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ABSTRACT

Identifying anomalies in data is central to the advancement of
science, national security, and finance. However, privacy concerns
restrict our ability to analyze data. Can we lift these restrictions and
accurately identify anomalies without hurting the privacy of those
who contribute their data? We address this question for the most
practically relevant case, where a record is considered anomalous
relative to other records.

We make four contributions. First, we introduce the notion of
sensitive privacy, which conceptualizes what it means to privately
identify anomalies. Sensitive privacy generalizes the important con-
cept of differential privacy and is amenable to analysis. Importantly,
sensitive privacy admits algorithmic constructions that provide
strong and practically meaningful privacy and utility guarantees.
Second, we show that differential privacy is inherently incapable
of accurately and privately identifying anomalies; in this sense, our
generalization is necessary. Third, we provide a general compiler
that takes as input a differentially private mechanism (which has
bad utility for anomaly identification) and transforms it into a sen-
sitively private one. This compiler, which is mostly of theoretical
importance, is shown to output a mechanism whose utility greatly
improves over the utility of the input mechanism. As our fourth
contribution we propose mechanisms for a popular definition of
anomaly ((f, r)-anomaly) that (i) are guaranteed to be sensitively
private, (ii) come with provable utility guarantees, and (iii) are em-
pirically shown to have an overwhelmingly accurate performance
over a range of datasets and evaluation criteria.
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1 INTRODUCTION

At the forefront of today’s research in medicine and natural sci-
ences is the use of data analytics to discover complex patterns from
vast amounts of data [11, 23, 39]. While this approach is incredibly
useful, it raises serious privacy-related ethical and legal concerns
[5, 7, 20, 21] because inferences can be drawn from the analysis
of the person’s data to the person’s identity, causing a privacy
breach [19, 24, 26, 27, 37]. In this work, we focus specifically on the
problem of identifying anomalous records, which has fundamental
applications in many domains and is also crucial for scientific ad-
vancements [1, 3, 30, 40, 42]. For example, to treat cancer, we must
tell if a tumor is malignant; to stop bank fraud, we must flag the
suspicious transactions; and to counter terrorism, we must iden-
tify the individuals exhibiting extreme behavior. Note that in such
settings, it is imperative to accurately identify the anomalies, e.g.,
it is critical to identify the fraudulent transactions. However, in
all these situations, it is still essential to protect the privacy of the
normal (i.e., non-anomalous) records [7, 21] (e.g., customers with a
legitimate transaction or patients with a benign tumor) while not
sacrificing accuracy (e.g., labeling a malignant tumor as benign).

We solve the problem of accurate, private, and algorithmic anom-
aly identification (i.e., labeling a record as anomalous or normal
by an algorithm) with an emphasis on reducing false negative —
labeling an anomaly as normal - rate. The current methods for
protecting privacy work well for doing statistics and other ag-
gregate tasks [17, 18], but they are inherently unable to identify
anomalous records accurately. Furthermore, the modern methods
of anomaly identification label a record as anomalous (or normal)
based on its degree of dissimilarity from the other existing records
[1, 3, 8, 35]. Consequently, the labeling of a record as anomalous is
specific to a dataset, and knowing that a record is anomalous can
leak a significant amount of information about the other records.
This type of privacy leakage is the core obstacle that any privacy-
preserving anomaly identification method must overcome. This
work is the first to develop methods (in a general setting where
anomalies are data-dependent) to accurately identify if a record is
anomalous while simultaneously guaranteeing privacy by making
it statistically impossible to infer if a non-anomalous record was
included in the dataset.

We formalize a notion of privacy appropriate for anomaly detec-
tion and identification and develop general constructions to achieve
this. Note that we assume a trusted curator, who performs the anom-
aly identification. If the data is distributed and the trusted curator
is not available, one can employ secure multiparty computation to
simulate the trusted curator [9], where now the same methodology
as in the previous setting can be used.

Although the privacy definitions and constructions we develop
are not tied to any specific anomaly definition, we instantiate them
for a specific kind of anomaly: (f, r)-anomaly [35], which is a widely
prevalent model for characterizing anomalies and generalizes many
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Figure 1: (a) x and y differ by one record, the “¢ axis” is for the privacy parameter, the “P(M(x) # f(x)) axis” is for the minimum
error over all ¢-DP mechanisms M on x for a give error on y on the “P(M(y) # f(y)) axis”. The graph depicts the tradeoff
between the errors committed on x and y. (b) this plot is for ¢ = 1 and otherwise is the same but for different x’s and ¢’s.

other definitions of anomalies [3, 22, 34, 35]. These technical instan-
tiations naturally extend to the other well-known variants of this
formalization [1]. Under this anomaly definition, a record (which
lives in a metric space) is considered anomalous if there are at most
P records similar to it, i.e., within distance r. The parameters f and
r are given by domain experts [35] or found through exploratory
analysis by possibly using differentially private methods [17, 18]
(since these parameters can be obtained by minimizing an aggre-
gate statistic, e.g., risk or average error) to protect privacy in this
process.

1.1 Why do we need a new privacy notion?

We consider the trusted curator setting for the privacy. The trusted
curator has access to the database, and it answers the anomaly iden-
tification queries using a mechanism. The privacy of an individual
is protected if the output of an anomaly identification mechanism
is unaffected by the presence or the absence of the individual’s
record in the database (which is the input to the mechanism). This
is the notion of privacy (i.e. protection) of a record that we consider
here; it protects the individual against any risk incurred due to the
presence of its information and was first formalized in the seminal
work of differential privacy [15, 17] (where privacy is quantified by
aparameter ¢ > 0: the smaller the ¢, the higher the privacy) and can
informally be stated as follows: a randomized mechanism that takes
a database as input is e-differentially private if for any two input
databases differing by one record, the probabilities (correspond-
ing to the two databases) of occurrence of any event are within
a multiplicative factor e® (i.e., are almost the same in all cases).
Unfortunately, simply employing differential privacy does not ad-
dress the need for both privacy and practically meaningful accuracy
guarantees in our case. For example, providing privacy equally to
everyone severely degrades accuracy in identifying anomalies. For
a database, the addition of a record in a region which is sparse in
terms of data points creates an anomaly. Conversely, the removal
of an anomalous record typically removes the anomaly altogether.
Therefore, the accuracy achievable for anomaly identification via
differential privacy is limited as explained below.

Differential privacy for binary functions f : D — {0, 1}, such
as the anomaly identification, comes with inherent limitations that
can be explained through the graph of Figure 1a. Fix any mecha-
nism M that is supposed to compute f, with the property that this
mechanism is differentially private. The mere fact that f is binary
and M is differentially private has the following effect. For any two
databases x and y that differ in one record say that f(x) = 0 and
f(y) = 1. Now, a simple calculation shows that the differential pri-
vacy constraints create a tradeoff: whenever M makes a small error
in computing f(x) then it is forced to err a lot when computing on
its “neighbor” y and vice-versa. Moreover, the higher the privacy
requirements are (i.e. for smaller ¢) the stricter this tradeoff is, as
depicted on Figure 1a. Formally, we state this fact as follows.

Cramm 1. Fixe > 0, f : D — (0,1}, ande-DPM : D — {0, 1}
arbitrarily. For every x and y, if f (x) # f(y) and ||x — y||1 = 1, then
P(M(x) # f(x)) 2 1/(1 +¢€%) or P(M(y) # f(y)) = 1/(1 +¢°).

What happens to this inherent tradeoff when x and y differ in
more than one record? As shown on Figure 1b this tradeoff is re-
laxed. We note that for deriving the tradeoff, there was nothing
specific to the ¢; metric (used for differential privacy), but instead
we could have used any metric over the space of databases; other
works that considered general metrics are e.g., [25, 33]. Our work
proposes a distance metric which is appropriate for anomaly identi-
fication, in conjunction to an appropriate relaxation of differential
privacy. This way we will lay out a practically meaningful (but also
amenable to analysis) privacy setting.

1.2 What do we want from the new notion?

We want to relax differential privacy since affording protection
for everyone severely degrades the accuracy for anomaly identifi-
cation. One possible relaxation, suitable for the problem at hand,
is providing protection only for a subset of the records. We note
that such a relaxation is backed by privacy legislation, e.g., GDPR
allows for giving up privacy for an illegal activity [21]. Protecting
a prefixed set of records, which is decided independent of the data-
base, works when anomalies are defined independent of the other



records. However, for a data-dependent anomaly definition, such
a notion of privacy fails to protect the normal records. Here the
problem arises due to the fixed nature of the set that is database-
specific. In the case of a data-dependent definition of anomaly, if
we wish to provide privacy guarantee to the normal — call them
sensitive — records that are present in the database, then specifying
the set of sensitive records itself leaks information and can lead to
a privacy breach. Thus, sensitive records must be defined based on
a more fundamental premise to reduces such dependencies. This
notion of sensitive record plays a pivotal role in defining a notion
of privacy, named sensitive privacy, which is appropriate for the
problem identifying anomaly.

We remark that although anomaly identification method provide
binary labeling, they assign scores to represent how outlying a
record is [1, 3]; thus these models (implicitly or explicitly) assign a
records a degree of outlyingness with respect to the other records,
which the following discussion takes into account.

An appropriate notion of privacy in our setting must allow a
privacy mechanism to have the following two important properties.
First, the more outlying (or non-outlying) a record is, the higher
the accuracy the privacy mechanism can achieve for anomaly iden-
tification, which is in contrast to DP (Figure 2c). Second, all the
sensitive records should have DP like privacy guarantee for the
same value of privacy parameter.

The mechanisms that are private under sensitive privacy achieve
both the properties (see Figure 2, which gives the indicative experi-
mental results on the example data; see Section A.1 for the details
on the experiment and the values of the parameters). Furthermore,
it has an additional property: in a typical setting, the anomalies do
not lose privacy altogether; instead the more outlying a record is
the lesser privacy it has (Figure 2d).

1.3 How do we define the new privacy notion?

To define privacy, we need a metric space over the databases since
a private mechanism needs to statistically blur the distinction be-
tween databases that are close in the metric space. While differential
privacy uses the || - |1 — metric, we utilize a different metric over
databases, which can be defined using the notion of sensitive record.
Informally, we say a record is sensitive with respect to a database if
it is normal or becomes normal under a small change—we formalize
this in Section 3. We argue that this notion of sensitive record is
quite natural, and it is inspired from the existing anomaly detection
literature [1, 3]. Since, by definition, an anomalous record signifi-
cantly diverges from other records in the database [1, 3], a small
change in the database should not affect the label of an anomalous
record. Given the definition of sensitive record, a graph over the
databases is defined by adding an edge between two databases if
and only if they differ in a sensitive record. The metric over the
databases is now given by the shortest path length between the
databases in this graph. This metric space has the property that
databases differing by a sensitive record are closer compared to
the databases differing in a non-sensitive record. We use the pro-
posed metric space to define sensitive privacy, which enables us to
fine-tune the tradeoff between accuracy and privacy.
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Figure 2: (b), (c) is for the same data, and (d), (e) is for the
same data. (a) gives the density plot of the distribution of the
example data. z; and z; axes give the coordinate of a point
(record). (b) and (c) resp. show the accuracy (on vertical axis)
for anomaly identification (AId) via sensitively private (SP)
and DP mechanisms for the data. The plots give the interpo-
lated results to clarify the relationship of outlyingness and
accuracy. (d) and (e) give the privacy (on vertical axis) for
each record in the data for private AId. All the green (nor-
mal) points in (d) are at the same level as all the points in (e).

2 PRELIMINARIES AND NOTATION

Database: We consider a database as a multiset of elements from
a set X, which is the set of possible values of records. In a database,
we assume each record is associated with a distinct individual. We
represent a database x as a histogramin D = {y € NX [lylly < oo},
where D is the set of all possible database, N = {0,1,2, ...}, and
x; is the number of records in x that are identical to i.

Definition 2.1 (differential privacy [15, 17]). For € > 0, a mech-
anism M with domain D is e-differentially private if for every
x,y € D such that ||x — y||; < 1, and every R C Range(M),

P(M(x) € R) < e*P(M(y) €R).

We implicitly assume that the R’s are chosen such that the events
“M(x) € R” are measurable.

Anomalies: For any database x, record i € X, r > 0, and a

distance function d : X X X — Rxq, Bx(i,r) = D xj, and
jeX:d(i,j)<r
define (f, r)-anomaly as follows.

Definition 2.2 (8, r)-anomaly [35]). For a given database x and
record i, we say i is a (f3, r)-anomaly in the database x if i is present
in x, i.e. x; > 0, and there are at most f§ records in x that are within
distance r from i, i.e. By (i,r) < f5.
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Figure 3: (a)-(c), the plot is for the same data. The two axes
give the coordinate of a point (record). The color gives the
level of privacy, i.e. the value e~ ¢, for 0.25-SP AIQ for every
record (the data was generated using generated using the dis-
tribution given in Figure 2). (a), k = 1. (b), k = 7. (¢), k = 14.

Whenever we refer to a (f, r)-anomaly, we assume there is an
arbitrary distance function d over X x X.

Anomaly identification: Let us now introduce the important
and related notion of anomaly identification function, g : X X D —
{0, 1}, such that for a given anomaly definition, every record i €
X and database x € D, g(i,x) = 1 if and only if i is present
in x as an anomalous record (note that no change is made to x).
This formulation is extensible to the case where the database over
which anomaly identification is performed is considered to include
the record for which anomaly identification is desired. Here, the
anomaly identification for a record i over a data x can be computed
over the database that consists of all the records in x as well as the
record i L.

Private anomaly identification query (AIQ):. Here, all the
private mechanisms we consider have domain 9. Thus, we will
consider the anomaly identification query to be for a fixed record.
We will specify this by the pair (i, g), where i is a record and g an
anomaly identification function. Now a private anomaly identifi-
cation mechanism, M : D — {0, 1}, for a fixed AIQ, (i, g), can be
represented by its distribution, where for every x, P (M(x) = g(i, x))
is the probability the M output correctly, and P (M(x) # g(i, x)) is
the probability that M errs on x.

3 SENSITIVE PRIVACY

Our notion of sensitive privacy requires privacy protection of every
record that may be normal under a small change in the database.

!Note that alternatively one could have defined g without predicating on the existence
of i in x. By dropping the predicate on the existence of i, we in effect blur the distinction
between the notion of a void spot (that in a different database could have been occupied
by a record) in the database and the notion of an anomaly.

We use the notion of normality property p to identify the normal
records that exist in the database. Formally, for a given definition of
anomaly, a normality property, p : X X D — {0, 1}, is such that for
every record i and database x, p(i,x) = 1 if and only if i is present
in x as a normal record. Note that the normality property is not the
negation of anomaly identification function because for the absent
records p = 0 (same as those which do not satisfy the property). We
formalize the notion of small change in the database as the addition
or removal of k records from the database. We consider this change
to be typical and want to protect the privacy of every record that
may become normal under this small change in the database.

We now formalize the key notion of sensitive record. For a fixed
normality property, all the records whose privacy must be protected
are termed as sensitive records.

Definition 3.1 (sensitive record). For k > 1 and a normality prop-
erty p, we say a record i is k-sensitive with respect to a database x
if, for a database y, ||x — y||1 < k and p(i,y) = 1.

Next, we give a couple of definitions of the graphs we consider
here. A neighborhood graph, G = (D, E), is a simple graph such
that for every x and y in D, (x,y) € E < ||x —yll1 = 1. One
of the important notions in this work is k-sensitive neighborhood
graph, Gs = (D,E’), for k > 1 and a normality property, which
is a subgraph of the neighborhood graph, G = (D, E), such that
for every (x,y) € E, (x,y) € Ef < forsomei € X, |xj —
yi| = 1 and i is k-sensitive with respect to x or y. Further, the two
databases connected by an edge in a (sensitive) neighborhood graph
are called neighbors. With this, we can state the notion of sensitive
privacy. Note that the k-sensitive neighborhood graph is tied to the
normality property, and hence, the anomaly definition.

Definition 3.2 (sensitive privacy). For ¢ > 0, k > 1, and normality
property, a mechanism M with domain D is (¢, k)-sensitively pri-
vate if for every two neighboring databases x and y in k-sensitive
neighborhood graph, and every R C Range(M),

P(M(x) € R) <e*P(M(y) € R)

We omit k when it is clear from the context. The above condition
necessitates that for every two neighbors, any test (i.e., event) one
may be concerned about, should occur with “almost the same prob-
ability”, that is, the presence or the absence of a sensitive record
should not affect the likelihood of occurrence of any event. Here,
“almost the same probability” means that the above probabilities
are within a multiplicative factor e®. The guarantees provided by
sensitive privacy are similar to that of differential privacy. Sensitive
privacy guarantees that given the output of the private mecha-
nism, an adversary cannot infer the presence or the absence of
a sensitive record. Thus for neighboring databases in a sensitive
neighborhood graph (Gs), the guarantee is exactly the same as
in differential privacy. If x and y differ by one record, which is
not sensitive, then they are not neighbors in Gg , and the guar-
antee provided by sensitive privacy is weaker? than differential
privacy, nevertheless, has the same form. So, intuitively, if we only
consider the databases, where all the records are sensitive, then
differential privacy and sensitive privacy provide exactly the same

2“Weaker” means that every mechanism which is £-DP is also £-SP, but in general not
the other way around.



guarantee. In general, every (e, k)-SP mechanism M for Gg satisfies
P(M(x) € R) < P(M(y) € R)e®%s®Y) for every x, y and R, where
dg; is the shortest path length metric over Gs.

Similar to differential privacy, ¢ is the privacy parameter: the
lower its value, the higher the privacy guarantee. The parameter k
,which is associated with the sensitive neighborhood graph, pro-
vides a way to quantify what is deemed as a small change in the
database, which varies from field to field, but nevertheless in many
common cases can be quantified over an appropriate metric space.>.
When we increase the value of k, we move the boundary between
what is considered sensitive and what is non-sensitive (Figure 3,
where the plots are similar to the ones given in Figure 2d for the
same parameter values but for varying k): higher the value of k,
the more records are considered sensitive, and therefore, must be
protected. This is due to the fact that, for any k > 1, if a record is
k-sensitive with respect to a database x, it is also (k + 1)-sensitive
with respect to x. For example, with respect to a database x, a 2-
sensitive record, may not be 1-sensitive, but a 1-sensitive record
will also be 2-sensitive.

3.1 Composition

Our formalization of sensitive privacy enjoys the important proper-
ties of composition and post-processing [18], which a good privacy
definition should have [32]. Hence, we can quantify how much
privacy may be lost (in terms of the value of ¢) if one asks mul-
tiple queries or post-processes the result of a private mechanism.
Here, we recall that sensitive privacy is defined with respect to the
k-sensitive neighborhood graph for the privacy parameter ¢. Thus,
the privacy composes with respect to both, the privacy parameter
(i.e. €) and the sensitive neighborhood graph.

Sequential composition provides the privacy guarantee over mul-
tiple queries over the same database, where the same record(s) in
the database may be used to answer more than one query. Consider
two mechanisms M; : D — R, which is &1 -sensitively private for k-
sensitive neighborhood graph Gs, = (D, E1),and My : DXR — R/,
which is e3-sensitively private for k-sensitive neighborhood graph
Gs, = (D, Ey), with independent sources of randomness. Recall
that for a private mechanisms for AIQ, (i, g), is fixed; thus M; and
M3 may correspond to different records and anomaly identification
function. Now, M (x, M1(x)) (for every database x) is (&1 + €2)-
sensitively private for Gs = (D, E; N Ez) (Claim 3). One application
of this is that for a fixed Ggs, even performing multiple queries in-
teractively will lead to at most a linear loss (in terms of ¢) in privacy
in the number of queries—in an interactive query over a database
x, one firstly gets the answer of My, i.e., M1(x), and based on the
answer, one selects My and gets its answer. Furthermore, for a fixed
normality property, if k1 < ko then Gg, is a subgraph of Ggs,, then
M, is (&1 + &2)-sensitively private for G, .

Parallel composition deals with multiple queries, each of which
only uses non-overlapping partition of the database. Let X = Y, UY>
such that Y; N Y, = 0. Now, consider M; and My, each with do-
main D, that are respectively ¢1-sensitively private for Gs, and &2-
sensitively private for Gg,, where Gg, is a subgraph of G, . Further,

3The metric space we are using for anomaly identification has a rather complicated
structure, but it is induced by formalizing our intuition for sensitive records.

M and M3 only depend on their randomness (each with its indepen-
dent source) and records in Y; and Y respectively. In this setting, a
mechanism M(x) = (Mj(x), Ma(x)) is max(e1, £2)-sensitively pri-
vate for Gg,, or in general case for sensitive neighborhood graph
(D, E1 N Ey) (Claim 4), where E; and E; are the sets of edges for
Gg, and Gg, respectively.

We also remark that privacy is maintained under post-processing.

Example: Consider composition for sensitive privacy for the
case of multiple (f,r)-AIQs. Let us say we answer anomaly iden-
tification queries for records iy, iz, . . ., ip respectively for (f1,r1),
(B2,72), - . . (Bn, rn) anomalies over the database x, while providing
sensitive privacy. Let the mechanism for answering (f;, r;)-AIQ
for iy be ¢;-SP for k;-sensitive neighborhood graph corresponding
to (B, rr)-anomaly, and assume it depends on the partition of the
database that contains the records within distance r; of i; (because
it suffices to compute (f;, r+)-AIQ) and its independent source of
randomness. Let k = min(ky,...,kp), f = max(fi,...,fn), and
r =min(ry, ..., rp). In this case, the sensitive privacy guarantee for
answering all of the queries is me for k-sensitive neighborhood graph
corresponding to (f3, r)-anomaly, where m is the maximum number
of i;’s that are within any ball of radius max(ry, . .., rp) (Claim 5).

Thus, from the above, it follows that if we fix f, r and k and allow
a querier to ask m many (8’,r)-AIQ’s (each may have a different
value for §’) such that f” < f3, then we can answer all of the queries
with sensitive privacy me in the worst case for k-sensitive neighbor
for to (f, r)-anomaly. The same is true if the queries are for (8, r’)
with r” > r. Furthermore, for fixed 3, r and k, answering (§, r)-AIQ
for i and i’ such that d(i, i") > 2r still maintains (e, k)-SP. One may
employ this to query adaptively to carry out the analysis while
providing sensitive privacy guarantees over analysis as a whole.

4 PRIVACY MECHANISM CONSTRUCTIONS

In this section we will show how to construct a private mechanisms
for (B, r)-anomaly identification. Specifically, (i) we will give an
SP mechanism that errs with exponentially small probability on
most of the typical inputs (Theorem 4.6), (ii) we will provide a
DP mechanism construction for (f, r)-AIQ, which we will prove is
optimal (Theorem 4.4), (iii) we will present a compiler construction
that can compile a “bad” DP mechanism for AIQ to a “good” SP
mechanism (Theorem 4.7) — here good and bad are indicative of
utility. We will use these mechanism to evaluate the performance
of our method over real world and synthetic datasets.

Recall that a privacy mechanism, M : D — {0, 1}, for a fixed
AIQ, (i, g), will output the labels of i for the given database, where
g is an anomaly identification function and i is a record. The
sensitive privacy requires that the shorter the distance between
any two databases, x and y, in the sensitive neighborhood graph
(Gs), the closer the probabilities of any output (R) of the mech-
anism M corresponding to the two databases should be, that is,
e ¢ 9s(5Y) < P(M(x) = R)/P(M(y) = R) < e 965(5Y) Thus,
for an x, the greater is the distance to the closest y such that
g(i,x) # ¢g(i,y), the higher accuracy a private mechanism can
achieve on the input x for answering g(i, x). We capture this metric-
based property by the minimum discrepant distance (mdd) function.
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Figure 4: Sensitive neighborhood graph. A simple example of a 1-sensitive neighborhood graph, Gs, with X = {1, 2,3,4,5}, {1-
metric over X X X, and (f = 3,r = 1)-anomaly. Note that Gg is an undirected graph; arrowheads indicates the record is added
at the end node; the color of the edge corresponds (as per the given color code) to the value of the record added. Further, each
database x is represented as a 5-tuple with x; for i € X representing the number of records in x that have value i.

Fix an anomaly identification function g. For a given sensitive neigh-
borhood graph Gs, A, is mdd-function, if for every i and x,

Agy (i, x) = min

do. (x. 1
ye Dl i) 05 V) @

A simple and efficient mechanism for anomaly identification that
is both accurate and sensitively private can be given if g and the
Agg (the corresponding mdd-function) can be computed efficiently.
However, computing the mdd-function efficiently for an arbitrary
anomaly definition is a non-trivial task. This is because the metric,
dgs, which gives rise to the metric-based property captured by
the mdd-function, is induced by (a) the definition of anomaly (e.g.
specific values of f and r) and (b) the metric over the records. Thus,
making it exceedingly difficult to analyze it in general.

We use the example given in Figure 4 to explain the above
mentioned relationships of mdd-function. This figure depicts a
subgraph of 1-sensitive neighborhood graph for (f = 3,r = 1)-
anomaly. One can appreciate the conceptual difficulty in calcu-
lating mdd-function, Ag, (for this setting) by for example think-
ing the value of Ag(5,(3,0,0,0,1)) (and recall that this is just
a 1-sensitive neighborhood graph). Next, note that for a given
database x and a record i, the shorter is the distance of the clos-
est sensitive record from i, the smaller the value of Ag, (i, x), e.g.
Ags(5,(3,0,0,0,1)) > Ags(5,(3,2,1,0, 1)). Furthermore, the pres-
ence of non-sensitive records can also influence the value of the
mdd-function, e.g. Ag(5,(3,0,0,0,1)) > Ag4(5,(3,0,1,0,1)) al-
though the closest sensitive record to 5 is the same in both the
databases. In addition, the values of § and r also affect the value of

mdd-function, and in most realistic settings, the size of X is large,
and the sensitive neighborhood graph is quite complex.

Below, we provide our constructions that uses a lower bound
on the mdd-function to give sensitively private mechanism, which
does not depend upon any particular definition of anomaly. Thus it
can be used to give private mechanisms for AIQ’s as long as one is
able to compute the lower bound.

4.1 Construction: SP-mechanism for AIQ by
lower bounding mdd-function

Here, we show how to construct an SP mechanism for identifying
anomalies by using a lower bound, A, for the mdd-function. Our
construction (Construction 1) will be parameterized by A, which
is associated with a sensitive neighborhood graph. Since the sen-
sitive neighborhood graph is tied to an anomaly definition, it will
become concrete once we give the definition of anomaly (e.g., see
Section 4.1.1 and Section 4.1.2).

For any fixed AIQ, (i, g), and given A, Construction 1 provably
gives an SP mechanism as long as A fulfills the following two prop-
erties: (1) for every i and x, A(i,x) > 1 and (2) A is 1-Lipschitz
continuous lower bound on the mdd-function (Theorem 4.1).

For a sensitive neighborhood graph, Gg, we say a function f :
X X D — R is a-Lipschitz continuous if for every i € X and
neighboring databases x and y in Gg, |f (i, x) — f(i,y)| < a.

We remark that although at first it appears that the Lipschitz
continuity condition is some side technicality, in fact bounding its
value constitute the main part of our argument for privacy of our



mechanisms. Thus giving an SP mechanism for (i, g) via Construc-
tion 1 reduces to giving a Lipschitz continuous lower bound for the
mdd-function corresponding to g.

CONSTRUCTION 1. Uy

(1) Inputx € D.

(2) Sett = e~ €L /(1 4 g8),

(3) Sample b from {0, 1} such thatP (b # g(i,x)) = t.
(4) Returnb.

Note that the above is a family of constructions parameterized
by A (as mentioned above), i.e., one construction, U, for each A.
This construction is very efficiently realizable as long as we can effi-
ciently compute g and A. Furthermore, the error of the mechanism,
yielded by the construction, for any input is exponentially small in
A (Claim 2, which immediately follows from the construction).

CramM 2. For givene, (i, g), and A, Uy (Construction 1) is such that
P(U(x) # g(i,x)) = e cAE7D /(1 4 %) for every x.

THEOREM 4.1 (U) 15 SP). For any given ¢, AIQ, and a 1-Lipschitz
continuous lower bound A on the corresponding mdd-function for
k-sensitive neighborhood graph, Gg, such that A > 1, Construction 1
yields an (¢, k)-sensitively private mechanism.

In order to show that the theorem holds, it suffices to verify
that for every i and every two neighboring x and y in Gg, the
privacy constraints hold. For any AIQ, (i, g), this is immediate when
g(i,x) = g(i,y) because A is 1-Lipschitz continuous. When g(i, x) #
g(i,y), A(i,x) = A(i,y) = 1 because Agg(i,x) = Ags(i,y) =1
and A > 1. Thus, the constraints are satisfied in this case as well.
The complete proof for Theorem 4.1 is given in Appendix A.4.
Additionally, a simple observation on the proof of Theorem 4.1,
shows that if the given A is a-Lipschitz continuous with a > 1, then
Construction 1 yields an (¢ - «)-sensitively private mechanism.

In the following two sections, we instantiate Construction 1 to
give differentially private and sensitively private mechanisms for
performing (f, r)-anomaly identification query. We will use these
mechanisms in our empirical evaluation over real world datasets.

4.1.1 Optimal DP-mechanism for (f,r)-AlQ. Here, we show
how to use Construction 1 to give an optimal differentially private
mechanism for (f, r)-AIQ. Note that we will use this mechanism in
experimental evaluation (Section 5) and compare its performance
with our SP mechanism (which we will present shortly). We begin
by restating the definition of DP in terms of the neighborhood graph.
This restatement will immediately establish that SP generalizes DP,
a fact we will use to build DP mechanism.

Definition 4.2 (DP restated with neighborhood graph). For ¢ > 0,
a mechanism, M, with domain D, is e-differentially private if for
every two neighboring databases, x and y, in the neighborhood
graph, and every R C Range(M),

P(M(x) €R) < e*P(M(y) €R).

From Definition 3.2 (of sensitive privacy) and Definition 4.2, it is
clear that differential privacy is a special case of sensitive privacy,
when the k-sensitive neighborhood graphs, Gg, is the same as
neighborhood graph, G, i.e., Gs = C. Thus, forGs = G, a mechanism
is e-differentially private if and only if it is e-sensitively private. This

observation is sufficient to give a differentially private mechanism
for AIQ by using Construction 1.

We use A = Ag in Construction 1 to give the DP mechanism for
(B, r)-AlQ, where Ag (mdd-function) for an arbitrary f,r,i and x
is given below. This will yield a DP mechanism as long as the given
Ag for (B, r)-AIQ is 1-Lipschitz continuous, a fact that immediately
follows from the above observation and Theorem 4.1. We claim
that for any given § and r, Ag (given by (2)) is mdd-function for
the (B, r)-AIQ and is 1-Lipschitz continuous (Lemma 4.3).

1 xi =0ABy(i,r) < B
Ac(ix) = 2+ By(i,r) = f xi =0 A Bx(i,r) >
6(X) =\ Min(xp, B+ 1—Be(ir) x> 0ABy(ir) < B

Bx(i,r) = p xi > 0 A Bx(i,r) >

@)

LEmMMA 4.3. For any fixed (f,r)-AIQ, (i, g), the Ag given by (2) is
mdd-function for g and is 1-Lipschitz continuous.

The proof of Lemma 4.3 can be found in Appendix A.5.

We claim that for any fixed (8, r)-AIQ, (i, g), U, (given by our
construction) is differentially private and errs minimum for all the
inputs (Theorem 4.4), namely, it is pareto optimal. We say Uy is
pareto optimal ¢-DP mechanism if (a) it is e-DP and (b) for every
&-DP mechanism M : © — {0,1} and every database x € D,
P(Upg (x) = g(i,x)) = P(M(x) = g(i, x)). Particularly, this implies
that of all the DP mechanisms yielded by Construction 1, each
corresponding to a different A, the “best” mechanism is for A = Ag.

THEOREM 4.4 (Upg 1S OPTIMAL AND DP). For any fixed (B,r)-
AIQ, Up,, (Construction 1) is pareto optimal e-differentially private
mechanism, where Ag is given by (2).

4.1.2 SP-mechanism for (,r)-AlQ. We employ Construction 1
to give a (¢, k)-sensitively private mechanism for (3, r)-AIQ. We
provide A; below, which is 1-Lipschitz continuous lower bound
on the mdd-function for the k-sensitive neighborhood graph for
(B, r)-anomaly (Lemma 4.5). For the Ay, Construction 1 yields Uy,
that is (¢, k)-SP mechanism, and for non-sensitive records Uy . can
have exponentially small error in § (Theorem 4.6).

Ac (i, x) Bx(i,r) = f+1—-k

Age (i, x) = ®)

B+ 1—Bx(i,r)

T min(0, xi — k) By(i,r) < p+1-k

LEMMA 4.5. Arbitrarily fixk, > 1 andr > 0. Let g be (f,r)-
anomaly identification function and A be the mdd-function for g,
where Gg is the k-sensitive neighborhood graph for (B, r)-anomaly.
The Ay given by (3) is 1-Lipschitz continuous lower bound on Ag.

The proof of Lemma 4.5 is given in Appendix A.7.

It is clear form the definition of A (given by 3) that when a
record, i, is k-sensitive with respect to x, A (i, x) = Ag (i, x), which
implies that there is no gain in utility (i.e. accuracy) compared to the
optimal DP mechanism (in Section 4.1.1). However, when a record is
not sensitive, A(i, x) > Ag(i, x), our SP mechanism achieves much
higher utility compared to the optimal DP mechanism, which is
especially true for strong (f, r)-anomalies (i.e. the records that lie
in a very sparse region).



THEOREM 4.6 (ACCURACY AND PRIVACY OF Uy, ). Fix any (B,1)-
AIQ, (i,9). The mechanism, Uy, (Construction 1 for Ay above) is
(¢, k)-SP such that for every i and x, if i not sensitive for x, then

P(Uy, (x) # g(i, x)) < e~€lB+1-k=Bx(i.r)]

The privacy claim follows from Lemma 4.5 and Theorem 4.1,
while the accuracy claim is an immediate implication from Con-
struction 1 based on the definitions of Ag and A; - note that
Bx(i,r) < f+ 1 — k implies i is not sensitive for x (Lemma A.2).

We give an example to show that Uy, achieves high accuracy in
typical settings. Fix k < /10. Now for any record i in a database x,
satisfying Bx (i,r) < f/2 is an outlier for which Uy, will err with
probability less that e=¢P/5.

4.2 Compiler for SP-mechanism for AIQ

In this section, we present a construction compiler, which compiles
a differentially private mechanism for an anomaly identification
query into a sensitively private one. This SP mechanism can out-
perform the differentially private mechanism. Furthermore, our
compiler is not specific to any particular definition of anomaly or
any specific DP mechanism. The differentially private mechanism,
which the compiler takes, is given in terms of its distribution over
the outputs for every input. The compiled SP mechanism compar-
atively has much better accuracy for the non-sensitive records;
however, for the sensitive records, the SP and the input DP mecha-
nism err by the same amount.

It is noteworthy that for many problems, we already know the
distributions given by differentially private mechanisms [15, 17, 18].
Thus, our construction can be employed using these mechanism as
long as the distributions given by the differentially private mecha-
nism are not too “wild”, for example, the probability of the wrong
answer for any input is not too high (we formalize this below),
which is typically true.

The compiler construction is parameterized by 8. This § must be
a non-negative lower bound on Ag¢ — Ag that is also 2-Lipschitz
continuous (Ag, and Ag are the mdd-functions for an arbitrarily
fixed g, and Gg is the k-sensitive neighborhood graph for anomaly
definition for g). The non-negativity constraint is a side techni-
cality; however, bounded divergence (i.e., the Lipschitz continuity
constraint) and the lower bound constraint play a pivotal role in
arguing bout the privacy of the compiled mechanism. Given below
is our construction, and it will be useful when obtaining ¢ is easier
than A, and we already know the distributions of a DP mechanism
for the problem.

CONSTRUCTION 2. Us

(1) Inputx € D.

(2) Sett =P (M(x) # g(i, x)) /e $ (%),

(3) Sample b from {0, 1} such thatP (b # g(i,x)) = t.
(4) Returnb.

The differentially private mechanism (in terms of its distribu-
tions) that can be transformed (with provable guarantees) through
our compiler is termed as a valid mechanism. For ¢ > 0 and any
fixed AIQ, (i,g), we say an ¢-DP mechanism, M : D — {0,1}, is
valid if for every two neighbors x and y in the neighborhood graph
with g(i, x) = g(i,y) = b for some b € {0, 1}, the following holds

1-P(M(x) # b)e™® < e* (1-P(M(y) #b)).

Note that any e-differentially private mechanism, M, for a fixed
AIQ, (i, g), that satisfies P (M(x) # g(i, x)) < e%¢/(1 + €2¢) for ev-
ery x is valid — this is shown below for ¢ > 0 and two arbitrary
neighbors x and y such that b = g(i, x) = g(i, y); hence the notion
of valid differentially private mechanism is well defined.

2¢e

P(M(y) #b) < —

P (M(y) # b) e* — P (M(y) # b) <e*(¢** - 1)
since M is ¢-DP, it follows from the above
P (M(y) # b) e* — P (M(x) # b) e° <e? (e —1) =
1-P(M(x) # b) e~ <e®* (1-P(M(y) # b))

We claim that for a given valid differentially private mechanism,
M, for a fixed AIQ, (i, g), and non-negative 2-Lipschitz continuous
lower bound § on Agg — Ag, Construction 2 complies M into a
sensitively private mechanism, Us (Theorem 4.7). We stress that
for the compiled SP mechanism, the probability of error can be
exponentially smaller compared to the input DP mechanism. which
is especially true for the non-sensitive records. This leads to an
improvement in accuracy. Clearly, as the input mechanism, M,
to the compiler becomes better (i.e., has lower error) so does the
compiled sensitively private mechanism, Uy, since the error of Ug,
is never more than that of M.

THEOREM 4.7. Fork > 1 and a given valid ¢/2-DP mechanism,
M, for any AIQ, (i, g), and non-negative 2-Lipschitz continuous lower
bound, 8, on Agg — Ag, Construction 2 yields an e-SP mechanism,
Us, for k-sensitive neighborhood graph corresponding to the anomaly
definition for g such that

P (Us(x) # g(i.x)) = P(M(x) # g(i.x)) e~ 190:%),

To confirm the above claim, we show that the mechanism, Us,
given by the construction above indeed satisfies the privacy con-
straints imposed by the sensitive privacy definition for every two
neighboring databases in k-sensitive neighborhood graph. We can
accomplish this by showing that the privacy constraints are satisfied
by any two arbitrarily picked neighbors, x and y, for an arbitrarily
picked valid ¢/2-differentially private mechanism, M, for an anom-
aly identification query, (i,g) and a § as specified above. We can
divide the argument into two cases, and confirm in each case that
the privacy constraints are satisfied. Case 1: §(i,x) = d(i,y) = 0,
which follows due to M being differentially private; because if M
is ¢/2-differentially private then it is also e-differentially private.
Case 2: 6(i, x) > &(i,y) > 0 — this is without loss of generality since
x and y are picked arbitrarily. This case holds because of the fol-
lowing: M is valid ¢/2-differentially private, § is non-negative and
2-Lipschitz continuous, g(i, x) = g(i,y) (because for neighboring
x and y, Agg (i, x) — Ag(i,x) = 6(i,x) > 0 implies Ag, (i, x) > 2).
We give the complete proof of Theorem 4.7 in Appendix A.8.

We highlight the effectiveness of the compiler by instantiating it
for 8(i,x) = A1(i,x) — Ag(i, x) for every i and x for (f, r)-anomaly.
Figure 5 shows the compilation of two DP mechanisms for (8, r)-
AIQ, which widely differ in their performance. As expected, the
compiled SP-mechanism outperforms the input DP-mechanism.

In Figure 5a, the input DP mechanism, M, has a constant error for
every input database, that is, 1/(1 + e¥) for fixed ¢ = 0.25. Clearly,
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Figure 5: compilation of DP-mechanism for (f,r)-AIQ into
SP-mechanism. In both (a) and (b), the input mechanism
is 0.25-DP for a fixed record i and § (given in the figure).
Each database x is given by (x;, Bx(i,r)) since (f, r)-anomaly
identification function only depends upon x; and By (i, r)).
Each mechanism is depicted by its error over databases i.e.
P(M(x) # ¢g(i,x)). (a), DP-mechanism has constant error ~
0.44. (b), DP-mechanism has error ~ 0.56/¢-2%4c(.x),

this mechanism has extremely bad accuracy. This is a difficult case
even for the compiled mechanism, which nevertheless, attains expo-
nential gain in accuracy for non-sensitive records. However, when
we input the DP-mechanism given in Section 4.1.1, which is much
better than the one in Figure 5a, the compiled mechanism is clearly
superior compared to the one in Figure 5a (Figure 5b).

Note that the § in Figure 5 is a non-negative 2-Lipschitz continuous
lower bound on Agg — Ag (as required by Theorem 4.7), where 14
is given by (3) for k = 1 and Ag is given by (2). § =41 —Ag =2 0
follows because Agy > A1 > Ag. The first inequality follows
from Lemma 4.5. The second one trivially holds true for all the
cases except for x; > 1 and Bx(i,r) < 5, where A1(i,x) = f +
1 — Bx(i,r) and Ag(i,x) = min(x;, f + 1 — Bx(i,r)); thus, even in
this case, we get 6(i,x) = max(f + 1 — Bx(i,r) — x;,0) > 0. The
2-Lipschitz continuity of § follows from the A; and Ag being 1-
Lipschitz continuous (Lemma 4.5 and Lemma 4.3). Thus, for any i
and two neighbors x and y in G (1-sensitive neighborhood graph),

16t x) = 8@, y)| <|A1(i,x) = A1 (i y)| + [Ac (i, x) — A (i, y)] < 2.

Remark: We emphasize that both of our constructions are not
tied to any specific definition of anomaly, and even the requirement
of Lipschitz continuity is due to privacy constraints.

5 EMPIRICAL EVALUATION

To evaluate the performance of the SP-mechanism for (f, r)-anomaly
identification, we carry out several experiments on synthetic dataset

and real-world datasets from diverse domains: Credit Fraud [10]

(available at Kaggle [23]), Mammography and Thyroid (available at

Outlier Detection DataSets Library [41]), and APS Trucks (APS Fail-
ure at Scania Trucks, available at UCI machine learning repository
[14]). Table 1 provides the datasets specifications.

To generate the synthetic data, we followed the strategy of Dong
et al. [12], which is standard in the literature. The synthetic data

Error

Dataset size dim Byr) true (B, r)-
anomalies
Credit Fraud 284,807 28 (1022, 6.7) 103
APS Trucks 60, 000 170 | (282,16.2) 677
Synthetic 20,000 200 (97,3.8) 201
Mammography | 11,183 6 (55,1.7) 75
Thyroid 3,772 6 (18,0.1) 61

Table 1: dataset specifications and parameter values.
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Figure 6: box plots of the errors of the SP mechanism for
(B, r)-AIQ over the true (f, r)-anomalies for ¢ = {.01,.1,1}.
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Figure 7: box plots of the error of the SP and the DP mecha-
nisms for (f, r)-AIQ over the true (f, r)-anomalies for ¢ = 0.1.

was generated from a mixed Gaussian distribution, given below,
where I is the identity matrix of dimension d X d, ¢ << 1, and e;,
is a standard base. In our experiments, we used p = .01 and a = 5,
and chose a standard bases uniformly at random.

A=pIN .1+ (p/a) 5N (fd/pei, *D+2 N (~fd e, a71)]
t=1

The aim of this work is to study the effect of privacy in identify-
ing anomalies. So we keep the focus on evaluating the proposed
approach for achieving privacy for this problem, and how it com-
pares to differential privacy in real world settings. Our experiments
make use of (popular) (f, r) notion of anomaly.

Following the standard practice for identifying outliers in the
data with higher dimension [1, 28], we carried out the principal
component analysis (PCA) to reduce the dimension of the three
datasets with higher dimension. We chose, top 6, 9, and 12 features
for the Credit Fraud, Synthetic, and APS Trucks datasets respec-
tively. Next, we obtain the values of f and r, which typically



Dataset mean error mean error

(anomalies)
N DP SP

Credit Fraud 1.1127E-21 | 0.4750 | 1.1127E-21

APS Trucks 2.9719E—-13 | 0.4750 | 2.9719E—13

Synthetic 3.2173E-5 0.4750 | 3.2173E-5

Mammography | 0.0022 0.4749 | 0.0021

Thyroid 0.0870 0.4750 | 0.0867

Table 2: effect of sparsity of databases. “mean error” is over
the randomly picked n records from the possible values of
the records for each dataset for SP and DP mechanisms for
(B, r)-AIQ. “mean error (anomalies)” is only over the anoma-
lous records in the n picked records. Here, n is 20% of the size
of the dataset and ¢ = 0.1.

are provided by the domain experts [35]. Here, we employed the
protocol outlined in Appendix A.2 to find f and r; this protocol
follows the basic idea of parameter selection presented in the work
[35] that proposed the notion of (f, r)-anomaly. Table 1 gives the
values of § and r, which we found through the protocol, along with
the number of true (f, r)-anomalies (true anomalies identifiable by
(B, r)-anomaly method for the given parameter values).

Error: We measure the error of a private mechanism (which is
a randomized algorithm) as its probability of outputting the wrong
answer—recall that in the case of AIQ, there are only two possible
answers, i.e. 0 or 1. For each AIQ for a fixed record, we estimate the
error by the average number of mistakes over m trials. So for our
experiments we choose m to be 10000.

For each dataset, we find all the true (f, r)-anomalies and for
each of them perform private anomaly identification query using
SP-mechanism (given in Section 4.1.2) and DP-mechanism (given
in Section 4.1.1) for ¢ = 0.01, 0.1, and 1 and compute the error,
which we give by the box plot in Figure 6. The reason we only
considered our DP mechanism for this part is that it is the best
among the baselines (see Table 3) and it also has strong accuracy
guarantees (Theorem 4.4). The error of SP-mechanism, in many
cases, is so small (e.g. of the order 1013 or even smaller for larger
values of ¢) that it can be considered zero for all practical purposes.
Furthermore, as the data size increases (and correspondingly the
value of f), the error of SP-mechanism reduces. However, in the
case of anomalies, the error of DP-mechanism is consistently close
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erage error of SP and DP mechanism for AIQ over all the
normal records from each data set; ¢ = 0.1.
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Figure 9: evaluation over true (f,r)-anomalies for varying k.
(a)-(e), give the errors of SP and DP mechanisms. AIQ rank
is given by the error of SP-mechanism for each anomaly:
the higher the rank, the lower the error. Mechanisms are as
given in Section 4 and ¢ = 1. (a), Thyroid, (b), Mammography,
(c), Credit Fraud, (d), APS Trucks, (e), Synthetic data.
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Figure 10: deviation in the DP-mechanism error for the
Credit Fraud dataset. In (a), the plot is the same as given in
Figure 9c for the DP-mechanism. In (b) and (c), x, for each
record is the number of records in the database x that have
the same value. (c), shows the box plot for the data.

to that of random coin flip (i.e. selecting 0 or 1 with probability 1/2)
except for a few anomalous records in some cases — we will shortly
explain the reason for this. The error of the SP-mechanism was
overwhelmingly concentrated about zero (Figure 6), which is also
true for the smaller values of . Thus, we can have higher privacy
guarantee for sensitive records, while still being able to accurately
identify anomalies. Also, note that as the size of the dataset increases,
not only does the error of SP-mechanism reduces (for anomalies),



Dataset Precision Recall F{-score
By B2 DP SP B B, DP SP By B2 DP SP
Credit Fraud 0.0101 | 0.0230 | 0.9930 | 0.9963 | 1.0000 | 0.0498 | 0.5250 | 0.9968 | 0.0199 | 0.0315 | 0.6868 | 0.9966
APS Trucks 0.0115 | 0.0165 | 0.9870 | 0.9931 | 1.0000 | 0.0753 | 0.5263 | 0.9954 | 0.0227 | 0.0271 | 0.6865 | 0.9943
Synthetic 0.0101 | 0.0114 | 0.9930 | 0.9963 | 1.0000 | 0.1189 | 0.5250 | 0.9968 | 0.0199 | 0.0208 | 0.6868 | 0.9966
Mammography 0.0070 | 0.0081 | 0.0211 | 0.2004 | 0.8244 | 0.1000 | 0.5250 | 0.9977 | 0.0138 | 0.0149 | 0.0435 | 0.3337
Thyroid 0.0174 | 0.0191 | 0.1427 | 0.3100 | 0.6656 | 0.2918 | 0.5250 | 0.8993 | 0.0339 | 0.0358 | 0.2244 | 0.4610

Table 3: B; and B, are the best mechanisms from two families of mechanism. DP and SP are the mechanisms from Section 4.1.1
and Section 4.1.2 respectively. Going from red to blue the value decreases. ¢ = 0.1

but also its divergence. Thus, it indicates that our methodology is
even more appropriate for big data settings. On the other hand,
for anomalies, the errors of DP-mechanism are concentrated about
1/(1 + €°) (Figure 7). This is in accordance with our theoretical
results and the assumption that the databases are typically sparse.

Next, we evaluated the performance over the normal records.
Here, both the SP and the DP mechanisms performed equally (Fig-
ure 8). For the same value of ¢, every sensitive record in the data-
base has the same level of privacy under sensitive privacy as all the
records under differential privacy; thus the same level of accuracy
should be achievable under both the privacy notions. Here we see
again that datasets with larger sizes exhibit very small error.

To evaluate the performance over future queries, we picked
n records uniformly at random from the space of possible (val-
ues of) records for each dataset — n was set to be 20% of the size
of the dataset. Here too the SP-mechanism outperforms the DP-
mechanism significantly (Table 2). This is because most of the
randomly picked records are anomalous as per the (f, r)-anomaly,
which is due to the sparsity of the databases. This fact becomes very
clear when we compare the mean error over the random records to
the mean error over the anomalous records in the randomly picked
records (see the second and the last column of Table 2). Since the
probability of observing a mistake is extremely small (e.g., 1 in 101
trials) , in Table 2, the mean is computed over the actual probability
of error of the mechanism instead of the estimated error.

We already saw that by increasing k we move the boundary be-
tween sensitive and non-sensitive records (Figure 3). So to observe
the effect of varying values of k on real world datasets, we car-
ried out experiments on the datasets with k = [0.15], [0.2f], and
[0.38] — recall that a record is considered k-sensitive with respect
to a database if the record is normal or becomes normal under the
addition and (or) deletion of at most k records from the database.
Note that if k > f + 1 then every record will be sensitive regardless
of the database. The results are provided in Figure 9. Here we con-
clude that even for the higher values of k SP-mechanism performs
reasonably well. Further, if the size of dataset is large enough, then
the loss in accuracy for most of the records is negligible.

We see that for Credit Fraud and APS Trucks datasets, differen-
tially private AIQ for some of the anomalous records give smaller
error. We explain this deviation using the Credit Fraud dataset as
an example. The above mentioned deviation in the error occurs
whenever the anomalous record is not unique (Figure 10a-b), which
is typically rare (Figure 10c). The reason DP-mechanism’s error
remains constant in most cases is that the anomalies lie in a very
sparse region of space and mostly do not have any duplicates (i.e.,
other records with the same value - x; = 1).

Finally, to evaluate the overall performance of our SP-mechanism,
we computed precision, recall, and F;-score [1]. We also provide
a comparison with two different baseline mechanisms, By, By in
addition to pareto optimal DP mechanism (see Table 3).

B1 and By are the best performing mechanisms (i.e., with the
highest Fi-score) from two families of mechanisms. Each mech-
anism in each of the family is identified by a threshold ¢, where
0 <t < 1. Below, we describe the mechanisms from both the fam-
ilies for fixed ¢, threshold ¢, record i € X, and database x € D.
The mechanism in the first family is given as By, ;(x) = 1 if and
only if O(x) + Lap(1/¢e) > t X (||x]l; + Lap(1/¢)); here O(x) gives
the number of anomalies in x and Lap(1/¢) is independent noise
from Laplace distribution of mean zero and scale 1/¢. The mech-
anism in the second family is given as By ;(x) = 1 if and only if
O(x)+Lap(f/e) > tx(||x||1 +Lap(1/¢)). Note that, the mechanism
from the first family are £1-DP, where ¢; > fe. This is due to the
fact that max, yep:||x—y),=1 10(x) = O(y)| = f [15]. However the
mechanism from the second family are ¢5-DP, where ¢; > ¢.

Our mechanism outperforms all the baselines. Furthermore, DP-
mechanism largely outperforms the rest of the baselines.

6 RELATED WORK

To our knowledge, there has been no work that formally explores
the privacy-utility trade-off in privately identifying anomalies,
where sensitive records (which include the normal records defined
in a data-dependent fashion) are protected against inference attacks
about their presence or absence in the database used.

Differential privacy [15, 17] has shaped the field of private data
analysis. This notion aims to protect everyone, and in a sense, many
of the DP mechanisms (e.g. Laplace mechanism) achieve privacy
by protecting anomalies; and in doing so perturb the information
regarding anomalies greatly. This adversely affects the accuracy
of anomaly detection and identification. Furthermore, differential
privacy is a special case of sensitive privacy (Section 4.1.1).

Variants of the notion of differential privacy address important
practical challenges. In particular, personalized differential privacy
[29], protected differential privacy [31], relaxed differential privacy
[6], and one-sided differential privacy [13] have a reversed order
of quantification compared to sensitive privacy. Sensitive privacy,
quantifies sensitive records and their privacy after quantifying the
database, which is in contrast to the previous work. Thus, under
sensitive privacy, it is possible for a record of some value to be
sensitive in one database and not in the other, while this cannot
be the case in the above mentioned definitions. On the other hand,
by labeling records independent to the database (as in the previous
work) one can solve a range of privacy problems such as counting



queries and releasing histograms. Hence, this work solves the open
problem (in [31]). Next, we present an individual comparison with
each of the above mentioned previous work along with some other
relevant ones from the literature.

Protected differential privacy [31] proposes an algorithm for
social networks to search for anomalies that are fixed and are de-
fined independent of the database. This is not extensible to the case,
where anomalies are defined relative to the other records [31]. Sim-
ilarly, the proposed relaxed DP mechanism [6] is only applicable to
anomalies defined in data-independent manner.

One-sided differential privacy (OSDP) [13] is a general frame-
work, and is useful for the applications, where one can define the
records to be protected independent of the database. Note that the
notion of sensitive record in OSDP is different from the one con-
sidered here. Further, due to its asymmetric nature of the privacy
constrains, OSDP fails to protect against the inference about the
presence/absence of a sensitive record (in general), which is not
the case with sensitive privacy (see Appendix A.10.1).

Tailored differential privacy (TDP) [36] provides varying levels
of privacy for a record, which is given by a function, «, of the
record’s value and the database. However, the work is restricted
to releasing histograms, where outliers are provided more privacy.
Whereas our focus is identifying anomalies, where anomalies may
have lesser privacy. Further, the notion of anomaly used in the work
[36] is the simple (3, 0)-anomaly. Extending it to the case of r > 0 is
anon-trivial task since, here, changing a record in the database may
affect the label (outlyingness) of another record with a different
value. We also note that sensitive privacy is a specialized case of
tailored differential privacy (see Appendix A.10.2.)

Blowfish privacy (BP) [25] and Pufferfish privacy (PP) [33] are
general frameworks, and provide no concrete methodology or di-
rection to deal with anomaly detection or identification, where
anomalies are defined in a data-dependent fashion. Sensitive pri-
vacy is a specialized class of definitions under these frameworks.

Thus, in term of definition, our contribution in comparison with
OSDP [13], TDP [36], BP [25], and PP [33], is defining the the notion
of sensitive record and the sensitive neighborhood graph that is
appropriate and meaningful for anomalies (when defined relative
to the other records) and giving constructions and mechanisms for
identifying anomalies.

Finally, [4] proposed a method for searching outliers, which can
depend on data, but this is done in a rather restricted setting, which
has theoretical value (in [4] the input databases are guaranteed to
have only one outlier, a structure not present in the typical available
datasets; this is in addition to other input database restrictions
required by [4]).

Other relaxations of differential privacy such as [2] is specifically
for location privacy and [16] is to achieve fairness in classification
to prevent discrimination against individuals based on their mem-
bership in some group and as such are not applicable to the problem
we consider here.

7 KEY TAKEAWAYS AND CONCLUSION

This work is the first to lay out the foundations of the privacy-
preserving study of data dependent anomalies and develop general
constructions to achieve this. It is important to reiterate that the

formalization and conceptual development is independent of any
particular definition of anomaly. Indeed, the definition of sensitive
privacy (Definitions 3.1 and 3.2), and the constructions to achieve
it (Construction 1 and Construction 2) are general and work for an
arbitrary definition of anomaly (Theorem 4.1 and Theorem 4.7).

We noted earlier that sensitive privacy generalizes differential
privacy. Thus, the guarantees provided by sensitive privacy are sim-
ilar to that of differential privacy, and in fact, Construction 1 can be
employed to give differentially private mechanisms for computing
anomaly identification query or any binary function. However, in
general, the guarantee provided by sensitive privacy to any two
databases differing by one record could be correspondingly weaker
than that offered by differential privacy depending on the distance
between the databases in the sensitive neighborhood graph. There is
also a divergence in guarantees in terms of composition. In differen-
tial privacy, composition is only in terms of the privacy parameter,
¢. However, for sensitive privacy, composition needs to take into
account not only the privacy parameter ¢, but also the sensitive
neighborhood graphs corresponding to the queries being composed.
Nevertheless, the composition and post-processing properties (Sec-
tion 3.1) hold regardless of the notion of the anomaly.

An extensive empirical study carried out over data from diverse
domains overwhelmingly supports the usefulness of our method.
The sensitively private mechanism consistently outperforms dif-
ferentially private mechanism with exponential gain in accuracy
in almost all cases. Although it is easy to come up with example
datasets where a differentially private mechanism also performs
well (e.g., (B,r)-AIQ for i and x when x; = Byx(i,r) = f/2), the
experiments with real data show that such cases are unlikely to
occur in practice. Indeed, the experiments show that most of the
anomalies occur in the setting, where an e-DP mechanism performs
the worst, that is, its error is close to 1/(1 + ) (a lower bound on
the error of any e-DP mechanism and follows from Claim 1).

To conclude, in this paper, we develop methods for anomaly iden-
tification that provide a provable privacy guarantee to all records,
which is calibrated to their degree of being anomalous (in a data-
dependent sense), while enabling the accurate identification of
anomalies. We stress that the currently available methodologies for
protecting privacy in data analysis are fundamentally unsuitable
for the task at hand: they either fail to stop identity inference from
the data, or lack the ability to deal with the data-dependent defini-
tion of anomaly. Note that anomaly identification is only the first
step to tackling the problem of anomaly detection (finding all the
anomalous records in a dataset). In the future, we plan to tackle this
and instantiate our framework for other anomaly detection models.
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A APPENDIX

A.1 Empirical evaluation protocols

Evaluation over normally distributed data: If the data is from
one dimensional normal distribution with mean p and standard
deviation o then a record i is anomalous (or equivalently an outlier)
if |i—p| > 30, and is statistically equivalent to (f = 1.2x10™3n, r =
0.130)-anomaly [35], where n is the size of the database.

To adapt this result for 2D normal distribution in Figure 2, set

r=0.13, lalz + 022 and compute f in a similar fashion as above. Next,
take 30 samples of size 20K, i.e. n = 20,000, from the 2D normal
distribution, N(y, %), where p = (0,0) and X = [(2) g], and run
SP-mechanism (given in Section 4.1.2) and DP-mechanism (given
in Section 4.1.1) for (f, r)-anomaly identification query to compute
accuracy, which is measured by the probability of outputting the
correct answer by the private mechanism, and average the results
over the samples for each query. We then plot the average accuracy
and interpolate the results using one-degree polynomial in the two
coordinates (Figure 2b-c). We used the “ListPlot3D” function of
Mathematica with the argument “InterpolationOrder” set to 1.

In Figure 2d-e and Figure 3, we plot the level of privacy (in term of
¢) that each record (point) has under private anomaly identification
query. Here, the level of privacy for a record in a given database is
measured by the maximum divergence divergence in the probability
of outputting a label when we add or remove the record from the
database. For e-SP-mechanism, U, to compute the value of the
privacy parameter, ¢, for a record i in a given database x, consider
databases y and z. y and z are same as x except for y has one more
record of value i and z has one less record of value i—if there is
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no record of value i in x then z will be the same as x. Now we can
calculate e? for record i be by (4).

e (P(U(x) =b) PU(w)=Db) @

¢ T welnz belon) \PUw) = b)’ P(U(x) = b)

A.2 Protocol for (f,r) selection

The main idea is to fix a value of f, for a dataset of size n, as
(1 — p) X n, where p is close to 1, and then search for an appropriate
value of r. It is recommended [35] that for the datasets of sizes 103
and 10°, B be (1-0.995) x 10% and (1 - 0.99995) X 10°. By assuming
that p is linearly related to n, one can use the provided values to find
the value of § for any given dataset. For a fixed value of §, a search
is performed to find r that maximize the F;-score (also known as
balanced F-measure), which is a popular performance metric for
imbalanced datasets [38], and it is the harmonic mean of precision
and recall. We used the following protocol to select the value of r.
Initialize rpjn = .001, rmax = 40 (or the value that is not smaller than
the maximum distance between any two points in the given dataset),
r = 0,and S = 0. Next, set r1 = rmin + ("max = "min)/4 12 =
"min *+ 3(Fmax — "'min)/4 pick a from [0, 1] uniformly at random
and set r3 = a r1 + (1 — ) rz. Compute F;-score for each of the r’s,
ie. Sy, Sr,, and Sy,. Let Sy, be the maximum of the computed scores.
If Sy, is greater than S then set S = S;, and r = ry; further, if S, < S
and rp > r then set rmax = r2 but if it is not the case and S;, < S
and r; < r then set ryjy = rq, otherwise do nothing. Repeat this
process, except for the initialization step, until the improvement in
S becomes insignificant. In our experiments, repeating the process
for ten iterations generally sufficed.

A.3 ProororCram1

PRrROOF. Arbitrarily fix ¢ > 0, f : D — {0, 1}, e-differentially
private mechanism M : D — {0, 1}, and x,y € D such that f(x) #
f(y) and ||x —y|l1 = 1; and let b = f(x).

If P (M(y) =b) < 1/(1 + €%) then, by differential privacy con-

straints, we get that P (M(x) = b) < e?/(1+€?);thusP (M(x) =1-b) >
1/(1+€%). Similarly, P (M(x) = 1 — b) < 1/(1+€®) implies P (M(y) = b) >

1/(1 + €%). Hence, from the above, it follows that

max (P(M(x) # f(x)).P(M(y) # f(y))) = 1/(1 +¢°).

Since M, x and y were fixed arbitrarily, the claim follows, and this
completes the proof. O

A.4 Proor oF THEOREM 4.1

Proor. Fix arbitrary ¢ > 0 and a definition of anomaly. Let g
be the anomaly identification function and Gg be the k-sensitive
neighborhood graph corresponding to it for an arbitrary value
of k > 1. Fix A to be 1-Lipschitz continuous lower bound on the
mdd-function, Agg, for g such that A > 1. Let Uy be as given by
Construction 1. Next, fix an anomaly identification query, (i, g), and
x,y € D that are neighbors (i.e. connected by a direct edge) in Ggs .

If g(i,x) = g(i,y) = b from some b € {0, 1} then
PUMX) # D) _ e-a(ix)+2(y)
P (U (y) # b)
< es\—/l(i,x)+A(i,y)\
<ef (since A is 1-Lipschitz continuous)
and
PUy(x) =b) 1-P(Uy(x)#b)
PUy(y) =b) 1-PUx(y) #b)
1 + ef — e—€(A(i,x)-1)
T 14 ef — e—e(Aiy)-1)
esﬂ(i,y)(l +ef) — (A y)=A>i, x)+1)
efALY) (1 4 ef) — ef
since A is 1-Lipschitz continuous, it follows that
P(Up(x) =b) _ eEMEY (1 ref) -1 (1+6€f) -1
PUIW) =b) = eAeil(11er) —er ~ (1+e)—eF

£

The first inequality holds because A is 1-Lipschitz continuous,
and the second one holds since A > 1.

On the other hand, if g(i, x) # g(i, y), then A(i,x) = A(i,y) = 1.
This holds because x and y are neighbors, i.e. dg¢(x,y) = 1, and
hence, Ag,(i,x) = Ags(i,y) = 1 and A is such that Ag¢(j,z) >
A(j,z) = 1foreveryj € X and z € D. Thus, in this case, the privacy
constraints trivially hold. This concludes the formal argument. O

A.5 Proor or LEmmA 4.3

Proor. Let G be the neighborhood graph over D, d be the dis-
tance metric over X X X, dg be the shortest path length metric over
G, and g be the anomaly identification function for (S, r)-anomaly
for arbitrarily fixed values of § > 1 and r > 0.

Firstly, we prove that the Ag given by (2) is indeed the mdd-
function (f, r)-AIQ. Arbitrarily fix i € X and any database x € D.
We know that the value of g(i, x) only depends upon x; and By (i, 7)—
recall that g(i,x) = 1 < x; > 1 and Bx(i,r) < f. Further,
dg(x,y) = |Ix—yll1 since every two databases that differ by exactly
one record are directly connected by an edge. Hence, it follows that

forC;={jeX:d(i,j) <r},

Ag(i,x) = min

[lx =yl = min lxj — yjl-
y:9(i,y)#g (i, x) y:g(i,y)#g(i,x) Z o

JjeCi
©)

We will consider four cases based on the condition (given in the
Ag) that x satisfies. From (5), we know that Ag (i, x) is the same as
the minimum number of records by which a database y differs such
that g(i, x) # g(i, y). Thus in the proof we will modify the database
x by adding or (and) removing records from x, and show that mini-
mum number of changes required in x to change the output of g is
given by Ag.

Case 1: When x satisfies the first condition, g(i,x) = 0. For any
database y such that g(i,y) = 1, it must hold that y; > 1 and

By(i,r) < B. So we obtain a y by adding one record of value i to x.
Thus Ag(i,x) = 1.



Case 2: When x satisfies the second condition, here again sim-
ilar to the case above, g(i, x) = 0, and for any database y such that
g(i,y) = 1, it must hold that y; > 1 and By(i,r) < B. So we will
have to add one record of value i to x to obtain a database y’, but
now By (i,r) = B + 1. Thus, to obtain a y, we will have to remove
By (i,r) = f = Bx(i,r) + 1 — f records of values in C; \ {i} from y’
(or x). Thus, Ag(i,x) =1+ Bx(i,r) +1 - p.

Case 3: Here we assume that x satisfies the third condition; hence
g(i,x) = 1. For a y such that g(i,y) = 0, either y; = 0 or By (i,7)
B + 1. Thus Ag (i, x) will be the minimum of x; (which corresponds
to the number of records of value i present in x that we will have
to remove) and f + 1 — By (i, r) (which corresponds to the number
of records of values in C; that we will have to add to x).

Case 4: In this case, g(i, x) = 0 because By (i,r) > . Thus, we will
have to remove By (i,r) — f records of values in C; from x such
that there is at least on record of value i in the modified x. Hence,
AG(i! x) = Bx (i, r) - )B

Further, in all the cases, Ag(i,x) > 1. Therefore, we conclude
the Ag is the mdd-function for g (i.e. (§, r)-AIQ).
Next, we prove that the Ag is 1-Lipschitz continuous. Arbitrary fix
i and any two neighboring databases, x and y in C. Let the (k, [) rep-
resent that x and y respectively satisfy the k’ h and I'" conditions in
the Ag, where k, I € [4] such that k < I. We will prove that for each
(k, 1), the Ag satisfies the 1-Lipschitz continuity condition. Here,
note that if the Ag satisfies the 1-Lipschitz continuity condition
under (k, [) then it also satisfies the condition under (I, k) because
A (i, x) = Ac (i, y)| = |1Ac (i, y) — Ac (i, x)I.

For (1,1), 1Ag(i,x) — Ag(i,y)| = 0, and for (2,2) and (4,4),
[Ag (i, x) — Ag(i,y)| < 1since |Bx(i,r) — By(i,r)| < 1. Below, we
consider rest of the cases.

(3,3): The case, when By (i, r) = By (i, r), is trivial. So, let By (i, r) =
1 + By(i,r)—this is without loss of generality since ||x -
yllh = 1and [A (i, x)-Ac (i, y)| = |1Ac (i, y)—Ac (i, x)|. Thus,
Ag (i, x) = min(x;, B~By(i,r)) and Ag (i, y) = min(y;, f+1-
By(i,r)). All the subcases, except for the following, trivially
follow from ||x —y||; = 1.

(a) Ag(i,x) = xj and Ag(i,y) = f+1-By(i,r)

(b) Ag(i,x) = p—By(i,r) and Ag(i,y) = yi
(a) is not possible as it requires x; < y;; this cannot happen
because ||x — y|l; = 1 and Bx(i,r) = 1 + By(i,r). As for (b),
the following holds for ¢t = Ag (i, x) — Ag(i, y):

-1< B-By(i,r) = (B+1-By(i,r)) <t <xj—-y; <1

Thus, it follows that 1-Lipschitz continuity condition is sat-
isfied in this case.

(1,2): This happens when By (i,r) = f — 1 and By(i,r) = f, which
is sufficient for the condition to be satisfied.

(1,3): It is possible when y; = 1and 1 < By(i,r) < f; hence
Ag(i,y) = y; and the case holds.

(1,4): This case is not possible since ||x — y||; = 1, and the case
requires By (i,r) < f and By(i,r) > f.

(2,3): This case too is not possible since it requires By (i,r) >
By(i,r) and x; < y;, when |[x —yll; = 1.

(2,4): Here, Bx(i,r) — By(i,r) = -1 (since x; = 0 and y; > 1);
hence the case follows.

(3,4): Here, it must hold that Bx(i,r) = § and By(i,r) = f + 1.
Hence, Ag (i, x) = 1 (since x; > 1) and Ag(i,y) = 1, and the
case follows.

Since the Ag satisfies 1-Lipschitz continuity condition under all

the cases for arbitrary i and arbitrary neighbors, x and y, in the

neighborhood graph, it holds for every i and every two neighbors.

Thus the claim follows. This completes the proof. O

A.6 Proor or THEOREM 4.4

PRrOOF. Arbitrarily fix ¢ and a (f,r)-AIQ, (i,g). Let Ag be as
given by (2) and Up be as given by Construction 1.

Firstly, note that Up is e-DP. It follows from the facts that Ag >
1, is 1-Lipschitz continuous (Lemma 4.3), and SP generalizes DP.

Next, we prove the optimality claim. We prove the claim using
its contrapositive, that is, if there is a mechanism that is “better”
than Upg, then it must not be ¢-DP.

Assume there exits a DP mechanism M such that for every
x, P(M(x) = gi(x)) = P(Ups(x) = gi(x)) and for a database y,
P(M(y) = gi(y)) > P(Unrg(y) = gi(y)) (i.e. Upg is not pareto op-
timal); fix this y. Note that g;(-) = g(i, -). We will prove that M
cannot be ¢-DP.

Let z be such that dg (y, z) = Ag (i, y) and g;(z) # gi(y). Let w be
a neighbor of z such that dg(y, w) = Ag(i,y) — 1 and b = g;(w) =
gi(y). Now, assume that M ¢-DP. It follows that

P(M(w) # b) <ef9ew.» P(M(y) # b)
=etBebVDp(M(y) £ b) < 1/(1+¢°)  (6)

The First inequality is due to the DP constrains on M. The second
inequality is due to the fact that M is strictly better than Upg on
y and the fact that P(Up;(v) # gi(y)) = e~eBa(ty)=1) /(1 4 ¢f).
Now if M is ¢-DP, then P(M(z) # 1 —b) > e *P(M(w) # 1 —
b), which together with (6) gives us P(M(z) # gi(z)) > 1/(1 +
e?); alternatively, P(M(z) = gi(z)) < €/(1 + €%). Since we know
that M is “better” than Up,, and in particular, P(M(z) = gi(z)) >
P(Upg (2) = gi(2)) = /(1 + %), the above implies that M is not
&-DP. Thus, we conclude the Uy, is pareto optimal. O

A.7 PRroor or LEmMmA 4.5

LEMMA A.1. Arbitrarily fix a graph, G, that contains all the nodes
and a subset of edges of the neighborhood graph, G, and an X C X. If
dg is the shortest path length metric over G, then for every x,y € D,

Z(xj = yj)

jeX

dg(x,y) 2 dg(x,y) = llx —yll1 = Z lxj —yjl =
jeX

Proor. Let G be the neighborhood graph over D. Arbitrarily fix
G, dg, and X as specified above (in the lemma). Since G contains all
the nodes and a subset of edges of G, dg (x, y) > dg(x,y), where dg
is the shortest path length metric over C. Furthermore, it is a simple
observation that dg is the same as {1-metric over the databases
(which follows from a simple induction argument). Hence, it follows
that dg(x,y) > ||lx —yll1. The second inequality holds since X € X
and [|x = ylli = Xjex |xj — yjl. The Third inequality follows from
the reverse triangle inequality. This completes the proof. O



PROOF OF LEMMA 4.5. Arbitrarily fix f,k > 1,and r > 0. Let g
be the (f, r)-anomaly identification function and A be as given by
(3). Let Ag and Ag, be the mdd-functions for g, where G is neigh-
borhood graph and Gg is the k-sensitive neighborhood graph for
(B, r)-anomaly. Next, arbitrarily fix a record i and a node (database)
x in Gg.

We first show that Agg(i,x) > Ax(i,x) > 1. Below, we show
that Ag (i, x) > Ag(i, x).

dgs (x,y)

dg (x,y) = Ag (i, x)

Bs) = gt
> min

yeD:g(i,x)#g(i,y)

The first inequality follows from the fact that Gg contains all the

nodes and a subset of edges of G. Hence, from Lemma 4.3, we

conclude that if By (i,r) > f + 1 — k then Ag (i, x) > Ax(i,x) > 1.

We now let Bx(i,r) < f+1—-kandb = g(i,x). Here, it is
clear that Ax(i,x) > 1. Fix any y in Ggs such that g(i,y) # b and
DG (i,%) = dgg (x,y).

Consider the case of x; = 0. Here, it must hold that y; > 1
and By (i,r) < B. Now, on any of the shortest path from x to y,
we will first reach a database z, where i is k-sensitive, and hence,
B.(i,r) = f+ 1 -k (from Lemma A.2). Thus, for this z, we get

Agg (i, x) =dgs (x,2) + dgs (2, )
>dg, (%, 2)
2(Bz(i,r) = Bx(i,r))
> +1—k—Bx(i,r) = A (i, x).

The second inequality follows from Lemma A.1, and the third one
follows because B, (i,r) > f+1—k.

In the case, when x; > 1, it must hold that either y; = 0 or
By(i,r) = B+ 1.1f y; = 0, then on any of the shortest path from x
to y, we will first reach a database z, where i becomes k-sensitive,
ie, B;(i,r) = f+ 11—k (from Lemma A.2). If z is the first such

database, then z; > x;. Thus, we get the following.

dgs (x,y) =dg,(x,2) + dg(2,y)
>(B,(i,r) = Bx(i, 7)) + |zi — y;l
>1+ f—k — By (i,r) + x;. 7)

The first inequality follows from Lemma A.1, and the second one
follows from the fact that B;(i,r) > f+ 1 — k and x; < z;. But if
By(i,r) > f+ 1, then

dGs(x’y) =dG5(x’y) > |By(ivr) _Bx(i’r)l > 1+ﬁ_Bx(ivr)
(8)

From (7) and (8), we get the following, which is sufficient to
establish that Ay is a lower bound on the Ag;.

Ags(i,x) 2 1+ = Bx(i,r) + min(0, x; — k) = A (i, x)

Next, we show that A is 1-Lipschitz continuous. Fix an arbitrary
neighbor, y, of x such that A (i, x) # A (i, y), otherwise, the con-
tinuity condition is trivially satisfied. If both x and y satisfy the
first condition of A, then the continuity condition is satisfied by
Lemma 4.3. So assume that x and y satisfy the second condition
of A. Here, all the cases except for the following, trivially follow
from the fact that ||x — y||; = 1.

(a) Ap(i,x) = f+1-Bx(i,r) and A (i,y) = ﬂ+1—By(i, r)+yi—k

(b) Ak(i,x) = B+1-Bx(i,r)+xi—kand Ax (i,y) = B+1-By(i,r)
If (a) holds then (b) also does by symmetry (i.e., |1 (i, x)—Ar (i, y)| =
Ak (i,y) — Ak (i,x)]) as x and y are picked arbitrarily. (a) holds if
xi—k > 0andy; —k < 0; further, ||x—y||; = 1implies thatx;—k = 0
and -1 < y; —k < 0. When y; — k = 0, the continuity condition is
satisfied as | By (i,7) = By (i, r)| < 1. However, y; —k = —1 is not pos-
sible since ||x — y|l1 = x; — y; = 1 implies that i is k-sensitive with
respect to x or y, which implies that either By (i,7) or By (i, r) is at
least f + 1 — k (from Lemma A.2); this contradicts the assumption
for this case. Hence, it follows that here the continuity condition is
satisfied as well.

Lastly, consider the case, where y and x respectively satisfy
the first and the second condition of A;—this is without loss of
generality due to symmetry. This will be possible if By (i,r) = f—k
and By(i, r) = f — k + 1. Thus, in all the subcases below, x; < y; <
xi + 1.

Consider the subcase of x; = 0. Here, A (i, x) = 1 and y; is either
0or 1.If y; = 0, then we have:

Ak(i,y) = Ag(i,y) = 2fork = 1,and A (i,y) = Ag(i,y) = 1 fork > 1

Butify; =1, A (i,y) = Ag(i,y) = min(y;, k) = 1 as k > 1. Hence,
the continuity condition is satisfied for this subcase, when x; = 0.
Next, let x; > 1; thus under this subcase it follows that

Ak (i, x) =1+ k + min(0, x; — k) = 1 + min(x;, k)

(since x; < y;)

Ak (i y) =Ag (i, y) = min(y;, k)

Clearly, if x; < k, then Ax(i,x) = 1+ x; and x; < Ax(i,y) <
x; + 1; butif x; > k, then A (i,x) = 1+ k and A¢ (i, y) = k since
xi < y; < x; + 1; hence the continuity condition is fulfilled in this
subcase as well.

In all of the above case, |Ar (i, x) — Ak (i,y)| < 1. Since f, k,r, i, x,
and y (neighbor of x) were picker arbitrarily, we conclude that A
is 1-Lipschitz continuous lower bond on the Ag,. This completes
the proof. O

A.8 Proof of Theorem 4.7

Proor. Fix any k > 1, ¢ > 0, a valid ¢/2-differentially private
mechanism, M, an anomaly identification query, (i, g), and a non-
negative 2-Lipschitz continuous lower bound, d, on Agg — Ag,
where A and Ag respectively correspond to the k-sensitive neigh-
borhood graph for the anomaly definition corresponding to g, and
the neighborhood graph. Let Us be the mechanism that Construc-
tion 2 yields. Next, fix arbitrary databases x and y that are neighbors
in Gg.

When §(i,x) = 8(i,y) = 0, P(Us(z) =b) = P(M(z) =b) for
every database z and b in {0, 1}. The privacy constraints in this case,
are trivially satisfied.

Next, consider the case, where §(i,x) > J§(i,y) > 0 — this is
without loss of generality as x and y are picked arbitrarily. Since M
is valid ¢/2-differentially private, we get the following for g(i,x) = b
for some b € {0, 1},

1-P(M(x) # b)e /% <ef (1 -P (M(y) # b)) 9)

Recall that Gg is a subgraph of G and contains a subset of edges
of G, and Ag (i, z) > 1 for every database z. Hence, it follows that
Ags(i,z) = Ag(i,z) = 1, and Agg (i, x) = 1 implies Ag(i,x) = 1.
Thus, from the above it follows that when Ag, (i, x) — Ag (i, x) >



6(i,x) > 0, it must hold that Ag,(i,x) > 2. Since dg4(x,y) = 1
and Ag; (i, x) > 2, we have g(i, x) = g(i, y). So, let b = g(i, x). From
(9), we get the following.
1-P(M(x) # b) e /2 < e (1 -P (M(y) # b))
= 1-¢° <P(M(x) #b) e ?/> =P (M(y) £ b)
since § is 2-Lipschitz continuous, we get
|y POME) )
o5 (8(1,x)-8(i,y))
since LHS is negative, and § > 0, the following holds

sy [P M) £ b)
e 6@y | )7 7)) £
tme=ser (e§<5<i,x)—5<i,y)> P =0 )

P(M(x) #b) _ . (1 _P(M(y) #b)
5ox) 58(1y)
= P (Us(x) = b) < e°P (Us(y) = b)

—P(M(y) # b) e

- 1-

In a similar fashion, by swapping x and y in (9), one can show
that the privacy constraint P (Us(y) = b) < e“P (Us(x) = b) also
holds. Below we show that the other constraints are also satisfied.

P(Us(x) #b) P (M(x) #b)e 190:%) .
P(Us(y) #b) P (M(y) # b)e 190y ~

The above inequality holds because M is ¢/2-DP and ¢ is 2-Lipschitz
continuous.

Since all the privacy constraints hold for arbitrarily picked neigh-
bors and § (which satisfies the conditions specified in the claim), and
a valid ¢/2-differentially private M for an anomaly identification
query, the claim holds in general.

As for the claim of accuracy, it is a direct implication from the
Construction 2. This completes the proof. O

A.9 Composition

Here, we assume that every mechanism has its independent source
of randomness and has the domain D. Further, E(G) for a graph G
denotes the set of edges in G. We make the following very simple
observation.

OBSERVATION 1. For any simple graphs G and G’ over D, two
databases are neighbors in the graph H = (D, E(G) N E(G")) if and
only if they are neighbors in G and G'.

CrLamm 3. If mechanisms My and My are respectively e1-SP for
Gs, and &3-SP for Gs,, then M(x) := (M1(x), M2(x)) for every x is
(e1 + £2)-SP for Gs = (D, E(Gs,) N E(Gs,)).

Proor skeTcH. The claim follows from M; and M, being SP
for &1 and ¢, and Observation 1, which ensures that the privacy
constraints will be met for neighbors in Gg. O

We say, for Y C X, a mechanism M is Y-dependent if and only
if for every r € Range(M) and x and y such that x; = y; for every
i€Y,P(M(x)=r)=PM(y) =r).

Cram 4. For any partition of X = Y1 U Yy, if mechanisms M; and
M; are respectively Y1 -dependent e1-SP for Gs, and Y,-dependent &3-
SP for Gs,, then M(x) := (M1(x), M2(x)) for every x is max(e1, £2)-
SP for Gs = (D, E(Gs,) N E(Gs,)).

Proor skETCH. Firstly, note that M; and M3 being SP for 1 and
&2 along with Observation 1, ensure that the privacy constraints
will be met for neighbors in Gg for some value of ¢. Further, since
every neighbor in Gg differ by one record and mechanisms M; and
M are respectively Y; and Y, dependent (for an arbitrarily fixed
partition), every privacy constraint will hold for either ¢ or ¢;.
From here the claim follows. O

A.9.1 Proor oF CLAIM 5 .

LEMMA A.2. Fix arbitrary values fork > 1, > 1 andr > 0. For
(B, r)-anomaly, for every record i € X and every database x € D,
i is k-sensitive with respect tox &= Bx(i,r) > f+1—k.

ProoF. Arbitrarily fixk,f > 1,r > 0,i € X, and x € D. Further,
fix p to be the normality property corresponding to (f, r)-anomaly.

Firstly, we prove the “if” direction through its contrapositive. So
assume By (i,r) < f + 1 — k. Now, for every database y such that
[Ix = yll1 <k, By(i,r) < B as we can only add up to k records in x.
Thus for each of the above y, p(i, y) = 0, which follows from the
definition of (f, r)-anomaly, and i is not k-sensitive with respect to
x. This completes the proof for “if” direction.

Next, we prove the “only if” direction. Let By (i,r) > f+ 1 — k.
Now, obtain a database y by adding k records that are the same as i
to x. For this y, it holds that ||x — y||; = k and p(i, y) = 0 because
y; = 1and By(i,r) = B + 1 (since k > 1). Hence, we conclude that
i is k-sensitive with respect to x. And this completes the proof as
k, B, r, i, and x were chosen arbitrarily. O

For any i € X and r > 0, we write Y(i,r) to denote the set
{(jeX:d(@i,j) <r}

CrLAIM 5. For any givenn € N and everyt = 1,...,n, arbitrar-
ily fix er,ry > 0, ks, fr > 1, and a mechanism, M; : D — {0,1},
that is € -SP for ks -sensitive neighborhood graph corresponding to
(B¢, rt)-anomaly and is also Y (iz, r;)-dependent. Further, let m be
the maximum number of i;’s that are within any ball of radius
max(ry,...,rp), € = max(ey,...,én), kK = min(ky,.... kp), f =
max(f1,...,Pn), andr = min(ry, ..., ry).

IfM(x) := (M1(x), ..., Mn(x)) foreveryx, then M is me-sensitively
private for k-sensitive neighborhood graph corresponding to (f,r)-
anomaly.

ProoF. Arbitrarily fix the values for all the symbols used in the
claim above as per the specification.

Firstly, we consider the guarantee with respect to the sensi-
tive neighborhood graph. Here it is sufficient to show that the k-
sensitive neighborhood graph, Gg, corresponding to (f, r)-anomaly,
is a subgraph of the k;-sensitive neighborhood graph, Gg, corre-
sponding to (f;, r;)-anomaly for every ¢. Thus we show that, for
any t and two databases x and y, if x and y are neighbors in Gg,
then they are neighbors in Gg. So arbitrarily fix x and y that are
neighbors in Gs and t € [n]. Since x and y are neighbors in Gg,
there exists a record i that k-sensitive with respect to x or y. Let i be
k-sensitive with respect to x—this is without loss of generality since
x and y are picked arbitrarily. Now, from Lemma A.2, we get that
Bx(i,r) = f—k+1.Since f > By and k < ks, Bx(i,r) = fr—ks+1;
this implies that i is k;-sensitive with respect to x (Lemma A.2),
and thus, x and y are neighbors in Gg. Hence, we conclude that Gg

is a subgraph of every Gg.



Next, we prove the bound on the divergence of probabilities to
show that the loss in privacy is at max me. For any i € X, let A;
be such that for every t € [n],t € A; < d(i,it) < r’, where
r’ = max(ry,...,ry). And let m = max;cx |A;|. Arbitrarily fix, the
neighboring databases x and y in Gg and w € {0, 1}". Let i be the
record in which x and y differ. Now it follows that

P(M(x) =w) _ l_[ P(M;(x) = wy) « l_[ P(M;(x) = wy)

P(M(y) =w) teA; P(M;(y) = wr) le[n]\A; P(M;(y) = wy)
- [ BMelo) = we)
= t|;|4i P(Mt(y) - Wl‘) < exp (t;;i Et) < eXp(mg)

Above, the first equality holds because each of the M; has its inde-
pendent source of randomness. The second equality holds because
each M; is Y (iz, r+)-dependent in addition to its randomness and
r+ < r’. The first inequality follows from M; being &;-SP for Gg,
which is a subgraph of Gg. The last inequality follows from the fact
that ¢ > &, and m > |A;|.

Lastly, note that for any W C {0, 1}", it follows that

PME) €W) _ Suew PM@ =w) _ o
P(M(y) e W) = Xyew PM(y) =w) ~
Thus, we conclude that the claim holds. O

A.10 Relation of SP to other definitions

A.10.1 One-sided differential privacy (OSDP) [13]. Tt allows for
mechanisms to be private that can reveal the presence or absence of
a sensitive record in the database. We explain this below. Consider
two neighboring databases x and y (i.e., they differ by one record)
such that x has exactly one sensitive record and y has no sensitive
record, and an ¢-OSDP mechanism M : D — {0, 1} with P(M(x) =
0) = 0 and P(M(y) = 0) = 1 - note this is possible as M only needs
to satisfy P(M(x) € b) < eP(M(y) € b) for b € {0, 1}. Now, if we
pick x or y randomly and reveal the output of M, the output will
reveal which database was used, and hence if the sensitive record
was present or not.

A.10.2  Tailored differential privacy (TDP) [36]. SP is a special case
of TDP. Which becomes clearer once we restate TDP for the un-
bounded case, which we deal with. For &« : X X D — Rxg, a
mechanism is a(-)-TDP if for every two databases, x and y dif-
fering in a record i, and every R C Range(M), P(M(x) € R) <
e”‘("’x)P(M(y) € R). Let for every i and x, a(i,x) = edgg(x,x”)
(x]f = x;j for every j # i and x; — x| = 1). Now, it is immediate that
a mechanism is a(-)-TDP if and only if it is e-SP for Gs. A simi-
lar statement holds true for Blowfish privacy [25], which follows
by considering the sensitive neighborhood graph to be the policy
graph.
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