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Abstract— This paper describes several surprisingly rich but
simple demos and a new experimental platform for human
sensorimotor control research and also controls education.
The platform safely simulates a canonical sensorimotor task
of riding a mountain bike down a steep, twisting, bumpy
trail using a standard display and inexpensive off-the-shelf
gaming steering wheel with a force feedback motor. We use the
platform to verify our theory, presented in a companion paper.
The theory tells how component hardware speed-accuracy
tradeoffs (SATs) in control loops impose corresponding SATs
at the system level and how effective architectures mitigate
the deleterious impact of hardware SATs through layering and
“diversity sweet spots” (DSSs). Specifically, we measure the
impacts on system performance of delays, quantization, and
uncertainties in sensorimotor control loops, both within the
subject’s nervous system and added externally via software in
the platform. This provides a remarkably rich test of the theory,
which is consistent with all preliminary data. Moreover, as the
theory predicted, subjects effectively multiplex specific higher
layer planning/tracking of the trail using vision with lower
layer rejection of unseen bump disturbances using reflexes.
In contrast, humans multitask badly on tasks that do not
naturally distribute across layers (e.g. texting and driving).
The platform is cheap to build and easy to program for both
research and education purposes, yet verifies our theory, which
is aimed at closing a crucial gap between neurophysiology
and sensorimotor control. The platform can be downloaded
at https://github.com/Doyle-Lab/WheelCon.

I. INTRODUCTION

A heavily studied and central topic in neuroscience
is speed-accuracy tradeoffs (SATs) [1-4]. At the neuron-
component level, the resource limitations (space and
metabolic costs) of the brain impose severe speed/accuracy
constraints in neural signaling [5], as well as in the muscle
actuation [6-8]. At the system level, the tradeoffs associated
with the hard limits on SAT are extensively studied with a
variety of experiments [9-12] and mathematical theory [2],
[3]. However, there is little attention to the theory or experi-
ments that can connect system-level SATs with SATs within
the underlying nerve components.

A companion paper [13] develops a theoretical frame-
work to connect the system-level and component-level SATs.
The results suggest effectively layering sensorimotor control
loops with appropriate diversity in neurons/muscles help
achieve systems that are both fast and accurate despite being
built from components that individually are not.

Motivated by the theory, here we present an experimental
platform, some preliminary behavioral results to validate the
theory and the relevant neuroscience details for DSSs. In
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particular, our platform allows us to study the following two
questions and potentially more.

1) Combining component and system levels: The system
level performance for sensorimotor control is supported by
the underlying component hardware, such as lower-layer sen-
sors and muscles and connecting nerves [6-8], and higher-
layer nerves in the spinal cord and in cortex [14], [15]. Each
component has its own speed and accuracy in the control
loops. Inspired by the theory, developing an experimental
platform that allows us to test the impact of the speed and
accuracy in these components on system performance is
essential for connecting neurophysiology and sensorimotor
control.

2) Layered architecture in sensorimotor control: The
human sensorimotor control system is extremely robust,
although the sensing is distributed, sparse, quantized, noisy
and delayed; the computing in the central nervous system is
slow [5]; and the muscle actuation fatigues and saturates [16].
Effective layered architectures have evolved, to integrate the
higher layers of goals, plans, decisions with lower layers of
sensing, reflex, and action [17]. Take riding a mountain bike
as an example. Two control layers are involved in this task:
the plan layer and the reflex layer. For the visible distur-
bances (i.e. the trail), we make a plan before the disturbance
arrives. For the invisible disturbances (i.e. small bumps), the
control heavily relies on reflexes. The layered architecture
manages slow or inaccurate hardware but facilitates learning,
adaptation, augmentation, and teamwork. However, how to
integrate the sensing/communication/computation/actuation
component-hardware constraints with the plan / reflex layers
in the human sensorimotor system has been unclear.

To answer these questions, a platform with the control
elements (e.g. delay, quantization, disturbance, and feedback)
is needed. Here we focus on our new, inexpensive and easy-
to-use experimental platform that illustrates and tests the new
theory that formalizes and explains these connections (Fig.
1). The details for the theory is reviewed in a companion
paper [13]. Because it is impossible to noninvasively manip-
ulate the internal delay and data rate in neural signaling, we
find an alternative to add the external delay and quantization
in actuator which generates an identical effect to simulate
the hardware SATs in nerves.

Our sophisticated and versatile platform is a video game
that safely simulates riding a mountain bike down a steep,
twisted, bumpy trail using a standard display and gaming
steering wheel. The virtual trail scrolls down a PC screen
which can vary in speed, turns, and visual look ahead (and
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V=Vision
S=Spindle
M=Muscle
H=High layer
L=Low layer

G=Game wheel
and motor
T=Advance on
screen

Fig. 1: Basic block diagram for theory and experimental
platform with subject and gaming wheel with a motor. Each
box is a component that communicates or computes and has
potentially both delay and quantization, including within the
game in G. The advance warning is also implemented on a
computer screen with vision.

thus advanced warning or delay). Subjects can see the trail
and turn the wheel to track it with minimum error, while
an internal motor can torque the wheel to mimic invisible
bumps in the trail. The trail planning and tracking use
vision and advanced warning, while the bump disturbances
are compensated for with delayed reflex feedback control.
Subjects must cope with delays, quantization, disturbances,
noise, and component sparsity, all captured in theory, in both
their own nervous system and, to more thoroughly verify
the theory noninvasively, when added in the experimental
hardware.

II. PLATFORM AND MODELS
A. Framework of the platform

The video-game platform simulates riding a mountain bike
down a steep, twisting, bumpy trail using a standard display
and gaming steering wheel. It includes a lower-layer reflex
feedback control loop (L in Fig. 1) in charge of the unseen
bump disturbance w, and a high-layer advanced plan loop (H
in Fig. 1) to see the incoming trail and make a control plan
in advance. Notably, the internal delays and quantizations in
neural signaling or muscle contraction encoded in the subject
are impossible to control noninvasively. However, we find
an alternative way to extensively add the external delay and
quantizer with a limited data rate in the game. Specifically,
the game platform allows us to manipulate the advanced
warning or visual delay 7,;s (T" in Fig. 1), along with the
action delay T,.; and action quantizer (Q,.; with data rate
Rgc+ in the gaming wheel (G in Fig. 1). We haven’t yet
implemented the quantization ),;s for the visual system. It
remains one of our future goals.

While the effects of delay are a combination of internal
and external delay, especially when the internal delay is
relatively big, such as the delay of flash-evoked responses in
the visual cortex (around 120ms in healthy subjects [18]),
quantization effects are evaluated only considering the ex-
ternal quantizer. The external quantizer we set in the game
has a relatively small data rate (up to 10 bits), whereas
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the data rates for neural signaling and muscle contraction
are much higher, such as the 50ms inter-spike intervals in
motor neuron [19]. Thus, because the data rate for internal
neural signaling is so much higher than that of the external
quantizer, we neglect the internal quantization to simplify
the analysis.

In addition, the trail disturbance r(¢) and bump distur-
bance w(t) can be designed for the game. The design of these
disturbances largely depends on the bounds in the feedback
control model. We have to separate the worst-case setting
and the average-stochastic setting in the game due to the
difference in disturbance (see in Section II-B), although the
design of delay and quantization in these two settings are
the same.

The output of the game platform is a file including the
values of all these manipulated parameters, the control u(t)
and the error dynamics z(t). We minimally train subjects
to achieve stable performance. To eliminate the learning
effects and uncontrollable variables during task switching,
we exclude the first 10 seconds from the data analysis.

B. Model and the parameter settings in platform

We consider a simplified feedback control model with the

system dynamics given by

z(t+1) =a(t) + w(t) +ut) + r(t) (1)
where z(t) € R is the error dynamics, 7(t) € R is the trail
disturbance and w(t) € R is the bump disturbance, u(t) € R
is the control action. r(t) and w(t) are independent.

We characterize the impact of delay and data rate on
system performance in two settings:

1) Worst-case setting: The uncertainty (noise or changes
in the desired trajectory) is bounded. Thus, when we design
a game to test the worst-case performance, we set r(t) and
w(t) to be periodic to satisfy that the disturbance is infinity-
norm bounded, and we analyze the infinity norm of error
[l oo

2) Average-case setting: The uncertainty is drawn from
some distributions. For the average-case experiment design,
the time at which there is a turn and/or a bump is decided
by Gaussian distribution, and we analyze the mean squared
error (MSE) with + [Zthl x(t)z]

The worst-case performance is more relevant in risk-
averse situations, while the average-case performance is more
relevant in risk-neutral situations. An example of a risk-
averse situation is riding a mountain bike on a cliff because
staying on the cliff is a must for survival even given the worst
possible uncertainty. This analysis framework is conceptually
simpler when compared to the stochastic case. The worst-
case control has been reported in the existing literature for
risk-sensitive sensorimotor control [20-23]. On the other
hand, an example of a risk-neutral situation is riding a
mountain bike on a broad field because of no risk of falling
out of the field. The control goal, therefore, is to minimize
errors from the desired trajectory. To be noted, although the
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platform supports both the worst-case setting and average-
case setting to test different theoretical bounds, we only
present the results from the worst-case setting in this paper.

C. Goal of the platform and the experiment design

The experimental platform has two primary goals: 1) to
test our new theory which connects the component hardware
SATs in control loops with system-level SATs. 2) to serve
future sensorimotor control research and educational appli-
cations.

1) Validate the new theory: Through manipulating the
external delay and quantization (Ty;s, Toct and Qqet), and
designing the disturbance, r(t) and w(t), the platform allows
us to study the impact of component hardware features
on system-level performance. In the worst-case setting, we
designed the trail changes in the trajectory r(¢) and the bump
disturbances w(t) to be co-norm bounded ie. ||7|c < 1,
||w|leo < €. Particularly, we will resolve the following three
questions with specific game designs.

o What are the effects of vision delay and action delay in
a single control loop? (Section 1II-A)

o How do component hardware SATs in layers impose
the system-level SATs? (Section III-B)

e How does the layering architecture effectively help
sensorimotor control? (Section III-C)

Due to space constraints, we present a more detailed
description of the game settings in the extended version of
this paper [24].

2) Beneficial to research and education: The platform is
flexible to program, and easy to extend to other tasks and
games. Both the source code and the executable file are open-
access in our website. It has a user-friendly graphic user
interface (GUI) for naive users. It also supports the higher-
level individualized task design. Our platform allows users
to design specific disturbances and noise in planning/reflex
control loops, to add delay and quantization in both visual
sensing and action output. It will also provide potential
measures to quantify system performance (x), and actuator
output (u). These are essential elements in a control system,
and its capability of analyzing them suggests its potential use
in control education. We hope the game platform will have
versatile applications for both research and education.

III. EXPERIMENTS AND INTERPRETATIONS

A. Delay in sensorimotor control

Delay is an essential topic for both control engineering
and neuroscience [18], [25]. Delay in human sensorimotor
control is inevitable, existing in each step: sensing, com-
munication, computation, and actuation. In this section, we
first overview our theory characterizing the impact of delay
[13] in Section III-A.1 and then present our experiments
that investigate how visual delay and action delay influence
human sensorimotor control performance in Section III-A.2.
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1) Simple model for delay in control: In this section, we
study the impact of delay in sensing (vision) or actuation
(muscle). We model the control action by

ut+T)=K(0:t),r0:¢),u(0:¢t+T—1)). (2)

The game starts with zero initial condition, i.e. , z(0) = 0.
The controller C generates the control command u(t) using
the full information on the histories of state, disturbance, and
control input. The control command is executed with delay
T2>0.

Sensorimotor control in the risk-aware setting [23] moti-
vates the use of L1 optimal control, and as such, our goal is
to verify the following robust control problem:

inf sup ||z|l 3)

Kl
This problem admits a simple and intuitive solution. In
particular, the optimal cost is given by

||mHoo =T. 4)

inf sup

K lrlle<t
This optimal cost is achieved by the worst-case control policy
u(t +T) = —r(t), which yields

inf sup |lulle =1. )

K lrlle<t
Interestingly, the control effort is not a function of the delay.
2) Trail with delay game and experimental findings:
The experimental results for the trail with delay game (see
Section II-C for the game design) are illustrated in Fig. 2.

(a) (b)
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Fig. 2: The experimental results for effects of delay in visual
feedback and in the action, respectively. We present the
performance ||z, for each 2s.

The one-way analysis of variance (ANOVA) for ||zco
shown in Fig. 2(b) found significant effects of T for both
vision delay (F' = 11.49, p < le — 7) and action delay
(F' = 28.66, p < 1le—14). It means that the error significantly
increases with an increase of delay. The generalized linear
model was applied to fit the data. It showed that ||z|o =
0.006T + 3.956 for the vision delay, and ||z||cc = 0.0117 +
1.528 for the action delay. The results indicate that the
error has a linear relation with the delay in a control loop.
It is well in line with the prediction from the theoretical
model in Eq.(4). Although the theory doesn’t distinguish
the impacts of vision delay from those of action delay on
performance, the experimental data does show a smaller
slope with increases in vision delay. This might be because
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the design of the trail is not random, and the subject can
partially predict the future trajectory.

B. Speed-accuracy tradeoffs in a single layer

The impact of the SATSs in nerve signaling on the SATs in
sensorimotor control performance has been characterized in
our previous paper [26] and is reviewed in our companion
paper [13]. In this section, we validate the theoretical results
using a mountain-bike game in the experimental platform.
In this section, we first overview our theory characterizing
the impact of delay and quantization [13] in Section III-
B.1 and then present our experiments that investigate how
they influence human sensorimotor control performance in
Section III-B.2.

1) Model connecting the component-level and system-
level SATs: Here, we demonstrate the impact of delay and
quantization in the sensorimotor control loop. In the game,
the control action is generated by the following feedback
loop with communication constraints; we therefore model:

u(t+T)=Q(Ke(x(0:t),u(0:t—1))). (6)

where K; : (R} R*) — R is a controller, and Q : R — S
is a quantizer with data rate R > 1, i.e. S is a finite set of
cardinality 2%. Here, the net delay is composed of internal
delays in the human sensorimotor feedback and the delays
externally added. The disturbance is oco-norm bound and,
without loss of generality, ||7||s < 1.

The worst-case state deviation is lower-bounded by [26]:

sup ||Z]jec 2T + -5 )
Irlloe <1 Il 28 -1
and the minimum control effort is given by
1 1
w1+ =—=——]1-== 8
iz (14 ) (1-3) @

Measurements (7) and (8) can be recorded by our platform.

2) Experiments showing SATs in a simple control loop:
We present the experimental results both for the SATSs
test in the planning layer and the reflex layer (Fig. 3).
Both layers show system-level tradeoffs resulting from the
hardware tradeoffs. Although ||z||~ heavily relies on the
worst performance (one mistake would largely elevate the
error measurement), our results surprisingly show that the
effects of the T only test and the Q only test is roughly
equivalent to the sum of the infinity error from the T and
Q test after systematically subtracting the intrinsic error. It
validates the Eq. (7) in theory that the control error in T and
R is the sum of T term and R term.

Observed from the data, the tradeoff sweet spot for the
planning layer is R = 4 bits and 7" = —200 ms when the
component tradeoff is T' = 200(R — 5), whereas the tradeoff
sweet spot for the reflex layer is R = 3 bits and T' = 400
ms when the component tradeoff is 7' = 200(R — 1). To be
noted, the component level tradeoffs are not the same in the
plan layer and the reflex layer in the experiments, because
we try to test both the advanced warning and delay in the
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Fig. 3: The experimental results for SATs in the planning
layer (a) and reflex layer (b).

plan layer. One future objective is to test the plan layer with
the same component level tradeoff as the reflex layer.

Fitting the data with the quantization term in Eq.(7),
|7]lee = /(2% — 1) , we obtain a = 8.80 for the higher-
layer plan loop, and v = 7.83 for the lower-layer reflex loop
in the quantization only test. It indicates that the plan layer
is more sensitive to the limited data rate, compared to the
reflex layer. Fitting the data with the delay term in Eq.(7),
|z]loc = BT, we obtain 8 = 0.12 for the reflex layer, and
B = 0.04 for the plan layer, suggesting that the performance
of the reflex layer is more sensitive to the delay. An increased
delay of 7" has deleterious impacts on the bump rejection.

C. Effective layered architecture in sensorimotor control

Human sensorimotor control is an extremely robust sys-
tem. It involves multiple control loops in layered architec-
tures, rather than a simple one, as well as a huge diversity
of component hardware to manage slow or inaccurate hard-
ware [17]. The effectiveness of layered architectures can be
observed in many sensorimotor control tasks. To test the
robust control in multiple control loops and the effective
layered architecture in human sensorimotor control, we have
implemented the *bump and trail’ scenario in our platform,
which mimics riding a mountain bike down a steep, twisting,
bumpy trail. In this section, we review our theory showing
the impact of delay and quantization in a layered system
[13] in Section III-C.1 and present our experimental results
to verify them in Section III-C.2.

1) Theoretical model for the layered architecture: In
the game, the system dynamics in Eq.(1) have the oo-
norm bounded disturbance, with |7 < 1, [|w]e < e
The actuation action is generated through two controllers,
a lower-layer reflex loop mainly in charge of w(t) (e.g.
human reflection responding to the bumps), and a high-
layer advanced plan loop mainly in charge of r(t) (e.g.
our planning for the future road). The theory considers
two types of layered architectures: with/without sharing the
disturbance information between the two controllers. The
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layered architecture with shared information is defined by
ur(t+Tr) = L{x(0:t),u(0: t+ T — 1), w(0: 1))
ug(t+Tg)=H(@0:t),u(0:t+Ty —1),7(0:t+T,))
u(t) = ur(t) + ug(t).

9
Here, L, H are the controllers, and Q)1,, Qg are the quantiz-
ers with data rates Ry, Ry, respectively.

The layered architecture without shared information is
defined by

urp(t+Tr) = L(uw(0:t + T — 1), w(0: 1))

ug(t+Ty)=Hu0:t+Tyg —1),7r(0:t+T,)) (10)
u(t) = ur(t) + up(t).
We pose the robust control problem as follows:

inf sup 1] 0o s (11)

lI7[loo <€, ll7 [l o0 <1

where the infimum is taken over the control policies of the
form (9) or (10). The worst-case state-deviation of the system
with shared information is given by

1 — 2~ Re(Th—TY)
{Te-i— 5f 1 1}(1+6). (12)

The worst-case state-deviation of the system without shared
information is given by

1 1
{Tz-f—le_l}e-i-Th—szh_l.

The experiments allow to test whether there is shared distur-
bance information between two layers or not.

1
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Fig. 4: The experimental results bump and trail task: (a)
the error dynamics from bump only task, trail only task,
both task; (b) absolute error; (c) infinity norm error. One dot
denotes the infinity norm error in 2 seconds.

2) Bump and trail dual task to test the plan/reflex layer-
ing: Our experimental results (Fig. 4) demonstrate that the
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error from the bump and trail session positively correlated
with the sum of the error from the bump only session
and the trail only session (Pearson correlation, R = 0.57,
p < 0.0001), and they showed no significant difference
(paired t-test, ¢ 0.21, p = 0.83). The results confirm
that the sensorimotor control can be decomposed to a reflex
layer and an advanced plan layer. It fits the theory with
no shared information case in Eq.(13), rather than Eq.(12).
It indicates that the plan layer and the reflex layer can
be decomposed and analyzed separately. In this case, the
multitasking performance is equal to, not bigger than, the
sum of every single task (i.e. tracking the trail and rejecting
the bump). On the contrary, people usually multitask badly
due to dual-task inference [27]. This excellent bump and
trail dual-task performance can be explained by the effective
layering architecture in human sensorimotor control. The two
feedback loops jointly control the error x(¢) according to
Eq.(10), where the advanced plan layer handle the distur-
bance r(t) from the curvature of the desired trajectory and
the delayed reflex layer due to road bumps w(t).

IV. DISCUSSION

In this paper, we present an experimental platform for
studying the layering architecture and tradeoffs in human
sensorimotor control. Our experiments focused on the worst-
case scenario because of its theoretical simplicity, but it can
be easily applied to the average-case scenario.

A. Neuroscience perspectives of experiment and platform

We demonstrate that the system-level tradeoffs in hu-
man sensorimotor control result from SATs at component-
hardware level. We show clear component-level DSSs to
favor the system-level SATs cross control layers (Fig. 3).
Furthermore, the results showed that the reflex layer is
sensitive to the delay, whereas the advanced plan requires
higher accuracy, which is consistent with our theory. Our
experiments illustrate the theory that connects the system
and component level tradeoffs.

Moreover, the experimental data for the bump and trail
dual task shows that optimal controllers with separate layers
for trails and bumps can multiplex these tasks well, with
errors in the bump with trail task roughly equivalent to,
not bigger than, the sum of the errors in the trail only
and bump only task, and healthy human subjects achieve
this with minimal training (Fig. 4). In contrast, humans
multitask badly on the tasks that dont naturally distribute
across layers, regardless of whether the tasks are simple (e.g.,
perceptual discriminations) [27] or complex (e.g., driving and
talking on the cell phone) [28]. Our experiments support the
theory that the effectively layer sensorimotor control with
appropriate diversity in components to achieve systems both
fast and accurate despite being built from components that
individually are not.

B. Educational value of the platform

Our theory and platform are only the beginning of a
new regime. We serve much broader interests of SATs and
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layered architectures in the brain, from control engineers to
neuroscientists to system biologists.

Robust control theory is a powerful tool in the inves-
tigation on the effect of noise, disturbances, and other
uncertainties in system performance [29]. However, the
impact of such theory is limited by its technical accessibility.
Given the platform, we can easily study and compare the
settings with delay and quantization with those of delay
or quantization. This clear separation of constraints in the
feedback loop can help explain the basics of control of
dynamical systems and allow us to demonstrate how the plant
instability, actuator saturation, and unstable zero dynamics
impact our sensorimotor system.

C. Future directions

Our theory and platform are only a begining of a new
regime. We serve much broader interests of SATs and layered
architectures in brain, from control engineers to neuroscien-
tists and system biologists. Along this line, we would like
to propose some potential research questions that could be
studied with our experimental platform in the future:

Whether is the optimal control policy obtained the
control theory applied in real practice? In this paper, we
only examined the system performance. It is valuable
to investigate the control policy in human sensorimotor
control.

How do the tradeoffs in speed / accuracy / saturation /
energy cost in muscles benefit from the DSSs?

How does the SATs in the high-layer plan/decision mak-
ing support human/animals’ decision strategies acorss
complex environment under uncertainty, limited infor-
mation, and risks?

How does the human sensorimotor system tolerate the
noise in control loops?

What are the effects of learning/adaptation in different
control layers? Do the tradeoffs exist between fast
learning and fast forgetting, between efficiency and
plasticity?

In summary, we provide a platform that is cheap, easy to
use, and flexible to program. We use this platform is used
to validate our theory presented in a companion paper [13].
The code to built the platform can be downloaded at https:
//github.com/Doyle-Lab/WheelCon. The platform
can potentially be used in both future research and education.
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