < ηdm
2
< 1. (6.13)

For the proof of interchange of limit and integral, we refer to [1, Lemma 3.1.2]. In the present
context, the assumption in [1, Lemma 3.1.2] translates to the constraint on η mentioned in (6.13).

So, we are now entitled to interchange the limit and the integral in (6.6). After substituting
lim
u→∞

C(ρ+; ρ−;u) from (6.11) inside the integral of (6.7), we simplify the integrand using the

Pfaffian representation of (5.4) (using (5.5)) in the proof of Theorem 5.2. As a result, we get

ρpsp(T ) =
1

(2πi)2d

∮
· · ·
∮

Pf (Mm)
m∏
k=1

m∏
i=1

dk∏
j=1

H(1)
qk,j

(ρ+
i ; zk,j)

m∏
k=1

k−1∏
i=0

dk∏
j=1

H(1)
qk,j

(ρ−i ; zk,j)

×
m∏
k=1

dk∏
j=1

q
−tk,j−1
k,j

z2
k,j − 1

m∏
k=1

m∏
i=k

dk∏
j=1

H(2)
qk,j

(ρ+
i ; zk,j)

m∏
i=1

di∏
j=1

dzi,j

m∏
i=1

di∏
j=1

dqi,j , (6.14)

where d =
∑m

i=1 di and Mm is an 2d × 2d skew-symmetric matrix composed of the following
2× 2 block matrix

Mm(i, u; j, v) :=


zi,u − zj,v
1− zi,uzj,v

1− qj,vzj,vzi,u
zi,u − qj,vzj,v

−1− qi,uzi,uzj,v
zj,v − qi,uzi,u

qi,uzi,u − qj,vzj,v
1− qi,uqj,vzi,uzj,v
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=

(
M11

m (i, u; j, v) M12
m (i, u; j, v)

M21
m (i, u; j, v) M22

m (i, u; j, v)

)
, (6.15)

where the matrix on the far right hand side of (6.15) is written to introduce our shorthand
notations for the elements of Mm. The number of integrals in (6.15) is equal to 2

∑m
k=1 di. The

contour for the integral with respect to qk,j is the circle |z| = η where η satisfies (6.13). The
contour for the integral with respect to zk,j are composed of two circles |z| = r and |z| = R
where r, R satisfies (6.10). Due to (6.13) and (6.10), there is no pole of the integrand for zk,j
inside the circle |z| = r except a simple pole at 0. Since the residue of the integrand with

respect zi,j at 0 has a factor of q
−ti,j−1
k,j , the integral of the residue with respect to qk,j will be

equal to 0. Thus, we can restrict the contours of the variables {zk,j : 1 ≤ k ≤ m, 1 ≤ j ≤ dk}
in (6.15) to the circle |z| = R.

Let us now elaborate bit more on the structure of Mm. The matrix Mm can be partitioned
into m2 submatrices. The size of the (i, j) submatrix of Mm is given by 2di × 2dj . In fact, the
(u, v) block matrix (of order 2 × 2) of the (i, j) submatrix is given by Mm(i, u; j, v).

We expand Pf(Mm) inside the integral in (6.14) as

1

2dd!

∑
σ∈S(2d)

(−1)σMσ̃(1),σ̃(2)
m

(
σ(1)1, σ(1)2;σ(2)1, σ(2)2

)
× · · ·

× · · · ×Mσ̃(2d−1),σ̃(2d)
m

(
σ(2d− 1)1, σ(2d− 1)2;σ(2d)1, σ(2d)2

)
. (6.16)

Next, we do a transformation of the variables ({zi,u}i,u, {qi,u}i,u) 7→ ({zi,u}i,u, {z̃i,u}i,u) by de-
fining z̃i,k = (qi,uzi,u)−1 for i ∈ [1,m] and u ∈ [1, di] inside the integral (6.14). By incorpora-

tingH
(1)
qk,j andH

(2)
qk,j with the elements of the matrixMm and taking the sum (6.16) corresponding

to Pf(Mm) outside the integral of (6.14) we arrive at (6.12). �

Step IV. Now, it remains to identify the elements of the matrix K(T ). To achieve this, we fix
a permutation σ ∈ S(2d). We divide the following discussions into three main sub-steps which
are given as follows.

(1) First we consider the case when σ(2ζ − 1) and σ(2ζ) both are odd integers for some

ζ ∈ [1, d]. Then the matrix element K(T )
σ̃(2ζ−1),σ̃(2ζ) (σ(2ζ − 1)1, σ(2ζ − 1)2;σ(2ζ)1, σ(2ζ)2) is given

by K(T )
1,1 (i, u; j, v) where

σ(2ζ − 1)1 = i, σ(2ζ − 1)2 = u, σ(2ζ)1 = j, σ(2ζ)2 = v. (6.17)

We retrieve K(T )
1,1 (i, u; j, v) by combining all the terms related to the variables zi,u and zj,v inside

the integral (6.14) with M11
m (i, u; j, v). By doing so, we arrive at

K(T )
1,1 (i, u; j, v) := −

∮ ∮
dzi,udzj,v

z
−ti,u
i,u z

−tj,v
j,v

(zi,u − zj,v)(
1− z2

i,u

)(
1− z2

i,v

)
(1− zi,uzj,v)

×
H
(
ρ+

[i,m]; z
−1
i,u

)
H
(
ρ+

[j,m];w
−1
j,v

)
H(ρ+

[1,m] ∪ ρ
−
[0,i); zi,u)H(ρ+

[1,m] ∪ ρ
−
[0,j); zj,v)

, (6.18)

where the contours are positively oriented circles |z| = R for R < 1. Substituting z = z−1
i,u and

w = z−1
j,v , we get (2.11).

(2) When σ(2ζ − 1) is an odd (or even) integer and σ(2ζ) is an even (or odd) integer, then

K(T )
σ̃(2ζ−1),σ̃(2ζ)(i, u; j, v) is given by K(T )

1,2 (i, u; j, v) (or K(T )
2,1 (i, u; j, v)) where the choice of i, j, u, v
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are same as in (6.17). To retrieve K(T )
1,2 (i, k; j, l), we combine all the terms related to the vari-

ables zi,u and z̃j,v with M12
m (i, u; j, v). Henceforth, we get

K(T )
1,2 (i, u; j, v) :=

∮ ∮
dzi,udz̃j,v

z
−ti,u
i,u z̃

−tj,v
j,v

(
1− zi,uz̃−1

j,v

)
z̃j,v
(
1− z2

i,u

)(
zi,u − z̃−1

j,v

)
×
H
(
ρ+

[1,m] ∪ ρ
−
[0,i); z̃

−1
j,v

)
H
(
ρ+

[j,m]; z
−1
i,u

)
H(ρ+

[i,m]; z̃j,v)H(ρ+
[1,m] ∪ ρ

−
[0,j); zi,u)

, (6.19)

where the contour of the variable zi,u is the positively oriented circle |z| = R < 1. But, there
is a dichotomy in the choice of the contours for the variable z̃j,v. We know z̃j,v = (qj,vzj,v)

−1.
To this point, let us recall from Theorem 6.1 that the contour of zi,u contains qj,vzj,v as a pole
when j > i. Thus, the contour of z̃j,v is such that (a) |zi,kz̃j,v| < 1 is satisfied when i ≤ j and
(b) |zi,uz̃j,v| > 1 holds when i > j. Now, we get (2.12) after substituting z = z−1

i,u and w = z̃−1
j,v .

(3) In the case when σ(2ζ − 1) and σ(2ζ) both are even integers, then K(T )
σ̃(2ζ−1),σ̃(2ζ)(i, u; j, v)

is given by K(T )
2,2 (i, u; j, v) (see (6.17) for i, j, u, v) which can be obtained essentially in the same

way from M22
m (i, u; j, v). Thus, we get

K(T )
2,2 (i, u; j, v) := −

∮ ∮
dz̃i,udz̃j,v

z̃
−ti,u
i,u z̃

−tj,v
j,v

(
z̃−1
i,u − z̃

−1
j,v

)
z̃i,uz̃j,v

(
1− z̃−1

i,u z̃
−1
j,v

)
×
H
(
ρ+

[1,m] ∪ ρ
−
[0,i); z̃

−1
i,u

)
H
(
ρ+

[1,m] ∪ ρ
−
[0,j); z̃

−1
j,v

)
H(ρ+

[i,m]; z̃i,u)H(ρ+
[j,m]; z̃j,v)

, (6.20)

where the contours are positively oriented circles around 0 of radii greater than 1. Now, under
the substitution z = z̃−1

i,u and w = z̃−1
j,v , (6.20) translates to (2.13).

Combining (6.12) with (6.18), (6.19) and (6.20) completes the proof of Theorem 2.4.
The remainder of this section is devoted to the proof of Theorem 6.1.

6.2 Nested inner products

The key component in the proof of Theorem 2.4 was indeed Theorem 6.1 which gives a contour
integral representation of the limit of C(ρ+; ρ−;u) as u tends to ∞. In the case of the Pfaffian
Schur measure, we have used Macdonald difference operators for obtaining similar contour inte-
gral formulas (see Theorem 4.3). But, to use the machinary of the difference operators, we need
Schur functions in the place of skew Schur functions. In order to resolve this difficulty, we use
the rule of finite inner product given in (2.1). In the following result, we represent the product
Ppsp(λ̄, µ̄; ρ+, ρ−)

∏m−1
i=1 1

(∣∣µ(i)
∣∣ ≤ ui,1 ∧ ui,2) in terms of the nested inner products of the Schur

functions.

Proposition 6.2. Consider the following sets of Schur non-negative specializations ξ+
1 , . . . , ξ

+
m−1

and ξ−1 , . . . , ξ
−
m−1. Each of the sets contains countably many formal variables. Let {ui,1}i∈[1,m−1]

and {ui,2}i∈[1,m−1] be two subsets of N. For any 1 ≤ i ≤ (m− 1), we denote the first u elements

of the set ξ+
i and ξ−i by ξ

+,[1,u]
i and ξ

−,[1,u]
i respectively. Recall the definition of the bilinear form

〈·, ·〉 from (2.1). Then, one has

Ppsp(λ̄, µ̄; ρ+, ρ−)
m−1∏
i=1

1
(∣∣µ(i)

∣∣ ≤ ui,1 ∧ ui,2)
= τλ(1)(ρ

−
0 )

m∏
i=2

〈
sλ(i)

(
ρ−i−1, ξ

+,[1,ui−1,2]
i−1

)
, sµ(i−1)

(
ξ

+,[1,ui−1,2]
i−1

)〉ξ+,[1,ui−1,2]

i−1

ui−1,2
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×
m−1∏
i=1

〈
sλ(i)

(
ρ+
i , ξ

−,[1,ui,1]
i

)
, sµ(i)

(
ξ
−,[1,ui,1]
i

)〉ξ−,[1,ui,1]i

ui,1
sλ(m)(ρ+

m). (6.21)

Proof. We will show that the r.h.s. of (6.21) is equal to Ppsp(λ̄, µ̄; ρ+, ρ−)
∏m−1
i=1 1

(∣∣µ(i)
∣∣ ≤

ui,1∧ui,2
)
. To this end, by using 〈sλ(X,Z [1,u]), sµ(Z [1,u])〉Z[1,u]

u = sλ/µ(X)1(|µ| ≤ u), we simplify
the inner products in the r.h.s. of (6.21). Now, the result follows by writing

1
(∣∣µ(i)

∣∣ ≤ ui,1 ∧ ui,2) = 1
(∣∣µ(i)

∣∣ ≤ ui,1)1(∣∣µ(i)
∣∣ ≤ ui,2). �

Now, we use the representation of (6.21) to write C(ρ+; ρ−;u) as a nested inner products of
partition functions of the Schur and the Pfaffian Schur process.

Proposition 6.3. Consider the series C(ρ+; ρ−;u) defined in (6.5) where u denotes following
two subsets {ui,1}i∈[1,m−1], {ui,2}i∈[1,m−1] from Z>0. Recall the definition of Z and F from (2.7)
and (2.8) respectively. Then, we have

C ′(ρ+; ρ−;u) =

〈〈
· · ·
〈〈 d1∏

j=1

D
1,q1,j

(n1+u1,1),[ρ+1 ,ξ
−,[1,u1,1]
1 ]

Z
(
ρ+

1 , ξ
−,[1,u1,1]
1 ; ρ−0

)
,

F
(
ξ
−,[1,u1,1]
1 ; ξ

+,[1,u1,2]
1

)〉ξ−,[1,u1,1]1

u1,1

,

d2∏
j=1

D
1,q2,j

(n2+u2,1),[ρ+2 ,ξ
−,[1,u2,1]
2 ]

F
(
ρ+

2 , ξ
−,[1,u2,1]
2 ; ρ−1 , ξ

+,[1,u2,1]
1

)〉ξ+,[1,u2,1]1

u2,1

· · ·
〉ξ−,[1,um−1,1]

m−1

um−1,1

,

dm∏
j=1

D
1,qm,j

n,ρ+m
F (ρ+

m; ρ−m−1, ξ
+,[1,um−1,2]
m−1 )

〉ξ+,[1,um−1,2]

m−1

um−1,2

, (6.22)

where

C ′(ρ+; ρ−;u) := C(ρ+; ρ−;u)

m−1∏
i=1

di∏
j=1

q
ui,1
i,j .

Here, D1,q
n,X denotes the difference operator which acts on the space Sym specialized at X,

where X is of length n.

Proof. First, we show how the innermost inner product in (6.22) simplifies. We start with

recalling the action of
∏d1
j=1D

1,q1,j

(n1+u1,1),[ρ+1 ,ξ
−,[1,u1,1]
1 ]

on Z
(
ρ+

1 , ξ
−,[1,u1,1]
1 ; ρ−0

)
:

d1∏
j=1

D
1,q1,j

(n1+u1,1),[ρ+1 ,ξ
−,[1,u1,1]
1 ]

Z
(
ρ+

1 , ξ
−,[1,u1,1]
1 ; ρ−0

)
=
∑
λ(1)

τλ(1)(ρ
−
0 )sλ(1)

(
ρ+

1 , ξ
−,[1,u1,1]
1

) d1∏
j=1

(n1+u1,1)−1∑
k=1

q
λ
(1)
k +(n1+u1,1)−k

1,j .

Expanding F
(
ξ
−,[1,u1,1]
1 ; ξ

+,[1,u1,2]
1

)
in terms of Schur functions, applying the above equation and

computing the inner products of the Schur function as prescribed in (2.1) yields

〈
d1∏
j=1

D
1,q1,j

(n1+u1,1),[ρ+1 ,ξ
−,[1,u1,1]
1 ]

Z
(
ρ+

1 , ξ
−,[1,u1,1]
1 ; ρ−0

)
, F
(
ξ
−,[1,u1,1]
1 ; ξ

+,[1,u1,2]
1

)〉ξ−,[1,u1,1]1

u1,1
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=
∑

µ(1)⊂λ(1)
τλ(1)(ρ

−
0 )1

(∣∣µ(1)
∣∣ ≤ u1,1

)
sλ(1)/µ(1)(ρ

+
1 )sµ(1)

(
ξ

+,[1,u1,2]
1

)

×
d1∏
j=1

(n1+u1,1)−1∑
k=1

q
λ
(1)
k +(n1+u1,1)−k

1,j . (6.23)

Now, we focus on computing the next inner product. To do this, we first note

D
1,q2,j

(n2+u2,1),[ρ+2 ,ξ
−,[1,u2,1]
2 ]

F
(
ρ+

2 , ξ
−,[1,u2,1]
2 ; ρ−1 , ξ

+,[1,u1,2]
1

)
=
∑
λ(2)

sλ(2)
(
ρ+

2 , ξ
−,[1,u2,1]
2

)
sλ(2)

(
ρ−1 , ξ

+,[1,u1,2]
1

) d2∏
j=1

(n2+u2,1)−1∑
k=1

q
λ
(2)
k +(n1+u2,1)−k

2,j . (6.24)

Taking the inner product of the r.h.s. of (6.23) with the r.h.s. of (6.24) yields∑
λ(1)⊃µ(1)⊂λ(2)

τλ(1)(ρ
−
0 )1

(∣∣µ(1)
∣∣ ≤ u1,1 ∧ u1,2

)
sλ(1)/µ(1)(ρ

+
1 )sλ(2)/µ(1)(ρ

−
1 )

× sλ(2)
(
ρ+

2 , ξ
−,[1,u2,1]
2

) 2∏
i=1

di∏
j=1

(ni+ui,1)−1∑
k=1

q
λ
(i)
k +(ni+ui,1)−k
i,j .

Using induction, we get the following expression on taking the successive inner products until
the last one

(I) :=
∑

(λ×µ)∈Ym×Ym−1

τλ(1)(ρ
−
0 )

m−1∏
i=1

1
(∣∣µ(i)

∣∣ ≤ ui,1 ∧ ui,2)sλ(1)/µ(1)(ρ+
1 )sλ(2)/µ(1)(ρ

−
1 )

× · · · × sµ(m−1)

(
ξ

+,[1,um−1,2]
m−1

)m−1∏
i=1

di∏
j=1

(ni+ui,1)−1∑
k=1

q
λ
(i)
k +(ni+ui,1)−k
i,j .

Now, we focus on computing the last inner product on the r.h.s. of (6.22). For this, we require

to rewrite
∏dm
j=1D

1,q1,j

nm,ρ
+
m
F
(
ρ+
m; ρ−m−1, ξ

+,[1,um−1,2]
m−1

)
as

(II) :=
∑
λ(m)

sλ(m)(ρ+
m)sλ(m)

(
ρ−m−1, ξ

+,[1,um−1,2]
m−1

) dm∏
j=1

nm−1∑
k=1

q
λ
(1)
k +nm−k
m,j .

On taking the inner product 〈(I), (II)〉um−1,2 in the space Sym
(
ξ

+,[1,u]
m−1

)
, we get C(ρ+; ρ−;u)

modulo a multiplicative factor of
∏m−1
i=1

∏di
j=1 q

ui,1
i,j . This completes the proof. �

6.3 Limit of the nested inner products

The goal of this subsection is to obtain some preliminary result to compute the limit of
C(ρ+; ρ−;u) as u → ∞ in the sense of (6.25). To this end, we use the contour integral for-
mulas of the action of Macdonald difference operators (from (4.9) and (4.11)) and substitute
those into the nested inner product formula of Proposition 6.3. For computing the limit of the
inner products of the contour integral formulas, our first step is to compute the limit of the
inner products of the integrand. This last task is the main content of this subsection and will be
performed in Theorem 6.4. The result of Theorem 6.4 will be used to complete the computation
of lim

u→∞
C(ρ+; ρ−;u) in the next subsection.
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Before stating any result, we recollect some elementary information on the contour inte-
gral formula for the action of Macdonald operators on F (X;Y ) or Z(X;Y ) where F (X;Y )
and Z(X;Y ) are the partition functions of the Schur and Pfaffian Schur measure. Recall

the definitions of H
(1)
q and H

(2)
q from (6.3) and (6.4) respectively. Notice that H

(2)
q (X; z) =

H
(1)
q

(
X; (qz)−1

)
. Note that the integrand in the integral formula (4.11) is a product of two

terms given as

A1 := F (X;Y )
d∏
j=1

qnj

d∏
j=1

H(1)
qj (Y ; zj)

d∏
j=1

H(2)
qj (X; zj),

B1 :=
d∏
j=1

1

qjzj − zj

∏
1≤j<k≤d

(qkzk − qjzj)(zk − zj)
(zj − qkzk)(qjzj − zk)

.

Similarly, one can check that the inner integrand inside the integral of (4.9) as the product of

A2 := Z(X;Y )
d∏
j=1

qnj

d∏
j=1

H(1)
qj (X,Y ; zj)

d∏
j=1

H(2)
qj (X; zj),

B2 :=
d∏
j=1

(
1− qjz2

j

)
(qjzj − zj)

(
1− z2

j

) ∏
1≤j<k≤d

(qkzk − qjzj)(zk − zj)
(zj − qkzk)(qjzj − zk)

×
∏

1≤j<k≤d

(1− qjzjzk)(1− qkzkzj)
(1− qkqjzkzj)(1− zkzj)

.

After writing the actions of the difference operators inside the inner products in (6.22) in terms
of the contour integrals, one can see that taking u → ∞ (in the sense of (6.7)) of C(ρ+; ρ−;u)
boils down to first computing the inner products of the terms like A1 and A2 for some choices
of the specializations and then letting u → ∞. The main result of this section which we state
as follows formalizes the above mentioned heuristic.

Theorem 6.4. Consider the set of complex numbers {zi,j}1≤j≤di,1≤i≤m such that |zi,j | ≤ Υ
for positive real number Υ < 1. Let us denote u := {ui,1}i∈[1,m−1] ∪ {ui,2}i∈[1,m−1]. Then, the
limiting value

lim
u→∞

〈〈
· · ·
〈〈

Z
(
ρ+

1 , ξ
−,[1,u1,1]
1 ; ρ−0

) d1∏
j=1

H(1)
q1,j

(
ρ+

1 , ξ
−,[1,u1,1]
1 , ρ−0 ; z1,j

)

×H(2)
q1,j (ρ

+
1 , ξ

−,[1,u1,1]
1 ; z1,j), F

(
ξ
−,[1,u1,1]
1 ; ξ

+,[1,u1,2]
1

)〉ξ−,[1,u1,1]1

u1,1

,

F
(
ρ+

2 , ξ
−,[1,u2,1]
2 ; ρ−1 , ξ

+,[1,u1,2]
1

) d2∏
j=1

H(1)
q2,j

(
ρ−1 , ξ

+,[1,u1,2]
1 ; z2,j

)

×
d2∏
j=1

H(2)
q2,j

(
ρ+

2 , ξ
−,[1,u2,1]
2 ; z2,j

)〉ξ+,[1,u1,2]1

u1,2

· · · ,

F
(
ξ
−,[1,um−1,1]
m−1 ; ξ

+,[1,um−1,2]
m−1

)〉ξ−,[1,um−1,1]

m−1

um−1,1

, F
(
ρ+
m; ρ−m−1, ξ

+,[1,um−1,2]
m−1

)
×

dm∏
j=1

H(1)
qm,j

(
ρ−m−1, ξ

+,[1,um−1,2]
m−1 ; zm,j

)
H(2)
qm,j (ρ

+
m; zm,j)

〉ξ+,[1,um−1,2]

m−1

um−1,2

(6.25)
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is given by

H0

(
ρ+

[1,m]

)m−1∏
j=1

m∏
k≥j+1

F (ρ+
k ; ρ−j )

m∏
i=1

di∏
j=2

1− qi,jz2
i,j

1− z2
i,j

×
m∏
i=2

∏
1≤j<k≤di

(1− qi,jzi,jzi,k)(1− qi,kzi,kzi,j)
(1− qi,jzi,jqi,kzi,k)(1− zi,jzi,k)

×
m∏
k=1

m∏
i=1

dk∏
j=1

H(1)
qk,j

(ρ+
i ; zk,j)

m∏
k=1

k−1∏
i=0

dk∏
j=1

H(1)
qk,j

(ρ−i ; zk,1)
m∏
k=1

m∏
i=k

dk∏
j=1

H(2)
qk,j

(ρ+
i ; zk,1)

×
∏

1≤m1<m2≤m

dm1∏
j=1

dm2∏
k=1

(qm1,jzm1,j − qm2,jzm2,k)(zm1,j − zm2,k)

(zm1,j − qm2,kzm2,k)(qm1,jzm1,j − zm2,k)

×
∏

1≤m1<m2≤m

dm1∏
j=1

dm2∏
k=1

(1− qm1,jzm1,jzm2,k)(1− qm2,jzm2,jzm1,k)

(1− qm1,jzm1,jqm2,kzm2,k)(1− zm2,kzm1,j)
.

To prove Theorem 6.4, we need the following lemma.

Lemma 6.5. For any t ∈ N, X [1,t] denotes the first t elements of the set X. Let {al}l∈N and
{bl}l∈N be two sequence of elements in the respective Z≥0-graded algebras A and B with

lim
l→∞

ldeg(al) =∞, lim
l→∞

ldeg(bl) =∞

such that
∑

l l
−1pl(X)al ∈ Sym(X)⊗A and

∑
l l
−1pl(X)bl ∈ Sym(X)⊗B where A and B denote

the topological completions of A and B respectively. Consider the following functions in Sym⊗A
and Sym⊗B respectively

ψ
(
X [1,t]

)
:= exp

( ∞∑
l=1

pl(X
[1,t])

l
al

)
,

φ
(
X [1,t]

)
:= exp

( ∞∑
l=1

pl(X
[1,t])

l
bl +

∞∑
l=1

p2
l (X[1,t])− p2l(X[1,t])

2l

)
. (6.26)

Then,

lim
t→∞

〈
ψ
(
X [1,t]

)
, φ
(
X [1,t]

)〉X[1,t]

t
= exp

( ∞∑
l=1

albl
l

+
∞∑
l=1

a2
l − a2l

2l

)
.

Proof. Let R and S be two alphabets. We first consider the case when we have pl(R) instead
of al in ψ and pl(S) instead of bl in φ. To accommodate this change, we define

ψ̃
(
X [1,t]

)
:= exp

( ∞∑
l=1

pl
(
X [1,t]

)
l

pl(R)

)
,

φ̃
(
X [1,t]

)
:= exp

( ∞∑
l=1

pl
(
X [1,t]

)
l

pl(S) +

∞∑
l=1

p2
l

(
X [1,t]

)
− p2l

(
X [1,t]

)
2l

)
.

Then, using (2.6), one can write

ψ̃
(
X [1,t]

)
=
∑
λ∈Y

sλ
(
X [1,t]

)
sλ(R), φ̃

(
X [1,t]

)
=
∑
λ∈Y

τλ(S)sλ
(
X [1,t]

)
.



30 P. Ghosal

For any t ∈ N, the finite inner product
〈
ψ̃
(
X [1,t]

)
, φ̃
(
X [1,t]

)〉
t

is equal to
∑
|λ|≤t τλ(S)sλ(R).

Thus, the sequence of the finite inner products
〈
ψ̃
(
X [1,t]

)
, φ̃
(
X [1,t]

)〉
t

converges inside the space

Sym(R) ⊗ Sym(S) (endowed with the graded topology) to the sum
∑

λ τλ(S)sλ(R), namely,
the partition function of the Pfaffian Schur measure. Owing to Proposition 2.2, the limit of〈
ψ̃
(
X [1,t]

)
, φ̃
(
X [1,t]

)〉
t

as t → ∞ will be equal to H0(R)H(R;S). Now, we proceed to find the

limit of
〈
ψ
(
X [1,t]

)
, φ
(
X [1,t]

)〉
t
. Recall that {pλ}λ is a basis of Sym. So, the following maps

ΨA : Sym(R)→ A, ΨA(pk(R)) = ak, and

ΨB : Sym(S)→ B, ΨB(pk(R)) = bk

define algebra homomorphisms (continuous in the graded topology). Now, we define a bilinear
algebra homomorphism ΨA ⊗ΨB in Sym(R)⊗ Sym(S) as

ΨA ⊗ΨB : Sym(R)⊗ Sym(S) 7→ A⊗B, (ΨA ⊗ΨB)(pk(R)pl(S)) = akbl.

Since the inner product preserves an algebra homomorphism, for any t ∈ N,〈
ψ
(
X [1,t]

)
, φ
(
X [1,t]

)〉X[1,t]

t
=
∑
|λ|≤t

ΨA(τλ(S))ΨB(sλ(R)).

Using continuity of the map ΨA and ΨB, we get

lim
t→∞

〈
ψ
(
X [1,t]

)
, φ
(
X [1,t]

)〉X[1,t]

t
=
∑
λ∈Y

ΨA(τλ(S))ΨB(sλ(R)). (6.27)

Owing to the bilinearity of the map ΨA ⊗ΨB, one can write

∑
λ∈Y

ΨA(τλ(R))ΨB(sλ(S)) = (ΨA ⊗ΨB)

(∑
λ∈Y

τλ(R)sλ(S)

)
= (ΨA ⊗ΨB) (H0(R)H(R;S)) . (6.28)

Thus, the limit of those finite inner products is given by

lim
t→∞

〈
ψ
(
X [1,t]

)
, φ
(
X [1,t]

)〉X[1,t]

t
= (ΨA ⊗ΨB)(H0(R)H(R;S))

= exp

( ∞∑
l=1

ΨA ⊗ΨB

(
pl(R)pl(S)

)
l

+
∞∑
l=1

ΨA ⊗ΨB

(
p2
l (R)− p2l(R)

)
2l

)
, (6.29)

where the equality in first line follows by combining (6.27) with (6.28) and the equality of the
second line follows by combining the formula of H0(R) and H(R;S) given in (2.6) with the fact
that Ψ is an algebra homomorphism. Finally, substituting the image of pl(R)pl(S) and pl(R)
under the map ΨA ⊗ΨB in the last line of (6.29) completes the proof. �

Remark 6.6. It is worth noting that Lemma 6.5 is similar to Lemma 2.1.3 of [1] (see also
[15, Proposition 2.3]). The main difference between these two results is that unlike Lemma 6.5,
Lemma 2.1.3 of [1] finds a formula of the inner product between the functions exp

(∑∞
l=1 pl(X)al

)
and exp

(∑∞
l=1 pl(X)bl

)
where al, bl are arbitrary elements of a Z≥0-graded algebra.

Proof of Theorem 6.4. Here, we demonstrate how to compute the limit of the inner products
when m = 2. This requires computation of two successive inner products and their limits.
Furthermore, the computation in m = 2 case is very similar to computing the two innermost
inner products of (6.25) and then, taking u1,1 and u1,2 to∞. The computation of the successive
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inner products for m > 2 case can be also done by taking similar route and thus, will be skipped
for avoiding repetitions. We now claim and prove that

lim
u1,2,u1,1→∞

〈〈
Z
(
ρ+

1 , ξ
−,[1,u1,1]
1 ; ρ−0

) d1∏
j=1

H(1)
q1,j

(
ρ+

1 , ξ
−,[1,u1,1]
1 , ρ−0 ; z1,j

)

×H(2)
q1,j

(
ρ+

1 , ξ
−,[1,u1,1]
1 ; z1,j

)
, F
(
ξ
−,[1,u1,1]
1 ; ξ

+,[1,u1,2]
1

)〉ξ−,[1,u1,1]1

u1,1

,

F
(
ρ+

2 ; ρ−1 , ξ
+,[1,u1,2]
1

) d2∏
j=1

H(1)
q2,j

(
ρ−1 , ξ

+,[1,u1,2]
1 ; z2,j

) d2∏
j=1

H(2)
q2,j

(
ρ+

2 ; z2,j

)〉ξ+,[1,u1,2]1

u1,2

(6.30)

is equal to

Z
(
ρ+

1 , ρ
+
2 , ξ

−,[1,u2,1]
2 ; ρ−0

)
F
(
ρ+

2 , ξ
−,[1,u2,1]
2 ; ρ−1

) d1∏
j=1

H(1)
q1,j

(
ρ+

1 , ρ
−
0 , ρ

+
2 , ξ

−,[1,u2,1]
2 ; z1,j

)
×

d2∏
j=1

H(1)
q2,j

(
ρ+

1 , ρ
−
0 , ρ

−
1 , ρ

+
2 ; z2,j

) d1∏
j=1

H(2)
q1,j

(
ρ+

1 , ρ
+
2 ; z1,j

)
×

d2∏
j=1

H(2)
q2,j

(
ρ+

2 ; z1,j

) 2d2∏
j=1

1− q2,jz
2
2,j

1− z2
2,j

d1∏
j=1

d2∏
k=1

(q1,jz1,j − q2,jz2,k)(z1,j − z2,k)

(z1,j − q2,kz2,k)(q1,jz1,j − z2,k)
(6.31)

×
d1∏
j=1

d2∏
k=1

(1− q1,jz1,jz2,k)(1− q2,jz2,jz1,k)

(1− q1,jz1,jq2,kz2,k)(1− z1,jz2,k)

∏
1≤j<k≤d2

(1− q2,jz2,jz2,k)(1− q2,kz2,kz2,j)

(1− q2,jz2,jq2,kz2,k)(1− z2,jz2,k)
.

We first analyze the innermost inner product in (6.30). The key tool that we use is Lemma 6.5.

We start with writing the partition functions Z(·; ·), F (·; ·) and H
(1)
q in terms of the power sum

symmetric functions

Z
(
ρ+

1 , ξ
−,[1,u]
1 ; ρ−0

)
= exp

( ∞∑
l=1

pl(ρ
−
0 )
(
pl
(
ρ+

1

)
+ pl

(
ξ
−,[1,u]
1

))
l

+
∞∑
l=1

p2
l

(
ρ+

1 , ξ
−,[1,u]
1

)
− p2l

(
ρ+

1 , ξ
−,[1,u]
1

)
2l

)
, (6.32)

F
(
ξ
−,[1,u]
1 ; ξ

+,[1,u]
1

)
= exp

(∑
l=1

pl
(
ξ
−,[1,u]
1

)
pl
(
ξ

+,[1,u]
1

)
l

)
, (6.33)

H(1)
qm,j

(
ρ+

1 , ξ
−,[1,u]
1 , ρ−0 ; z1,j

)
= exp

( ∞∑
l=1

(
pl
(
ρ+

1 , ρ
−
0

)
+ pl

(
ξ
−,[1,u]
1

))
zl1,j
[
ql1,j − 1

]
l

)
. (6.34)

We compute the innermost inner product of (6.30) and let u1,1 →∞. On doing so, we get

lim
u1,1→∞

〈
Z
(
ρ+

1 , ξ
−,[1,u1,1]
1 ; ρ−0

) d1∏
j=1

H(1)
q1,j

(
ρ+

1 , ξ
−,[1,u1,1]
1 ρ−0 ; z1,j

)
H(2)
q1,j

(
ρ+

1 , ξ
−,[1,u1,1]
1 ; z1,j

)
,

F
(
ξ
−,[1,u1,1]
1 ; ξ

+,[1,u1,2]
1

)〉ξ−,[1,u1,1]1

u1,1

(6.35)
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= Z
(
ρ+

1 , ξ
+,[1,u1,2]
1 ; ρ−0

) d1∏
j=1

H(1)
q1,j

(
ρ+

1 , ξ
+,[1,u1,2]
1 , ρ−0 ; z1,j

)
H(2)
q1,j

(
ρ+

1 , ξ
+,[1,u1,2]
1 ; z1,j

)
.

To see how one computes the limit in (6.35), note that the two terms inside the inner product

in (6.35) can be written as φ
(
ξ
−,[1,u1,1]
1

)
and ψ

(
ξ
−,[1,u1,1]
1

)
as in (6.26). So, the limiting value

in (6.35) now follows from Lemma 6.5. Now, we turn to compute the second inner product
of (6.30) and let u1,2 →∞. To this end, let us define

A := Z
(
ρ+

1 , ξ
+,[1,u1,2]
1 ; ρ−0

) d1∏
j=1

H(1)
q1,j

(
ρ+

1 , ξ
+,[1,u1,2]
1 , ρ−0 ; z1,j

)
H(2)
q1,j

(
ρ+

1 , ξ
+,[1,u1,2]
1 ; z1,j

)
,

B := F
(
ρ+

2 ; ρ−1 , ξ
+,[1,u1,2]
1

) d2∏
j=1

H(1)
q2,j

(
ρ−1 , ξ

+,[1,u1,2]
1 ; z2,j

)
H(2)
q2,j

(
ρ+

2 ; z2,j

)
.

Simplifying the second most inner product in (6.30) boils down to taking the inner product of A
and B and letting u1,2 to converge to ∞. Let us define

Y :=
(
ρ+

1 , ρ
−
0 , z1,j , q1,jz1,j

)
, W1 := (ρ+

2 , z2,j , q2,jz2,j), W2 := (ρ−1 ).

Owing to the relations (6.32)–(6.34), one can write

A = Ψ1(Y ) exp

( ∞∑
l=1

pl
(
ξ

+,[1,u1,2]
1

)
l

al(Y ) +
∞∑
l=1

p2
l

(
ξ

+,[1,u1,2]
1

)
− p2l

(
ξ

+,[1,u1,2]
1

)
2l

)

and

B = Ψ2(W1,W2) exp

( ∞∑
l=1

pl
(
ξ

+,[1,u1,2]
1

)
l

bl(W1)

)

for some {ak}k∈N, {bk}k∈N and Ψ1, Ψ2 of a Z≥0-graded algebra. Lemma 6.5 implies that

lim
u1,2→∞

〈A,B〉ξ
+,[1,u1,2]

1
u1,2 = Z

(
ρ+

1 , ρ
+
2 , ξ

−,[1,u2,1]
2 ; ρ−0

)
F
(
ρ+

2 , ξ
−,[1,u2,1]
2 ; ρ−1

)
×

d1∏
j=1

H(1)
q1,j

(
ρ+

1 , ρ
−
0 , ρ

+
2 ; z1,j

) d2∏
j=1

H(1)
q2,j

(
ρ+

1 , ρ
−
0 , ρ

−
1 , ρ

+
2 ; z2,j

) d1∏
j=1

H(2)
q1,j

(
ρ+

1 , ρ
+
2 ; z1,j

)
×

d2∏
j=1

H(2)
q2,j

(
ρ+

2 ; z1,j

) 2d2∏
j=1

1− q2,jz
2
2,j

1− z2
2,j

d1∏
j=1

d2∏
k=1

H(1)
q2,k

(
z−1

1,j ; z2,k

)(
H(1)
q2,k

(
(q1,jz)−1

1,j ; z2,k

))−1

×
d1∏
j=1

d2∏
k=1

H(1)
q2,k

(q1,jz1,j ; z2,k)
(
H(1)
q2,k

(z1,j ; z2,k)
)−1

× exp

(
−
∞∑
l=1

(−pl({z2,j}j) + pl({q2,jz2,j}j))2 − p2l({z2,j}j , {q2,jz2,j}j)
2l

)
. (6.36)

In (6.36), using the definitions of H(1) and H(2) from (6.3)–(6.4), one can do the following
simplifications

H(1)
q2,k

(z−1
1,j ; z2,k)

(
H(1)
q2,k

(
(q1,jz)−1

1,j ; z2,k

))−1
=

(q1,jz1,j − q2,jz2,k)(z1,j − z2,k)

(z1,j − q2,kz2,k)(q1,jz1,j − z2,k)
, (6.37)
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H(1)
q2,k

(q1,jz1,j ; z2,k)
(
H(1)
q2,k

(z1,j ; z2,k)
)−1

=
(1− q1,jz1,jz2,k)(1− q2,jz2,jz1,k)

(1− q1,jz1,jq2,kz2,k)(1− z1,jz2,k)
. (6.38)

Moreover, owing to (2.6), the last term of the r.h.s. in (6.36) can be further simplified to∏
1≤j<k≤d2

(1− q2,jz2,jz2,k)(1− q2,kz2,kz2,j)

(1− q2,jz2,jq2,kz2,k)(1− z2,jz2,k)
. (6.39)

Substituting (6.37), (6.38) and (6.39) into the right hand side of (6.36) yields (6.31). This
completes the proof. �

6.4 Contour integral formula of the limit of C(ρ+; ρ−;u)

The main goal of this section is to complete the proof of Theorem 6.1 by employing the compu-
tations presented in Proposition 6.3 and Theorem 6.4.

Proof of Theorem 6.1. We start with simplifying the innermost inner product in (6.22). Sub-
stituting the contour integral formula of Theorem 4.3 inside the inner product yields

〈
d1∏
j=1

D
1,q1,j

(n1+u1,1),[ρ+1 ,ξ
−,[1,u1,1]
1 ]

Z
(
ρ+

1 , ξ
−,[1,u1,1]
1 ; ρ−0

)
, F
(
ξ
−,[1,u1,1]
1 ; ξ

+,[1,u1,2]
1

)〉ξ−,[1,u1,1]1

u1,1

=

〈∮
C1,d1
· · ·
∮
C1,1

d1∏
j=1

d1∏
j=1

q
n1+u1,1
1,j

q1,jz1,j − z1,j

∏
1≤j<k≤d1

(q1,jz1,j − q1,kz1,k)(z1,j − z1,k)

(z1,j − q1,kz1,k)(q1,jz1,j − z1,k)

×
d1∏
j=1

1− q1,jz
2
1,j

1− z2
1,j

∏
1≤j<k≤d1

(1− q1,jz1,jz1,k)(1− q1,kz1,kz1,j)

(1− q1,jz1,jq1,kz1,k)(1− z1,jz1,k)
Z
(
ρ+

1 , ξ
−,[1,u1,1]
1 ; ρ−0

)
×

d1∏
j=1

H(1)
q1,j

(
ρ+

1 , ξ
−,[1,u1,1]
1 , ρ−0 ; z1,j

)
H(2)
q1,j

(
ρ+

1 , ξ
−,[1,u1,1]
1 ; z1,j

)

×
d1∏
j=1

dz1,j , F
(
ξ
−,[1,u1,1]
1 ; ξ

+,[1,u1,2]
1

)〉ξ−,[1,u1,1]1

u1,1

,

where the contours of the variables {z1,1, . . . , z1,d1} contains the poles at ρ+
1 ∪
{
ξ−,[1,u1,1]

}
. To use

Theorem 6.4, we need (i) to bring the inner product inside the integral, (ii) then to interchange
the limit and the integral and (iii) lastly, we have to look at how the behavior of the poles
changes if we somehow manage to do steps (i) and (ii). In what follows, we address those issues
one at a time.

Before going into the details of the justifications of (i), (ii) and (iii), we perform a deformation
of the contours for the variables {z1,j}j∈[1,d1]. Recall that the contours {C1,j}j are composed of

circles of very small radii around the points
{
ρ+

1 , ξ
−,[1,u1,1]
1

}
. We claim that one can deform each

of them to a contour which is composed of the negatively oriented circle |z| = r and positively
oriented circle |z| = R where r and R must satisfy the conditions

r < min |ρ+
1 | ∧min

∣∣ξ−,[1,u1,1]
1

∣∣ ≤ max |ρ+
1 | ∨max

∣∣ξ−,[1,u1,1]
1

∣∣ < R < 1, (6.40)

where |ρ+
1 | (or

∣∣ξ−,[1,u1,1]
1

∣∣) denotes the set of the absolute values of all the variables in ρ+
1 (or∣∣ξ−,[1,u1,1]

1

∣∣). This claim is in the same spirit of [1, Proposition 2.2.7]. We briefly prove this
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claim here. While deforming the contours, we have to take into account the residues at the

poles of types (a) z1,j = q1,kz1,k, (b) z1,j = z−1
1,k and (c) z1,j = (q1,jζ)−1 where ζ ∈ ξ−,[1,u1,1]

1 ∪
ρ+

1 ∪ ρ
−
1 . Note that the residues of the poles of type (a) are always zero due to the presence of

1 − (q1,jz1,j)
−1θ for θ ∈ ξ−,[1,u1,1]

1 ∪ ρ+
1 in the numerator of the factor H

(2)
q1,j

(
ρ+

1 , ξ
−,[1,u1,1]
1 ; z1,j

)
.

Similarly, due to the presence of the factor 1 − z1,jθ for θ ∈ ξ
−,[1,u1,1]
1 ∪ ρ+

1 in the numerator

of H
(1)
q1,j

(
ρ+

1 , ξ
−,[1,u1,1]
1 , ρ−0 ; z1,j

)
, the residues at the poles of type (b) are always zero. Moreover,

the poles of type (c) contribute nothing while deforming the contours because of the constraints
on {q1,j}j in (6.9). Now, we turn to justifying the heuristics (i), (ii) and (iii) in details.

(i) Since the integrand is uniformly bounded over the circles |z| = r and |z| = R, we can
interchange the inner product and the integral using bilinearity of the inner product.

(ii) Now, we justify the interchange of the limit and the integral. First, we fix u1,1. We
denote

Y := Sym
(
ρ−0 , ρ

+
1 , {q1,jz1,j}j ,

{
(q1,jz1,j)

−1
}
j
, {z1,j}j ,

{
z−1

1,j

}
j

)
and then define a homomorphism

Ψ: Sym(Y ) 7→ Sym(Y ),

Ψ(pk(Y )) = pk
(
ρ−0 , ρ

+
1 , {q1,jz1,j}j ,

{
z−1

1,j

}
j

)
− pk

({
−(q1,jz1,j)

−1
}
j
, {−z1,j}j

)
,

where {pk}k is the set of power sum symmetric polynomials. Owing to the representations in
(6.32)–(6.34), one can write the inner product after taking it inside the integrand in the following
way 〈 ∑

λ(1)∈Y

sλ(1)
(
ξ
−,[1,u1,1]
1

)
Ψ
(
τλ(1)(Y )

)
,
∑
λ(1)∈Y

sλ(1)
(
ξ
−,[1,u1,1]
1

)
sλ(1)

(
ξ

+,[1,u1,2]
1

)〉ξ−,[1,u1,1]1

u1,1

=
∑
λ(1)∈Y

sλ(1)
(
ξ

+,[1,u1,2]
1

)
Ψ
(
τλ(1)(Y )

)
1
(∣∣λ(1)

∣∣ ≤ u1,1

)
. (6.41)

Now, we seek to bound ψ(τλ(1)) using the fact Ψ is a algebra homomorphism. For the sake
of notational convenience, we denote λ(1) just by λ for the rest of this discussion. Recall that
we have sλ = det(hλi−i+j) and henceforth, Ψ(sλ) = det(Ψ(hλi−i+j)). Thus, using the iden-
tity | det(A)| =

√
det(AA∗) and the inequality det(D) ≤

∏
iDii for any positive semi-definite

matrix D, one can write |Ψ(sλ)| ≤
∏
i

(∑
j Ψ(hλi−i+j)

2
)1/2

. Furthermore, hr is the coefficient

of tr in the expansion of
∏
k≥1

(
1 + tkpk

)
. Therefore, Ψ(hr) is given by the coefficient of tr in∏

k≥1

(
1+tkΨ(pk)

)
. Moreover, one can bound |Ψ(pr(Y ))| by pr(|Y |) where |Y | denotes the set of

the absolute values of the variables in Y . This shows |Ψ(hr(Y ))| is also bounded above by hr(|Y |).
Consequently, one can bound |Ψ(sλ)| by

∏
i

(∑
j h

2
λi−i+j

)1/2
. But, hλi−i+j(|Y |) is bounded

above (1+|λ|)l(λ)(max |Y |)λi−i+j . This implies one can bound |Ψ(sλ)| by (1+|λ|)l2(λ)(max |Y |)|λ|.
Similarly, one can show that |Ψ(sλ/µ)| can be bounded by (1 + |λ|)l2(λ)(max |Y |)|λ|−|µ|. To

that effect, we get |Ψ(τλ(Y ))| ≤ (1 + |λ|)l2(λ)+1(max |Y |)|λ|. Now note that when l(λ) is

large in (6.41), sλ
(
ξ

+,[1,u1,2]
1

)
is zero. Henceforth, one can bound the right side of (6.41)

by
∑

λ∈Y
∣∣sλ(ξ+,u1,2

1

)∣∣(1 + |u1,1|)u1,2(max |Y |)|λ|. Furthermore, max |Y | is bounded above by

max |z1,j |. Combining all these observations with the fact that
∣∣max ξ

+,[1,u1,2]
1

∣∣×max |Y | is less
than 1, we get∣∣∣∣∣∑

λ∈Y
sλ
(
ξ

+,u1,2
1

)
Ψ(τλ(Y ))1(|λ| ≤ u1,1)

∣∣∣∣∣
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≤
∑
λ∈Y

(1 + |λ|)2u1,2
(

max |ξ+,[1,u1,2]
1 ||λ|

)(
max |Y ||λ|

)
<∞. (6.42)

Note that the bound on the right side in (6.42) does not depend on the value of u1,1. This
show after taking the inner product in (6.41) the integrand is uniformly bounded over all values
of u1,1. Therefore, we can interchange the limit u1,1 →∞ and the integral.

(iii) Here, we discuss the consequences of taking the limit of the following term

d1∏
j=1

q
−u1,1
1,j

〈
d1∏
j=1

D
1,q1,j

(n1+u1,1),[ρ+1 ,ξ
−,[1,u1,1]
1 ]

Z
(
ρ+

1 , ξ
−,[1,u1,1]
1 ; ρ−0

)
, F
(
ξ
−,[1,u1,1]
1 ; ξ

+,[1,u1,2]
1

)〉ξ−,[1,u1,1]1

u1,1

.

as u1,1 tends to ∞. Using (6.35), one can write the limiting value as

∮
C1,d1
· · ·
∮
C1,1

d1∏
j=1

d1∏
j=1

qn1
1,j

q1,jz1,j − z1,j

∏
1≤j<k≤d1

(q1,jz1,j − q1,kz1,k)(z1,j − z1,k)

(z1,j − q1,kz1,k)(q1,jz1,j − z1,k)

d1∏
j=1

1− q1,jz
2
1,j

1− z2
1,j

×
∏

1≤j<k≤d1

(1− q1,jz1,jz1,k)(1− q1,kz1,kz1,j)

(1− q1,jz1,jq1,kz1,k)(1− z1,jz1,k)
Z
(
ρ+

1 , ξ
+,[1,u1,2]
1 ; ρ−0

)
×

d1∏
j=1

H(1)
q1,j

(
ρ+

1 , ξ
+,[1,u1,2]
1 , ρ−0 ; z1,j

)
H(2)
q1,j

(
ρ+

1 , ξ
+,[1,u1,2]
1 ; z1,j

) d1∏
j=1

dz1,j , (6.43)

where the contours {C1,d1} are now composed of two circles |z| = r and |z| = R satisfying (6.40).

Thus, the variables {z1,j} acquire some new poles at ξ
+,[1,u1,2]
1 coming out from the factor

H
(2)
q1,j

(
ρ+

1 , ξ
+,[1,u1,2]
1 ; z1,j

)
in (6.43).

Following the description of C(ρ+, ρ−) in Proposition 6.3, we now consider taking the inner
product of the integral in (6.43) with the following expression

d2∏
j=1

D
1,q2,j

(n2+u2,1),[ρ+2 ,ξ
−,[1,u2,1]
2 ]

F
(
ρ+

2 , ξ
−,[1,u2,1]
2 ; ρ−1 , ξ

+,[1,u1,2]
1

)
.

Using the steps (i), (ii) and (iii) as described above, one can again bring the limit u1,2 → ∞
inside the integral and obtain the limit using (6.36). Note that those steps also have to be
accompanied by suitable deformation of the contours. Consequently, it changes the set of valid

poles for the variables z1,j to ρ+
1 ∪ ρ

+
2 ∪ ξ

−,[1,u2,1]
2 ∪ {q2,jz2,j}j≤d2 . Now, using induction over i

(in conjunction with Theorem 6.4), we see that the deformed contours of the variables {zi,j}j
now contain the poles at

ρ+
[i,m] ∪ {qi+1,jzi+1,j}j∈[1,di+1] ∪ · · · ∪ {qm,jzm,j}j∈[1,di+1]

for all i ∈ [1,m− 1]. Furthermore, applying Theorem 6.4 (in a similar way as in (6.43)) at every
step of the induction, we observe that the limiting value of C(ρ+; ρ−;u) (after taking u→∞ as
in (6.7)) matches with the limiting expression of (6.11). This completes the proof. �
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Schur processes, Markov Process. Related Fields 24 (2018), 381–418, arXiv:1407.3764.
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