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ABSTRACT

Identifying anomalies in data is central to the advancement of

science, national security, and finance. However, privacy concerns

restrict our ability to analyze data. Can we lift these restrictions and

accurately identify anomalies without hurting the privacy of those

who contribute their data? We address this question for the most

practically relevant case, where a record is considered anomalous

relative to other records.

We make four contributions. First, we introduce the notion of

sensitive privacy, which conceptualizes what it means to privately

identify anomalies. Sensitive privacy generalizes the important con-

cept of differential privacy and is amenable to analysis. Importantly,

sensitive privacy admits algorithmic constructions that provide

strong and practically meaningful privacy and utility guarantees.

Second, we show that differential privacy is inherently incapable

of accurately and privately identifying anomalies; in this sense, our

generalization is necessary. Third, we provide a general compiler

that takes as input a differentially private mechanism (which has

bad utility for anomaly identification) and transforms it into a sen-

sitively private one. This compiler, which is mostly of theoretical

importance, is shown to output a mechanism whose utility greatly

improves over the utility of the input mechanism. As our fourth

contribution we propose mechanisms for a popular definition of

anomaly ((β , r )-anomaly) that (i) are guaranteed to be sensitively

private, (ii) come with provable utility guarantees, and (iii) are em-

pirically shown to have an overwhelmingly accurate performance

over a range of datasets and evaluation criteria.

CCS CONCEPTS

• Security andprivacy→Privacy-preserving protocols; •Com-

puting methodologies→ Anomaly detection.
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1 INTRODUCTION

At the forefront of today’s research in medicine and natural sci-

ences is the use of data analytics to discover complex patterns from

vast amounts of data [11, 23, 39]. While this approach is incredibly

useful, it raises serious privacy-related ethical and legal concerns

[5, 7, 20, 21] because inferences can be drawn from the analysis

of the person’s data to the person’s identity, causing a privacy

breach [19, 24, 26, 27, 37]. In this work, we focus specifically on the

problem of identifying anomalous records, which has fundamental

applications in many domains and is also crucial for scientific ad-

vancements [1, 3, 30, 40, 42]. For example, to treat cancer, we must

tell if a tumor is malignant; to stop bank fraud, we must flag the

suspicious transactions; and to counter terrorism, we must iden-

tify the individuals exhibiting extreme behavior. Note that in such

settings, it is imperative to accurately identify the anomalies, e.g.,

it is critical to identify the fraudulent transactions. However, in

all these situations, it is still essential to protect the privacy of the

normal (i.e., non-anomalous) records [7, 21] (e.g., customers with a

legitimate transaction or patients with a benign tumor) while not

sacrificing accuracy (e.g., labeling a malignant tumor as benign).

We solve the problem of accurate, private, and algorithmic anom-

aly identification (i.e., labeling a record as anomalous or normal

by an algorithm) with an emphasis on reducing false negative –

labeling an anomaly as normal – rate. The current methods for

protecting privacy work well for doing statistics and other ag-

gregate tasks [17, 18], but they are inherently unable to identify

anomalous records accurately. Furthermore, the modern methods

of anomaly identification label a record as anomalous (or normal)

based on its degree of dissimilarity from the other existing records

[1, 3, 8, 35]. Consequently, the labeling of a record as anomalous is

specific to a dataset, and knowing that a record is anomalous can

leak a significant amount of information about the other records.

This type of privacy leakage is the core obstacle that any privacy-

preserving anomaly identification method must overcome. This

work is the first to develop methods (in a general setting where

anomalies are data-dependent) to accurately identify if a record is

anomalous while simultaneously guaranteeing privacy by making

it statistically impossible to infer if a non-anomalous record was

included in the dataset.

We formalize a notion of privacy appropriate for anomaly detec-

tion and identification and develop general constructions to achieve

this. Note that we assume a trusted curator, who performs the anom-

aly identification. If the data is distributed and the trusted curator

is not available, one can employ secure multiparty computation to

simulate the trusted curator [9], where now the same methodology

as in the previous setting can be used.

Although the privacy definitions and constructions we develop

are not tied to any specific anomaly definition, we instantiate them

for a specific kind of anomaly: (β , r )-anomaly [35], which is a widely

prevalent model for characterizing anomalies and generalizes many

https://doi.org/10.1145/3319535.3363209
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Figure 1: (a) x andy differ by one record, the “ε axis” is for the privacy parameter, the “P (M (x ) , f (x )) axis” is for theminimum

error over all ε-DP mechanisms M on x for a give error on y on the “P (M (y) , f (y)) axis”. The graph depicts the tradeoff

between the errors committed on x and y. (b) this plot is for ε = 1 and otherwise is the same but for different x ’s and y’s.

other definitions of anomalies [3, 22, 34, 35]. These technical instan-

tiations naturally extend to the other well-known variants of this

formalization [1]. Under this anomaly definition, a record (which

lives in a metric space) is considered anomalous if there are at most

β records similar to it, i.e., within distance r . The parameters β and

r are given by domain experts [35] or found through exploratory

analysis by possibly using differentially private methods [17, 18]

(since these parameters can be obtained by minimizing an aggre-

gate statistic, e.g., risk or average error) to protect privacy in this

process.

1.1 Why do we need a new privacy notion?

We consider the trusted curator setting for the privacy. The trusted

curator has access to the database, and it answers the anomaly iden-

tification queries using a mechanism. The privacy of an individual

is protected if the output of an anomaly identification mechanism

is unaffected by the presence or the absence of the individual’s

record in the database (which is the input to the mechanism). This
is the notion of privacy (i.e. protection) of a record that we consider
here; it protects the individual against any risk incurred due to the

presence of its information and was first formalized in the seminal

work of differential privacy [15, 17] (where privacy is quantified by

a parameter ε > 0: the smaller the ε , the higher the privacy) and can
informally be stated as follows: a randomized mechanism that takes

a database as input is ε-differentially private if for any two input

databases differing by one record, the probabilities (correspond-

ing to the two databases) of occurrence of any event are within

a multiplicative factor eε (i.e., are almost the same in all cases).

Unfortunately, simply employing differential privacy does not ad-

dress the need for both privacy and practically meaningful accuracy

guarantees in our case. For example, providing privacy equally to

everyone severely degrades accuracy in identifying anomalies. For

a database, the addition of a record in a region which is sparse in

terms of data points creates an anomaly. Conversely, the removal

of an anomalous record typically removes the anomaly altogether.

Therefore, the accuracy achievable for anomaly identification via

differential privacy is limited as explained below.

Differential privacy for binary functions f : D → {0, 1}, such

as the anomaly identification, comes with inherent limitations that

can be explained through the graph of Figure 1a. Fix any mecha-

nismM that is supposed to compute f , with the property that this

mechanism is differentially private. The mere fact that f is binary

andM is differentially private has the following effect. For any two

databases x and y that differ in one record say that f (x ) = 0 and

f (y) = 1. Now, a simple calculation shows that the differential pri-

vacy constraints create a tradeoff: wheneverM makes a small error

in computing f (x ) then it is forced to err a lot when computing on

its “neighbor” y and vice-versa. Moreover, the higher the privacy

requirements are (i.e. for smaller ε) the stricter this tradeoff is, as

depicted on Figure 1a. Formally, we state this fact as follows.

Claim 1. Fix ε > 0, f : D → {0, 1}, and ε-DP M : D → {0, 1}

arbitrarily. For every x and y, if f (x ) , f (y) and | |x −y | |1 = 1, then
P (M (x ) , f (x )) ≥ 1/(1 + eε ) or P (M (y) , f (y)) ≥ 1/(1 + eε ).

What happens to this inherent tradeoff when x and y differ in

more than one record? As shown on Figure 1b this tradeoff is re-

laxed. We note that for deriving the tradeoff, there was nothing

specific to the ℓ1 metric (used for differential privacy), but instead

we could have used any metric over the space of databases; other

works that considered general metrics are e.g., [25, 33]. Our work

proposes a distance metric which is appropriate for anomaly identi-

fication, in conjunction to an appropriate relaxation of differential

privacy. This way we will lay out a practically meaningful (but also

amenable to analysis) privacy setting.

1.2 What do we want from the new notion?

We want to relax differential privacy since affording protection

for everyone severely degrades the accuracy for anomaly identifi-

cation. One possible relaxation, suitable for the problem at hand,

is providing protection only for a subset of the records. We note

that such a relaxation is backed by privacy legislation, e.g., GDPR

allows for giving up privacy for an illegal activity [21]. Protecting

a prefixed set of records, which is decided independent of the data-

base, works when anomalies are defined independent of the other



records. However, for a data-dependent anomaly definition, such

a notion of privacy fails to protect the normal records. Here the

problem arises due to the fixed nature of the set that is database-

specific. In the case of a data-dependent definition of anomaly, if

we wish to provide privacy guarantee to the normal – call them

sensitive – records that are present in the database, then specifying

the set of sensitive records itself leaks information and can lead to

a privacy breach. Thus, sensitive records must be defined based on

a more fundamental premise to reduces such dependencies. This

notion of sensitive record plays a pivotal role in defining a notion

of privacy, named sensitive privacy, which is appropriate for the

problem identifying anomaly.

We remark that although anomaly identification method provide

binary labeling, they assign scores to represent how outlying a

record is [1, 3]; thus these models (implicitly or explicitly) assign a

records a degree of outlyingness with respect to the other records,

which the following discussion takes into account.

An appropriate notion of privacy in our setting must allow a

privacy mechanism to have the following two important properties.

First, the more outlying (or non-outlying) a record is, the higher

the accuracy the privacy mechanism can achieve for anomaly iden-

tification, which is in contrast to DP (Figure 2c). Second, all the

sensitive records should have DP like privacy guarantee for the

same value of privacy parameter.

The mechanisms that are private under sensitive privacy achieve

both the properties (see Figure 2, which gives the indicative experi-

mental results on the example data; see Section A.1 for the details

on the experiment and the values of the parameters). Furthermore,

it has an additional property: in a typical setting, the anomalies do

not lose privacy altogether; instead the more outlying a record is

the lesser privacy it has (Figure 2d).

1.3 How do we define the new privacy notion?

To define privacy, we need a metric space over the databases since

a private mechanism needs to statistically blur the distinction be-

tween databases that are close in the metric space.While differential

privacy uses the | | · | |1 −metric , we utilize a different metric over

databases, which can be defined using the notion of sensitive record.

Informally, we say a record is sensitive with respect to a database if

it is normal or becomes normal under a small change—we formalize

this in Section 3. We argue that this notion of sensitive record is

quite natural, and it is inspired from the existing anomaly detection

literature [1, 3]. Since, by definition, an anomalous record signifi-

cantly diverges from other records in the database [1, 3], a small

change in the database should not affect the label of an anomalous

record. Given the definition of sensitive record, a graph over the

databases is defined by adding an edge between two databases if

and only if they differ in a sensitive record. The metric over the

databases is now given by the shortest path length between the

databases in this graph. This metric space has the property that

databases differing by a sensitive record are closer compared to

the databases differing in a non-sensitive record. We use the pro-

posed metric space to define sensitive privacy, which enables us to

fine-tune the tradeoff between accuracy and privacy.

Figure 2: (b), (c) is for the same data, and (d), (e) is for the

same data. (a) gives the density plot of the distribution of the

example data. z1 and z2 axes give the coordinate of a point

(record). (b) and (c) resp. show the accuracy (on vertical axis)

for anomaly identification (AId) via sensitively private (SP)

and DPmechanisms for the data. The plots give the interpo-

lated results to clarify the relationship of outlyingness and

accuracy. (d) and (e) give the privacy (on vertical axis) for

each record in the data for private AId. All the green (nor-

mal) points in (d) are at the same level as all the points in (e).

2 PRELIMINARIES AND NOTATION

Database: We consider a database as amultiset of elements from

a set X, which is the set of possible values of records. In a database,

we assume each record is associated with a distinct individual. We

represent a database x as a histogram inD = {y ∈ NX : | |y | |1 < ∞},
where D is the set of all possible database, N = {0, 1, 2, . . . }, and
xi is the number of records in x that are identical to i .

Definition 2.1 (differential privacy [15, 17]). For ε > 0, a mech-

anism M with domain D is ε-differentially private if for every

x ,y ∈ D such that | |x − y | |1 ≤ 1, and every R ⊆ Ranдe (M ),

P (M (x ) ∈ R) ≤ eεP (M (y) ∈ R) .

We implicitly assume that the R’s are chosen such that the events
“M (x ) ∈ R” are measurable.

Anomalies: For any database x , record i ∈ X, r ≥ 0, and a

distance function d : X × X → R≥0, Bx (i, r ) =
∑

j ∈X:d (i, j )≤r
x j , and

define (β, r )-anomaly as follows.

Definition 2.2 ((β, r )-anomaly [35]). For a given database x and

record i , we say i is a (β , r )-anomaly in the database x if i is present
in x , i.e. xi > 0, and there are at most β records in x that are within

distance r from i , i.e. Bx (i, r ) ≤ β .



(a) (b)

(c)

Figure 3: (a)-(c), the plot is for the same data. The two axes

give the coordinate of a point (record). The color gives the

level of privacy, i.e. the value e−ε , for 0.25-SP AIQ for every

record (the datawas generated using generated using the dis-

tribution given in Figure 2). (a), k = 1. (b), k = 7. (c), k = 14.

Whenever we refer to a (β , r )-anomaly, we assume there is an

arbitrary distance function d over X × X.

Anomaly identification: Let us now introduce the important

and related notion of anomaly identification function, д : X × D →

{0, 1}, such that for a given anomaly definition, every record i ∈
X and database x ∈ D, д(i,x ) = 1 if and only if i is present

in x as an anomalous record (note that no change is made to x).
This formulation is extensible to the case where the database over

which anomaly identification is performed is considered to include

the record for which anomaly identification is desired. Here, the

anomaly identification for a record i over a data x can be computed

over the database that consists of all the records in x as well as the

record i 1.

Private anomaly identification query (AIQ):. Here, all the
private mechanisms we consider have domain D. Thus, we will

consider the anomaly identification query to be for a fixed record.

We will specify this by the pair (i,д), where i is a record and д an

anomaly identification function. Now a private anomaly identifi-

cation mechanism, M : D → {0, 1}, for a fixed AIQ, (i,д), can be

represented by its distribution, where for everyx , P (M (x ) = д(i,x ))
is the probability theM output correctly, and P (M (x ) , д(i,x )) is
the probability thatM errs on x .

3 SENSITIVE PRIVACY

Our notion of sensitive privacy requires privacy protection of every

record that may be normal under a small change in the database.

1
Note that alternatively one could have defined д without predicating on the existence

of i in x . By dropping the predicate on the existence of i , we in effect blur the distinction
between the notion of a void spot (that in a different database could have been occupied

by a record) in the database and the notion of an anomaly.

We use the notion of normality property p to identify the normal

records that exist in the database. Formally, for a given definition of

anomaly, a normality property, p : X × D → {0, 1}, is such that for

every record i and database x , p (i,x ) = 1 if and only if i is present
in x as a normal record. Note that the normality property is not the

negation of anomaly identification function because for the absent

records p = 0 (same as those which do not satisfy the property). We

formalize the notion of small change in the database as the addition

or removal of k records from the database. We consider this change

to be typical and want to protect the privacy of every record that

may become normal under this small change in the database.

We now formalize the key notion of sensitive record. For a fixed
normality property, all the records whose privacy must be protected

are termed as sensitive records.

Definition 3.1 (sensitive record). For k ≥ 1 and a normality prop-

erty p, we say a record i is k-sensitive with respect to a database x
if, for a database y, | |x − y | |1 ≤ k and p (i,y) = 1.

Next, we give a couple of definitions of the graphs we consider

here. A neighborhood graph, G = (D,E), is a simple graph such

that for every x and y in D, (x ,y) ∈ E ⇐⇒ ||x − y | |1 = 1. One

of the important notions in this work is k-sensitive neighborhood
graph, GS = (D,E ′), for k ≥ 1 and a normality property, which

is a subgraph of the neighborhood graph, G = (D,E), such that

for every (x ,y) ∈ E, (x ,y) ∈ E ′ ⇐⇒ for some i ∈ X, |xi −
yi | = 1 and i is k-sensitive with respect to x or y. Further, the two
databases connected by an edge in a (sensitive) neighborhood graph

are called neighbors. With this, we can state the notion of sensitive

privacy. Note that the k-sensitive neighborhood graph is tied to the

normality property, and hence, the anomaly definition.

Definition 3.2 (sensitive privacy). For ε > 0, k ≥ 1, and normality

property, a mechanismM with domain D is (ε,k )-sensitively pri-
vate if for every two neighboring databases x and y in k-sensitive
neighborhood graph, and every R ⊆ Ranдe (M ),

P (M (x ) ∈ R) ≤eεP (M (y) ∈ R)

We omit k when it is clear from the context. The above condition

necessitates that for every two neighbors, any test (i.e., event) one

may be concerned about, should occur with “almost the same prob-

ability”, that is, the presence or the absence of a sensitive record

should not affect the likelihood of occurrence of any event. Here,

“almost the same probability” means that the above probabilities

are within a multiplicative factor eε . The guarantees provided by

sensitive privacy are similar to that of differential privacy. Sensitive

privacy guarantees that given the output of the private mecha-

nism, an adversary cannot infer the presence or the absence of

a sensitive record. Thus for neighboring databases in a sensitive

neighborhood graph (GS ), the guarantee is exactly the same as

in differential privacy. If x and y differ by one record, which is

not sensitive, then they are not neighbors in GS , and the guar-

antee provided by sensitive privacy is weaker
2
than differential

privacy, nevertheless, has the same form. So, intuitively, if we only

consider the databases, where all the records are sensitive, then

differential privacy and sensitive privacy provide exactly the same

2
“Weaker” means that every mechanism which is ε -DP is also ε -SP, but in general not

the other way around.



guarantee. In general, every (ε,k )-SP mechanismM forGS satisfies

P (M (x ) ∈ R) ≤ P (M (y) ∈ R)eεdGS (x,y ) for every x ,y and R, where
dGS is the shortest path length metric over GS .

Similar to differential privacy, ε is the privacy parameter: the

lower its value, the higher the privacy guarantee. The parameter k
,which is associated with the sensitive neighborhood graph, pro-

vides a way to quantify what is deemed as a small change in the

database, which varies from field to field, but nevertheless in many

common cases can be quantified over an appropriate metric space.
3
.

When we increase the value of k , we move the boundary between

what is considered sensitive and what is non-sensitive (Figure 3,

where the plots are similar to the ones given in Figure 2d for the

same parameter values but for varying k): higher the value of k ,
the more records are considered sensitive, and therefore, must be

protected. This is due to the fact that, for any k ≥ 1, if a record is

k-sensitive with respect to a database x , it is also (k + 1)-sensitive
with respect to x . For example, with respect to a database x , a 2-
sensitive record, may not be 1-sensitive, but a 1-sensitive record

will also be 2-sensitive.

3.1 Composition

Our formalization of sensitive privacy enjoys the important proper-

ties of composition and post-processing [18], which a good privacy

definition should have [32]. Hence, we can quantify how much

privacy may be lost (in terms of the value of ε) if one asks mul-

tiple queries or post-processes the result of a private mechanism.

Here, we recall that sensitive privacy is defined with respect to the

k-sensitive neighborhood graph for the privacy parameter ε . Thus,
the privacy composes with respect to both, the privacy parameter

(i.e. ε) and the sensitive neighborhood graph.

Sequential composition provides the privacy guarantee over mul-

tiple queries over the same database, where the same record(s) in

the database may be used to answer more than one query. Consider

twomechanismsM1 : D → R, which is ε1-sensitively private fork1-
sensitive neighborhood graphGS1 = (D,E1), andM2 : D×R → R′,
which is ε2-sensitively private for k2-sensitive neighborhood graph
GS2 = (D,E2), with independent sources of randomness. Recall

that for a private mechanisms for AIQ, (i,д), is fixed; thusM1 and

M2 may correspond to different records and anomaly identification

function. Now, M2 (x ,M1 (x )) (for every database x) is (ε1 + ε2)-
sensitively private forGS = (D,E1∩E2) (Claim 3). One application

of this is that for a fixed GS , even performing multiple queries in-

teractively will lead to at most a linear loss (in terms of ε) in privacy

in the number of queries—in an interactive query over a database

x , one firstly gets the answer of M1, i.e., M1 (x ), and based on the

answer, one selectsM2 and gets its answer. Furthermore, for a fixed

normality property, if k1 ≤ k2 then GS1 is a subgraph of GS2 , then

M2 is (ε1 + ε2)-sensitively private for GS1 .

Parallel composition deals with multiple queries, each of which

only uses non-overlapping partition of the database. LetX = Y1∪Y2
such that Y1 ∩ Y2 = ∅. Now, consider M1 and M2, each with do-

main D, that are respectively ε1-sensitively private for GS1 and ε2-
sensitively private forGS2 , whereGS1 is a subgraph ofGS2 . Further,

3
The metric space we are using for anomaly identification has a rather complicated

structure, but it is induced by formalizing our intuition for sensitive records.

M1 andM2 only depend on their randomness (each with its indepen-

dent source) and records in Y1 and Y2 respectively. In this setting, a

mechanism M (x ) = (M1 (x ),M2 (x )) is max(ε1, ε2)-sensitively pri-

vate for GS1 , or in general case for sensitive neighborhood graph

(D,E1 ∩ E2) (Claim 4), where E1 and E2 are the sets of edges for
GS1 and GS2 respectively.

We also remark that privacy is maintained under post-processing.

Example: Consider composition for sensitive privacy for the

case of multiple (β , r )-AIQs. Let us say we answer anomaly iden-

tification queries for records i1, i2, . . . , in respectively for (β1, r1),
(β2, r2), . . . ,(βn , rn ) anomalies over the database x , while providing
sensitive privacy. Let the mechanism for answering (βt , rt )-AIQ
for it be εt -SP for kt -sensitive neighborhood graph corresponding

to (βt , rt )-anomaly, and assume it depends on the partition of the

database that contains the records within distance rt of it (because
it suffices to compute (βt , rt )-AIQ) and its independent source of

randomness. Let k = min(k1, . . . ,kn ), β = max(β1, . . . , βn ), and
r = min(r1, . . . , rn ). In this case, the sensitive privacy guarantee for
answering all of the queries ismε for k-sensitive neighborhood graph
corresponding to (β , r )-anomaly, wherem is the maximum number

of it ’s that are within any ball of radius max(r1, . . . , rn ) (Claim 5).

Thus, from the above, it follows that if we fix β , r and k and allow

a querier to askm many (β ′, r )-AIQ’s (each may have a different

value for β ′) such that β ′ ≤ β , then we can answer all of the queries

with sensitive privacymε in the worst case for k-sensitive neighbor
for to (β, r )-anomaly. The same is true if the queries are for (β , r ′)
with r ′ ≥ r . Furthermore, for fixed β , r and k , answering (β , r )-AIQ
for i and i ′ such that d (i, i ′) > 2r still maintains (ε,k )-SP. One may

employ this to query adaptively to carry out the analysis while

providing sensitive privacy guarantees over analysis as a whole.

4 PRIVACY MECHANISM CONSTRUCTIONS

In this section we will show how to construct a private mechanisms

for (β , r )-anomaly identification. Specifically, (i) we will give an

SP mechanism that errs with exponentially small probability on

most of the typical inputs (Theorem 4.6), (ii) we will provide a

DP mechanism construction for (β , r )-AIQ, which we will prove is

optimal (Theorem 4.4), (iii) we will present a compiler construction

that can compile a “bad” DP mechanism for AIQ to a “good” SP

mechanism (Theorem 4.7) – here good and bad are indicative of

utility. We will use these mechanism to evaluate the performance

of our method over real world and synthetic datasets.

Recall that a privacy mechanism, M : D → {0, 1}, for a fixed

AIQ, (i,д), will output the labels of i for the given database, where

д is an anomaly identification function and i is a record. The

sensitive privacy requires that the shorter the distance between

any two databases, x and y, in the sensitive neighborhood graph

(GS ), the closer the probabilities of any output (R) of the mech-

anism M corresponding to the two databases should be, that is,

e−ε dGS (x,y ) ≤ P(M (x ) = R)/P(M (y) = R) ≤ eε dGS (x,y ) . Thus,
for an x , the greater is the distance to the closest y such that

д(i,x ) , д(i,y), the higher accuracy a private mechanism can

achieve on the input x for answering д(i,x ). We capture this metric-

based property by the minimum discrepant distance (mdd) function.



Figure 4: Sensitive neighborhood graph. A simple example of a 1-sensitive neighborhood graph, GS , with X = {1, 2, 3, 4, 5}, ℓ1-

metric over X × X, and (β = 3, r = 1)-anomaly. Note that GS is an undirected graph; arrowheads indicates the record is added

at the end node; the color of the edge corresponds (as per the given color code) to the value of the record added. Further, each

database x is represented as a 5-tuple with xi for i ∈ X representing the number of records in x that have value i.

Fix an anomaly identification functionд. For a given sensitive neigh-
borhood graph GS , ∆GS is mdd-function, if for every i and x ,

∆GS (i,x ) = min

y∈D:д (i,y ),д (i,x )
dGS (x ,y) (1)

A simple and efficient mechanism for anomaly identification that

is both accurate and sensitively private can be given if д and the

∆GS (the corresponding mdd-function) can be computed efficiently.

However, computing the mdd-function efficiently for an arbitrary

anomaly definition is a non-trivial task. This is because the metric,

dGS , which gives rise to the metric-based property captured by

the mdd-function, is induced by (a) the definition of anomaly (e.g.

specific values of β and r ) and (b) the metric over the records. Thus,

making it exceedingly difficult to analyze it in general.

We use the example given in Figure 4 to explain the above

mentioned relationships of mdd-function. This figure depicts a

subgraph of 1-sensitive neighborhood graph for (β = 3, r = 1)-
anomaly. One can appreciate the conceptual difficulty in calcu-

lating mdd-function, ∆GS (for this setting) by for example think-

ing the value of ∆GS (5, (3, 0, 0, 0, 1)) (and recall that this is just

a 1-sensitive neighborhood graph). Next, note that for a given

database x and a record i , the shorter is the distance of the clos-
est sensitive record from i , the smaller the value of ∆GS (i,x ), e.g.
∆GS (5, (3, 0, 0, 0, 1)) > ∆GS (5, (3, 2, 1, 0, 1)). Furthermore, the pres-

ence of non-sensitive records can also influence the value of the

mdd-function, e.g. ∆GS (5, (3, 0, 0, 0, 1)) > ∆GS (5, (3, 0, 1, 0, 1)) al-
though the closest sensitive record to 5 is the same in both the

databases. In addition, the values of β and r also affect the value of

mdd-function, and in most realistic settings, the size of X is large,

and the sensitive neighborhood graph is quite complex.

Below, we provide our constructions that uses a lower bound

on the mdd-function to give sensitively private mechanism, which

does not depend upon any particular definition of anomaly. Thus it

can be used to give private mechanisms for AIQ’s as long as one is

able to compute the lower bound.

4.1 Construction: SP-mechanism for AIQ by

lower bounding mdd-function

Here, we show how to construct an SP mechanism for identifying

anomalies by using a lower bound, λ, for the mdd-function. Our

construction (Construction 1) will be parameterized by λ, which
is associated with a sensitive neighborhood graph. Since the sen-

sitive neighborhood graph is tied to an anomaly definition, it will

become concrete once we give the definition of anomaly (e.g., see

Section 4.1.1 and Section 4.1.2).

For any fixed AIQ, (i,д), and given λ, Construction 1 provably

gives an SP mechanism as long as λ fulfills the following two prop-

erties: (1) for every i and x , λ(i,x ) ≥ 1 and (2) λ is 1-Lipschitz

continuous lower bound on the mdd-function (Theorem 4.1).

For a sensitive neighborhood graph, GS , we say a function f :

X × D → R is α-Lipschitz continuous if for every i ∈ X and

neighboring databases x and y in GS , | f (i,x ) − f (i,y) | ≤ α .
We remark that although at first it appears that the Lipschitz

continuity condition is some side technicality, in fact bounding its

value constitute the main part of our argument for privacy of our



mechanisms. Thus giving an SP mechanism for (i,д) via Construc-
tion 1 reduces to giving a Lipschitz continuous lower bound for the

mdd-function corresponding to д.

Construction 1. Uλ
(1) Input x ∈ D.
(2) Set t = e−ε (λ (i,x )−1)/(1 + eε ).
(3) Sample b from {0, 1} such that P (b , д(i,x )) = t .
(4) Return b.

Note that the above is a family of constructions parameterized

by λ (as mentioned above), i.e., one construction, Uλ , for each λ.
This construction is very efficiently realizable as long as we can effi-

ciently compute д and λ. Furthermore, the error of the mechanism,

yielded by the construction, for any input is exponentially small in

λ (Claim 2, which immediately follows from the construction).

Claim 2. For given ε , (i,д), and λ,Uλ (Construction 1) is such that
P (U (x ) , д(i,x )) = e−ε (λ (i,x )−1)/(1 + eε ) for every x .

Theorem 4.1 (Uλ is SP). For any given ε , AIQ, and a 1-Lipschitz
continuous lower bound λ on the corresponding mdd-function for
k-sensitive neighborhood graph, GS , such that λ ≥ 1, Construction 1
yields an (ε,k )-sensitively private mechanism.

In order to show that the theorem holds, it suffices to verify

that for every i and every two neighboring x and y in GS , the

privacy constraints hold. For any AIQ, (i,д), this is immediate when

д(i,x ) = д(i,y) because λ is 1-Lipschitz continuous. When д(i,x ) ,
д(i,y), λ(i,x ) = λ(i,y) = 1 because ∆GS (i,x ) = ∆GS (i,y) = 1

and λ ≥ 1. Thus, the constraints are satisfied in this case as well.

The complete proof for Theorem 4.1 is given in Appendix A.4.

Additionally, a simple observation on the proof of Theorem 4.1,

shows that if the given λ is α-Lipschitz continuous with α ≥ 1, then
Construction 1 yields an (ε · α )-sensitively private mechanism.

In the following two sections, we instantiate Construction 1 to

give differentially private and sensitively private mechanisms for

performing (β, r )-anomaly identification query. We will use these

mechanisms in our empirical evaluation over real world datasets.

4.1.1 Optimal DP-mechanism for (β , r )-AIQ. Here, we show

how to use Construction 1 to give an optimal differentially private

mechanism for (β , r )-AIQ. Note that we will use this mechanism in

experimental evaluation (Section 5) and compare its performance

with our SP mechanism (which we will present shortly). We begin

by restating the definition of DP in terms of the neighborhood graph.

This restatement will immediately establish that SP generalizes DP,

a fact we will use to build DP mechanism.

Definition 4.2 (DP restated with neighborhood graph). For ε > 0,

a mechanism, M , with domain D, is ε-differentially private if for

every two neighboring databases, x and y, in the neighborhood

graph, and every R ⊆ Ranдe (M ),

P (M (x ) ∈ R) ≤ eεP (M (y) ∈ R) .

From Definition 3.2 (of sensitive privacy) and Definition 4.2, it is

clear that differential privacy is a special case of sensitive privacy,

when the k-sensitive neighborhood graphs, GS , is the same as

neighborhood graph,G, i.e.,GS = G. Thus, forGS = G, a mechanism
is ε-differentially private if and only if it is ε-sensitively private. This

observation is sufficient to give a differentially private mechanism

for AIQ by using Construction 1.

We use λ = ∆G in Construction 1 to give the DP mechanism for

(β , r )-AIQ, where ∆G (mdd-function) for an arbitrary β , r , i and x
is given below. This will yield a DP mechanism as long as the given

∆G for (β , r )-AIQ is 1-Lipschitz continuous, a fact that immediately

follows from the above observation and Theorem 4.1. We claim

that for any given β and r , ∆G (given by (2)) is mdd-function for

the (β , r )-AIQ and is 1-Lipschitz continuous (Lemma 4.3).

∆G (i,x ) =




1 xi = 0 ∧ Bx (i, r ) < β
2 + Bx (i, r ) − β xi = 0 ∧ Bx (i, r ) ≥ β
min (xi , β + 1 − Bx (i, r )) xi > 0 ∧ Bx (i, r ) ≤ β
Bx (i, r ) − β xi > 0 ∧ Bx (i, r ) > β

(2)

Lemma 4.3. For any fixed (β , r )-AIQ, (i,д), the ∆G given by (2) is
mdd-function for д and is 1-Lipschitz continuous.

The proof of Lemma 4.3 can be found in Appendix A.5.

We claim that for any fixed (β , r )-AIQ, (i,д),U∆G (given by our

construction) is differentially private and errs minimum for all the

inputs (Theorem 4.4), namely, it is pareto optimal. We say U∆G is

pareto optimal ε-DP mechanism if (a) it is ε-DP and (b) for every

ε-DP mechanism M : D → {0, 1} and every database x ∈ D,

P (U∆G (x ) = д(i,x )) ≥ P (M (x ) = д(i,x )). Particularly, this implies

that of all the DP mechanisms yielded by Construction 1, each

corresponding to a different λ, the “best” mechanism is for λ = ∆G.

Theorem 4.4 (U∆G is optimal and DP). For any fixed (β , r )-
AIQ,U∆G (Construction 1) is pareto optimal ε-differentially private
mechanism, where ∆G is given by (2).

4.1.2 SP-mechanism for (β, r )-AIQ. We employ Construction 1

to give a (ε,k )-sensitively private mechanism for (β, r )-AIQ. We

provide λk below, which is 1-Lipschitz continuous lower bound

on the mdd-function for the k-sensitive neighborhood graph for

(β , r )-anomaly (Lemma 4.5). For the λk , Construction 1 yields Uλk
that is (ε,k )-SP mechanism, and for non-sensitive recordsUλk can

have exponentially small error in β (Theorem 4.6).

λk (i,x ) =




∆G (i,x ) Bx (i, r ) ≥ β + 1 − k

β + 1 − Bx (i, r )
+min(0,xi − k )

Bx (i, r ) < β + 1 − k
(3)

Lemma 4.5. Arbitrarily fix k, β ≥ 1 and r ≥ 0. Let д be (β , r )-
anomaly identification function and ∆GS be the mdd-function for д,
where GS is the k-sensitive neighborhood graph for (β, r )-anomaly.
The λk given by (3) is 1-Lipschitz continuous lower bound on ∆GS .

The proof of Lemma 4.5 is given in Appendix A.7.

It is clear form the definition of λk (given by 3) that when a

record, i , is k-sensitive with respect to x , λk (i,x ) = ∆G (i,x ), which
implies that there is no gain in utility (i.e. accuracy) compared to the

optimal DPmechanism (in Section 4.1.1). However, when a record is

not sensitive, λ(i,x ) > ∆G (i,x ), our SP mechanism achieves much

higher utility compared to the optimal DP mechanism, which is

especially true for strong (β, r )-anomalies (i.e. the records that lie

in a very sparse region).



Theorem 4.6 (accuracy and privacy of Uλk ). Fix any (β , r )-
AIQ, (i,д). The mechanism, Uλk (Construction 1 for λk above) is
(ε,k )-SP such that for every i and x , if i not sensitive for x , then

P (Uλk (x ) , д(i,x )) ≤ e−ε |β+1−k−Bx (i,r ) | .

The privacy claim follows from Lemma 4.5 and Theorem 4.1,

while the accuracy claim is an immediate implication from Con-

struction 1 based on the definitions of ∆G and λk – note that

Bx (i, r ) < β + 1 − k implies i is not sensitive for x (Lemma A.2).

We give an example to show thatUλk achieves high accuracy in

typical settings. Fix k ≤ β/10. Now for any record i in a database x ,
satisfying Bx (i, r ) ≤ β/2 is an outlier for which Uλk will err with
probability less that e−2εβ/5.

4.2 Compiler for SP-mechanism for AIQ

In this section, we present a construction compiler, which compiles

a differentially private mechanism for an anomaly identification

query into a sensitively private one. This SP mechanism can out-

perform the differentially private mechanism. Furthermore, our

compiler is not specific to any particular definition of anomaly or

any specific DP mechanism. The differentially private mechanism,

which the compiler takes, is given in terms of its distribution over

the outputs for every input. The compiled SP mechanism compar-

atively has much better accuracy for the non-sensitive records;

however, for the sensitive records, the SP and the input DP mecha-

nism err by the same amount.

It is noteworthy that for many problems, we already know the

distributions given by differentially private mechanisms [15, 17, 18].

Thus, our construction can be employed using these mechanism as

long as the distributions given by the differentially private mecha-

nism are not too “wild”, for example, the probability of the wrong

answer for any input is not too high (we formalize this below),

which is typically true.

The compiler construction is parameterized by δ . This δ must be

a non-negative lower bound on ∆GS − ∆G that is also 2-Lipschitz

continuous (∆GS and ∆G are the mdd-functions for an arbitrarily

fixed д, andGS is the k-sensitive neighborhood graph for anomaly

definition for д). The non-negativity constraint is a side techni-

cality; however, bounded divergence (i.e., the Lipschitz continuity

constraint) and the lower bound constraint play a pivotal role in

arguing bout the privacy of the compiled mechanism. Given below

is our construction, and it will be useful when obtaining δ is easier

than λ, and we already know the distributions of a DP mechanism

for the problem.

Construction 2. Uδ
(1) Input x ∈ D.
(2) Set t = P (M (x ) , д(i,x )) /e

ε
4
δ (i,x ) .

(3) Sample b from {0, 1} such that P (b , д(i,x )) = t .
(4) Return b.

The differentially private mechanism (in terms of its distribu-

tions) that can be transformed (with provable guarantees) through

our compiler is termed as a valid mechanism. For ε > 0 and any

fixed AIQ, (i,д), we say an ε-DP mechanism, M : D → {0, 1}, is

valid if for every two neighbors x and y in the neighborhood graph

with д(i,x ) = д(i,y) = b for some b ∈ {0, 1}, the following holds

1 − P (M (x ) , b) e−ε ≤ e2ε (1 − P (M (y) , b)) .

Note that any ε-differentially private mechanism,M , for a fixed

AIQ, (i,д), that satisfies P (M (x ) , д(i,x )) ≤ e2ε/(1 + e2ε ) for ev-
ery x is valid – this is shown below for ε > 0 and two arbitrary

neighbors x and y such that b = д(i,x ) = д(i,y); hence the notion
of valid differentially private mechanism is well defined.

P (M (y) , b) ≤
e2ε

e2ε + 1
=⇒

P (M (y) , b) e4ε − P (M (y) , b) ≤e2ε (e2ε − 1)

sinceM is ε-DP, it follows from the above

P (M (y) , b) e4ε − P (M (x ) , b) eε ≤e2ε (e2ε − 1) =⇒

1 − P (M (x ) , b) e−ε ≤e2ε (1 − P (M (y) , b))

We claim that for a given valid differentially private mechanism,

M , for a fixed AIQ, (i,д), and non-negative 2-Lipschitz continuous

lower bound δ on ∆GS − ∆G, Construction 2 complies M into a

sensitively private mechanism, Uδ (Theorem 4.7). We stress that

for the compiled SP mechanism, the probability of error can be

exponentially smaller compared to the input DP mechanism. which

is especially true for the non-sensitive records. This leads to an

improvement in accuracy. Clearly, as the input mechanism, M ,

to the compiler becomes better (i.e., has lower error) so does the

compiled sensitively private mechanism,Uδ , since the error ofUδ ,
is never more than that ofM .

Theorem 4.7. For k ≥ 1 and a given valid ε/2-DP mechanism,
M , for any AIQ, (i,д), and non-negative 2-Lipschitz continuous lower
bound, δ , on ∆GS − ∆G, Construction 2 yields an ε-SP mechanism,
Uδ , for k-sensitive neighborhood graph corresponding to the anomaly
definition for д such that

P (Uδ (x ) , д(i,x )) = P (M (x ) , д(i,x )) e−
ε
4
δ (i,x ) .

To confirm the above claim, we show that the mechanism,Uδ ,
given by the construction above indeed satisfies the privacy con-

straints imposed by the sensitive privacy definition for every two

neighboring databases in k-sensitive neighborhood graph. We can

accomplish this by showing that the privacy constraints are satisfied

by any two arbitrarily picked neighbors, x and y, for an arbitrarily

picked valid ε/2-differentially private mechanism,M , for an anom-

aly identification query, (i,д) and a δ as specified above. We can

divide the argument into two cases, and confirm in each case that

the privacy constraints are satisfied. Case 1: δ (i,x ) = δ (i,y) = 0,

which follows due toM being differentially private; because ifM
is ε/2-differentially private then it is also ε-differentially private.

Case 2: δ (i,x ) > δ (i,y) ≥ 0 — this is without loss of generality since

x and y are picked arbitrarily. This case holds because of the fol-

lowing:M is valid ε/2-differentially private, δ is non-negative and

2-Lipschitz continuous, д(i,x ) = д(i,y) (because for neighboring
x and y, ∆GS (i,x ) − ∆G (i,x ) ≥ δ (i,x ) > 0 implies ∆GS (i,x ) ≥ 2).

We give the complete proof of Theorem 4.7 in Appendix A.8.

We highlight the effectiveness of the compiler by instantiating it

for δ (i,x ) = λ1 (i,x ) − ∆G (i,x ) for every i and x for (β , r )-anomaly.

Figure 5 shows the compilation of two DP mechanisms for (β , r )-
AIQ, which widely differ in their performance. As expected, the

compiled SP-mechanism outperforms the input DP-mechanism.

In Figure 5a, the input DPmechanism,M , has a constant error for

every input database, that is, 1/(1 + eε ) for fixed ε = 0.25. Clearly,



Figure 5: compilation of DP-mechanism for (β, r )-AIQ into

SP-mechanism. In both (a) and (b), the input mechanism

is 0.25-DP for a fixed record i and δ (given in the figure).

Each database x is given by (xi ,Bx (i, r )) since (β, r )-anomaly

identification function only depends upon xi and Bx (i, r )).
Each mechanism is depicted by its error over databases i.e.

P (M (x ) , д(i,x )). (a), DP-mechanism has constant error ≈

0.44. (b), DP-mechanism has error ≈ 0.56/e0.25∆G (i,x )
.

this mechanism has extremely bad accuracy. This is a difficult case

even for the compiled mechanism, which nevertheless, attains expo-

nential gain in accuracy for non-sensitive records. However, when

we input the DP-mechanism given in Section 4.1.1, which is much

better than the one in Figure 5a, the compiled mechanism is clearly

superior compared to the one in Figure 5a (Figure 5b).

Note that the δ in Figure 5 is a non-negative 2-Lipschitz continuous
lower bound on ∆GS − ∆G (as required by Theorem 4.7), where λ1
is given by (3) for k = 1 and ∆G is given by (2). δ = λ1 − ∆G ≥ 0

follows because ∆GS ≥ λ1 ≥ ∆G. The first inequality follows

from Lemma 4.5. The second one trivially holds true for all the

cases except for xi ≥ 1 and Bx (i, r ) < β , where λ1 (i,x ) = β +
1 − Bx (i, r ) and ∆G (i,x ) = min(xi , β + 1 − Bx (i, r )); thus, even in

this case, we get δ (i,x ) = max(β + 1 − Bx (i, r ) − xi , 0) ≥ 0. The

2-Lipschitz continuity of δ follows from the λ1 and ∆G being 1-

Lipschitz continuous (Lemma 4.5 and Lemma 4.3). Thus, for any i
and two neighbors x and y inGS (1-sensitive neighborhood graph),

|δ (i,x ) − δ (i,y) | ≤|λ1 (i,x ) − λ1 (i,y) | + |∆G (i,x ) − ∆G (i,y) | ≤ 2.

Remark: We emphasize that both of our constructions are not

tied to any specific definition of anomaly, and even the requirement

of Lipschitz continuity is due to privacy constraints.

5 EMPIRICAL EVALUATION

To evaluate the performance of the SP-mechanism for (β, r )-anomaly

identification, we carry out several experiments on synthetic dataset

and real-world datasets from diverse domains: Credit Fraud [10]

(available at Kaggle [23]), Mammography and Thyroid (available at

Outlier Detection DataSets Library [41]), and APS Trucks (APS Fail-

ure at Scania Trucks, available at UCI machine learning repository

[14]). Table 1 provides the datasets specifications.

To generate the synthetic data, we followed the strategy of Dong

et al. [12], which is standard in the literature. The synthetic data

Dataset size dim (β, r ) true (β , r )-
anomalies

Credit Fraud 284, 807 28 (1022, 6.7) 103

APS Trucks 60, 000 170 (282, 16.2) 677

Synthetic 20, 000 200 (97, 3.8) 201

Mammography 11, 183 6 (55, 1.7) 75

Thyroid 3, 772 6 (18, 0.1) 61

Table 1: dataset specifications and parameter values.

Figure 6: box plots of the errors of the SP mechanism for

(β , r )-AIQ over the true (β , r )-anomalies for ε = {.01, .1, 1}.

Figure 7: box plots of the error of the SP and the DP mecha-

nisms for (β , r )-AIQ over the true (β, r )-anomalies for ε = 0.1.

was generated from a mixed Gaussian distribution, given below,

where I is the identity matrix of dimension d × d , σ << 1, and eit
is a standard base. In our experiments, we used ρ = .01 and a = 5,

and chose a standard bases uniformly at random.

(1−ρ)N (0, I)+
a∑
t=1

(ρ/a)[
1

2

N (
√
d/ρeit ,σ

2I)+
1

2

N (−
√
d/ρeit ,σ

2I)]

The aim of this work is to study the effect of privacy in identify-

ing anomalies. So we keep the focus on evaluating the proposed

approach for achieving privacy for this problem, and how it com-

pares to differential privacy in real world settings. Our experiments

make use of (popular) (β , r ) notion of anomaly.

Following the standard practice for identifying outliers in the

data with higher dimension [1, 28], we carried out the principal

component analysis (PCA) to reduce the dimension of the three

datasets with higher dimension. We chose, top 6, 9, and 12 features

for the Credit Fraud, Synthetic, and APS Trucks datasets respec-

tively. Next, we obtain the values of β and r , which typically



Dataset mean error mean error

(anomalies)

SP DP SP

Credit Fraud 1.1127E−21 0.4750 1.1127E−21

APS Trucks 2.9719E−13 0.4750 2.9719E−13

Synthetic 3.2173E−5 0.4750 3.2173E−5

Mammography 0.0022 0.4749 0.0021

Thyroid 0.0870 0.4750 0.0867

Table 2: effect of sparsity of databases. “mean error” is over

the randomly picked n records from the possible values of

the records for each dataset for SP and DP mechanisms for

(β , r )-AIQ. “mean error (anomalies)” is only over the anoma-

lous records in the n picked records. Here, n is 20% of the size

of the dataset and ε = 0.1.

are provided by the domain experts [35]. Here, we employed the

protocol outlined in Appendix A.2 to find β and r ; this protocol
follows the basic idea of parameter selection presented in the work

[35] that proposed the notion of (β, r )-anomaly. Table 1 gives the

values of β and r , which we found through the protocol, along with

the number of true (β, r )-anomalies (true anomalies identifiable by

(β, r )-anomaly method for the given parameter values).

Error: We measure the error of a private mechanism (which is

a randomized algorithm) as its probability of outputting the wrong

answer—recall that in the case of AIQ, there are only two possible

answers, i.e. 0 or 1. For each AIQ for a fixed record, we estimate the

error by the average number of mistakes overm trials. So for our

experiments we choosem to be 10000.

For each dataset, we find all the true (β, r )-anomalies and for

each of them perform private anomaly identification query using

SP-mechanism (given in Section 4.1.2) and DP-mechanism (given

in Section 4.1.1) for ε = 0.01, 0.1, and 1 and compute the error,

which we give by the box plot in Figure 6. The reason we only

considered our DP mechanism for this part is that it is the best

among the baselines (see Table 3) and it also has strong accuracy

guarantees (Theorem 4.4). The error of SP-mechanism, in many

cases, is so small (e.g. of the order 10
−15

or even smaller for larger

values of ε) that it can be considered zero for all practical purposes.

Furthermore, as the data size increases (and correspondingly the

value of β), the error of SP-mechanism reduces. However, in the

case of anomalies, the error of DP-mechanism is consistently close

Figure 8: evaluation over normal records. (a),(b), give the av-

erage error of SP and DP mechanism for AIQ over all the

normal records from each data set; ε = 0.1.

Figure 9: evaluation over true (β , r )-anomalies for varying k .
(a)-(e), give the errors of SP and DP mechanisms. AIQ rank

is given by the error of SP-mechanism for each anomaly:

the higher the rank, the lower the error. Mechanisms are as

given in Section 4 and ε = 1. (a), Thyroid, (b), Mammography,

(c), Credit Fraud, (d), APS Trucks, (e), Synthetic data.

Figure 10: deviation in the DP-mechanism error for the

Credit Fraud dataset. In (a), the plot is the same as given in

Figure 9c for the DP-mechanism. In (b) and (c), x∗ for each
record is the number of records in the database x that have

the same value. (c), shows the box plot for the data.

to that of random coin flip (i.e. selecting 0 or 1 with probability 1/2)

except for a few anomalous records in some cases – we will shortly

explain the reason for this. The error of the SP-mechanism was

overwhelmingly concentrated about zero (Figure 6), which is also

true for the smaller values of ε . Thus, we can have higher privacy
guarantee for sensitive records, while still being able to accurately
identify anomalies. Also, note that as the size of the dataset increases,
not only does the error of SP-mechanism reduces (for anomalies),



Dataset Precision Recall F1-score

B1 B2 DP SP B1 B2 DP SP B1 B2 DP SP

Credit Fraud 0.0101 0.0230 0.9930 0.9963 1.0000 0.0498 0.5250 0.9968 0.0199 0.0315 0.6868 0.9966

APS Trucks 0.0115 0.0165 0.9870 0.9931 1.0000 0.0753 0.5263 0.9954 0.0227 0.0271 0.6865 0.9943

Synthetic 0.0101 0.0114 0.9930 0.9963 1.0000 0.1189 0.5250 0.9968 0.0199 0.0208 0.6868 0.9966

Mammography 0.0070 0.0081 0.0211 0.2004 0.8244 0.1000 0.5250 0.9977 0.0138 0.0149 0.0435 0.3337

Thyroid 0.0174 0.0191 0.1427 0.3100 0.6656 0.2918 0.5250 0.8993 0.0339 0.0358 0.2244 0.4610

Table 3: B1 and B2 are the best mechanisms from two families of mechanism. DP and SP are themechanisms from Section 4.1.1

and Section 4.1.2 respectively. Going from red to blue the value decreases. ε = 0.1

but also its divergence. Thus, it indicates that our methodology is

even more appropriate for big data settings. On the other hand,

for anomalies, the errors of DP-mechanism are concentrated about

1/(1 + eε ) (Figure 7). This is in accordance with our theoretical

results and the assumption that the databases are typically sparse.

Next, we evaluated the performance over the normal records.

Here, both the SP and the DP mechanisms performed equally (Fig-

ure 8). For the same value of ε , every sensitive record in the data-

base has the same level of privacy under sensitive privacy as all the

records under differential privacy; thus the same level of accuracy

should be achievable under both the privacy notions. Here we see

again that datasets with larger sizes exhibit very small error.

To evaluate the performance over future queries, we picked

n records uniformly at random from the space of possible (val-

ues of) records for each dataset – n was set to be 20% of the size

of the dataset. Here too the SP-mechanism outperforms the DP-

mechanism significantly (Table 2). This is because most of the

randomly picked records are anomalous as per the (β , r )-anomaly,

which is due to the sparsity of the databases. This fact becomes very

clear when we compare the mean error over the random records to

the mean error over the anomalous records in the randomly picked

records (see the second and the last column of Table 2). Since the

probability of observing a mistake is extremely small (e.g., 1 in 10
10

trials) , in Table 2, the mean is computed over the actual probability

of error of the mechanism instead of the estimated error.

We already saw that by increasing k we move the boundary be-

tween sensitive and non-sensitive records (Figure 3). So to observe

the effect of varying values of k on real world datasets, we car-

ried out experiments on the datasets with k = ⌊0.1β⌋, ⌊0.2β⌋, and
⌊0.3β⌋ – recall that a record is considered k-sensitive with respect

to a database if the record is normal or becomes normal under the

addition and (or) deletion of at most k records from the database.

Note that if k ≥ β + 1 then every record will be sensitive regardless

of the database. The results are provided in Figure 9. Here we con-

clude that even for the higher values of k SP-mechanism performs

reasonably well. Further, if the size of dataset is large enough, then

the loss in accuracy for most of the records is negligible.

We see that for Credit Fraud and APS Trucks datasets, differen-

tially private AIQ for some of the anomalous records give smaller

error. We explain this deviation using the Credit Fraud dataset as

an example. The above mentioned deviation in the error occurs

whenever the anomalous record is not unique (Figure 10a-b), which

is typically rare (Figure 10c). The reason DP-mechanism’s error

remains constant in most cases is that the anomalies lie in a very

sparse region of space and mostly do not have any duplicates (i.e.,

other records with the same value – xi ≈ 1).

Finally, to evaluate the overall performance of our SP-mechanism,

we computed precision, recall, and F1-score [1]. We also provide

a comparison with two different baseline mechanisms, B1, B2 in
addition to pareto optimal DP mechanism (see Table 3).

B1 and B2 are the best performing mechanisms (i.e., with the

highest F1-score) from two families of mechanisms. Each mech-

anism in each of the family is identified by a threshold t , where
0 ≤ t ≤ 1. Below, we describe the mechanisms from both the fam-

ilies for fixed ε , threshold t , record i ∈ X, and database x ∈ D.

The mechanism in the first family is given as B1,t (x ) = 1 if and

only if O (x ) + Lap(1/ε ) > t × ( | |x | |1 + Lap(1/ε )); here O (x ) gives
the number of anomalies in x and Lap(1/ε ) is independent noise
from Laplace distribution of mean zero and scale 1/ε . The mech-

anism in the second family is given as B2,t (x ) = 1 if and only if

O (x )+Lap(β/ε ) > t × ( | |x | |1+Lap(1/ε )). Note that, the mechanism

from the first family are ε1-DP, where ε1 ≥ βε . This is due to the

fact that maxx,y∈D: | |x−y | |1=1 |O (x ) −O (y) | = β [15]. However the

mechanism from the second family are ε2-DP, where ε2 ≥ ε .
Our mechanism outperforms all the baselines. Furthermore, DP-

mechanism largely outperforms the rest of the baselines.

6 RELATEDWORK

To our knowledge, there has been no work that formally explores

the privacy-utility trade-off in privately identifying anomalies,

where sensitive records (which include the normal records defined

in a data-dependent fashion) are protected against inference attacks

about their presence or absence in the database used.

Differential privacy [15, 17] has shaped the field of private data

analysis. This notion aims to protect everyone, and in a sense, many

of the DP mechanisms (e.g. Laplace mechanism) achieve privacy

by protecting anomalies; and in doing so perturb the information

regarding anomalies greatly. This adversely affects the accuracy

of anomaly detection and identification. Furthermore, differential

privacy is a special case of sensitive privacy (Section 4.1.1).

Variants of the notion of differential privacy address important

practical challenges. In particular, personalized differential privacy

[29], protected differential privacy [31], relaxed differential privacy

[6], and one-sided differential privacy [13] have a reversed order

of quantification compared to sensitive privacy. Sensitive privacy,

quantifies sensitive records and their privacy after quantifying the

database, which is in contrast to the previous work. Thus, under

sensitive privacy, it is possible for a record of some value to be

sensitive in one database and not in the other, while this cannot

be the case in the above mentioned definitions. On the other hand,

by labeling records independent to the database (as in the previous

work) one can solve a range of privacy problems such as counting



queries and releasing histograms. Hence, this work solves the open

problem (in [31]). Next, we present an individual comparison with

each of the above mentioned previous work along with some other

relevant ones from the literature.

Protected differential privacy [31] proposes an algorithm for

social networks to search for anomalies that are fixed and are de-

fined independent of the database. This is not extensible to the case,

where anomalies are defined relative to the other records [31]. Sim-

ilarly, the proposed relaxed DP mechanism [6] is only applicable to

anomalies defined in data-independent manner.

One-sided differential privacy (OSDP) [13] is a general frame-

work, and is useful for the applications, where one can define the

records to be protected independent of the database. Note that the

notion of sensitive record in OSDP is different from the one con-

sidered here. Further, due to its asymmetric nature of the privacy

constrains, OSDP fails to protect against the inference about the

presence/absence of a sensitive record (in general), which is not

the case with sensitive privacy (see Appendix A.10.1).

Tailored differential privacy (TDP) [36] provides varying levels

of privacy for a record, which is given by a function, α , of the
record’s value and the database. However, the work is restricted

to releasing histograms, where outliers are provided more privacy.

Whereas our focus is identifying anomalies, where anomalies may

have lesser privacy. Further, the notion of anomaly used in the work

[36] is the simple (β, 0)-anomaly. Extending it to the case of r > 0 is

a non-trivial task since, here, changing a record in the database may

affect the label (outlyingness) of another record with a different

value. We also note that sensitive privacy is a specialized case of

tailored differential privacy (see Appendix A.10.2.)

Blowfish privacy (BP) [25] and Pufferfish privacy (PP) [33] are

general frameworks, and provide no concrete methodology or di-

rection to deal with anomaly detection or identification, where

anomalies are defined in a data-dependent fashion. Sensitive pri-

vacy is a specialized class of definitions under these frameworks.

Thus, in term of definition, our contribution in comparison with

OSDP [13], TDP [36], BP [25], and PP [33], is defining the the notion

of sensitive record and the sensitive neighborhood graph that is

appropriate and meaningful for anomalies (when defined relative

to the other records) and giving constructions and mechanisms for

identifying anomalies.

Finally, [4] proposed a method for searching outliers, which can

depend on data, but this is done in a rather restricted setting, which

has theoretical value (in [4] the input databases are guaranteed to

have only one outlier, a structure not present in the typical available

datasets; this is in addition to other input database restrictions

required by [4]).

Other relaxations of differential privacy such as [2] is specifically

for location privacy and [16] is to achieve fairness in classification

to prevent discrimination against individuals based on their mem-

bership in some group and as such are not applicable to the problem

we consider here.

7 KEY TAKEAWAYS AND CONCLUSION

This work is the first to lay out the foundations of the privacy-

preserving study of data dependent anomalies and develop general

constructions to achieve this. It is important to reiterate that the

formalization and conceptual development is independent of any

particular definition of anomaly. Indeed, the definition of sensitive

privacy (Definitions 3.1 and 3.2), and the constructions to achieve

it (Construction 1 and Construction 2) are general and work for an

arbitrary definition of anomaly (Theorem 4.1 and Theorem 4.7).

We noted earlier that sensitive privacy generalizes differential

privacy. Thus, the guarantees provided by sensitive privacy are sim-

ilar to that of differential privacy, and in fact, Construction 1 can be

employed to give differentially private mechanisms for computing

anomaly identification query or any binary function. However, in

general, the guarantee provided by sensitive privacy to any two

databases differing by one record could be correspondingly weaker

than that offered by differential privacy depending on the distance

between the databases in the sensitive neighborhood graph. There is

also a divergence in guarantees in terms of composition. In differen-

tial privacy, composition is only in terms of the privacy parameter,

ε . However, for sensitive privacy, composition needs to take into

account not only the privacy parameter ε , but also the sensitive

neighborhood graphs corresponding to the queries being composed.

Nevertheless, the composition and post-processing properties (Sec-

tion 3.1) hold regardless of the notion of the anomaly.

An extensive empirical study carried out over data from diverse

domains overwhelmingly supports the usefulness of our method.

The sensitively private mechanism consistently outperforms dif-

ferentially private mechanism with exponential gain in accuracy

in almost all cases. Although it is easy to come up with example

datasets where a differentially private mechanism also performs

well (e.g., (β , r )-AIQ for i and x when xi = Bx (i, r ) = β/2), the
experiments with real data show that such cases are unlikely to

occur in practice. Indeed, the experiments show that most of the

anomalies occur in the setting, where an ε-DP mechanism performs

the worst, that is, its error is close to 1/(1 + eε ) (a lower bound on

the error of any ε-DP mechanism and follows from Claim 1).

To conclude, in this paper, we develop methods for anomaly iden-

tification that provide a provable privacy guarantee to all records,

which is calibrated to their degree of being anomalous (in a data-

dependent sense), while enabling the accurate identification of

anomalies. We stress that the currently available methodologies for

protecting privacy in data analysis are fundamentally unsuitable

for the task at hand: they either fail to stop identity inference from

the data, or lack the ability to deal with the data-dependent defini-

tion of anomaly. Note that anomaly identification is only the first

step to tackling the problem of anomaly detection (finding all the

anomalous records in a dataset). In the future, we plan to tackle this

and instantiate our framework for other anomaly detection models.
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A APPENDIX

A.1 Empirical evaluation protocols

Evaluation over normally distributed data: If the data is from

one dimensional normal distribution with mean µ and standard

deviation σ then a record i is anomalous (or equivalently an outlier)

if |i−µ | ≥ 3σ , and is statistically equivalent to (β = 1.2×10−3n, r =
0.13σ )-anomaly [35], where n is the size of the database.

To adapt this result for 2D normal distribution in Figure 2, set

r = 0.13
√
σ 2

1
+ σ 2

2
and compute β in a similar fashion as above. Next,

take 30 samples of size 20K , i.e. n = 20, 000, from the 2D normal

distribution, N (µ, Σ), where µ = (0, 0) and Σ =
[
2 0

0 2

]
, and run

SP-mechanism (given in Section 4.1.2) and DP-mechanism (given

in Section 4.1.1) for (β , r )-anomaly identification query to compute

accuracy, which is measured by the probability of outputting the

correct answer by the private mechanism, and average the results

over the samples for each query. We then plot the average accuracy

and interpolate the results using one-degree polynomial in the two

coordinates (Figure 2b-c). We used the “ListPlot3D” function of

Mathematica with the argument “InterpolationOrder” set to 1.

In Figure 2d-e and Figure 3, we plot the level of privacy (in term of

ε) that each record (point) has under private anomaly identification

query. Here, the level of privacy for a record in a given database is

measured by the maximum divergence divergence in the probability

of outputting a label when we add or remove the record from the

database. For ε-SP-mechanism, U , to compute the value of the

privacy parameter, ε , for a record i in a given database x , consider
databases y and z. y and z are same as x except for y has one more

record of value i and z has one less record of value i—if there is

http://archive.ics.uci.edu/ml
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no record of value i in x then z will be the same as x . Now we can

calculate eε for record i be by (4).

eε = max

w ∈{y,z }
max

b ∈{0,1}

(
P(U (x ) = b)

P(U (w ) = b)
,
P(U (w ) = b)

P(U (x ) = b)

)
(4)

A.2 Protocol for (β, r ) selection
The main idea is to fix a value of β , for a dataset of size n, as
(1 − p)×n, where p is close to 1, and then search for an appropriate

value of r . It is recommended [35] that for the datasets of sizes 10
3

and 10
6
, β be (1− 0.995) × 103 and (1− 0.99995) × 106. By assuming

that p is linearly related to n, one can use the provided values to find
the value of β for any given dataset. For a fixed value of β , a search
is performed to find r that maximize the F1-score (also known as

balanced F -measure), which is a popular performance metric for

imbalanced datasets [38], and it is the harmonic mean of precision

and recall. We used the following protocol to select the value of r .
Initialize rmin = .001, rmax = 40 (or the value that is not smaller than

themaximum distance between any two points in the given dataset),

r = 0, and S = 0. Next, set r1 = rmin + (r
max
− r

min
)/4, r2 =

rmin + 3(rmax
− r

min
)/4, pick α from [0, 1] uniformly at random

and set r3 = α r1 + (1 − α ) r2. Compute F1-score for each of the r ′s ,
i.e. Sr1 , Sr2 , and Sr3 . Let Srt be the maximum of the computed scores.

If Srt is greater than S then set S = Srt and r = rt ; further, if Sr2 < S
and r2 > r then set rmax = r2 but if it is not the case and Sr1 < S
and r1 < r then set rmin = r1, otherwise do nothing. Repeat this

process, except for the initialization step, until the improvement in

S becomes insignificant. In our experiments, repeating the process

for ten iterations generally sufficed.

A.3 Proof of Claim 1

Proof. Arbitrarily fix ε > 0, f : D → {0, 1}, ε-differentially
private mechanismM : D → {0, 1}, and x ,y ∈ D such that f (x ) ,
f (y) and | |x − y | |1 = 1; and let b = f (x ).

If P (M (y) = b) ≤ 1/(1 + eε ) then, by differential privacy con-

straints, we get that P (M (x ) = b) ≤ eε/(1+eε ); thus P (M (x ) = 1 − b) ≥
1/(1+eε ). Similarly, P (M (x ) = 1 − b) ≤ 1/(1+eε ) implies P (M (y) = b) ≥
1/(1 + eε ). Hence, from the above, it follows that

max (P(M (x ) , f (x )), P(M (y) , f (y))) ≥ 1/(1 + eε ).

SinceM , x and y were fixed arbitrarily, the claim follows, and this

completes the proof. □

A.4 Proof of Theorem 4.1

Proof. Fix arbitrary ε > 0 and a definition of anomaly. Let д
be the anomaly identification function and GS be the k-sensitive
neighborhood graph corresponding to it for an arbitrary value

of k ≥ 1. Fix λ to be 1-Lipschitz continuous lower bound on the

mdd-function, ∆GS , for д such that λ ≥ 1. Let Uλ be as given by

Construction 1. Next, fix an anomaly identification query, (i,д), and
x ,y ∈ D that are neighbors (i.e. connected by a direct edge) in GS .

If д(i,x ) = д(i,y) = b from some b ∈ {0, 1} then

P (Uλ (x ) , b)

P (Uλ (y) , b)
= eε (−λ (i,x )+λ (i,y ))

≤ eε |−λ (i,x )+λ (i,y ) |

≤ eε (since λ is 1-Lipschitz continuous)

and

P (Uλ (x ) = b)

P (Uλ (y) = b)
=

1 − P (Uλ (x ) , b)

1 − P (Uλ (y) , b)

=
1 + eε − e−ε (λ (i,x )−1)

1 + eε − e−ε (λ (i,y )−1)

=
eελ (i,y ) (1 + eε ) − eε (λ (i,y )−λ (i,x )+1)

eελ (i,y ) (1 + eε ) − eε

since λ is 1-Lipschitz continuous, it follows that

P (Uλ (x ) = b)

P (Uλ (y) = b)
≤

eελ (i,y ) (1 + eε ) − 1

eελ (i,y ) (1 + eε ) − eε
≤

(1 + eε ) − 1

(1 + eε ) − eε
= eε

The first inequality holds because λ is 1-Lipschitz continuous,

and the second one holds since λ ≥ 1.

On the other hand, if д(i,x ) , д(i,y), then λ(i,x ) = λ(i,y) = 1.

This holds because x and y are neighbors, i.e. dGS (x ,y) = 1, and

hence, ∆GS (i,x ) = ∆GS (i,y) = 1 and λ is such that ∆GS (j, z) ≥
λ(j, z) ≥ 1 for every j ∈ X and z ∈ D. Thus, in this case, the privacy

constraints trivially hold. This concludes the formal argument. □

A.5 Proof of Lemma 4.3

Proof. Let G be the neighborhood graph over D, d be the dis-

tance metric overX×X, dG be the shortest path length metric over

G, and д be the anomaly identification function for (β, r )-anomaly

for arbitrarily fixed values of β ≥ 1 and r ≥ 0.

Firstly, we prove that the ∆G given by (2) is indeed the mdd-

function (β , r )-AIQ. Arbitrarily fix i ∈ X and any database x ∈ D.

We know that the value ofд(i,x ) only depends uponxi andBx (i, r )—
recall that д(i,x ) = 1 ⇐⇒ xi ≥ 1 and Bx (i, r ) ≤ β . Further,
dG (x ,y) = | |x −y | |1 since every two databases that differ by exactly
one record are directly connected by an edge. Hence, it follows that

for Ci = {j ∈ X : d (i, j ) ≤ r },

∆G (i,x ) = min

y :д (i,y ),д (i,x )
| |x − y | |1 = min

y :д (i,y ),д (i,x )

∑
j ∈Ci

|x j − yj |.

(5)

We will consider four cases based on the condition (given in the

∆G) that x satisfies. From (5), we know that ∆G (i,x ) is the same as

the minimum number of records by which a database y differs such

that д(i,x ) , д(i,y). Thus in the proof we will modify the database

x by adding or (and) removing records from x , and show that mini-

mum number of changes required in x to change the output of д is

given by ∆G.

Case 1: When x satisfies the first condition, д(i,x ) = 0. For any

database y such that д(i,y) = 1, it must hold that yi ≥ 1 and

By (i, r ) ≤ β . So we obtain a y by adding one record of value i to x .
Thus ∆G (i,x ) = 1.



Case 2: When x satisfies the second condition, here again sim-

ilar to the case above, д(i,x ) = 0, and for any database y such that

д(i,y) = 1, it must hold that yi ≥ 1 and By (i, r ) ≤ β . So we will

have to add one record of value i to x to obtain a database y′, but
now By′ (i, r ) ≥ β + 1. Thus, to obtain a y, we will have to remove

By′ (i, r ) − β = Bx (i, r ) + 1 − β records of values in Ci \ {i} from y′

(or x ). Thus, ∆G (i,x ) = 1 + Bx (i, r ) + 1 − β .

Case 3: Here we assume that x satisfies the third condition; hence

д(i,x ) = 1. For a y such that д(i,y) = 0, either yi = 0 or By (i, r ) ≥
β + 1. Thus ∆G (i,x ) will be the minimum of xi (which corresponds

to the number of records of value i present in x that we will have

to remove) and β + 1 − Bx (i, r ) (which corresponds to the number

of records of values in Ci that we will have to add to x ).

Case 4: In this case, д(i,x ) = 0 because Bx (i, r ) > β . Thus, we will
have to remove Bx (i, r ) − β records of values in Ci from x such

that there is at least on record of value i in the modified x . Hence,
∆G (i,x ) = Bx (i, r ) − β .

Further, in all the cases, ∆G (i,x ) ≥ 1. Therefore, we conclude

the ∆G is the mdd-function for д (i.e. (β, r )-AIQ).
Next, we prove that the ∆G is 1-Lipschitz continuous. Arbitrary fix

i and any two neighboring databases, x andy inG. Let the (k, l ) rep-
resent that x andy respectively satisfy the kth and lth conditions in

the ∆G, where k, l ∈ [4] such that k ≤ l . We will prove that for each

(k, l ), the ∆G satisfies the 1-Lipschitz continuity condition. Here,

note that if the ∆G satisfies the 1-Lipschitz continuity condition

under (k, l ) then it also satisfies the condition under (l ,k ) because
|∆G (i,x ) − ∆G (i,y) | = |∆G (i,y) − ∆G (i,x ) |.

For (1, 1), |∆G (i,x ) − ∆G (i,y) | = 0, and for (2, 2) and (4, 4),
|∆G (i,x ) − ∆G (i,y) | ≤ 1 since |Bx (i, r ) − By (i, r ) | ≤ 1. Below, we

consider rest of the cases.

(3, 3): The case, when Bx (i, r ) = By (i, r ), is trivial. So, let Bx (i, r ) =
1 + By (i, r )—this is without loss of generality since | |x −
y | |1 = 1 and |∆G (i,x )−∆G (i,y) | = |∆G (i,y)−∆G (i,x ) |. Thus,
∆G (i,x ) = min(xi , β−By (i, r )) and∆G (i,y) = min(yi , β+1−
By (i, r )). All the subcases, except for the following, trivially
follow from | |x − y | |1 = 1.

(a) ∆G (i,x ) = xi and ∆G (i,y) = β + 1 − By (i, r )
(b) ∆G (i,x ) = β − By (i, r ) and ∆G (i,y) = yi

(a) is not possible as it requires xi < yi ; this cannot happen
because | |x − y | |1 = 1 and Bx (i, r ) = 1 + By (i, r ). As for (b),
the following holds for t = ∆G (i,x ) − ∆G (i,y):

−1 ≤ β − By (i, r ) − (β + 1 − By (i, r )) ≤ t ≤ xi − yi ≤ 1

Thus, it follows that 1-Lipschitz continuity condition is sat-

isfied in this case.

(1, 2): This happens when Bx (i, r ) = β − 1 and By (i, r ) = β , which
is sufficient for the condition to be satisfied.

(1, 3): It is possible when yi = 1 and 1 ≤ By (i, r ) ≤ β ; hence
∆G (i,y) = yi and the case holds.

(1, 4): This case is not possible since | |x − y | |1 = 1, and the case

requires Bx (i, r ) < β and By (i, r ) > β .
(2, 3): This case too is not possible since it requires Bx (i, r ) ≥

By (i, r ) and xi < yi , when | |x − y | |1 = 1.

(2, 4): Here, Bx (i, r ) − By (i, r ) = −1 (since xi = 0 and yi ≥ 1);

hence the case follows.

(3, 4): Here, it must hold that Bx (i, r ) = β and By (i, r ) = β + 1.

Hence, ∆G (i,x ) = 1 (since xi ≥ 1) and ∆G (i,y) = 1, and the

case follows.

Since the ∆G satisfies 1-Lipschitz continuity condition under all

the cases for arbitrary i and arbitrary neighbors, x and y, in the

neighborhood graph, it holds for every i and every two neighbors.

Thus the claim follows. This completes the proof. □

A.6 Proof of Theorem 4.4

Proof. Arbitrarily fix ε and a (β , r )-AIQ, (i,д). Let ∆G be as

given by (2) andU∆G be as given by Construction 1.

Firstly, note thatU∆G is ε-DP. It follows from the facts that ∆G ≥

1, is 1-Lipschitz continuous (Lemma 4.3), and SP generalizes DP.

Next, we prove the optimality claim. We prove the claim using

its contrapositive, that is, if there is a mechanism that is “better”

thanU∆G , then it must not be ε-DP.
Assume there exits a DP mechanism M such that for every

x , P (M (x ) = дi (x )) ≥ P (U∆G (x ) = дi (x )) and for a database y,
P (M (y) = дi (y)) > P (U∆G (y) = дi (y)) (i.e. U∆G is not pareto op-

timal); fix this y. Note that дi (·) = д(i, ·). We will prove that M
cannot be ε-DP.

Let z be such that dG (y, z) = ∆G (i,y) and дi (z) , дi (y). Letw be

a neighbor of z such that dG (y,w ) = ∆G (i,y) − 1 and b = дi (w ) =
дi (y). Now, assume thatM ε-DP. It follows that

P (M (w ) , b) ≤eεdG(y,w )P (M (y) , b)

=eε (∆G (i,y )−1)P (M (y) , b) < 1/(1 + eε ) (6)

The First inequality is due to the DP constrains onM . The second

inequality is due to the fact that M is strictly better than U∆G on

y and the fact that P (U∆G (y) , дi (y)) = e−ε (∆G (i,y )−1)/(1 + eε ).
Now if M is ε-DP, then P (M (z) , 1 − b) ≥ e−εP (M (w ) , 1 −

b), which together with (6) gives us P (M (z) , дi (z)) > 1/(1 +
eε ); alternatively, P (M (z) = дi (z)) < eε/(1 + eε ). Since we know
that M is “better” than U∆G , and in particular, P (M (z) = дi (z)) ≥
P (U∆G (z) = дi (z)) = eε/(1 + eε ), the above implies that M is not

ε-DP. Thus, we conclude theU∆G is pareto optimal. □

A.7 Proof of Lemma 4.5

Lemma A.1. Arbitrarily fix a graph, G , that contains all the nodes
and a subset of edges of the neighborhood graph, G, and an X ⊆ X. If
dG is the shortest path length metric over G , then for every x ,y ∈ D,

dG (x ,y) ≥ dG (x ,y) = | |x − y | |1 ≥
∑
j ∈X
|x j − yj | ≥

�������

∑
j ∈X

(x j − yj )

�������
.

Proof. Let G be the neighborhood graph overD. Arbitrarily fix

G , dG , and X as specified above (in the lemma). SinceG contains all

the nodes and a subset of edges of G, dG (x ,y) ≥ dG (x ,y), where dG
is the shortest path length metric over G. Furthermore, it is a simple

observation that dG is the same as ℓ1-metric over the databases

(which follows from a simple induction argument). Hence, it follows

that dG (x ,y) ≥ ||x −y | |1. The second inequality holds since X ⊆ X
and | |x − y | |1 =

∑
j ∈X |x j − yj |. The Third inequality follows from

the reverse triangle inequality. This completes the proof. □



Proof of Lemma 4.5. Arbitrarily fix β ,k ≥ 1, and r ≥ 0. Let д
be the (β, r )-anomaly identification function and λk be as given by

(3). Let ∆G and ∆GS be the mdd-functions for д, where G is neigh-

borhood graph and GS is the k-sensitive neighborhood graph for

(β, r )-anomaly. Next, arbitrarily fix a record i and a node (database)
x in GS .

We first show that ∆GS (i,x ) ≥ λk (i,x ) ≥ 1. Below, we show

that ∆GS (i,x ) ≥ ∆G (i,x ).

∆GS (i,x ) = min

y∈D:д (i,x ),д (i,y )
dGS (x ,y)

≥ min

y∈D:д (i,x ),д (i,y )
dG (x ,y) = ∆G (i,x )

The first inequality follows from the fact that GS contains all the

nodes and a subset of edges of G. Hence, from Lemma 4.3, we

conclude that if Bx (i, r ) ≥ β + 1 − k then ∆GS (i,x ) ≥ λk (i,x ) ≥ 1.

We now let Bx (i, r ) < β + 1 − k and b = д(i,x ). Here, it is
clear that λk (i,x ) ≥ 1. Fix any y in GS such that д(i,y) , b and

∆GS (i,x ) = dGS (x ,y).
Consider the case of xi = 0. Here, it must hold that yi ≥ 1

and By (i, r ) ≤ β . Now, on any of the shortest path from x to y,
we will first reach a database z, where i is k-sensitive, and hence,

Bz (i, r ) ≥ β + 1 − k (from Lemma A.2). Thus, for this z, we get

∆GS (i,x ) =dGS (x , z) + dGS (z,y)

≥dGS (x , z)

≥(Bz (i, r ) − Bx (i, r ))

≥β + 1 − k − Bx (i, r ) = λk (i,x ).

The second inequality follows from Lemma A.1, and the third one

follows because Bz (i, r ) ≥ β + 1 − k .
In the case, when xi ≥ 1, it must hold that either yi = 0 or

By (i, r ) ≥ β + 1. If yi = 0, then on any of the shortest path from x
to y, we will first reach a database z, where i becomes k-sensitive,
i.e., Bz (i, r ) ≥ β + 1 − k (from Lemma A.2). If z is the first such

database, then zi ≥ xi . Thus, we get the following.

dGS (x ,y) =dGS (x , z) + dGS (z,y)

≥(Bz (i, r ) − Bx (i, r )) + |zi − yi |

≥1 + β − k − Bx (i, r ) + xi . (7)

The first inequality follows from Lemma A.1, and the second one

follows from the fact that Bz (i, r ) ≥ β + 1 − k and xi ≤ zi . But if
By (i, r ) ≥ β + 1, then

dGS (x ,y) =dGS (x ,y) ≥ |By (i, r ) − Bx (i, r ) | ≥ 1 + β − Bx (i, r )
(8)

From (7) and (8), we get the following, which is sufficient to

establish that λk is a lower bound on the ∆GS .

∆GS (i,x ) ≥ 1 + β − Bx (i, r ) +min(0,xi − k ) = λk (i,x )

Next, we show that λk is 1-Lipschitz continuous. Fix an arbitrary

neighbor, y, of x such that λk (i,x ) , λk (i,y), otherwise, the con-
tinuity condition is trivially satisfied. If both x and y satisfy the

first condition of λk , then the continuity condition is satisfied by

Lemma 4.3. So assume that x and y satisfy the second condition

of λk . Here, all the cases except for the following, trivially follow

from the fact that | |x − y | |1 = 1.

(a) λk (i,x ) = β+1−Bx (i, r ) and λk (i,y) = β+1−By (i, r )+yi−k

(b) λk (i,x ) = β+1−Bx (i, r )+xi−k and λk (i,y) = β+1−By (i, r )

If (a) holds then (b) also does by symmetry (i.e., |λk (i,x )−λk (i,y) | =
λk (i,y) − λk (i,x ) |) as x and y are picked arbitrarily. (a) holds if
xi−k ≥ 0 andyi−k ≤ 0; further, | |x−y | |1 = 1 implies that xi−k = 0

and −1 ≤ yi − k ≤ 0. When yi − k = 0, the continuity condition is

satisfied as |Bx (i, r )−By (i, r ) | ≤ 1. However,yi −k = −1 is not pos-
sible since | |x − y | |1 = xi − yi = 1 implies that i is k-sensitive with
respect to x or y, which implies that either Bx (i, r ) or By (i, r ) is at
least β + 1 − k (from Lemma A.2); this contradicts the assumption

for this case. Hence, it follows that here the continuity condition is

satisfied as well.

Lastly, consider the case, where y and x respectively satisfy

the first and the second condition of λk—this is without loss of
generality due to symmetry. This will be possible if Bx (i, r ) = β −k
and By (i, r ) = β − k + 1. Thus, in all the subcases below, xi ≤ yi ≤
xi + 1.

Consider the subcase of xi = 0. Here, λk (i,x ) = 1 andyi is either
0 or 1. If yi = 0, then we have:

λk (i,y) = ∆G (i,y) = 2 for k = 1, and λk (i,y) = ∆G (i,y) = 1 for k > 1

But if yi = 1, λk (i,y) = ∆G (i,y) = min(yi ,k ) = 1 as k ≥ 1. Hence,

the continuity condition is satisfied for this subcase, when xi = 0.

Next, let xi ≥ 1; thus under this subcase it follows that

λk (i,x ) =1 + k +min(0,xi − k ) = 1 +min(xi ,k )

λk (i,y) =∆G (i,y) = min(yi ,k ) (since xi ≤ yi )

Clearly, if xi < k , then λk (i,x ) = 1 + xi and xi ≤ λk (i,y) ≤
xi + 1; but if xi ≥ k , then λk (i,x ) = 1 + k and λk (i,y) = k since

xi ≤ yi ≤ xi + 1; hence the continuity condition is fulfilled in this

subcase as well.

In all of the above case, |λk (i,x ) −λk (i,y) | ≤ 1. Since β ,k, r , i,x ,
and y (neighbor of x ) were picker arbitrarily, we conclude that λk
is 1-Lipschitz continuous lower bond on the ∆GS . This completes

the proof. □

A.8 Proof of Theorem 4.7

Proof. Fix any k ≥ 1, ε > 0, a valid ε/2-differentially private

mechanism,M , an anomaly identification query, (i,д), and a non-

negative 2-Lipschitz continuous lower bound, δ , on ∆GS − ∆G,

where ∆GS and ∆G respectively correspond to thek-sensitive neigh-
borhood graph for the anomaly definition corresponding to д, and
the neighborhood graph. LetUδ be the mechanism that Construc-

tion 2 yields. Next, fix arbitrary databases x andy that are neighbors

in GS .

When δ (i,x ) = δ (i,y) = 0, P (Uδ (z) = b) = P (M (z) = b) for
every database z and b in {0, 1}. The privacy constraints in this case,

are trivially satisfied.

Next, consider the case, where δ (i,x ) > δ (i,y) ≥ 0 — this is

without loss of generality as x and y are picked arbitrarily. SinceM
is valid ε/2-differentially private, we get the following forд(i,x ) = b
for some b ∈ {0, 1},

1 − P (M (x ) , b) e−ε/2 ≤eε (1 − P (M (y) , b)) (9)

Recall that GS is a subgraph of G and contains a subset of edges

of G, and ∆G (i, z) ≥ 1 for every database z. Hence, it follows that
∆GS (i, z) ≥ ∆G (i, z) ≥ 1, and ∆GS (i,x ) = 1 implies ∆G (i,x ) = 1.

Thus, from the above it follows that when ∆GS (i,x ) − ∆G (i,x ) ≥



δ (i,x ) > 0, it must hold that ∆GS (i,x ) ≥ 2 . Since dGS (x ,y) = 1

and ∆GS (i,x ) ≥ 2, we have д(i,x ) = д(i,y). So, let b = д(i,x ). From
(9), we get the following.

1 − P (M (x ) , b) e−ε/2 ≤ eε (1 − P (M (y) , b))

=⇒ 1 − eε ≤ P (M (x ) , b) e−ε/2 − P (M (y) , b) eε

since δ is 2-Lipschitz continuous, we get

1 − eε ≤
P (M (x ) , b)

e
ε
4
(δ (i,x )−δ (i,y ))

− P (M (y) , b) eε

since LHS is negative, and δ ≥ 0, the following holds

1 − eε ≤ e−
ε
4
δ (i,y )

(
P (M (x ) , b)

e
ε
4
(δ (i,x )−δ (i,y ))

− P (M (y) , b) eε
)

=⇒ 1 −
P (M (x ) , b)

e
ε
4
δ (i,x )

≤ eε
(
1 −

P (M (y) , b)

e
ε
4
δ (i,y )

)
=⇒ P (Uδ (x ) = b) ≤ eεP (Uδ (y) = b)

In a similar fashion, by swapping x and y in (9), one can show

that the privacy constraint P (Uδ (y) = b) ≤ eεP (Uδ (x ) = b) also
holds. Below we show that the other constraints are also satisfied.

P (Uδ (x ) , b)

P (Uδ (y) , b)
=

P (M (x ) , b) e−
ε
4
δ (i,x )

P (M (y) , b) e−
ε
4
δ (i,y )

≤ eε

The above inequality holds becauseM is ε/2-DP and δ is 2-Lipschitz

continuous.

Since all the privacy constraints hold for arbitrarily picked neigh-

bors and δ (which satisfies the conditions specified in the claim), and

a valid ε/2-differentially private M for an anomaly identification

query, the claim holds in general.

As for the claim of accuracy, it is a direct implication from the

Construction 2. This completes the proof. □

A.9 Composition

Here, we assume that every mechanism has its independent source

of randomness and has the domain D. Further, E (G ) for a graph G
denotes the set of edges in G. We make the following very simple

observation.

Observation 1. For any simple graphs G and G ′ over D, two
databases are neighbors in the graph H = (D,E (G ) ∩ E (G ′)) if and
only if they are neighbors in G and G ′.

Claim 3. If mechanisms M1 and M2 are respectively ε1-SP for
GS1 and ε2-SP for GS2 , then M (x ) := (M1 (x ),M2 (x )) for every x is
(ε1 + ε2)-SP for GS = (D,E (GS1 ) ∩ E (GS2 )).

Proof sketch. The claim follows from M1 and M2 being SP

for ε1 and ε2, and Observation 1, which ensures that the privacy

constraints will be met for neighbors in GS . □

We say, for Y ⊆ X, a mechanismM is Y -dependent if and only

if for every r ∈ Ranдe (M ) and x and y such that xi = yi for every
i ∈ Y , P (M (x ) = r ) = P (M (y) = r ).

Claim 4. For any partition of X = Y1 ⊔Y2, if mechanismsM1 and
M2 are respectively Y1-dependent ε1-SP for GS1 and Y2-dependent ε2-
SP for GS2 , thenM (x ) := (M1 (x ),M2 (x )) for every x is max(ε1, ε2)-
SP for GS = (D,E (GS1 ) ∩ E (GS2 )).

Proof sketch. Firstly, note thatM1 andM2 being SP for ε1 and
ε2 along with Observation 1, ensure that the privacy constraints

will be met for neighbors in GS for some value of ε . Further, since
every neighbor inGS differ by one record and mechanismsM1 and

M2 are respectively Y1 and Y2 dependent (for an arbitrarily fixed

partition), every privacy constraint will hold for either ε1 or ε2.
From here the claim follows. □

A.9.1 Proof of Claim 5 .

Lemma A.2. Fix arbitrary values for k ≥ 1, β ≥ 1 and r ≥ 0. For
(β , r )-anomaly, for every record i ∈ X and every database x ∈ D,

i is k-sensitive with respect to x ⇐⇒ Bx (i, r ) ≥ β + 1 − k .

Proof. Arbitrarily fix k, β ≥ 1, r ≥ 0, i ∈ X, and x ∈ D. Further,

fix p to be the normality property corresponding to (β , r )-anomaly.

Firstly, we prove the “if” direction through its contrapositive. So

assume Bx (i, r ) < β + 1 − k . Now, for every database y such that

| |x − y | |1 ≤ k , By (i, r ) ≤ β as we can only add up to k records in x .
Thus for each of the above y, p (i,y) = 0, which follows from the

definition of (β, r )-anomaly, and i is not k-sensitive with respect to

x . This completes the proof for “if” direction.

Next, we prove the “only if” direction. Let Bx (i, r ) ≥ β + 1 − k .
Now, obtain a database y by adding k records that are the same as i
to x . For this y, it holds that | |x − y | |1 = k and p (i,y) = 0 because

yi ≥ 1 and By (i, r ) ≥ β + 1 (since k ≥ 1). Hence, we conclude that

i is k-sensitive with respect to x . And this completes the proof as

k, β, r , i, and x were chosen arbitrarily. □

For any i ∈ X and r ≥ 0, we write Y (i, r ) to denote the set

{j ∈ X : d (i, j ) ≤ r }.

Claim 5. For any given n ∈ N and every t = 1, . . . ,n, arbitrar-
ily fix εt , rt > 0, kt , βt ≥ 1, and a mechanism, Mt : D → {0, 1},
that is εt -SP for kt -sensitive neighborhood graph corresponding to
(βt , rt )-anomaly and is also Y (it , rt )-dependent. Further, let m be
the maximum number of it ’s that are within any ball of radius
max(r1, . . . , rn ), ε = max(ε1, . . . , εn ), k = min(k1, . . . ,kn ), β =
max(β1, . . . , βn ), and r = min(r1, . . . , rn ).

IfM (x ) := (M1 (x ), . . . ,Mn (x )) for everyx , thenM ismε-sensitively
private for k-sensitive neighborhood graph corresponding to (β , r )-
anomaly.

Proof. Arbitrarily fix the values for all the symbols used in the

claim above as per the specification.

Firstly, we consider the guarantee with respect to the sensi-

tive neighborhood graph. Here it is sufficient to show that the k-
sensitive neighborhood graph,GS , corresponding to (β, r )-anomaly,

is a subgraph of the kt -sensitive neighborhood graph, Gt
S , corre-

sponding to (βt , rt )-anomaly for every t . Thus we show that, for

any t and two databases x and y, if x and y are neighbors in GS ,

then they are neighbors in Gt
S . So arbitrarily fix x and y that are

neighbors in GS and t ∈ [n]. Since x and y are neighbors in GS ,

there exists a record i that k-sensitive with respect to x ory. Let i be
k-sensitive with respect to x—this is without loss of generality since
x and y are picked arbitrarily. Now, from Lemma A.2, we get that

Bx (i, r ) ≥ β −k + 1. Since β ≥ βt and k ≤ kt , Bx (i, r ) ≥ βt −kt + 1;
this implies that i is kt -sensitive with respect to x (Lemma A.2),

and thus, x and y are neighbors inGt
S . Hence, we conclude thatGS

is a subgraph of every Gt
S .



Next, we prove the bound on the divergence of probabilities to

show that the loss in privacy is at maxmε . For any i ∈ X, let Ai
be such that for every t ∈ [n], t ∈ Ai ⇐⇒ d (i, it ) ≤ r ′, where
r ′ = max(r1, . . . , rn ). And letm = maxi ∈X |Ai |. Arbitrarily fix, the

neighboring databases x and y in GS andw ∈ {0, 1}n . Let i be the
record in which x and y differ. Now it follows that

P(M (x ) = w )

P(M (y) = w )
=

∏
t ∈Ai

P(Mr (x ) = wr )

P(Mr (y) = wr )
×

∏
l ∈[n]\Ai

P(Ml (x ) = wl )

P(Ml (y) = wl )

=
∏
t ∈Ai

P(Mt (x ) = wt )

P(Mt (y) = wt )
≤ exp

*.
,

∑
t ∈Ai

εt
+/
-
≤ exp(mε )

Above, the first equality holds because each of theMt has its inde-

pendent source of randomness. The second equality holds because

each Mt is Y (it , rt )-dependent in addition to its randomness and

rt ≤ r ′. The first inequality follows from Mt being εt -SP for GS ,

which is a subgraph ofGt
S . The last inequality follows from the fact

that ε ≥ εt andm ≥ |Ai |.
Lastly, note that for anyW ⊆ {0, 1}n , it follows that

P(M (x ) ∈W )

P(M (y) ∈W )
≤

∑
w ∈W P(M (x ) = w )∑
w ∈W P(M (y) = w )

≤ exp (mε )

Thus, we conclude that the claim holds. □

A.10 Relation of SP to other definitions

A.10.1 One-sided differential privacy (OSDP) [13]. It allows for

mechanisms to be private that can reveal the presence or absence of

a sensitive record in the database. We explain this below. Consider

two neighboring databases x and y (i.e., they differ by one record)

such that x has exactly one sensitive record and y has no sensitive

record, and an ε-OSDP mechanismM : D → {0, 1} with P (M (x ) =
0) = 0 and P (M (y) = 0) = 1 – note this is possible asM only needs

to satisfy P (M (x ) ∈ b) ≤ eεP (M (y) ∈ b) for b ∈ {0, 1}. Now, if we
pick x or y randomly and reveal the output of M , the output will

reveal which database was used, and hence if the sensitive record

was present or not.

A.10.2 Tailored differential privacy (TDP) [36]. SP is a special case

of TDP. Which becomes clearer once we restate TDP for the un-

bounded case, which we deal with. For α : X × D → R≥0, a
mechanism is α (·)-TDP if for every two databases, x and y dif-

fering in a record i , and every R ⊆ Ranдe (M ), P (M (x ) ∈ R) ≤

eα (i,x )P (M (y) ∈ R). Let for every i and x , α (i,x ) = εdGS (x ,x
′)

(x ′j = x j for every j , i and xi − x
′
i = 1). Now, it is immediate that

a mechanism is α (·)-TDP if and only if it is ε-SP for GS . A simi-

lar statement holds true for Blowfish privacy [25], which follows

by considering the sensitive neighborhood graph to be the policy

graph.
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