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Abstract— We will present a new general framework for
robust and adaptive control that allows for distributed and
scalable learning and control of large systems of intercon-
nected linear subsystems. The control method is demonstrated
for a linear time-invariant system with bounded parameter
uncertainties, disturbances and noise. The presented scheme
continuously collects measurements to reduce the uncertainty
about the system parameters and adapts dynamic robust
controllers online in a stable and performance-improving way.
A key enabler for our approach is choosing a time-varying
dynamic controller implementation, inspired by recent work on
System Level Synthesis [1]. We leverage a new robustness result
for this implementation to propose a general robust adaptive
control algorithm. In particular, the algorithm allows us to
impose communication and delay constraints on the controller
implementation and is formulated as a sequence of robust
optimization problems that can be solved in a distributed man-
ner. The proposed control methodology performs particularly
well when the interconnection between systems is sparse and
the dynamics of local regions of subsystems depend only on
a small number of parameters. As we will show on a five-
dimensional exemplary chain-system, the algorithm can utilize
system structure to efficiently learn and control the entire
system while respecting communication and implementation
constraints. Moreover, although current theoretical results re-
quire the assumption of small initial uncertainties to guarantee
robustness, we will present simulations that show good closed-
loop performance even in the case of large uncertainties,
which suggests that this assumption is not critical for the
presented technique and future work will focus on providing
less conservative guarantees.

I. INTRODUCTION

With the recent explosion of available computational
resources and progress in the field of learning and
estimation theory, there has been a resurging interest in
robust adaptive control in the control and also machine
learning community. In contrast to traditional work in
[2] and [3], recent work has focused on analysis and
development of adaptive control algorithms that merge
learning and statistical theory techniques [4], [5], [6].
Although adaptive control algorithms are very useful for
many systems of large-scale like communication networks,
traffic networks or the power grid, there has not been a
general theory of how to address the challenges in that
setting. One of the major difficulties with deploying scalable
adaptive algorithms in systems of that scale is, that the
controller has to respect real-world implementation and
communication constraints. Even in the non-adaptive case,
incorporating these constraints into the control design is
a challenging problem. Nevertheless, recent progress has
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been made by taking a new System Level approach [1], [7],
[8], that allows to incorporate such constraints into optimal
control problems in a tractable way. Aside from that, recent
work [9], [4] has shown that the ideas in [8] can be used
to provide robustness results that help to combine learning
and control techniques with stability guarantees.

In this work, we will leverage the system level approach
to formulate a new general framework for robust adaptive
control in large-scale systems. In particular, we will study
the problem for linear systems with bounded uncertainty and
disturbances. An appeal of this problem formulation is that
in contrast to probabilistic guarantees as formulated in the
results of [5], [6], we are able to provide worst-case safety
guarantees that apply even in the presence of adversarial
disturbances and small model non-linearities. Overall, the
contribution of this paper is two-fold: We will derive
robustness criteria similar to [8] for time-varying systems
and controllers that provide a new general way to design
stable adaptation in controllers. Secondly, we utilize these
results to develop a robust and adaptive control scheme that
can respect imposed communication and implementation
constraints on the controller and allows for a distributed
scalable implementation in large scale systems. Although
our current stability proof is formulated for small initial
uncertainties, in simulation we will show that the resulting
control algorithm performs well even when the initial
parameter uncertainties are large and the open loop system
is unstable.

Due to lack of space, technical details and derivations are
presented in an extended version of this paper found online.

II. A MOTIVATIONAL EXAMPLE: A 5-LINK CHAIN
SYSTEM

We will begin by introducing the example which we use for
our simulation results, to motivate the problem statement
and the techniques presented in this work.

Consider the problem of controlling the following 5-link
chain-system (1) with the state xt ∈ R5, input ut ∈ R2,
disturbance wt ∈ R5 and full state measurement yk = xk:

xt = Axt−1 +But−1 + wt−1 (1)
yt = xt

Furthermore, assume that we do not have exact knowledge
of A and B, but rather we do know that the system matrices
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A and B are structured as

A =


α2 α3 0 0 0
α1 α2 α3 0 0
0 α1 α2 α3 0
0 0 α1 α2 α3

0 0 0 α1 α2

B =


α4 0
0 0
0 0
0 0
0 α5

 (2)

and that the parameters α lie within the bounds 0 ≤ α2 ≤ 1,
0.1 ≤ α1, α3 ≤ 0.5, 0.2 ≤ α4 ≤ 1 and −1 ≤ α5 ≤ −0.2.
In addition, assume that we know that the disturbance is
bounded as ‖w‖∞ ≤ 0.5.

We are interested in the problem of stable learning and
control of this system under communication and computation
constraints on the controller implementation. In particular,
we will assume that (1) models a system of five intercon-
nected, but otherwise separately acting scalar subsystems
with state xit and input uit (where uit = 0 for i = 2, 3, 4),
where system i and j can communicate with eachother
with a delay of |i − j| time steps and each have limited
computational power. Although this example is of small size,
this problem setup captures the main difficulties that come
with solving this type of robust adaptive control problem for
large-scale systems, which will be the focus of the remainder
of this paper.

III. PROBLEM STATEMENT

Consider a linear system of N subsystems with states, inputs
and disturbances xj , uj , wj that are interconnected w.r.t. the
directed graph G = (V, E) i.e. V = {1, . . . , N} and (j, i) ∈ E
implies that xit influences xjt+1. Furthermore, define N (j) to
be the set of subsystems that affect the subsystem j in the
next time step i.e. N (j) = {i |(j, i) ∈ E }. The dynamics of
the entire system can be written in the form

xjt+1 =
∑

i∈N (j)

Aj←ixit +Bjujt + wjt . (3)

and we will refer to xt =
[
x1t , x

2
t , . . . , x

N
t

]T
and ut =[

u1t , u
2
t , . . . , u

N
t

]T
as the global state and input of the system

and accordingly, we will refer to A and B as the global
system matrices, which are the corresponding compositions
of the matrices Aj←i and Bj .

Remark 1. We allow for loops in the graph G, which implies
j ∈ N (j).

Similar to our introductory example in (Sec.II), we will
assume that the matrices Aj←i and Bj are structured and
have a low-dimensional representation of the form (4) w.r.t.
some uncertain parameters α ∈ Rp and known constant
matrices Av←us , Bus .

Av←u =

p∑
s=1

αsAv←us Bu =

p∑
s=1

αsBus (4)

Furthermore, assume we are given the following information
about the parameter α and the disturbance wj in each

subsystem:

α ∈ P0

∥∥∥wjt∥∥∥ ≤ η ∀t ≥ 0 (5)

Moreover we can setup the problem with any norm ‖.‖, but
for technical reasons, we will make the following assump-
tion:

Assumption 1. The unit ball {x |‖x‖ ≤ 1} of the norm is a
polytope.

Remark 2. Common examples that satisfy (Ass.1) are ‖.‖1
and ‖.‖∞.

A. Main Goal

Our objective will be to design causal controllers
ujk(xk, xk−1, . . . , x0) that stabilize the global system despite
the model uncertainties and allow for a scalable controller
implementation when the total number of subsystems is very
large. To make the second requirement more precise, we will
break it down into the following three constraints:

Constraint 1 (Communication). Every subsystem j can
communicate with another subsystem i with a delay of dj←i

time-steps.

Constraint 2 (Localized Communication). Every subsystem
i only sends information to a local region of subsystems S(i).

Corresponding to (Const.2), let’s define R(i) to be the set of
subsystems from which subsystem i receives information:

Definition III.1. R(i) := {j |i ∈ S(j)}

Constraint 3 (Limited Computation). Every subsystem j
has limited computational resources.

IV. OUTLINE OF THE APPROACH

We will briefly motivate our chosen control architecture and
provide an overview of the results.

A. Ansatz: Time-Varying Controllers in SLS Implementation

The recent SLS approach [1] shows that any linear state
feedback controller can be equivalently implemented in the
form

ut =
∞∑
k=0

M(k + 1)δ̂t−k δ̂t = xt −
∞∑
k=1

R(k + 1)δ̂t−k

Inspired by this, we will make the ansatz (6),(7) for our
control implementation,

ut =

T−1∑
k=0

Mt(k + 1)δ̂t−k (6)

δ̂t = yt −
T−1∑
k=1

Rt(k + 1)δ̂t−k. (7)

where Mt(i) ∈ Rp×n, Rt(i) ∈ Rn×n, ∀1 ≤ i ≤ T , R(1) =
In and we will refer to this as the SLS implementation. Our
robust adaptive control scheme will propose algorithms that
continuously use state observations to update the Rt and
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Mt matrices in a stable and performance improving manner.
More specifically, this happens in two steps: In the next
section we will show how to use the system equation to
continuously infer polytopes of feasible parameters α. Then,
as later discussed in (Sec.VI) the polytopes are used to stably
adapt the matrices Rt and Mt by utilizing a new robustness
result.

V. REDUCING UNCERTAINTY THROUGH POLYTOPES OF
CONSISTENT PARAMETERS

Recall from (4), that Av←u and Bu are structured as

Av←u =

p∑
s=1

αsAv←us Bu =

p∑
s=1

αsBus (8)

with α ∈ P0. By plugging this form into the system equation
(3) and recalling the constraint

∥∥wj∥∥ ≤ η, we see that for
each pair of observations xk, xk−1 and control action uk−1,
the true α has to be consistent with the inequality∥∥∥∥∥xjk −

p∑
s=1

αsŷ
j
s,k−1

∥∥∥∥∥ ≤ η (9)

ŷjs,k−1 =
∑

i∈N (j)

Aj←is xit−1 + Bjsu
j
t−1 (10)

Due to our assumption (Ass.1) on the norm ‖.‖, condition
(9) poses a polyhedral constraint on the system parameters α.
We will define these inferred constraints from observations
made in subsystem j at time t as Cjt :

Cjt =

{
α

∣∣∣∣∣
∥∥∥∥∥xjk −

p∑
s=1

αsŷ
j
s,k−1

∥∥∥∥∥ ≤ η
}

(11)

By intersecting all constraints of the form (11), we can
define Pt as the polytope of parameters consistent with the
observations until time t:

Pt

=

{
α ∈ P0| ∀j, ∀k ≤ t :

∥∥∥∥∥xjk −
p∑
s=1

αsŷ
j
s,k−1

∥∥∥∥∥ ≤ η
}

(12)

=P0 ∩
N⋂
j=1

(
Cj1 ∩ C

j
2 ∩ · · · ∩ C

j
t

)
(13)

Correspondingly, define Mj←i
A (Pt) and Mj

B (Pt) to be the
set of consistent system matrices Aj←i and Bj at time t:

Mj←i
A (Pt) =

{
p∑
s=1

αsAj←is

∣∣∣∣∣α ∈ Pt
}

(14)

Mj
B (Pt) =

{
p∑
s=1

αsBjs

∣∣∣∣∣α ∈ Pt
}

(15)

Furthermore, allowing every subsystem to share their ob-
served constraints while respecting (Const.1) and (Const.2),
we can define Pjt as the polytope of consistent parameters
for subsystem j at time t as:

Pjt = Pjt−1
⋂

i∈R(j)

Ĉj←it Ĉj←it = Cit−dj←i
(16)

where Ĉj←it denotes the constraints that j has obtained from
system i at time t and R(j) is defined in (Def.III.1).

VI. A SCHEME FOR ROBUST AND ADAPTIVE CONTROL
WITH SLS IMPLEMENTATIONS

We will combine the findings in (Sec.V) and a robustness
result to propose a robust adaptive control scheme.

Recall the system dynamics from (Sec.III), with the struc-
tured uncertainties described by equations (4), (5) and our
ansatz for the system-wide controller (6) and (7).

xjt+1 =
∑

i∈N (j)

Aj←ixit +Bjujt + wjt . (17)

By enforcing additional sparsity constraints on Rt and Mt,
we can represent the SLS implementation for subsystem j
in the decomposed form:

ujt =
∑
i

T−1∑
k=0

M̂ j←i
t (k + 1)δ̂it−k (18)

δ̂jt = xjt + vjt −
∑
i

T−1∑
k=1

R̂j←it (k + 1)δ̂it−k (19)

with R̂i←it (1) = I and R̂j←it (1) = 0 for i 6= j. Furthermore,
to allow for scalable implementation, we will enforce the
following additional design constraints:

Constraint 4 (Distributed Computation). M̂ j←i
t :=

M j←i
t−dj←i

, R̂j←it := Rj←it−dj←i
where M j←i

t , Rj←it and δ̂it
are computed locally in subsystem i and are broadcasted to
the corresponding subsystem j with a delay of dj←i.

Constraint 5 (Localization and Communication Con-
straints). For every subsystem i define a local region L(i) ⊂
S(i) and enforce the constraints

∀j /∈ L(i), k : M j←i
t (k) = 0 Rj←it (k) = 0, (20)

∀k < dj←i : M j←i
t (k) = 0. Rj←it (k + 1) = 0 (21)

Under (Const.4) and (Const.5), the implementation (18),
(19) can be verified to satisfy our previously discussed
implementation constraints (Const.1) and (Const.2) for this
problem setting.

With the abbreviations ∆j←i
k,t ,ŵjt and the function ∆j

k

∆j←i
k,t := ∆j

k

(
A,B,Rj←it ,M j←i

t

)
:= . . . (24)

. . . Rj←it (k + 1)−
∑

n∈N (j)

Aj←nRn←it (k)−BjM j←i
t (k)

ŵjt := vjt −
∑
i

Aj←ivit−1 + wjt−1. (25)

and the following assumption, we can state the robustness
result (Thm.VI.1):

Assumption 2. The communication speed between subsys-
tems is faster than the propagation speed of disturbances,
i.e.: dj←i < 1 + dk←i, ∀k ∈ N (j)

Remark 3. This is a common assumption in the distributed
control community and known to not be very restrictive.
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Theorem VI.1. Given (Ass.2), some λ, ρ and the local
parameters mi

1 and mi
2, assume that for all i, Rj←it and

M j←i
t satisfy the conditions (23), (22) and∥∥∥∥∥∥

∑
j∈L(i)

∆j
k(A,B,Rj←it ,M j←i

t )

∥∥∥∥∥∥ ≤ ciρk−1 (26)

λi =
T∑
k=1

ciρ
k−1 ≤ λ (27)

for all times t, where d̄i = maxj dj←i. Then the following
inequality holds∑
j

∥∥∥δ̂jt∥∥∥ ≤ λ max
1≤k≤T

∑
j

∥∥∥δ̂jt−k∥∥∥+
N∑
i=1

(
mi

1 + d̄im
i
2 + ŵit

)
.

Furthermore, the effective disturbance
∥∥∥δ̂jt∥∥∥ is bounded as∑

j

∥∥∥δ̂jt∥∥∥ ≤ γt (28)

where γt is computed as

γt =
(

T
√
λ
)t
‖x0‖+

1− λt

1− λ
(η̂ +ma) if λ < 1 (29)

γt = λt ‖x0‖+
1− λt

1− λ
(η̂ +ma) if λ ≥ 1. (30)

with
N∑
i=1

(
mi

1 + d̄im
i
2 + ŵit

)
≤ η̂ (31)

and xt, ut are bounded if λ < 1

The value λ will be called a robustness margin of the closed
loop if the conditions in (Thm.VI.1) are satisfied for it.
We can derive from (Thm.VI.1) the distributed localized
robust adaptive control (DLAR) algorithm (Algo.1). Every
subsystem is constructing consistent polytopes Pjt for their
local parameters (Line 8-11) and optimizing for robust Rjt
and M j

t that can satisfy the conditions of (Thm.VI.1).
Moreover the algorithm finds such robust controllers in two
steps. In each iteration, it first searches for Rjt and M j

t

that achieve the smallest robustness margin λit (Line 12)
and only if we find feasible controllers that guarantee a
minimum desired level of robustness λ∗, the algorithm re-
solves the optimization problem (32) in (Line 14) w.r.t.
to a desired performance objective (35). The motivation
behind this two-step procedure is clear: Optimizing for a
performance objective is only reasonable if robust stability

of the closed loop is possible. After the local controllers have
been computed, the control actions and local constraints are
broadcasted to the local region of subsystems (Line 18-19).

min
Ri

t,M
i
t ,c

i
t,λ

i
t

f(Rit,M
i
t , λ

i
t) (32)

s.t.∀Aq←p ∈Mq←p
A (E

(
Pit
)
), Bp ∈Mp

B(E
(
Pit
)
) :

holds (26), (27), (22), (23), (21), (20)

Ri←it (1) = I and Rj←it (1) = 0 for i 6= j (33)

fλ(R,M, λ) = λ (34)

fCi,Di(Ri,M i, λ) =
T∑
k=1

∥∥CiRi(k) +DiM i(k)
∥∥ (35)

Algorithm 1: A DLAR Control Scheme with SLS

Input: Pi0, Ci, Di, m1, m2, ρ, T , Aj←is , Bis, λ∗

1 for subsystem j = 1 : N do
2 Rj0, M j

0 ← solve (32) with Pj0
3 δ̂j0 ← xj0
4 apply uj0 ←M j

0 (1)δ̂j0
5 end
6 for t = 1,2,. . . do
7 for subsystem i = 1 : N do
8 Ĉi←jt ← Cjt−di←j

(16)
9 receive R̂i←jt ,M̂ i←j

t ← Ri←jt−di←j
, M i←j

t−di←j

10 compute Cit from (11)
11 update Pit ← Pit−1 ∩

⋂
j∈R(i) Ĉ

i←j
t (16)

12 λit,R
i
t, M

i
t ← solve (32) with fλ (34)

13 if λit ≤ λ∗ then
14 Rit, M

i
t ← solve (32) with fCi,Di (35)

such that λit ≤ λ∗
15 end
16 compute δ̂it,u

i
t ← (19), (18)

17 apply uit
18 broadcast Rn←it , Mn←i

t to all n ∈ L(i)
19 broadcast constraints Cit to all n ∈ S(i)
20 end
21 end

Moreover, we obtain the robustness results for the closed
loop:

∀0 ≤ h ≤ d̄i − 1 :
∑

j:dj←i≥h+1

∥∥∥∥∥∥
T∑

k=dj←i+1

∆j
k

(
A,B,Rj←it −Rj←it+h−dj←i

,M j←i
t −M j←i

t+h−dj←i

)
δ̂it+h+1−k

∥∥∥∥∥∥ ≤ mi
1 (22)

∀0 ≤ h ≤ d̄i − 1 :
∑

j:dj←i=h+1

∥∥∥∥∥
T−1∑
k=h+2

(
Rj←it −Rj←it−1

)
(k + 1)δ̂it+h+1−k

∥∥∥∥∥ ≤ mi
2 (23)
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Proposition 1. λit ≤ max
{
λit−1, λ

∗}
Proposition 2. maxi λ

i
t′ is a robustness margin for the closed

loop system for all t ≥ t′ and the corresponding bounds of
(Thm.VI.1) apply.

Proposition 3. If maxi λ
i
0 < 1 from (Line 2) of (Algo.1),

then the closed loop system is stable for all time.

In addition, (21) in (Const.5) constrains the number of
decision variables to the size of L(i) and with the corollary
(Coro.VI.1),

Corollary VI.1 (Local Models). The conditions (22), (23),
(26) and (27) w.r.t. the subsytem i only depend on parameters
Av←u and Bu for which u ∈ L(i).

we can see that the complexity of the subproblem that every
subsystems solves, grows only with the size of local regions
R(i) and L(i). This addresses the implementation constraint
(Const.3) and shows that (Algo.1) allows for a scalable
implementation even for large number N of subsystems.

VII. SIMULATION

The algorithm (Algo.1) is applied to the exemplary con-
trol problem with implementation constraints discussed in
(Sec.II). For this simulation we picked the true parameters
α1 = 0.3, α2 = 0.6, α3 = 0.2 which produce an unstable
open loop system (maxi |λi(A)| = 1.05). (Fig.1) and (Fig.3)
show simulation results of the presented adaptive controller
scheme with ρ = 0.7, T = 8, x0 = [0, 3, 3, 3, 0]T , with
respect to two different cases of initial available information.
In (Fig.1) the controller has only knowledge of the initial
entry-wise bounds on α described in (Sec.II), while in
(Fig.3) the controller starts off with perfect knowledge of α.
Furthermore, for the adaptive case, (Fig.2) summarizes the
effective disturbances δ̂jt , the environment disturbances wjt
and individually computed margins λjt for every subsystem.
In addition, the quantity µt in (Fig.2) computes the true
robustness margin µt =

∑
k ‖∆(k)‖1 of the closed loop

adaptive controller w.r.t. to true plant1. Although the initial
uncertainty provides a large robustness margin (maxi λ

i
0 =

4), the plot of µt in (Fig.2) shows that the controller learns
enough by time-step t = 20 to render the closed loop stable.

Moreover, even though the controller in (Fig.3) has perfect
knowledge of the parameters, its computed robustness margin
is
∑
k ‖∆(k)‖1 = 0.33, which tells us that even in presence

of full system knowledge, the communication constraints
only allow for approximate localization of the disturbances.
Putting this in relation to the simulation results in (Fig.1)
shows us that the adaptive controller is performing quite
well despite large initial uncertainty (λ0 >> 1), communi-
cation/localization constraints and decentralized implemen-
tation. Although this observation is empirical at this point
it shows that (Algo.1) is a promising approach even in the
case of large parameter uncertainties.

1Note, that this information is not available to the controllers and is only
displayed to show that the controller achieves robust stability.

VIII. CONCLUSION AND FUTURE WORK

In this work, we derived a novel framework for adaptive
and robust control of linear time-invariant systems. Using
the new SLS framework [1] we derived time-varying ro-
bustness results which can be used as a new way to design
stable adaptations in control systems. With this result we
develop a robust adaptive control scheme for linear systems
with state feedback under bounded parameter uncertainties,
disturbances and noise. The resulting control system con-
tinuously infers polytopes of parameters that are consistent
with the collected observations and use these sets to compute
new robust controllers that improve control performance. In
particular, inference of uncertainty sets is done efficiently,
since structural properties of the system matrices are directly
exploited and subsystems only need to model the dynamics
in their local region. Moreover, we present how this approach
can incorporate communication constraints and allows for a
distributed and scalable control implementation. For the case
of small initial uncertainties, a stability proof and worst-case
bounds are provided for the closed loop. Finally, simulations
with a chain-system empirically show that performance does
not degrade too much even if we have large initial uncer-
tainties in the parameters.

Future research will be focused on deriving performance
bounds of this technique when dealing with a broader class
of uncertainties and reducing the computational cost of the
optimization procedures needed in the algorithm.
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Fig. 1: Left: Overlay of projections of Pjt onto different coordinates for different time steps. Each row corresponds to a
different subsystem x1, x3, x5 (top to bottom). Shading indicates time of computation with shades lightening as simulation
time passes. Right: state and input trajectories of closed loop simulation with (Algo.1) and uncertainties on α described in
(Sec.II).
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Fig. 2: Computed margins λjt , effective disturbances δ̂jt and
disturbance wjt for every node xj . µt =

∑
k

‖∆t(k)‖1 is

computed with the real system and the controller at t.
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Fig. 3: State and input trajectories for closed loop simulation
of controller (Algo.1) with perfect parameter knowledge α.
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