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An integrative perspective to LQ and `∞ control
for delayed and quantized systems

Yorie Nakahira and Lijun Chen

Abstract—Deterministic and stochastic approaches to handle
uncertainties may incur very different complexities in computa-
tion time and memory usage, in addition to different uncertainty
models. For linear systems with delay and rate constrained com-
munications between the observer and the controller, previous
work shows that a deterministic approach, the `∞ control has
low complexity but can only handle bounded disturbances. In
this paper, we take a stochastic approach and propose an LQ
controller that can handle arbitrarily large disturbance but has
large complexity in time and space. The differences in robustness
and complexity of the `∞ and LQ controllers motivate the design
of a hybrid controller that interpolates between the two: The
`∞ controller is applied when the disturbance is not too large
(normal mode) and the LQ controller is resorted to otherwise
(acute mode). We characterize the switching behavior between
the normal and acute modes. Using our theoretical bounds which
are supplemented by numerical experiments, we show that the
hybrid controller can achieve a sweet spot in the robustness-
complexity tradeoff, i.e., reject occasional large disturbance while
operating with low complexity most of the time.

Index Terms—Robustness-complexity tradeoff, the LQ control,
the `∞ control, communication constraints, robust control.

I. INTRODUCTION

In the design of cyber-physical systems, it is essential to
account for a broad range of uncertainties such as disturbances
due to environmental changes and control errors due to delay
and quantization in feedback loop. Two approaches are typi-
cally used to handle uncertainties: deterministic or stochastic.
In the deterministic approach, uncertain input or parameters
are assumed to be in an uncertainty set, and the design goal
is to optimize the worst-case performance and/or make sure
the system satisfies certain specifications over the uncertainty
set. In the stochastic approach, uncertain input or parameter is
assumed to have a certain distribution, and the design goal is
usually to optimize the average performance and/or make sure
the system satisfies certain specifications with high enough
probability. It is obvious that the applicability of each approach
depends on the characterization of uncertainty. However, it is
not clear which approach incurs less complexity in time and
space (i.e., memory). In the paper, we investigate some of the
related issues in controller design for linear systems with delay
and quantization.
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Specifically, we consider a linear dynamical system with
delay and rate constrained communications between the ob-
server and the controller; see Fig. 1 for a schematic. Previous
works [2], [3] take the deterministic approach of `∞ control,
i.e., to design an optimal controller that minimizes the worst-
case infinity-norm of the system output under infinity-norm
bounded disturbances. The resulting controller uses static
memoryless quantizers and therefore has low time and space
complexity. However, the efficacy of this approach partly
depends on how “tight” the uncertainty set is in covering
all possible disturbances, and the assumption of bounded
uncertainty set will necessarily leave out disturbance that may
occasionally take large values.

On the other hand, there is an extensive literature that takes
the stochastic approach that can better handle (occasional)
large disturbance and studies the linear-quadratic (LQ) control
problem with costs (i.e., performance) in both the state and the
control action; see, e.g., [4]–[8] and the related work reviewed
below. Building upon controller design methods for the quan-
tized system [1], [4], we design a controller for delayed and
quantized system with a finite constant communication delay.
We further derive a lower bound on the optimal performance
using the method from [4]–[7], and compare the performance
of the proposed LQ controller against it. The comparison
shows that the LQ controller can reject large disturbance
while achieving near-optimal performance. However, the LQ
controller needs to store the whole distribution of the system
state, which incurs a much higher time and space complexity
than the optimal `∞ controller.

The above optimal/near-optimal controllers based on the
two approaches have different advantages and limitations
regarding robustness to uncertainty and complexity in time
and space. An interesting question that arises from these
differences is if it is possible to design a controller that has
the advantages of both the above controllers. In this paper, we
take a hybrid approach to design such a controller. Specifically,
we assume that the typical disturbance is relatively small
and covered by a bounded set, while the large disturbance
(outside of the bounded set) is rare event that has a (tail)
Gaussian distribution. Under this assumption, we construct a
hybrid controller that interpolates between the `∞ controller
and the LQ controller when there is no cost in the control
action: The `∞ controller is applied when the disturbance
is smaller than certain threshold (normal mode), and the LQ
controller is resorted to otherwise (acute mode). We analyze
the switching time from and the recovery time to the normal
mode, as well as the performance versus complexity tradeoff.
Using our theoretical bounds which are supplemented by
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numerical experiments, we show that the hybrid controller can
achieve a sweet spot in the robustness-complexity tradeoff, i.e.,
reject occasional large disturbance while operating with low
complexity most of the time.

Related work and our contributions: There is a large lit-
erature on the topics studied in this paper. Here we briefly
review only those that are directly relevant. Applications of
the model studied in this paper range from cyber-physical
systems [2], [9]–[13] to neuroscience [3] and cell biology [14],
[15]. Motivated by these applications, there exists a large
literature on control under communication constraints, based
on either the deterministic or the stochastic approach. For
the former, the stability conditions are known for a broad
class of linear systems with quantization or data rate con-
straints [16], [17], and optimal controllers for systems with
delay and quantization are given in [2], [3]. For the latter,
the stability conditions are known for linear systems with
quantization or data rate constraints [18]–[20], and perfor-
mance bounds are given in [5]–[8], [21]–[27]. The design
and performance of systems with fixed and random delays
are recently investigated in [28], [29], and performance bounds
are recently obtained in [30]. The relation between the optimal
cost and the causal rate-distortion function is studied in [8],
[31]–[38]. The information-theoretic quantities used to model
communication constraints include mutual information [6],
[39], anytime capacity [40], and directed information [26],
[41], among others. The optimal controllers are studied for
quantized systems in [4]–[7], [13], [42], [43] and references
therein.

In this paper, we study the optimal controller design for
delayed and quantized systems, and further, we take a hybrid
deterministic-stochastic approach to design a hybrid controller
that is robust to large disturbance and of low complexity. Our
main contributions are summarized as follows:

• We characterize the optimal controller structure for the
LQ system with both delay and quantization in commu-
nications.

• Based on the optimal controller structure, we derive a
lower bound on the optimal LQ cost (Theorem 1).

• Based on the optimal controller structure, we propose a
near-optimal LQ controller (Algorithm 2).

• We further propose a hybrid controller that combines
the advantages of both the `∞ and LQ controllers when
there is no cost in the control action (Algorithm 3), and
characterize its switching behavior between the normal
mode and the acute mode (Theorem 2 and Equation (25)).

• Using our theoretical bounds and supplementary numer-
ical experiments, we show that the hybrid controller
can achieve a sweet spot in the robustness-complexity
tradeoff, and reject occasional large disturbance while
operating with low complexity most of the time.

Also, notice that we treat delay d and rate R as given,
independent variables in this paper. In natural and engineering
systems, however, the hardware is usually featured by certain
speed-accuracy tradeoff R = T (d). Our results in this paper
and others such as [3], combined with the speed-accuracy
tradeoff, provide a theoretical foundation to systematically

study the impact of the hardware speed-accuracy tradeoff on
system performance; see, e.g., [44], [45] for its application in
neuroscience.

Notation and preliminaries: We use lower case letter to
denote a sequence, e.g., x = {x0, x1, x2, · · · }, xtτ to denote
a truncated sequence {xτ , xτ+1, · · · , xt} from τ to t, and for
simplicity let xt = xt0. We use ′ to denote matrix transpose.
The `∞ norm of a sequence x is defined as ‖x‖∞ := supt |xt|.
We use f(x) to denote the probability density function of
a random variable x, and f(x|y) to denote the conditional
probability density function of a random variable x given y.

The rest of this paper is organized as follows. Section II
describes the system model, as well as summarizes the ex-
isting result on the `∞ control. Section III present the LQ
control design and its analysis. Section IV presents the hybrid
controller and its analysis. Section V concludes the paper.

II. SYSTEM MODEL

Consider a feedback dynamical system with delay and rate
constrained communications between the observer and the
controller as shown in Fig. 1. The plant follows the discrete-
time dynamics:

xt+1 = Axt + ut + wt, (1)

where xt ∈ R is the state, A ∈ R is the dynamics constant,
wt ∈ R is the disturbance, and ut ∈ R is the control action at
time t. The system starts at time t = 0, and without loss of
generality, we assume the initial condition x0 = 0 and wt = 0
for t < 0.

Fig. 1: The system model.

The communication channel between the observer and the
controller is characterized by a finite constant delay d and
a finite constant bandwidth R, with R > log2 |A| to ensure
stability [19]. Associated with the observer is an encoder that
at time t ≥ 0 is defined by a mapping Et from the available
information It = {{xτ}τ=0,...,t, {wτ}τ=0,...,t−1} to a proper
codeword st, i.e.,

st = Et(It) ∈ S, t ≥ 0, (2)

where the set S of codewords has cardinality of at most 2R.
Associated with the controller is a decoder that at time t+ d
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recovers the information on state and disturbance upon the
delayed information Jt = {sτ}τ=0,...,t. The controller will
decide the control action ut+d at time t+ d based on Jt. The
decoder and controller can be jointly defined by a mapping
Dt:

ut =

{
0, t < d,

Dt(Jt−d), t ≥ d, (3)

where no control action is taken before time d, i.e., Dt = 0
for t < d. We may loosely refer to Dt as decoder, controller
or decoder-controller, whichever is more convenient in the
relevant context.

Let K := {(E0, D0), (E1, D1), · · · , (Et, Dt), · · · }, which
we also broadly call the controller, and denote by K(R, d)
the space of such controllers with delay d and bandwidth
R. The design goal for the controller is to achieve a good
performance (small state deviation under disturbance) with
small control effort (small actuation, small computation time,
and low memory usage), which can be quantified in terms of
‖x‖, ‖u‖ for certain norm ‖ · ‖ and by the functional form of
(Et, Dt).

A. The `∞ System

In this subsection, we summarize the existing robust control
theory for the `∞ system with delay and quantization [2] [3],
where the design objective is to minimize maxw ‖x‖∞. For
disturbance with bounded support ‖w‖∞ ≤ L and stabilizing
bandwidth R > log2 |A|, the optimal performance is given by:

max
‖w‖∞≤L

‖x‖∞ =

{
d∑
i=0

|Ai|+ |Ad+1|
(2R − |A|)−1

}
L. (4)

Let Ψ(L) :=
{
|Ad+2|(2R − |A|)−1 + |Ad+1|

}
L. The optimal

performance is achieved by the `∞ controller as shown in
Algorithm 1. In Algorithm 1, Ql : R→ SR denotes a uniform
quantizer of rate R (i.e., with |SR| = 2R levels) over the in-
terval [−l, l]. At time t, the encoder computes the quantization
error qt+d−1 expected at time t+d−1. The error qt+d−1 plus
the impact of new disturbance Adwt−1 is quantized/encoded,
and then received at the decoder after a communication delay
of d. Because of the delay, the information computed and sent
at the encoder at time t is for computing the control action that
will be actuated at time t+ d. See also [46] for the extension
of Algorithm 1 to the MIMO system.

Algorithm 1: The `∞ controller.

Encoder at t: u∗t+d−1 = −Azt+d−1

qt+d−1 = ut+d−1 − u∗t+d−1

zt+d = Adwt−1 + qt+d−1

st = QΨ(L)/A(zt+d)

Decoder at t: ut = −AQ−1
Ψ(L)/A(st−d) if t ≥ d

ut = 0 otherwise

The advantage of the `∞ controller is that it requires little
computation and storage: the encoder only needs to store the

last codeword and perform minimum computation, and the
decoder is static and memoryless. In addition, this controller
requires minimum actuation effort when |A| ≥ 1: the stabiliz-
ing control law that minimizes max‖w‖∞≤1 ‖u‖∞ is identical
to the above control law, which minimizes max‖w‖∞≤1 ‖x‖∞.
However, the low complexity of the `∞ controller does not
come for free. As the saturation level of the quantizer in
Algorithm 1 is fixed, for a disturbance with unbounded support
there is always a nonzero probability of large disturbance
that makes the quantizer saturated. In such a situation, the
quantization error in control can accumulate and keep increas-
ing, rendering the system unstable. In the next section, we
will consider the LQ controller that can better handle large
disturbance.

III. THE LINEAR QUADRATIC SYSTEM

In this section, we study the robust control problem for the
linear quadratic (LQ) system with delay and quantization. The
disturbance wt, t ≥ 0 is assumed to be i.i.d. Gaussian with
zero mean and variance σ2, i.e., wt

i.i.d.∼ N (0, σ2). The control
objective is to minimize an average cost subject to the plant
dynamics (1):

minimize
K∈K(R,d)

lim
N→∞

1

N
E

[
Px2

N +

N−1∑
t=0

(Px2
t +Qu2

t )

]
, (5)

where P ≥ 0 and Q ≥ 0 balance the cost of state deviation and
control action. We will first characterize the optimal controller
structure and performance limit of problem (5), and then
propose a near-optimal controller accordingly.

A. Optimal Controller Structure and Performance Bound

We consider an iterative process of optimizing controller for
a fixed encoder, then optimizing encoder for a fixed controller,
and so on [4]. To optimize controller for a fixed encoder, we
first notice that, by Lemma 1 in the Appendix A, given any
encoding scheme {Et}, the optimal decoder-controller Dt for
(5) has the following structure:

ut = Lt E[zt|st−d], (6)

where zt is defined by the recursion

zt+1 = Azt +Adwt−d + ut, z0 = 0, (7)

and
Lt = −(Q+ Pt+1)−1Pt+1A (8)

with Pt defined by the recursion

PN = P,

Pt =
[
Pt+1 + P − (Q+ Pt+1)−1P 2

t+1

]
A2.

(9)

The optimal controller structure (6) (i.e., (28) in the Appendix
A) is an extension of certainty equivalence (see [6], [22] for
its definition and extension to quantized systems) to systems
with delay and quantization. The auxiliary sequence {zt} and
(6) together allow us to bound the objective value by studying
an estimation problem of a Gauss-Markov source and an LQ
control problem of a fully observed system. We have the
following lower bound on the theoretically optimal LQ cost.
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Theorem 1: The optimal performance of the robust control
problem (5) is bounded below as follows:

lim
N→∞

1

N
E

[
Px2

N +
N−1∑
t=0

(Px2
t +Qu2

t )

]

≥ P
d−1∑
i=0

A2iσ2 + P ?A2dσ2 +G?A2d σ2

22R −A2
, (10)

where P ? and G? are the unique solution to the equations:

P ? =
[
P ? + P − (Q+ P ?)−1P ?2

]
A2,

G? = P ?A2 + P − P ?.
(11)

Proof: The derivation of the lower bound (10) uses the
method developed in [4]–[7]. See Appendix B for the proof.

When there is no communication delay, i.e., d = 0, the
lower bound (10) reduces to the results of [6], [26]. The
first and second terms in the lower bound, P

∑d−1
i=0 A

2iσ2 +
P ?A2dσ2, are due to delay in control action because of
communication delay, while the third term G?A2d σ2

22R−A2 is
mainly due to limited data rate. Moreover, if the decoder-
controller has the structure (6), the first two terms are tight in
the sense that the lower bound for the cost due to delay (i.e.,
the first two terms) equals to the actual cost due to delay. This
fact can be observed from the proof of Theorem 1.

B. The LQ Controller

Based on the optimal decoder-controller structure (6), we
propose a controller, referred to as the LQ controller, in
Algorithm 2. The encoder and decoder in Algorithm 2 use
an adaptive quantizer generated by the Lloyd algorithm [4],
[47], [48] and estimate zt using recursive Bayesian estimation.
The encoder computes the prior density function1

f(zt|st−d−1)=

∫ ∞
−∞

f(zt, zt−1|st−d−1)dzt−1 (12)

=

∫ ∞
−∞

f(zt|zt−1, s
t−d−1)f(zt−1|st−d−1)dzt−1,

where f(zt|zt−1, s
t−d−1) can be computed by

f(zt|zt−1, s
t−d−1) = f(zt|zt−1)

= f(Azt−1 +Adwt−d−1 + ut−1|zt−1).

Then, f(zt|st−d−1) is used to run the Lloyd algorithm [4],
[47], [48] to find a quantizer Qt that maps zt to st. Given
the received codeword st−d at the decoder, the update process
computes the posterior density function

f(zt|st−d) =
f(zt, st−d|st−d−1)

f(st−d|st−d−1)
(13)

=
f(zt|st−d−1)f(st−d|zt, st−d−1)

f(st−d|st−d−1)

∝ f(zt|st−d−1)f(st−d|zt, st−d−1),

1With a slight abuse of notation, we use f(x|y) to denote both the
probability density function of a random variable x conditioned on another
random variable y and the function that is computed by the controller to
approximate the actual density function.

where f(zt|st−d−1) is the prior density function computed in
(12), and f(st−d|zt, st−d−1) is determined by the quantizer
Qt. Finally, f(zt|st−d) is used to generate an estimate of zt
as follows:

ẑt = E[zt|st−d] =

∫ ∞
−∞

ztf(zt|st−d)dzt. (14)

Algorithm 2: The LQ controller
Initialize:

1) Compute f(zd|s0) = N (0, σ2).
2) Set zd = 0, u0 = 0.

Encoder: At time t, the encoder performs the
following procedures:
1) Update the auxiliary variable (7).
2) Generate the prior density function by (12).
3) Run the Lloyd algorithm to obtain Qt.
4) Send the codeword st = Qt(zt) to the decoder.
5) Generate the posterior density function by (13).

Decoder: At time t, the decoder receives the codeword
st−d that was generated d sampling intervals before,
and performs the following procedures:

1) Compute the prior density function by (12).
2) Run the Lloyd algorithm to recover Qt.
3) Use the delayed codeword st−d to generate the

posterior density function by (13).
4) Calculate the estimate ẑt of zt by (14).
5) Compute the control action:

ut = −(Q+ P ∗)−1P ∗A ẑt. (15)

The proposed LQ controller may not be optimal, but can
be shown to achieve near optimal performance by comparing
with the lower bound (10) of the optimal performance. As
mentioned in the above, the first two terms of the lower bound
are tight for any delay d if the decoder-controller has the
structure (6), which is the case for the proposed LQ controller.
Thus, the performance gap to the lower bound reduces mostly
to the difference between the achievable G∗(zt− ẑt)2 and the
lower bound of E[G∗(zt − ẑt)2]. Fig. 2 shows a comparison
between the LQ controller and the lower bound. We see that
the LQ controller achieves near optimal performance when
the bandwidth R is large enough. We have also studied the
performance of Algorithm 2 analytically, and the detail is
presented in [42], [43].

The Gaussian distribution has infinite support, i.e., the
LQ controller can handle large disturbance, as opposed to
the `∞ controller that can only handle bounded disturbance.
However, the LQ controller is demanding in both computation
and memory, due to the use of an adaptive quantizer that is
necessary for stabilizing an unstable system if the disturbance
has an infinite support [17].

IV. A HYBRID CONTROLLER

We have seen from the previous sections that the `∞
controller has low time and space complexity but can only
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Fig. 2: The achievable performance of the LQ controller versus
the lower bound (10) on the optimal performance for the
system with A = 1, d = 0, and σ2 = 1.

handle bounded disturbance, while the LQ controller can reject
arbitrarily large disturbance but incurs much higher time and
space complexity. An interesting question that arises from
these differences is if it is possible to design a controller that
has the advantages of both controllers. In this section, we take
a hybrid approach to design such a controller.

Specifically, we assume that the typical disturbance is
relatively small and covered by a bounded set, while the large
disturbance (outside of the bounded set) is rare event that
has a (tail) Gaussian distribution. Under this assumption, we
construct a hybrid controller that interpolates between the `∞
controller and the LQ controller when there is no cost in the
control action (Q = 0 in problem (5)). Using analytical bounds
and complementary numerical experiments, we show that the
hybrid controller can achieve a sweet spot in the robustnes-
complexity tradeoff, i.e., reject occasional large disturbance
while operate with low complexity most of the time.

A. The Hybrid Controller

In order for the `∞ and LQ controllers to be considered
in a unified framework, we assume that the LQ cost function
has no cost in the control action, i.e., Q = 0 in problem (5),
yielding the optimal LQ controller

ut = −Aẑt (16)

to replace (15) in Algorithm 2. The proposed hybrid controller
has two modes: normal mode that runs the `∞ controller
(Algorithm 1) and acute mode that runs the LQ controller
(Algorithm 2). We now explain the switching policy between
the `∞ and LQ controllers using a bridging variable zt and
a design parameter L. Notice that the sequences {zt} in the
`∞ and LQ controllers have identical role (storing the sum of
the quantization error from past control action and the scaled
disturbance Adwt−d−1), and thus can serve as a bridging
variable to connect the two controllers. Re-define the sequence
{qt} as

qt+1 = Aqt + ut +Ad+1wt−d−1 (17)

with wt = 0 for t < 0. The definition (17) does not rely on the
particular realization of the controller, so qt is well-defined in
both Algorithms 1 and 2. Using qt, zt can be written as

zt = Adwt−d−1 + qt (18)

Algorithm 3: The hybrid controller
Initialize: mode← ‘normal′

Ψ(L)← {|Ad+2|(2R − |A|)−1 + |Ad+1|}L
for t ∈ N do

if mode = ‘normal’ then
Perform the `∞ controller (Algorithm 1)
if |zt| > Ψ(L)/A then

mode← ‘acute′

end
else

Perform the LQ controller (Algorithm 2)
if |zt| ≤ Ψ(L)/A then

mode← ‘normal′

end
end

end

with the zt = 0 for t ≤ d. Thus, zt in Algorithm 2 satisfies

zt+1 = Azt +Adwt−d + ut

= Adwt−d +Aqt + ut +Ad+1wt−d−1

= Adwt−d + qt+1, (19)

where the first equality follows form (7), the second equality
from (18), and the third equality from (17). Therefore, zt takes
the same value in both Algorithms 1 and 2. The proposed
controller sets a threshold on the absolute value of zt to
determine whether the `∞ controller or the LQ controller
should be used.

Let the design parameter L ∈ R be the size of the
disturbance up to which the controller stays in normal mode,
i.e., normal mode when ‖w‖∞ ≤ L. From the derivation
for its performance [3], Algorithm 1 can be shown to satisfy
|zt| = |Adwt−d−1 + qt| ≤ Ψ(L)/A when ‖wt−d−1

0 ‖∞ ≤ L.
Conversely, |zt| > Ψ(L)/A implies |wτ | > L for some
τ ≤ t− d− 1. Thus, the condition

|zt| > Ψ(L)/A (20)

is a sufficient condition for ‖wt−d−1
0 ‖∞ > L. We use this

sufficient condition to define the switching policy as follows:

mode =

{
‘normal′ |zt| ≤ Ψ(L)/A,

‘acute′ |zt| > Ψ(L)/A.
(21)

The proposed hybrid controller is described in Algorithm 3.
The design parameter L impacts the system performance

and controller complexity, and there exists a tradeoff between
the two. We will next discuss its choice and the resulting
performance and complexity tradeoff.

B. Switching Behavior

In this subsection, we analyze the behavior of the hybrid
controller using the switching time from normal to acute mode
and the recovery time from acute to normal mode. We denote
the set of times at which the controller switches from normal
to acute mode as

Ts = {t ∈ N : |zt| > Ψ(L)/A & |zt−1| ≤ Ψ(L)/A},
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and the set of time at which the controller switches from acute
to normal mode as

Tr = {t ∈ N : |zt| ≤ Ψ(L)/A & |zt−1| > Ψ(L)/A}.

Let tr ∈ {0} ∪ Tr be the beginning of a normal mode, the
switching time Ts is defined as

Ts(tr) = min{t > tr : |zt| > Ψ(L)/A} − tr. (22)

Let ts ∈ Ts be the beginning of an acute mode, the recovery
time Tr is similarly defined as

Tr(ts) = min{t > ts : |zt| ≤ Ψ(L)/A} − ts. (23)

Long switching time and short recovery time imply that
the controller stays in normal mode most of the time, and
thus requires less computation and memory. Therefore, the
controller complexity can be roughly characterized by the time
of operating in acute mode.

Let a random variable w be drawn from the same distri-
bution with the disturbance wt, i.e., w i.i.d.∼ N (0, σ). The
following result characterizes the relation between the design
parameter L and the expected switching time E[Ts(tr)].

Theorem 2: Define a mappng T̂s : R→ R+

T̂s(tr) =

{
d+ P(|w| > L)−1 tr = 0,

P(|w| > L)−1 tr ∈ Tr.

The expected switching time Ts(tr) is lower bounded by

E[Ts(tr)] ≥ T̂s(tr), (24)

and the lower bound becomes tight as the bandwidth R→∞.
Theorem 2 suggests that the expected switching time can

be approximated by E[Ts(tr)] ≈ T̂s(tr). To prove (24),
we first decompose E[Ts(tr)] into the weighted sum of the
probabilities of controller switching at time k = 1, 2, · · · .
However, these probabilities are difficult to compute analyti-
cally. In order to circumvent this difficulty, we use tools from
majorization (see [49], [50]) to bound their aggregate values
by the weighted sum of the probabilities of disturbance wt
exceeding certain threshold, which can be easily computed.
Finally, we observe that, interestingly, the weighted sum
follows a geometric distribution which allows us to obtain
semi-analytical solution. The detailed proof of Theorem 2 can
be found in Appendix C.2

Similarly, the expected recovery time Tr(·) can be approx-
imated by

E[Tr(·)] ≈ T̂r = P(|w| ≤ L)−1. (25)

Recall from (19) that the evolution of zt follows zt+1 =
Adwt−d + qt+1 where qt+1 is a function of zt. Assuming
the quantizer (defined from the encoder and decoder) is near-
optimal, a large zts at the beginning of the an acute mode is
approximately reduced by rate |A|2−R per unit time and by
|Aτ |2−τR after τ times. Thus, for sufficiently large |A|2−R,
the term Adwt−d in (19) dominates. In this situation, observing
a small disturbance, i.e., |wt−d| ≤ L, is enough to lessen the

2To the best of our knowledge, our use of majorization to derive a semi-
closed-form bound for system performance is new and not seen in the existing
literature.
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Fig. 3: The accuracy of the theoretical approximations (24) of
the switching time and (25) of the recovery time for a system
with A = 1 and d = 1. The empirical values of Ts and Tr are
first generated by averaging 100 trials for different values of
L ∈ [0.1, 2] and R ∈ {1, 2, · · · , 9}. Then, the approximation
errors |Ts − T̂s| and |Tr − T̂r| are averaged over all L, and
their mean values are plotted for different values of R.

value of zt below Ψ(L)/A. This explains why the recovery
time can be approximated by a geometric distribution with
success probability P(|wt| ≤ L).

Fig. 3 shows a comparison between the empirical value
of the expected switching time Ts(0) and the theoretical
approximation T̂s(0) and between the empirical value of the
expected recovery time Tr(·) and the theoretical approximation
T̂r. We see that the approximation becomes tight when the
bandwidth R is large enough.

C. The Performance versus Complexity Tradeoff

The above theoretical approximations suggest that, for suf-
ficiently large bandwidth (|A|2−R � 1), a greater L implies
larger switching time (from E[Ts(tr)] ≈ T̂s(tr) = P(|wt| >
L)−1) and smaller recovery time (from E[Tr(ts)] ≈ T̂r(ts) =
P(|wt| ≤ L)−1). This can be empirically verified; see, e.g.,
Fig. 4. Since the switching (recovery) time is an increasing
(decreasing) function of L, the complexity of the hybrid
controller decreases as L increases.

On the other hand, the decrease in controller complexity
comes with cost of degraded performance because a larger
L also implies a coarser quantizer in Algorithm 1 (and thus
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Fig. 4: The switching and recovery times as a function of L
for a system with A = 1, d = 1, and R = 6. The averages
over 100 trials are plotted for the empirical values.

larger quantization error). Specifically, in normal mode,

|xt| ≤

(
d∑
i=0

|Ai|+ |Ad+1|(2R − |A|)−1

)
L. (26)

So, the worst-case `∞ cost in normal model is an increasing
function of L, and a smaller L leads to better performance.

Therefore, there is a tradeoff between performance and
complexity, as shown in, e.g., Fig. 5. Fig. 5 (and other
numerical experiments) also shows that significant increase
(decrease) in switching (recovery) time can be achieved with
small performance degradation (notice that the vertical axes
are in log-scale).

D. Performance under Mixed Disturbance

We now take a look at the performance of the proposed
controllers (Algorithms 1-3) under the mixed disturbance:

wt = vt + rt (27)

with vt
i.i.d.∼ N (0, σ2

v) and ‖r‖∞ ≤ 1. We use this type
of structured disturbance to model the common situation
where the system experiences bounded disturbance most of
the time and large disturbance occasionally (i.e., with small
probability).

For a feedback system with perfect communications, the op-
timal `∞ controller and LQ controller for the scalar system (1)
are identical when the control cost is not considered. However,
with communication constraints, the optimal `∞ controller
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Fig. 5: The tradeoff between performance (horizontal axes)
and complexity (vertical axes) for a system with A = 1
and (d,R) = {(1, 1), (2, 2), (3, 3)}. The system performance
is quantified by the size of the error at normal mode (the
`∞ cost). The complexity for running the hybrid controller
increases as the switching time (duration of staying at normal
mode) decreases and/or as the recovery time (time taken to
return to normal mode) increases.

and LQ controller are radically different, and the mixed
disturbance poses significant challenge in encoding/decoding
strategies as the system state can be defined neither in a worst-
case framework nor in a stochastic framework.

The `∞ controller cannot stabilize such systems because
there is a non-zero probability for the fixed quantizer to satu-
rate. The performance of the LQ controller and the proposed
hybrid controller is compared in Fig. 6. The LQ controller
has degraded performance when there exists an additional
disturbance r that cannot be well-defined using probability
density function. However, the proposed hybrid controller
consistently achieves robust performance under such distur-
bance. By exploiting the additional dimension in the controller
design space, the right inegration of stochastic (LQ) and worst-
case (`∞) enables a robust controller under communication
constraints.

V. CONCLUSSION

We have considered robust control design for linear systems
with delayed and rate constrained communications between
the observer and the controller. We first take a stochastic ap-
proach and propose an LQ controller that can handle arbitrarily
large disturbance but has large complexity in time and space.
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Fig. 6: Performance of the hybrid controller. The figure
on the top shows the tradeoff between the normal mode
performance (in the `∞ cost) and the approximated acute
mode ratio T̂r/(T̂r + T̂s) for a system with A = 1 and
(d,R) = {(1, 1), (2, 2), (3, 3)}. The figure on the bottom
shows the performance (in the LQ cost) for a system with
A = 1, d = 1, R = 3 and under the mixed disturbance with
different variances σ2

v . The averaged LQ costs for 100 trials
are plotted.

This is different from the `∞ control (a deterministic ap-
proach) that previous work have shown to have low time/space
complexity but can only handle bounded disturbance. The
differences in robustness and complexity of the LQ and `∞
controllers motivate the design of a hybrid controller that
interpolates between the two: The `∞ controller is applied
when the disturbance is not too large (normal mode) and the
LQ controller is resorted to otherwise (acute mode). We have
characterized the switching time from and the recovery time to
the normal mode. Our theoretical bounds and supplementary
numerical experiments show that the hybrid controller can
achieve a sweet spot in the robustness-complexity tradeoff,
i.e., reject occasional large disturbance while operating with
low complexity most of the time.
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VII. APPENDIX

In this section, we provide the proofs for the main results
in the paper.

A. Lemma 1

The following lemma characterizes the structure of the
optimal controller for problem (5).

Lemma 1: Consider system (1) and robust control problem
(5). Given any fixed encoding scheme {Et}, the optimal
decoder-controller Dt has the following structure:

ut = Lt E[zt|st−d], (28)

where zt is defined by the recursion

zt+1 = Azt +Adwt−d + ut, z0 = 0, (29)

and
Lt = − Pt+1A

Q+ Pt+1
, (30)

with Pt defined by the recursion

PN = P,

Pt =

(
Pt+1 + P −

P 2
t+1

Q+ Pt+1

)
A2.

(31)

We first present a result that will be used in the proof of
Lemma 1. Define

et = wt−1 +Awt−2 + · · ·+Ad−1wt−d, (32)
zt = xt − et, (33)

where et captures the component in the state xt that results
from the disturbance wt−1

t−d and cannot be mitigated due to
the delay in control, while zt depends on the information of
wt−d−1

0 and the control action in response to it. Obviously, zt
and et are independent. Moreover, E[et] = 0, and zt satisfies
equation (29), restated below

zt+1 = Azt +Adwt−d + ut, z0 = 0.

In order to decompose the effects of control action and
disturbance, we define z̄t to be the state zt that would be
generated at time t when the system (1) has zero control
ut ≡ 0. Setting ut = 0 in the above equation, we obtain

z̄t+1 = Az̄t +Adwt−d, z̄0 = 0. (34)

Recall that {st} is the codewords generated by {zt}. We
introduce an auxiliary encoder

f(s̄t−d|z̄t, s̄t−d−1) = f(st−d|z̄t, st−d−1) (35)

to generate another sequence of codewords {s̄t}.
Lemma 2: The following relation holds:

zt − E[zt|st−d] = z̄t − E[z̄t|s̄t−d].

Proof: (Lemma 2) We first use mathematical induction to
show

f(st−d, z̄t) = f(s̄t−d, z̄t). (36)
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Obviously, (36) holds at t = 0. If (36) holds until t, then (36)
also holds for t+ 1 because

f(s̄t−d+1, z̄t+1)

=f(s̄t−d, z̄t)f(z̄t+1|s̄t−d, z̄t)f(s̄t−d+1|s̄t−d, z̄t+1)

=f(st−d, z̄t)f(z̄t+1|st−d, z̄t)f(st−d+1|st−d, z̄t+1)

=f(st−d+1, z̄t+1),

where the second equality is due to construction (35), the
induction hypothesis (36), and the fact that f(z̄t+1|s̄t−d, z̄t) =
f(z̄t+1|z̄t) = f(z̄t+1|st−d, z̄t). By (36), we obtain

E[zt|st−d] = E

[
z̄t +

t∑
k=1

Ak−1ut−k

∣∣∣st−d]

= E[z̄t|st−d] +
t∑

k=1

Ak−1ut−k

= E[z̄t|s̄t−d] +
t∑

k=1

Ak−1ut−k,

and thus

zt − E[zt|st−d]

=z̄t +
t∑

k=1

Ak−1ut−k −

(
E[z̄t|s̄t−d] +

t∑
k=1

Ak−1ut−k

)
=z̄t − E[z̄t|s̄t−d].

Lemma 2 implies that we can negate all the effect of the
control action to obtain z̄t. Intuitively, this is because ut0
is generated from st−d. This separation allows us to prove
Lemma 1.

Proof: (Lemma 1) Consider the cost-to-go:

Jt(s
t−d) = E

[
Px2

N +
N−1∑
τ=t

Px2
τ +Qu2

τ

∣∣∣st−d] (37)

for any k < N and JN = E[Px2
N ]. We use mathematical

induction to show the following properties:
(i) The optimal cost-to-go satisfies

Jt(s
t−d) = E

[
Ptẑ

2
t |st−d

]
+ αt(s

t−d), (38)

where ẑt = E[zt|st−d] and αt(s
t−d) is a function of

st−d whose expected value does not depend on the
choice of control action, i.e.,

E
[
αt(s

t−d)
]

= E
[
αt(s̄

t−d)
]
. (39)

(ii) The optimal controller admits the form (28).
At t = N , the cost-to-go satisfies

JN = E[Px2
N |sN−d]

= E[P (ẑN + z̃N + eN )2|sN−d]
= E[P ẑ2

N |sN−d] + E[P z̃2
N |sN−d] + E[Pe2

N ],

where z̃t := zt − ẑt, and the last equality holds because eN ,
ẑN and z̃N are uncorrelated and eN is independent of sN−d.
By Lemma 2, E[P z̃2

N |sN−d] does not depend on the choice of

control action. Letting αN = E[P z̃2
N |sN−d]+E[PNe

2
N ] yields

(38) for t = N .
Assume now that (38) holds for t = k + 1. The optimal

cost-to-go at time t = k can be derived as follows:

Jk(sk−d)

= minuk
E[Px2

k +Qu2
k + Jk+1|sk−d] (40)

= minuk
E[Px2

k +Qu2
k

+ E
[
Pk+1ẑ

2
k+1|sk−d+1

]
+ αk+1|sk−d]

= minuk
E[(P + Pk+1A

2)ẑ2
k + (Q+ Pk+1)u2

k

+ Pk+1Aukẑk +APk+1ẑkuk|sk−d] (41)

+ E[Pe2
k + Pk+1ŵ

2
k + P z̃2

k|sk−d]
+ E[αk+1(sk−d+1)|sk−d],

where ŵk = E[Adwk−d +Az̃k|sk−d+1], and by induction hy-
pothesis the second equality holds. By Lemma 2 and induction
hypothesis, Pe2

k + Pk+1ŵ
2
k + P z̃2

k does not depend on the
control action ut. Therefore, we can just consider minimizing
the first term (41). The control action that minimizes this term
is given by (28), i.e.,

uk = − Pk+1A

Q+ Pk+1
ẑk,

where

Pk =

(
Pk+1 + P −

P 2
k+1

Q+ Pk+1

)
A2.

Substituting this control action uk into Jk, we obtain the
optimal cost-to-go

Jk(sk−d) = E
[
Pkẑ

2
k|sk−d

]
+ αk(sk−d)

with

αk(sk−d) = E[Pe2
k + Pk+1ŵ

2
k + P z̃2

k + αk+1

∣∣sk−d]
= E[Pe2

k + Pk+1A
2z̃2
t + Pk+1A

2dw2
t−d

− Pk+1z̃
2
t+1 + P z̃2

k + αk+1(sk−d+1)|sk−d], (42)

where the second equality is obtained as follows. Given sk−d,
the random variable ŵk is the estimate of Adwk−d + Az̃k
given sk−d+1, and the random variable z̃k+1 is the resulting
estimation error, i.e.,

ŵk + z̃′k+1 = Adwk−d +Az̃k. (43)

Therefore, the weighted covariance of the estimation target
equals the sum of the weighted estimation error covariance
and the weighted estimate covariance

E[Pk+1(Adwk−d +Az̃k)2|sk−d]
= E[z̃2

k+1|sk−d] + E[Pk+1ŵ
2
k|sk−d]

Combining above with

E[Pk+1(Adwk−d +Az̃k)2|sk−d]
= E[Pk+1A

2z̃2
t + Pk+1A

2dw2
k−d|sk−d]

yields (42). By Lemma 2 and the induction hypothesis
E[αk+1|sk−d] = E[αk+1|s̄k−d], αk does not depend on the
choice of control action. So, equation (38) holds for t = k.
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From the proof of Lemma 1, we can observe that, given
any encoder, the optimal decoder are essentially the optimal
LQ controller for the sequence ẑt, which evolves according to
the dynamics

ẑt+1 = Aẑt + ut + ŵt. (44)

In other words, the optimal decoder are the certainty equivalent
controller for the sequence zt, the estimation target of ẑt.
When there is no delay in the control action, i.e., d = 0,
then this optimal decoder reduces to the certainty equivalent
controller for xt, as is given by [6].

B. Proof of Theorem 1

We first describe a result that will be used later.
Lemma 3 ( [6], [8]): Consider a scalar Gauss-Markov

sequence {yt} satisfying

yt+1 = Ayt + vt, y0 = 0, (45)

where A ∈ R, yt ∈ R, and vt
i.i.d.∼ N (0, σ2). Assume that

at each time t, only R(> log2 |A|) bits of information about
yt can be transmitted to st ∈ S, where |S| = 2R and st is a
function of (yt, st−1). Let ŷt be an estimate of yt using only
the information of st. Then, the following inequality holds:

lim
t→∞

1

N
E

[
N∑
t=1

(yt − ŷt)2

]
≥ σ2

22R −A2
.

With Lemmas 1 and 3, we are ready to prove Theorem 1.
Proof: (Theorem 1) By equation (38),3

lim
t→∞

E[Px2
t +Qu2

t ]

= lim
N→∞

1

N
E

[
Px2

N +
N−1∑
t=0

Px2
t +Qu2

t

]
= lim

N→∞

1

N
E[J1]

= lim
N→∞

1

N
E[Jd(s

0)]

= lim
N→∞

1

N
E
[
E
[
Pdẑ

2
d|s0

]
+ αd(s

0)
]

= lim
N→∞

1

N
E
[
αd(s

0)
]

Next we observe that E[αt] satisfies the relation

E[αk(sk−d)] (46)

=E[E[αk+1(sk−d+1) + Pe2
k + Pk+1A

2dw2
k−d (47)

+ (Pk+1A
2 + P )z̃2

k − Pk+1z̃
2
k+1|sk−d]]

=E[αk+1(sk−d+1)] + E[Pe2
k + Pk+1A

2dw2
k−d (48)

+ (Pk+1A
2 + P )z̃2

k − Pk+1z̃
2
k+1] (49)

=E[αN (sN−d)] +
N−1∑
τ=k

E
[
Pe2

τ + Pτ+1A
2dw2

τ−d (50)

+ (Pτ+1A
2 + P )z̃2

τ − Pτ+1z̃
2
τ+1

]
(51)

3With a slight abuse of notation, we use J1 without the conditioning of the
sequence st because it is purely determined from the initial condition.

Because the system is controllable, the Riccati difference equa-
tion (11) has a unique solution P ?, and limN→∞ PN = P ?.
Therefore, we have

lim
N→∞

1

N

N−1∑
τ=d

E[Pτ+1A
2dw2

τ−d] = P ?A2dσ2 (52)

and

lim
N→∞

1

N

N−1∑
τ=d

E[(Pk+1A
2 + P − Pk+1)z̃2

t ] (53)

= lim
N→∞

1

N

N−1∑
t=1

E[(P ?A2 + P − P ?)z̃2
t ]. (54)

Combining (46)–(50) and (52)–(54), we obtain that

lim
N→∞

1

N
E[αd(s

0)]

= P (1 +A2 +A4 + · · ·+A2(d−1))σ2 + P ?A2dσ2

+ lim
N→∞

1

N

N−1∑
t=1

E[(Pk+1A
2 + P − Pk+1)z̃2

t ]

= P
d−1∑
i=0

A2iσ2 + P ?A2dσ2

+ lim
N→∞

1

N

N−1∑
t=1

E[(P ?A2 + P − P ?)z̃2
t ].

When xt ∈ R, from Lemma 3, the second term is lower
bounded by

E[G?(z̄t − E[z̄t|s̄t−d])2] ≥ G?A2d σ2

22R −A2

Therefore, we have obtained (1).

C. Proof of Theorem 2

Proof: (Theorem 2) We first prove the lower bound for
tr = 0. Let {Ek} be the event that the controller switches at
time k, i.e.,

Ek = {|zt| ≤ Ψ(L)/A for all t < k and |zk| > Ψ(L)/A}.

Notice that {Ek} a sequence of a mutually exclusive set of
events, and that P(Ek) = 0 for k ≤ d (since zt = 0 for t ≤ d
by definition). Let {Fk} be the event that the disturbance first
exceeds L in amplitude at time k, i.e.,

Fk = {|wt| ≤ L for all t < k and |wk| > L}.

The sequence {Ek} is a mutually exclusive set of events,
and limτ→∞

∑τ
i=0 P(Ei) = 1. Same holds for {Fk}, i.e.,

limτ→∞
∑τ
i=0 P(Fi) = 1. From ∪i≥kEi ⊂ ∪i≥kFi, we obtain

∞∑
i=k−d−1

P(Fi) ≤
∞∑
i=k

P(Ei) (55)
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for any k ∈ N. Using (55), the expected switching time can
be bounded below by

E[Ts(0)] =
∞∑
k=0

k P(Ek)

=
∞∑
k=0

k P(Ek)−
∞∑
k=0

k P(Ek+d) +
∞∑
k=0

k P(Ek+d)

= d+
∞∑
k=0

k P(Ek+d)

= d+
∞∑
k=1

∞∑
i=k

P(Ei+d)

≥ d+
∞∑
k=1

∞∑
i=k

P(Fi−1)

= d+
∞∑
k=1

k P(Fk−1)

= d+

∞∑
k=1

k
(
1− P(|w| > L)

)k−1P(|w| > L)

= d+ P(|w| > L)−1,

where the last equality can be interpreted as computing the
mean of a geometric distribution with failure probability
P(|w| > L).

Next, notice that |zt| ≤ Ψ(L)/A and |wt−d| ≤ L implies
|zt+1| ≤ Ψ(L)/A. Thus, by the same argument, we obtain the
lower bound for tr ∈ Tr:

E[Ts(tr)] ≥ P(|w| > L)−1.

Next, we prove the convergence for tr = 0, i.e.,
E[Ts(0)]

R→∞→ d + P(|w| > L)−1. Since d +∑∞
k=1

∑∞
i=k P(Ei+d) ≥ d +

∑∞
k=1

∑∞
i=k P(Fi−1) is the

only inequality from the above analysis, it is suffice to show
that |

∑∞
k=1

∑∞
i=k P(Ei+d)−

∑∞
k=1

∑∞
i=k P(Fi−1)| → 0.

By ‖q‖∞
R→∞→ 0 and zt → Adwt−d−1, P(Ft−d−1)→ P(Et).

This implies that∣∣∣∣∣
∞∑

i=k−1

P(Fi−1)−
∞∑
i=k

P(Ei+d)

∣∣∣∣∣
=

∣∣∣∣∣
(

1−
k−2∑
i=0

P(Fi)

)
−

(
1−

k−1∑
i=0

P(Ei+d)

)∣∣∣∣∣
→ 0 as R→∞

holds for any k ∈ N. Since both
∑∞
k=1

∑∞
i=k P(Ei+d) and∑∞

k=1

∑∞
i=k P(Fi−1) are bounded, for any ε > 0 there exits

a sufficiently large T such that we have for any τ > T ,
∞∑
k=τ

∞∑
i=k

P(Ei+d) ≤ ε/4 and
∞∑
k=τ

∞∑
i=k

P(Fi−1) ≤ ε/4,

and sufficiently large R̄ such that R > R̄ implies
τ∑
k=1

∞∑
i=k

P(Ei+d) ≤ ε/4 and
τ∑
k=1

∞∑
i=k

P(Fi−1) ≤ ε/4,

which jointly yields∣∣∣∣∣
∞∑
k=1

∞∑
i=k

P(Ei+d)−
∞∑
k=1

∞∑
i=k

P(Fi−1)

∣∣∣∣∣ ≤ ε. (56)

The case for tr ∈ Tr follows the same argument and is omitted
here.
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