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Abstract— We present a simple model-free control algorithm
that is able to robustly learn and stabilize an unknown discrete-
time linear system with full control and state feedback subject
to arbitrary bounded disturbance and noise sequences. The
controller does not require any prior knowledge of the system
dynamics, disturbances or noise, yet can guarantee robust
stability, uniform asymptotic bounds and uniform worst-case
bounds on the state-deviation. Rather than the algorithm itself,
we would like to highlight the new approach taken towards
robust stability analysis which served as a key enabler in
providing the presented stability and performance guarantees.
We will conclude with simulation results that show that despite
the generality and simplicity, the controller demonstrates good
closed-loop performance.

I. INTRODUCTION

Learning to stabilize unknown dynamical systems from
online data has been an active research area in the control
community since the 1950’s [1] and has recently attracted
the attention of the machine learning community, foremost
in the context of reinforcement learning. Although there
has been extensive research on this topic, very few of the
developed algorithms have reached the level of adoption in
real world applications as one would expect. Particularly
in areas where frequent interaction with the physical world
is necessary, system failure is very costly and deployment
of control algorithms is only possible if the algorithm can
guarantee that minimal safety and performance specifications
will be met during operation. Although there has been past
research [3], [4] and recent research efforts [2], [5], [6], [7],
[8], [9] to address this problem, very few algorithms come
with the necessary performance and safety guarantees to be
deployed in real world applications thus far.
Classical control approaches are found in the literature
of adaptive control with [10], [11], [12] focusing on the
deterministic and [3] on the stochastic setting. The self-
tuning regulator and its variations come with asymptotic
optimality [13], yet robust stability guarantees without
restrictive assumptions are few and can only be made in
the probabilistic sense. On the deterministic side [10],
[11] point out that instabilities can occur with traditional
adaptive schemes and provide improved version of adaptive
controllers that come with robust stability and performance
guarantees. Yet, the desired guarantees depend on proper
tuning of parameters and other prior knowledge of the
system that might not be available in practice. Other
challenges associated with classical adaptive control
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approaches are discussed in [14], [15]. Methods in safe
reinforcement learning [2] like [7], [16], [17] can guarantee
robust safety properties for classes of nonlinear systems,
yet the synthesis procedures involved are computationally
intractable and they require knowledge of an initially robust
stabilizing controller. Recent work [6], [18], [5], [19], [8],
[9] has made significant progress in providing algorithms
with robust finite-time performance guarantees for the
adaptive linear quadratic gaussian regulator problem, with
[5] being the first tractable, single episodic algorithm that
provides sub-linear regret performance guarantees. However,
all the methods require that the uncertainty in the system
dynamics is small enough to begin with, or that it can be
estimated through experiments.

Motivated by the lack of deterministic safety guarantees
in current approaches, our work is focused on finding
tractable learning and control algorithms that can guarantee
robust stability uniformly over an as-large-as-possible class
of model uncertainties. Specifically, this paper is concerned
with adaptive stabilization of the following linear discrete-
time system

zk+1 = A0zk + uk + dk (1)
xk = zk + nk (2)

with state zk, bounded disturbance dk, bounded noise nk
and control action uk that is only allowed to depend on
noisy state measurements until time k, i.e: x0, . . . , xk.
Although (1) describes a small set of linear models, due to
the assumption of full state feedback and control, still all of
the previously mentioned approaches require knowledge of
bounds of varying precision on dk, nk and/or A0 in order
to state stability and performance guarantees.

In this paper we explore the problem from a convex
geometry perspective, which allows us to solve robust
adaptive stabilization of (1) in complete generality. To this
end, we will present a simple controller that can adaptively
stabilize (1) without any further assumptions on disturbance,
noise or the system matrix A0. The presented algorithm
performs tractable computations, does not require tuning and
guarantees uniform asymptotic guarantees and worst-case
guarantees on state-deviation. An additional surprising
feature of the presented algorithm is that it’s not based on
the well-known certainty-equivalence principle and has a
completely model-free formulation.
We would like to emphasize the convex geometry based
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techniques developed for our core stability analysis as they
do not rely on traditional Lyapunov-type arguments and
could potentially provide new tools for robust design and
analysis of learning and control algorithms.

Due to the limited space, most proofs and details will
be omitted here and interested readers are referred to the
extended version of this work found online.

II. NOTATION

Concatenation of variables will be extensively used in this
work and to shorten the notational burden, we will write Xi:j

to refer to the matrix [xi, xi+1, . . . , xj ] and if the second
index is dropped it is to be understood that j = 0, i.e. Xi :=
Xi:0. Moreover, sequences {xk} will be denoted by bold
lower case variables x. We will use the sans serif font to
stress that a variable S is a set. Furthermore, given a matrix
M ∈ Rn×H and set S in Rn, we will use the notation M ⊂ S
to express that all columns ci of the matrix M = c1:k belong
to the set S. Notice that this notation is unambiguous, since
the expression ⊂ between matrices and sets is otherwise not
defined.

III. PROBLEM STATEMENT AND PREVIEW
OF MAIN RESULT

Recall that our goal is to stabilize system (1) without any
knowledge of A0, dk, nk. More precisely, we will assume
that dk ∈ Sw, nk ∈ Sv , for some bounded but unknown sets
Sd and Sn.
In this paper, we will show that the following simple con-
troller

uk = (Uk−1 −Xk:1)λk−1(xk) (3)

where λk−1(xk) is the solution to the convex optimization
problem

min
λ

‖λ‖1
s.t. Xk−1λ = xk

(4)

always ensures a closed loop for which:

(i) the state x and input u are uniformly bounded.
(ii) an analytic upper-bound on the worst-case state-

deviation can be derived
(iii) eventual exponential convergence to a bounded limit

set is guaranteed

Remark III.1. We will define u0 := 0 and if Xk−1 is
rank deficient, we will replace xk in (4) by its orthogonal
projection x↓k onto the column space of Xk−1.

We will term the controller (3), (4) the causal cancellation
controller as it can be interpreted to cancel out the part
of the dynamics that can be inferred from all previously
collected observations xk:0. Next, we will introduce some
mathematical tools that are required for the derivations.

IV. MATHEMATICAL PRELIMINARIES

The presented results will make use of the interplay between
convex bodies and norms in Rn and the next section will
summarize some of the key mathematical concepts and
definitions necessary for the later derivations.

A. Symmetric Convex Bodies and Norms

Symmetric convex bodies and norms are equivalent in Rn,
in the sense that a unit norm ball K is a convex symmetric
body (Lem.IV.2) and that K induces the same norm through
(5) as described in (Lem.IV.1).

Definition IV.1 (Symmetric Convex Body). A set K ⊂ Rn is
a symmetric convex body if K is a closed, bounded convex
set with non-empty interior and z ∈ K⇔ −z ∈ K.

Lemma IV.1. For all convex bodies K ⊂ Rn, the following
function

‖x‖K := min {r ≥ 0 |x ∈ rK} (5)

is a norm in Rn.

Lemma IV.2. For any norm ‖.‖A in Rn, the corresponding
norm ball BA = {x |‖x‖A ≤ 1} is a symmetric convex body.

It is a known fact that norms are equivalent in finite dimen-
sional vector spaces and the following definition helps us
express this relationship explicitly.

Definition IV.2. Let K1 and K2 be symmetric convex bodies
in Rn, we will define the quantity ‖K1‖K2

as

‖K1‖K2
:= sup

z∈K1

‖z‖K2
= inf

K1⊂tK2, t≥0
t (6)

Lemma IV.3. Let K1 and K2 be symmetric convex bodies
in Rn, then their respective norms satisfy the following
inequality for all z:

1

‖K1‖K2

‖z‖K2
≤ ‖z‖K1

≤ ‖K2‖K1
‖z‖K2

(7)

Proof. The proof follows by homogeneity property of norms
and observing that z/ ‖z‖K2

∈ K2:

‖z‖K1
= ‖z‖K2

∥∥z/ ‖z‖K2

∥∥
K1
≤ ‖z‖K2

sup
z∈K2

‖z‖K1
(8)

Furthermore, we will frequently make use of the following
corollary:

Corollary IV.1. ‖K1‖K2
≤ 1⇔ K1 ⊂ K2 ⇒ ‖z‖K1

≥ ‖z‖K2

B. Representation Norm and Distance

The following functional (9) can easily be shown to be a
norm and will be useful in our derivations:

Definition IV.3 (Representation Norm). Let M ∈ Rn×N be
full rank then define ‖x‖M as the representation norm of
x w.r.t. to M , where ‖x‖M is the solution to the following
optimization problem

‖x‖M := inf ‖λ‖1
s.t. Mλ = x

. (9)
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We will refer to the corresponding unit ball as B(M) :=
{x |‖x‖M ≤ 1} and to λM (x) as the minimizer of the
problem (9).

Remark IV.1. The minimizer of (9) might not be unique,
but one can always define a continuous function λM (x) of
minimizers.

(Coro.IV.2) and (Coro.IV.3) show that representation norms
are merely a more convenient way to work with norms which
are induced by symmetric polytopes.

Corollary IV.2. If P is a symmetric polytope of full volume,
the we can equivalently write ‖.‖P as the representation
norm ‖.‖V(P), where V (P) is a matrix [v1, . . . , vN ] with vi
being all extreme points of P.

Remark IV.2. An example in which (Coro.IV.2) applies, are
the ‖.‖1 and ‖.‖∞ norm.

Corollary IV.3. The unit norm ball BM corresponding to a
representation norm ‖x‖M with M = [m1, . . . ,mN ] is the
convex hull of the columns of M and −M , i.e.

BM = ConvexHull ({±m1, . . . ,±mN}) (10)

Furthermore, (Def. IV.4) will be of use to compare different
symmetric convex bodies

Definition IV.4 (Representation Distance). Let P1 and P2 be
symmetric convex bodies in Rn of dimension n. Then define
the representation distance dR(P1,P2) as

dR (P1,P2) = max
{
‖P1‖P2

, ‖P2‖P1

}
and induces a metric over symmetric convex bodies in Rn:

Lemma IV.4. log (dR (P1,P2)) is a metric over Bsn, the
space of symmetric convex bodies in Rn.

Given a fix M , and some x and y in Rn, we can use
(Lem.IV.4) to compare B ([M,x]) and B ([M,y]), which
induces the following pseudo metric on Rn

Corollary IV.4 (Representation Metric). Let M ∈ Rn×N be
full rank and define dM : Rn × Rn → R as

dM (x, y) = dR (B ([M,x]) ,B ([M,y])) , (11)

then log dM (x, y) is a pseudo-metric on Rn.

C. Metric Entropy and Packing Numbers of Metric Spaces

Assume we have a metric space (M,d) and let Br(x) denote
the ball of radius r centered at x.

Definition IV.5 (Packing and Packing Number). A subset
P ⊂ K is called packing of K, if {Br(x)}x∈P are pair-wise
disjoint. The packing number of K, denoted as Npack(K, r),
is the maximum cardinality of any packing of K.

Definition IV.6 (Separated Sets and Metric Entropy). A
subset S ⊂ K is called r-separated if for each pair of points
x, y ∈ S holds d(x, y) > r. The metric entropy of K, denoted
as N ent(K, r), is the maximum cardinality of any r-separated
subset of K.

Lemma IV.5. The following relationship holds ∀r > 0:

N ent(K, 2r) ≤ Npack(K, r) ≤ N ent(K, r)

V. MODEL-FREE CLOSED LOOP EQUATION

Notice that the system (1) can be rewritten in terms of the
available measurements xk to obtain the form:

xk+1 = A0xk + uk + wk (12)
wk := dk + nk+1 −A0nk. (13)

It is clear that the extra disturbance term wk is bounded and
for ease of exposition we will define B to be the following
upperbounding superset, which will represent all lumped
disturbances in our closed loop.

Definition V.1. Define B to be a symmetric convex body
such that d+ n′ −A0n ∈ B for all d ∈ Sd, n, n′ ∈ Sn.

Writing out (12) for all measurements up until k gives us
the relation

Xk:1 = A0Xk−1 + Uk−1 +Wk−1 (14)
⇔ A0Xk−1 = Xk:1 − Uk−1 −Wk−1 (15)

Recalling the definition (3) and (4) of our proposed causal
cancellation controller, we notice that by design we always
satisfy the relations

xk = Xk−1λk−1 (xk) (16)
uk = (Uk−1 −Xk:1)λk−1(xk). (17)

By substituting (16), (17) and (15) into (12) we obtain the
following model-free form of the closed loop dynamics

xk+1 = −Wk−1λk−1 (xk) + wk. (18)

Assuming x0 = 0, it can be verified that the closed loop map
from disturbance to state is homogenous of degree one:

Corollary V.1. If (x,w) is a solution to (18), then for any
c > 0, (cx, cw) is a solution as well.

Furthermore, the following inequality will be used fre-
quently throughout the derivations:

Lemma V.1. Let x be a trajectory of (18), then

‖xk+1‖B ≤ ‖xk‖Xk−1
+ 1 (19)

VI. SEPARABILITY OF UNSTABLE EVENTS AND FINITE
OCCURRENCE

In this section, we will present the core theorem that enables
the later analysis of the closed loop. Rather than searching
for a Lyapunov-type of argument, we will take an alternative
approach to stability analysis inspired by convex geometry.
First, we will show that a certain kind of unstable event can
only occur a finite number of times in the trajectories of the
closed loop system (18). In the later section we will show
how this conclusion implies that all trajectories have to be
bounded.

In particular, we will show that if the unstable event occurred
in the closed loop at time ki and state xki , then the state
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xki has to be significantly different from states xki−1
,

xki−2
where the unstable event has occurred previously.

In a mathematical sense, we will express this by showing
that the set of states at which the unstable event occurred{
xki , xki−1

, . . . , xk0
}

has to be a separated set w.r.t. to a
certain metric. By using the concept of metric entropy, we
can then establish that the cardinality of this set has to be
bounded, i.e. the total number of occurrence of this event in
the trajectory has to be finite.

A. Finite Occurrence of Unstable Events
For a fix 0 < µ < 1, let us define the occurrence of an
unstable event Uµ at time t:

Definition VI.1 (Unstable Event). Given a trajectory x and
we will say that the unstable event Uµ occurred at time t in
trajectory x, if

‖xt+1‖B ≥ max {r(µ), µ ‖xt‖B + 1} (20)

where r(µ) := 1
1−µ .

Correspondingly, define Tµ to be the set of times t at which
the unstable event Uµ occurred:

Definition VI.2. Given a trajectory x and 0 < µ < 1,
define Tµ ⊂ N to be the set of all time-steps Tµ (x) =
{ t| s.t. xt+1, xt satisfy (20)} and define Xµ (x) to be the set
of states xt at which the unstable transition Uµ occurred, i.e.
Xµ (x) := {xt |t ∈ Tµ (x)}.

Lemma VI.1. Any xt ∈ Xµ (x) satisfies the inequalities:

‖xt‖B ≥
µr(µ)

‖B‖Xt−1

,

∥∥∥∥ xt
‖xt‖B

∥∥∥∥
Xt−1

≥ µ (21)

Proof. First, from (Lem.V.1), (Lem.IV.3) we obtain

‖xt+1‖B ≤ ‖xt‖Xt−1
+ 1 (22)

⇒ ‖xt+1‖B ≤ ‖B‖Xt−1
‖xt‖B + 1 (23)

and by combining them with (20) from the definition of
the unstable event yields the result, where we used the fact
r(µ)− 1 = µr(µ).

The following result shows that the states Xµ (x) correspond-
ing to the occurrences of the unstable event Uµ in a trajectory
x have to satisfy the following separation condition:

Lemma VI.2. Consider an arbitrary closed loop trajectory
x and any t0 such that Xt0 is full column rank. Then every
pair of states xt1 , xt2 ∈ Xµ (x) with distinct times t1 6= t2 ∈
Tµ(x) and t1, t2 > t0 satisfy the separation condition

dB

(
µr(µ)

xt1
‖xt1‖B

, µr(µ)
xt2
‖xt2‖B

)
≥ γµ, γ :=

µr(µ)

‖B‖Xt0

(24)

with respect to the representation distance dB(., .).

Proof. Without loss of generality, assume t2 > t1, then from
(Lem.VI.1) we obtain ∥∥∥∥ xt2

‖xt2‖B

∥∥∥∥
Xt2−1

≥ µ (25)

Now observe that since t2 > t1 > t0 and inequality (21), we
have that for all z ∈ Rn holds

‖z‖Xt2−1
≤ ‖z‖[

Xt0
,γ

xt1

‖xt1‖B

] , γ :=
µr(µ)

‖B‖Xt0

(26)

since Xt0 and γxt1/ ‖xt1‖B are both in the norm ball of
B(Xt2−1). To see the later, notice that xt1 is a column of
Xt2−1 which implies ‖xt1‖Xt2−1

≤ 1. Moreover from (21)
and since ‖B‖Xt0

≥ ‖B‖Xt1−1
, we obtain

γ

‖xt1‖B
=

µr(µ)

‖B‖Xt0
‖xt1‖B

≤ µr(µ)

‖B‖Xt1−1
‖xt1‖B

≤ 1 (27)

which gives us by convexity and symmetry of B(Xt2−1) the
inequality: ∥∥∥∥γ xt1

‖xt1‖B

∥∥∥∥
Xt2−1

≤ 1. (28)

Finally, using inequality (26) to upperbound (25) and multi-
plying by γ gives us the relation∥∥∥∥γ xt2

‖xt2‖B

∥∥∥∥[
Xt0

,γ
xt1

‖xt1‖B

] ≥ γµ =
µ2r(µ)

‖B‖Xt0

(29)

Moreover, using the fact that ‖A‖B = ‖cA‖cB for any c > 0
and that B ⊂ ‖B‖Xt0

Xt0 we can further upperbound (29)
as ∥∥∥∥µr(µ)

xt2
‖xt2‖B

∥∥∥∥[
B,µr(µ)

xt1

‖xt1‖B

] ≥ γµ =
µ2r(µ)

‖B‖Xt0

Finally since trivially BXt0
⊂ B

([
Xt0 , µr(µ)

xt1

‖xt1‖B

])
and referring to the definition of the representation dis-
tance (Coro.IV.4), we obtain the desired separation condition
(24).

Recalling that log dBw
(., .) defines a metric, Lemma (VI.2)

enforces a separation condition between states at which the
event Uµ can occur in the trajectory x. In particular, consider
the set X̄µ (x) of normalized states corresponding to the
times Tµ (x) of unstable events:

X̄µ (x) =

{
µr(µ)

xt
‖xt‖B

∣∣∣∣ t ∈ Tµ (x)

}
. (30)

By applying (Lem.VI.2) pairwise, we can conclude that
X̄µ (x) is a log(γµ)-separated set in the set µr(µ)B. Ap-
pealing to the notion of metric entropy as defined in
(Def. IV.6), we can conclude that the cardinality of the
set Xµ (x) has to be upperbounded by the metric en-
tropy Nent

B (µr(µ)B, log(γµ)) of the set µr(µ)B w.r.t to the
pseudo-metric log dB(., .) and the radius log(γµ). We will
denote this number by N̄(µ)

Definition VI.3. Define N̄(µ) as the number

N̄(µ) := Nent
B (µr(µ)B, log(γµ)) (31)
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and an analytic bound for the quantity can be established by
a volume comparison argument and using the equivalence
relationship between the metric entropy and the packing
number (Lem.IV.5):

Lemma VI.3.

N̄(µ) ≤ 1 +

(
1

2

)n µ2r(µ)3/2

µ
√
r(µ)−

√
‖B‖Xt0

n

(32)

if µ satisfies

µ2

1− µ
> ‖B‖Xt0

(33)

Proof. The proof is technical and long and can not be
presented in the scope of this paper.

Condition (33) can be equivalently written as

1

2

(√
‖B‖2Xt0

+ 4 ‖B‖Xt0
− ‖B‖Xt0

)
< µ < 1 (34)

Overall, the result (Lem.VI.3) shows us that if µ is chosen
in the range (34), then the cardinality of the sets |Xµ (x) | =
|Tµ (x) | are bounded above by the quantity (32). This lets us
conclude that for any closed loop trajectory x the occurrence
of the corresponding events Uµ is finite. We will summarize
our findings with the following theorem:

Theorem VI.4. Let x be closed loop trajectory of (18), the
number of occurrences |Tµ(x)| of the unstable event Uµ is
bounded above by N̄(µ) <∞.

Corollary VI.1. N̄(µ) is independent of x0, A0 and wk.

Proof. This follows directly by noticing that the metric
entropy bound (32) does not depend on x0, A0 and wk.

Remark VI.1. The bound (32) depends on ‖B‖Xt0
which

can be interpreted as a signal-to-noise ratio type quantity, as
it compares the size of the disturbance polytope B to the
polytope B (Xt0) of prior data collected up until time t0.

VII. ROBUSTNESS GUARANTEES OF THE CLOSED LOOP

Based on the results derived in the last section, the robustness
guarantees of the closed loop (18) follow directly. For ease
of exposition we will phrase the following guarantees w.r.t.
an arbitrary time-step t0 for which Xt0 is guaranteed to
be full column rank. Furthermore, it can be shown that
λXt−1

(xt) are continuous maps and boundedness of u is
directly implied by boundedness of the state x.

Theorem VII.1. Consider a trajectory x of the closed loop
(18) for t > t0, where t0 is such that Xt0 is full rank. Then
the following holds:

(i) x is bounded
(ii) lim supt→∞ ‖xt‖B ≤ m(‖B‖Xt0

), with the bound
m(‖B‖Xt0

) defined as

m :=
1

2

(√
‖B‖2Xt0

+ 4 ‖B‖Xt0
+ ‖B‖Xt0

+ 2
)

(35)

and ‖B‖Xt0
≤ m(‖B‖Xt0

) ≤ ‖B‖Xt0
+ 2.

(iii) for any µ in the range (34), there exists t′ > t0
for which trajectory ‖xt‖B converges exponentially (∼
µt−t

′
) to the set r(µ)B.

(iv) supt ‖xt‖B ≤ hN∗ , where N∗ := inf
µ s.t. (34)

N̄(µ) =

N̄(µ̄) and the bound hN∗ is computed through the
recursion

h0 = max{‖xt0‖B ,
1

1− µ̄
} (36)

hj+1 = ‖B‖Xt0
hj + 1 (37)

Proof. Consider an arbitrary trajectory x. For any µ that
lies in the range of (34), we know due to (Thm.VI.4) that
|Tµ (x) | is finite and therefore there exists a time t̄ such that
the following inequality

‖xt+1‖B ≤ max {r(µ), µ ‖xt‖B + 1} (38)

holds true for all t > t̄. Furthermore, since µ < 1 and by
comparison Lemma we can conclude that ‖xt‖B converges
exponentially with the rate (∼ µt−t̄) to the set 1

1−µB. This
establishes (iii) and (i). Furthermore, this also implies the
asymptotic bound lim supt→∞ ‖xt‖B ≤

1
1−µ for every µ that

satisfies (34). We obtain the smallest such bound by taking
the limit of µ to

µ∗ =
1

2

(√
‖B‖2Xt0

+ 4 ‖B‖Xt0
− ‖B‖Xt0

)
(39)

and obtain for 1
1−µ∗

lim sup
t→∞

‖xt‖B ≤
1

1− µ∗
(40)

=
1

2

(√
‖B‖2Xt0

+ 4 ‖B‖Xt0
+ ‖B‖Xt0

+ 2
)

(41)

≤‖B‖Xt0
+ 2 (42)

Finally, it can be shown that N̄(µ) has a minimum and based
on (Thm.VI.4) we can formulate a uniform worst-case bound
on the trajectory ‖xt‖B by upperbounding the worst case
N∗-steps unstable transitions, which gives us (iv).

Remark VII.1. The assumption of requiring Xt0 to be full
rank is not essential for the results. Assume that rank(Xt) =
n − 1 for times t < t0. Then this means that all signals u,
x and w are part of a n − 1-dimensional subspace of Rn

and all the same arguments can be repeated for this lower
dimensional space. This way, inductively we can see that the
essence of the results apply for t0 = 0 and arbitrary initial
conditions and disturbances.

VIII. SIMULATION

(Fig. 1) shows simulation results of the controller (3) on the
three-dimensional linear system

xk+1 = A0xk + uk + wk, wk ∈ B = B∞ (43)

with A0 and eigenvalues λ(A0):

A0 =

1.4 0.2 1
0.2 1.3 1
0.5 0.3 2

 λ(A0) =

 2.7
1.13
0.86

 . (44)
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(Fig. 1) displays ‖xt‖B, ‖ut‖B along with the improvement
of the asymptotic bound m(‖B‖Xt−1

) over time. The dotted
part of the curve m(‖B‖Xt−1

) indicates that Xt−1 is not full
rank and therefore the quantity m(‖B‖Xt−1

) is computed
w.r.t. to the projection of B onto the column space of Xt−1.
Moreover, this explains the initial increase of m(‖B‖Xt−1

)
for t ≤ 3.

0
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0 10 20 30 40 50 60

0

5

B

0

5
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Fig. 1: ‖xt‖B and ‖ut‖B trajectories for closed loop with
uniform disturbance wi,t in [−1, 1] and x0 = [0, 0, 0]T .

IX. CONCLUSION

In this paper we derive a simple model-free controller
that can adaptively and robustly stabilize a linear system
with full actuation without any additional knowledge on
disturbance, noise or parameter bounds. The controller comes
with uniform asymptotic and worst-case guarantees on the
state-deviation. The control design and stability analysis is
enabled by a novel approach inspired by convex geom-
etry and simulations show that the controller is able to
simultaneously learn and control the system in an efficient
manner, even when applied to an open loop system with large
unstable eigenvalues. Future work will further explore how
this new perspective to adaptive control can provide more
learning and control algorithms with robustness guarantees
and nonrestrictive assumptions in a more general setting. In
addition, we will investigate how the presented ideas can help
in providing robustness and performance bounds for present
methods in adaptive control and reinforcement learning.
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