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Abstract— Nervous systems sense, communicate, compute,
and actuate movement, using distributed hardware with trade-
offs in speed and accuracy. The resulting sensorimotor control
is nevertheless remarkably fast and accurate due to highly ef-
fective layered architectures. However, such architectures have
received little attention in neuroscience due to the lack of theory
that connects the system and hardware level speed-accuracy
tradeoffs. In this paper, we present a theoretical framework that
connects the speed-accuracy tradeoffs of sensorimotor control
and neurophysiology. We characterize how the component
SATs in spiking neuron communication and their sensory and
muscle endpoints constrain the system SATs in both stochastic
and deterministic models. The results show that appropriate
speed-accuracy diversity at the neurons/muscles levels allow
nervous systems to improve the speed and accuracy in control
performance despite using slow or inaccurate hardware. Then,
we characterize the fundamental limits of layered control
systems and show that appropriate diversity in planning and
reaction layers leads to both fast and accurate system despite
being composed of slow or inaccurate layers. We term these
phenomena “Diversity Sweet Spots.” The theory presented here
is illustrated in a companion paper, which introduces simple
demos and a new inexpensive and easy-to-use experimental
platform.

I. INTRODUCTION

To concretely illustrate speed-accuracy tradeoffs (SATs) in
layered architectures, consider riding a mountain bike down
a twisting bumpy trail. There is an obvious tradeoff between
speed down the trail, and accuracy in staying on it and
not crashing. But how exactly is the rider’s nervous system
organized to allow experts to have extremely robust perfor-
mance despite complex, uncertain environments and despite
implementation in a hardware level of spiking neurons that
is distributed, sparse, quantized, delayed, and/or saturating?
A crucial strategy is the evolution of effective layered ar-
chitectures that integrate nerves/muscles with diverse speed
and accuracy as well as high-layer planing that track the trail
with the low-layer reaction that handles bumps and is largely
unconscious and automatic [1], [2].

Fig. 1 is a block diagram of a minimal and highly abstract
model of the system level components involved in the biking
problem, which includes sensing, communication, computa-
tion, and actuation. This is the same diagram presented in
a companion paper, which considers a video game version
of the biking problem [3]. The plant P consists of bike and
rider and is (possibly marginally) unstable, and must track a
reference trail changes r(t) with small error despite unseen
bumps w(t). Each box is designated by its function and
either senses and communicates (vision V, muscle spindle
sensor S), actuates (muscle M) or computes a control action
(high layer tracking H and low layer reflex L). Each box

can have quantization, delay, saturation and/or stochastic or
deterministic noise, depending on the hardware or model
details. Vision gives the rider advance warning of the trail
ahead, which is modeled here by a (variable) delay T
between r and the plant that depends on speed, terrain, and
the trail shape.

The theoretical challenge addressed here is to provide a
framework that can compute optimally robust controllers for
problems like Figure 1 with realistic models for uncertain-
ties and component limitations. We provide insights using
analytic formulas for important special cases and scalable
algorithms for general problems. Our theory shows that
appropriate speed-accuracy diversity at the neurons/muscles
levels allow nervous systems to improve the speed and accu-
racy in control performance despite using slow or inaccurate
hardware. Similarly, layering diverse controllers can create
systems that are both fast and accurate despite being built
from individual layers that are not. We term these phenomena
“diversity sweet spots” (DSSs). Finally, we show that the key
insights are remarkably robust to the assumptions (average
vs. worst-case, stochastic vs. deterministic) in the extended
version of our paper [4] and discuss biological plausibility
of our model in our companion paper, which also includes
a variety of additional illustrative demos [3].

Fig. 1: Basic block diagram of a sensorimotor control model
for a mountain bike and rider on a twisting trail with bumps.
Each box is a component that communicates (V,S,M) or com-
putes (H,L) using spiking neurons and thus has potentially
both delay and quantization. The rider can see the trail ahead
and thus has advanced warning T that would depend on speed
and terrain, and can be used by the higher layer controller.
The bumps are not seen but can crash the bike if not correctly
handled by lower layer reflexes.

While modern lifestyles largely shield us from the chal-
lenges that shaped our brain’s evolution, we see SAT and
DSS appear everywhere in neuroscience, though the results
are fragmented and incoherent, and even the terminology is
not consistent. For example, different types of sensorimotor
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Fig. 2: The large diversity in the composition of selected
human cranial and spinal nerves and the resulting speed-
accuracy tradeoffs. The dashed line shows a constant total
cross-sectional area, which is roughly proportional to the
cost to build and maintain a nerve of a given length and
is similar across the different nerves, which are otherwise
quite different. Our nerve model will translate axon size and
number into a biologically realistic delay and data rate, and
the theory will then connect this hardware level SAT with
system level SATs. This cartoon understates the diversity,
both between the same nerve in different individuals, and
between the axons within a single nerve, both of which are
large and poorly characterized. Adapted from [5]

nerves have extremely diverse size and number (see Figure
2 for selected cranial and spinal nerves). While bundles of
axons in most nerves, from optic (vision) to vestibular to
sciatic (reflexes) in Figure 2 have similar total cross-sectional
areas (roughly proportional to the cost to build and maintain),
they have extremely diverse compositions in terms of axon
size and number [6]–[9]. As we will show, the limitation
in biological resource translates directly into strict tradeoffs
in signaling speed (in terms of delay) and accuracy (in
terms of the amount of transmittable information), which
in turn imposes the system level SATs. Interestingly, most
system level SATs, from decisions [10] to reaching (Fitts’
law) [11], [12] to sports (baseball, cricket, and soccer) [13],
[14] (which perhaps more reflect our evolutionary past),
are much less severe than what should be imposed by the
component level SATs. Despite this apparent discrepancy,
little existing literature paid attention to this issue. This lack
of attention is because clarifying this discrepancy requires
understanding the rich design tradeoffs and principles from
a holistic perspective of both levels, and the two levels are
currently treated separately due to the lack of theoretical
tools that integrate them. We aims to fundamentally change
this situation [15], [16]. As an initial step, in this paper,
we show that diversity in the neurons/muscles levels and
between planning/reaction layers can de-constrain hardware
speed-accuracy constraints for achieving fast and accurate
sensorimotor performance, shedding lights on the largely
overlooked power of DSSs.

Notation: We use x(t1 : t2) = {x(t1), x(t1 +
1), · · · , x(t2)} to denote a truncated sequence. The `∞ norm
of a sequence x is defined as ‖x‖∞ := supt |x(t)|. We use
P (x) to denote the probability density function of a random
variable x, and P (x|y) to denote the conditional probability
density function of x given another random variable y. We

use log(x) to denote the logarithm of x in base 2 and logb(x)
to denote the logarithm of x in base b. We use Z/Z+ and
R/R+ to denote the set of all/non-negative integers and the
set of all/non-negative real numbers, respectively.

II. MAIN RESULTS

To clarify the fundamental limits of sensorimotor control
imposed by hardware constraints, we present a mathematical
framework of robust control involving sensing, communi-
cation, and actuation and derive performance bounds. This
framework accommodates different assumptions on delay,
data rate, and saturation due to hardware limitations in both
deterministic worst case and stochastic average case.

In this section, we focus on a worst-case analysis, which
produces qualitatively similar results with an average-case
analysis. Worst-case analysis is beneficial in its biological
plausibility and ease of derivation. In many sensorimotor
tasks, there are strict error bounds which cannot be violated:
for example, when riding a mountain bike on a cliff, not
falling off the cliff is far more critical than minimizing
average errors. Moreover, the worst-case framework is also
simpler than the average-case: deriving worst-case perfor-
mance only requires high-school level mathematics and thus
has significant potential in education and interdisciplinary
research [3], [16].

Below, we summarize the SATs in spike-based neural
signaling (Section II-A) and its impact on robust performance
for systems whose performance bottleneck lies in the neu-
ral signaling (Section II-B–II-C). Closed-form performance
bounds are derived for both a basic control system and
a layered network with uniform/diverse nerves, and the
resulting insights are consistent with those from alternative
models/assumptions discussed in the extended version of this
paper [4].

A. Component-level SATs

In a sensorimotor feedback loop, sensory information is
transmitted by spikes (action potentials) through nerve fibers
(axons). The space and metabolic constraints of a nerve
limit the number and size of axons that can be built and
maintained. These limits lead to SATs in neural signaling [6],
[17], [18], and the specific forms of the SATs depend on
how the nerves encode information (e.g. spike-based, spike-
rate encoding). Below, we derive the SATs for spike-based
encoding in this section and discuss other alternatives in the
extended version of this paper [4].

In a spike-based encoding scheme, information is encoded
in the presence or absence of a spike in specific time inter-
vals, analogous to digital packet-switching networks [19],
[20]. This encoding method requires spikes to be generated
with sufficient accuracy in timing, which has been experi-
mentally verified in multiple types of neuron [21], [22].

To quantify the complex distribution of axon sizes in a
single nerve, we can think of a nerve as being made up
of several communication channels, each containing axons
with identical size. We assume that there are m hetero-
geneous communication channels and index them by i ∈
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{1, 2, · · · ,m}. We use ni, ρi to denote the number of axons
contained in channel i and the radius of axons in channel i,
respectively. We use Ti, Ri to denote the delay and data rate
(i.e. the amount of information in bits that can be transmitted)
of channel i, respectively.

When the signaling is precise and noiseless, an axon with
achievable firing rate φ can transmit φ bits of information per
unit time. For sufficiently large myelinated axons, the prop-
agation speed 1/Ti and firing rate φ are both approximately
proportional to the axon radius ρ [6], i.e.

T = α/ρ φ = βρ,

where α and β are proportionality constants. Moreover, the
space and metabolic costs of a nerve are proportional to
its volume [6], and given a fixed nerve length, these costs
are proportional to its total cross-sectional area s. Using the
above properties, we can show that1

Ri = λiTi

m∑
i=1

λi =
sβ

πα
(1)

A special case of (1) is when all axons are uniform, i.e. when
ρi are identical for all i. In such a case, we can think of the
nerve as a single communication channel with delay Ts = Ti
and R =

∑m
i=1Ri satisfying

R = λTs λ =
sβ

πα
. (2)

We refer to nerves that have a diverse distribution of axon
diameters as diverse nerves and those with a uniform distri-
bution as uniform nerves for the rest of the paper.

B. System-level SATs

We consider a sensorimotor control model with the system
dynamics

x(t+ 1) = ax(t) + w(t) + u(t)

where x(t) ∈ R is the state, w(t) ∈ R is the distur-
bance, u(t) ∈ R is the control action. We assume that
the disturbance is ∞-norm bounded and, without loss of
generality, ‖w‖∞ ≤ 1. The control action is generated
through a feedback loop, which is constrained by data rate,
delay, and/or saturation. The control action is generated by
a controller Kt:

It = {x(0 : t), w(0 : t+ Ta), s(0 : t− 1)}
[s1(t), s2(t), · · · , sm(t)] = Kt(It)

(3)

and m quantizers:

u(t) =

m∑
i=1

Qi(si(t− Ti − Tc)), (4)

Here, the controller can access the disturbance information
with an advanced warning of Ta, but its command is put into
action with a delay of Ti+Tc, where Ti is the signaling delay
satisfying the SATs (1) or (2), and Tc ≥ 0 is other internal

1 Due to space constraints, we present a more detailed derivation in the
extended version of this paper [4].

delays such as computation. Each quantizer Qi has rate Ri,
so the data rate R =

∑m
i=1Ri is the number of bits per

sampling interval that can be transmitted from the sensors to
the actuators in the feedback loop. We additionally assume
that the data rate is minimum stabilizing, i.e. R > log(|a|)
[23]. We pose the robust control problem as follows:

inf sup
‖w‖∞≤1

‖x‖∞, (5)

where the infimum is taken over the control policies of the
form (3) and (4). This robust control problem is motivated
by sensorimotor tasks such as driving and riding a mountain
bike. In such tasks, x(t) models the error between desired
and actual trajectories; u(t) models the control action taken
by the sensorimotor system; and w(t) models environmental
noise and/or uncertainty in the desired trajectory. For more
detail, see Figure 1 and our companion paper on experi-
ments [3].

The following lemma characterizes the performance limits
on system robustness.1

Lemma 1: The minimal state-deviation (5) is
∞∑
h=1

|ah−1| 1

2R(h)
, (6)

where R : Z+ → R+ is a function of h ∈ Z+ given by

R(h) :=
m∑
i=1

max{0, h− Ti − Tc + Ta}Ri.

Formula (6) can be used to characterize the impact of
instability. Specifically, the minimal state-deviation (5) of an
unstable system with Tc − Ta = 0 and uniform nerves (i.e.
|a| ≥ 1, m = 1, and T = T1) is given by2

sup
‖w‖∞≤1

‖x‖∞ ≥
T∑
i=1

|ai−1|+ |aT | 1

2R − |a|
, (7)

where the equality can be attained with minimal control
effort

sup
‖w‖∞≤1

‖u‖∞ =

(
|aT |+ |aT |

2R − |a|

)(
1− 1

2R

)
. (8)

The control policy that achieves (7) and (8) is given in [15].
Interestingly, this optimal controller resembles predictive
coding in neural signaling (see [4] for more detail).

Note that although unstable systems do not have a tradeoff
between minimizing state-deviation and minimizing control
effort, this property does not hold for stable systems, i.e.
|a| < 1. In particular, the minimal state-deviation (5) of a
stable system subject to ‖u(t)‖∞ ≤ ` is given by1

T∑
i=1

|ai−1|+ |aT | 1

2R − |a|
if ` ≤ |a| 2R − 1

2R − |a|
T∑
i=1

|ai−1|+ |aT | 1− `
1− |a|

otherwise.

2With a light abuse of notation, we denote
∑t2

i=t1
f(i) = 0 if t2 < t1.
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An important special case is the system with a = 1,
which reduces to the setting of our driving game experiment
and other tasks such as riding a mountain bike [3] or eye
movements [15], [16]. If such system is built from uniform
nerves, the minimal state-deviation (5) is given by

max(0, Ts + Tc − Ta) +
1

2R − 1
. (9)

We can interpret the first term as the error due to having
delay in the feedback loop (denote as delay error), and the
second term as the error due to having limited data rate in the
feedback loop (denote as quantization error). Note that the
impact of delay and quantization is experimentally verified
in our driving game experiments [3].

If the system is built from two types of axons (i.e. m = 2)
and Ta − Ti = 0, then (6) reduces to

T1 +
1− 2−R1(T2−T1)

2R1 − 1
+

1

2R1(T2−T1)

1

2R1+R2 − 1
. (10)

We can similarly interpret the first term as the delay error,
and the second and third term as the quantization error.
Combining (2) and (9), we obtain the system SATs when
sensorimotor control is implemented using uniform nerves.
Combining (1) and (10) yields the system SATs when
sensorimotor control is implemented using diverse nerves.

C. SATs in a layered architecture

Previous sections describe the SATs at the component and
system levels. In this section, we derive the SATs for layered
architectures. Figure 1 sketches a minimal layered senso-
rimotor control model composed of higher-layer planning
of trajectories and lower-layer reflex compensation to reject
disturbance. The control commands from both layers are put
into action by muscles. Specifically, we consider the system
dynamics

x(t+ 1) = ax(t) + u(t) + r(t) + w(t), (11)

where r(t) models the changes in the desired trajectory, and
w(t) models the disturbance. We assume that r(t), w(t) are
∞-norm bounded, and without loss of generality, ‖r‖∞ ≤ 1,
‖w‖∞ ≤ ε.

We consider two specific ways of layering: with or without
shared information between the two controllers. The layered
control system with shared information is defined by

It = {x(0 : t), w(0 : t), r(0 : t+ Ta)}
uh(t) = H(It−Th

, u(0 : t− 1))

u`(t) = L(It−T`−Tc
, u(0 : t− 1))

u(t) = Qm(Q`(u`(0 : t)), Qh(uh(0 : t))).

(12)

Here, H is a high-layer planner, L is a lower-layer distur-
bance compensator. The accuracy constraint of each con-
troller is modeled by quantizers Q`/Qh with data rates
R`/Rh. The commands from both controllers are put into
action by the muscles, whose accuracy are modelled by the

quantizer Qm with data rate Rm. The layering without shared
information is defined by

uh(t) = H(r(0 : t− Th + Ta), u(0 : t− 1))

u`(t) = L(w(0 : t− T` − Tc), u(0 : t− 1)) (13)
u(t) = Qm(Q`(u`(0 : t)), Qh(uh(0 : t))).

We pose the robust control problem as follows:

inf sup
‖w‖∞≤ε,‖v‖∞≤1

‖x‖∞, (14)

where the infimum is taken over the control policy with
shared information (12) or that without shared information
(13). Let R̄` and R̄h be defined by

T̄` := T` + Tc R̄` := min(R`, Rm)

T̄h := Th − Ta. R̄h := min(Rh, Rm)

In the case with shared information, the minimum state-
deviation (14) achievable by controller (12) is

T̄∑̀
i=1

|ai−1|+
∞∑

τ=T̄`+1

|aτ−1|
2R̄`(τ−T̄`)+R̄h max(0,τ−T̄h)

 (1 + ε)

(15)
The proof of (15) is a trivial extension of Lemma 1. When
a = 1, (15) equals{
T̄` +

1− 2−R̄`(T̄h−T̄`)

2R̄` − 1
+

1

2R̄`(T̄h−T̄`)

1

2R̄`+R̄h − 1

}
(1 + ε).

(16)

In the case without shared information, the state-deviation
(14) achievable by the controller (13) is lower-bounded by

T̄∑̀
i=1

|ai−1|+ |aT̄` |
2R̄` − |a|

 ε+

max{0,T̄h}∑
i=1

|ai−1|+ |a
max{0,T̄h}|
2R̄h − |a|

.

(17)
The performance limit (17) is a simple generalization of the
results of [15, Section IV.C]. In the next section, we use
these formulas to explore the benefit of axon diversity at the
nerve/muscle level and between planning/reaction layers.

III. IMPLICATIONS

The results presented in Section II show our first steps
towards integrating the previously disjoint fields of neuro-
physiology and sensorimotor control. This theoretical frame-
work offers a more coherent view of the rich and complex
design space of the sensorimotor nervous system. It shows
how a sensorimotor control system can achieve fast and
accurate system performance through effective architectures,
which help overcome the fundamental limitations incurred
by components that may be slow or inaccurate.

Attaining optimal/robust performance requires two con-
ditions: optimal hardware components and optimal con-
trol/communication policies. To achieve the former condi-
tion, hardware needs to be built with appropriate speed and
accuracy so that neither the delay costs nor the quantization
costs overwhelm the system performance. Although the
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hardware SATs inevitably lead to system SATs, appropriate
diversity at the nerve/muscle level and planning/reaction
layers help achieve less stringent system SATs.

To achieve the latter condition, our results indicate that cer-
tain structures of optimal controllers allow for optimal con-
trol/communication policy. Interestingly, the seemingly cryp-
tic patterns of feedback and feedforward pathways seen in
vertebrate nervous systems resemble optimal controllers for
delayed/quantized systems, as well as those from the System
Level Synthesis (SLS) method [24] for distributed/localized
systems (see [4] for more detail).

A. Diversity sweet spots in SATs optimize performance

The framework developed in section II-B can further
describe the effects of diversity in neural composition on
performance. For the system with uniform nerves, we as-
sociate its system SATs with the delay versus quantization
costs in (9). For systems with diverse nerves, we associate
its system SATs with the delay cost T1 in (10), i.e. the
errors before the first packet arrives, and the quantization cost
(1−2−R1(T2−T1))/(2R1 −1)+ 1/(2R1(T2−T1)(2R1+R2 −1).
Figure 3 right compares the resulting SATs for systems with
uniform nerves and diverse nerves. From Figure 3, systems
with diverse nerves have an improved SAT compared with
systems with uniform nerves, suggesting that diversity in
nerve composition can achieve the system performance as
if uniformly fast and accurate axons are used. We call this
phenomenon a diversity sweet spot (DSS), to emphasize the
trend that, when choosing how to devote resources to a
system, it is often better for overall system performance to
use diverse components than to devote all resources to either
end of a tradeoff.

Similarly, the results of section II-C demonstrate another
DSS and the benefit of diversity between layers. Figure 4
(left) compares the performance lower-bounds (17) for the
layered system without shared information (11), (13) when
the delay and data rate of the higher-layer (T`, R`) and those
of the lower-layer (Th, Rh) are allowed to be diverse or are
constrained to be uniform, given sufficiently large Rm. The
performance gain is especially high when the two layers are
heterogeneous, i.e. large Tc − Ta (Figure 4), demonstrating
the benefit of using diverse nerves between higher and lower
layers. A similar DSS can be observed in an alternative
setting of shared information, whose performance lower-
bound is given by (16). The results suggest that layered
architectures of diverse control loops, if well-exploited, help
achieve fast and accurate sensorimotor performance despite
the speed and accuracy constraints of individual layers.
Delving further into this example, we observe diversity in
hardware that achieves this optimal system performance. The
optimal nerves for (17) with m = 2 have consistently small
T` to control the cost of delay, but allows Rh to increase for
large advanced warning Ta (Figure 4, right)

It is important to note that the properties we have found
to be optimal are indeed observed in nature. As seen in
Figure 2, the nerves involved in many sensory modalities
have a wide range of size and number of axons, which leads

to a wide range of signaling speed and accuracy. Further,
the distributions of axons within nerves are highly diverse,
especially those involved in sensorimotor control like the
optic, vestibular, and sciatic nerves. These observations indi-
cate that a diversely layered control architecture composed of
diversely distributed axon sizes is plausible within the limits
of observed neurophysiology.

B. SAT in muscle actuation and reaching tasks

In this section, we present another component and system
SATs that illustrate the DDS, involving muscle actuation and
reaching tasks. We consider a simplified muscle model which
includes m motor units, indexed by i ∈ {1, 2, · · · ,m}, each
associated with a reaction speed and a strength level. We
use Fi to denote its strength and assume without loss of
generality that F1 ≤ F2 · · · ≤ Fm. Motor units are recruited
in ascending order of Fi, so a muscle (at non-transient time)
can only generate m + 1 levels of discrete strength levels:∑n
i=1 Fi, n ∈ {0, 1, 2, · · · ,m}.1 Because the strength of

a motor unit is roughly proportional to its cross-sectional
area (myofibril cross-sectional area) [25], given a fixed
lengths, the maximum strength of a muscle ` =

∑m
i=1 Fi

is proportional to its cross-sectional area. This implies that,
given a fixed space to build a muscle, its maximum strength
does not depend on the specific composition of motor units.

Given a fixed maximum strength `, there is a tradeoff be-
tween a muscle’s reaction speed and resolution. Specifically,
if a motor unit is recruited at time t = 0, then its strength
ci(t) raises according to1

ȧi(t) = αfpi (1− ai(t))− βai(t), aqi (t) = ci(t) (18)

with the initial condition ci(0) = 0, fi = 1/((γ/Fi)
1/q−1).

We set α = 1, β = 1, p = 1 to be fixed constants given
in [8]. Similarly, when a recruited motor unit is released at
time t = 0 its contraction rate falls according to (18) with
fi = 0 and ci(0) = Fi. The relation (18) indicates that
the reaction speed of a muscle is an increasing function of
Fi.Constrained by ` =

∑m
i=1 Fi, a muscle can be built from

many motor units with small strengths or a few motor units
with large strengths. In the former case, the muscle has better
resolution but slow reaction speed, while in the latter case,
the muscle has fast reaction speed but coarser resolution.

This component SAT leads to a system SAT in a reaching
task. Consider reaching a hand towards a target of width D
located at a fixed distance (a task typically associated with
Fitts’ Law). In this task, the reaching time provides a measure
of speed and the target width is a measure of accuracy. Figure
5 shows this maximum reaching time (speed) given a fixed
target width (accuracy). When we naively build a muscle
using uniform motor units, the SAT has a linear form, which
is inconsistent with standard experiments. However, diversity
in motor units achieves a logarithmic SAT, yielding a DSS in
which both speed and accuracy can be achieved. Although
this logarithmic SAT has been observed in the context of
Fitts’ law, the connection between the logarithmic nature of
Fitts’ law and the notion of DSS has not previously been
made.
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Fig. 3: The benefit of diversity at the nerve level (left) and
between layers (right). We use m = 1 for uniform nerves
and m = 2 for diverse nerves, and we set sβ/(πα) = 1 and
Ti − Ta = 0. In both cases, diversity enables the system to
improve its system SAT in sensorimotor control performance.
Adapted from [5].

Fig. 4: The benefit of nerve diversity in layered architectures.
The left shows the minimum state-deviation (17) for varying
advanced warning Ta in the case when diverse delays and
data rates of L and H are allowed, versus the case when only
uniform delays and data rates are permitted (i.e. R` = Rh
and T` = Th). Other parameters are set to be R` = 0.1Ts,
Rh = 0.1Th, and Tc = 10. The right shows the resulting
optimal delays and data rates for the diverse case. Adapted
from [5].

Fig. 5: The SAT in a reaching task imposed by the SAT of a
muscle with uniform versus diverse motor units. For a fixed
sensorimotor control sampling interval, an upper bound F̄ on
the strength of recruitable motor units is obtained from the
target width (accuracy requirement) using (18). Then, from
F̄ , the reaching time is computed using (18) for the case of
recruiting all motor units with strength below F̄ . Adapted
from [26].
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