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We present results from a numericstudy of rotating black hole formation in 3-dimensional
asymptotically anti-de Sitter (AdS) spacetime, focusing on the structure of the black hole interior.
While black holes in Ad$S are oftheoreticainterest for a wide variety afeasonswe choose to
study this system primarily as a toy modfar astrophysical4-dimensional) black holes formed
from gravitational collapsé/e investigate the effect of angular momentum on the geometry inside
the event horizonand see qualitative changes in the interior structure as a functidheo$pin
parameterFor low spinswe find that a centradpacelike curvature singularity foraamnecting
to a singularnull Cauchy horizonFor spins above a threshold consistent with the linear analysis
of Dias, Reall and Santos, curvature on the Cauchy horizon remains bounded, signaling a violation
of the strong cosmic censorship conjectitather increasing the spin leads to a decrease in the
relative size ofhe spacelike branch dffie singularitywhich vanishes completely above a second
threshold.n these high-spin cases, the interior evolution is bounded by a regular Cauchy horizon,
which extends althe way inward to a regulartimelike origin.We further explore the geodesic
focusing (“gravitationahock-wave”) effect predicted to occur along the outgoing brantdteof
inner horizonfirst described by Marolf and OriRemarkablywe observe the effect at late times
in all of the black holes we forrayen those in which the inner apparent horizon collapses to zero
radius early in their evolution.

I. INTRODUCTION ear stability of the Kerr solutioa,mathematicagroof
of which remains elusive.

If governed by general relativity, the exterior structuf&€ features that allow the Kerr geometry to be so suc-
of a sufficiently isolated black hole is expected to be &@&ffuin modeling the black hole exterior do not have
described by a member of the celebrated Kerr familytee same effect on the interioCrucially,there is no
solutions [1]The historic LIGO measurement of gravi- decay” property which will allow the interior to asymp-
tational waves from the merger of two black holes [2iokigally approach a unique end stabs;a result,the
given the first quantitative evidence supporting this etailed structure inside any pa.rtlcular black hole will
pectation, which is also consistent with the first imag{@@ﬁnd strongly on the properties of the matter that col-
a black hole taken by the EHT Collaboration [3]. apsed to form it.This dependence on the black hole’s

Given the aforementioned resiittis, naturalto ask ~ history endows the interior with a much richer structure,
why the Kerr model has such relevance for astrophydft@ugh at the cost of increased mathematical complexity,
especially since it possesses a high degregnometry and a number of interesting proplems remain u_nsolved.
(axisymmetrystationarity) not present in any natural Perhaps one of the most pressing open questions about
setting. Severaproperties oftrong-field generetla- thg black hole interior is the generic nature of the singu-
tivity in 4-dimensional (4D) spacetimes give the ansWafity (or whatever form of spacetime incompleteness we
(1) the only stationary black hole solutions in vacuurk@¥ must be present [10]garly on in the study of
the Kerr family (the “no-hair theorems” [4-7]); (2) whkeriorsithe S|m!lar|ty ofhe Sc_hwarzschlld interior to
gravitational collapse occurs, the singularities that n@dédsner spacetiméogether with the relevancetbé
sarily form are hidden behind an event horizon (Penrig$es in the analysis dBelinksi,Lifschitz and Khalat-
weak cosmic censorship conjectumed; (3) dynamical hikov (BKL) [11]on singularities in so-called cosmolog-
perturbations of the black hole exterior geometry alW@j$pacetimespurred many to argue such a spacelike
decay, and either fall into the black hole or are radiafégvature singularity would denote the claseitdlof
away The third effect is especially strong, since the “Btg-generic black hole interior [12, 13]. _
turbations” can initially be arbitrarily large (case in poihfi€ reliance ofthese argumentsn the spherically
the collision of two black holes), transitioning to the gmmetric Schwarzschild solution, however, significantly
ear regime ofxponentiajuasinormaiode decaypl- weakens thglr claims to the structulre inside realistic black
lowed at late times by a power law decayli8den all holes.Relaxing the symmetry to axisymmeorye ar-
togetherthese properties are sometimes referred to s¥es at the aforementioned Kergeometrywhich is

the finalstate conjecture [8},the conjectured nonlin- Vastly different from Schwarzschild in the interior for any
nonzero dimensionless spin parametén @articular,

in Kerr there is a nullCauchy horizon that is expected
to become singular when subject to the perturbations
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apandya@princeton.edu present in a realistic collapSeme have argued such a
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FIG. 1. Spacetime (Penrose) diagrams illustrating the Kerr geometry (left panel), BTZ geometry (center panel) and a possib
dynamical rotating collapse geometry in asymptotically AdS spacetime (right lpatined 4D Kerr casegach point on the

diagram represents a 2-sphere geometry with proper freand for the 3D cases each point represents a circle with proper
circumference o.” In each ofthe two eternablack hole cases the spacetimes beyond - contain causaturves that
terminate at the dashed lines, never intersecting the red Cauchy surfédnie fact implies that the blue (gradient) shaded
regions cannot be uniquely evolved from the earlier spacetimes without somehow specifying data on the dashed lines, and
r = T- is a Cauchy horizonNote also the similarities between the Kerr and BTZ spacetim&iéch differ only at = .

Future timelike infinity"iis marked on each diagram; on the right panel the solid yellow region represents collapsing matter
and spacelike/null singularities to its causal future are denoted by dotted lines.

null singularity should be part of the generic black hadevelopment g€levant initiatlata. For exampleany

interiot[14,15];others have countered that due to th@bserver reaching the Cauchy horizon will do so in finite

nonlinearity of the field equations, a spacelike singulpridger timeat which point the entire future evolution

might form in the interior wekfore any Cauchy hori- of the full exterior spacetime must be complateby

zon, restoring the BKL picture even in rotating collapteen it will be in the past domain of dependence of these

A recent breakthrough by Dafermos and Lukpw- observersTo circumvent such difficultiesrlier stud-

ever, has proven otherwise [16], showing that if the eaddrave either focused on spherically symmetric charged

rior stability of Kerr is assumed, the piece of the Cauchifapse as a toy modelr Kerr [19-22hr ignored the

horizon “connecting” to it (on a Penrose diagram—semllapse and perturbed about a segment of the inner hori-

the left panebf Fig. 1) will always be presentMore- zon of Kerr [23].

over, this branch of the Cauchy horizon will be “weaklyThe reason charged collapse is used as a toy model

singular” in the sense that although a curvature singfor rotating collapseas that the analogousReissner-

larity is presentthe metric itselfs well defined there Nordstrom black hole solution has a similar Penrose di-

and can be extended continuously acros$hius,the agram to Kerr, including a null Cauchy horizon (the left

CO%inextendible formulation Bénrose’s strong cosmic panelof Fig. 1), but in contrast to Kerr,formation of

censorship conjecture [E7/hlse in this caséhough a a charged black hole can be studied in spheriyah-

weaker version such as that of Christodoulou’s [18] likelyy. This additional symmetry offers many simplifica-

holds (for a comprehensive discussion of the cosmic tians for both numerical and analytical studfi@msnu-

sorship conjecture in this context see the introductiomerics sphericafymmetry makes it straightforward to

of [16], and references cited therein). construct global coordinates adapted to the radial causal

One problem hampering the developmerd ofore structure of the spacetime, and that map all the relevant

complete understandingtbé realistic black hole inte- infinities on a Penrose diagram to finite grid locations.

rior is that there are no explicit solutions known for gWildat numerical studies of charged scalar field collapse in

ance,numericabr otherwise.For numericaévolution, sphericasymmetry have revealed in a handfgklect

one difficulty in obtaining such solutions is the lack ofases [19, 20] is that a curvature singularity forms in the

symmetries that can be applied in the generic case, artdrior which has a centrgbacelike branch connected

this, together with the rather extreme spacetime dyrtera-singular Cauchy horizagiving a Penrose diagram

ics expected to unfold, makes it unclear what coordisatglar to that on the right panel of Fig. 1 (except these

conditions to impose in order to revidsd fullCauchy studies have been in asymptotically flat 4D spacetime,
replacing the timelike infinity of AdS with null infinity).
The singularity on the Cauchy horizon is “mild” in the
sense ofidal forces there [243nd exhibits the “mass

1 Note that the “textbook” timelike singularity in Kerr is more an inflation” phenomenon first discovered by Poisson and

artifact of demanding an analytic extension of the metric across|srael[25](see also [26]) where the Hawking quasilocal
the Cauchy horizon,and is not expected to be relevant in any mass function diverges

collapse solution of the interior.
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Another interesting question about the interior in aion [37]which moreover shares many of the properties
collapse scenario involves what happens to the inneoh#esr black holes [38, 38]a rough sense one can en-
zon (the left branch of- on the left panebf Fig. 1):  vision the geometry of a BTZ black hole as close to that
does it form, and are similar pathologies present theoé as equatorial slice of the Kerr geometry, which is why
in the approach to the Cauchy horizddfe could ex- adding rotation to a nonrotating BTZ black hole does
pect problemss the inner horizon is the Cauchy horinot break circular symmetry, and allows the problem to
zon from the perspective tdfe “other universe” in an be studied with a (1+1)-dimensional numerical code.
eternablack hole spacetim®n the other handwhat In order to dynamically form BTZ-type black holes, we
governs the stability and regularity of the Cauchy hochoose to use a scalar field as the mattertboweser,
zon is ultimately the influx eBdiation from the exte- for a scalar field to carry angular momentum it cannot
rior, which is controlled by the essentially unique dedas circularly symmetric; we bypass this difficulty with a
rates outside the black hadiudies of perturbations of common “trick” by using a complex scalar field, and ar-
the inner horizon have not been subject to such stromgnging for the reand imaginary components to indi-
guidance on appropriate initiddta,and more ad hoc vidually have azimuthal dependence, but be out of phase
prescriptions have been us&darolfand Ori[27]first  to give a net circularly symmetric (real) stress-energy
explored this region @he interior at the perturbative tensor.Regarding earlier work within this gravity plus
level, finding that an observer crossing the inner horinatter model, critical collapse and the interior of nonro-
would be met with an extremely rapid variation in thi&ating black holes was studied in [40] (see also [41]), and
metric, stress-energy, and curvature near it, likely bairigcalcollapse of rotating black hole formation in [42].
destroyed by diverging tidédrces before meeting the Our formalism and code are based on the latteith
singularity.They dubbed this a nulshockwave singu- extensions to be able to explore the black hole interior.
larity, though showed it only becomes a true “shock” ifkig. 2 gives a pictoridummary obur main results.
the sense of a discontinuity in the metric when it reaEbefow spins, much like in the 4D charged collapse case,
the Cauchy horizomMumerical studies of similar setupsve find that a curvature singularity forms that is com-
about the Reissner-Nordstrom [22, 28-30] and Kerr ipneed ofa centralspacelike branch connected to a null
horizons [23] confirmed this result at the nonlinear ldrahch.However, as the spin increases, the “strength” of
though the evolutions could not proceethalway to the singular behavior on the ntanch decreasemd
the Cauchy horizon. above a dimensionless spin of a ~ 0.6 the Cauchy hori-

In this work we study a different toy model for the realceases being singulars is consistent with a recent
istic black hole interidormation of rotating black holeknear analysis of perturbations of the Cauchy horizon of
in 3D asymptotically AdS spacetime {Ad%is model the BTZ black hole carried out by DiB=all and San-
shares two of the main features Reissner-Nordstrom wf$d#3]We also find that as the spin increases, the size
as a (potentially) usefalnalogue oKerr: the Penrose of the spacelike branch on the Penrose diagram shrinks,
diagrams are similar (Fig. 1), and the problem can besegntually vanishing for spins above a ~ U8 for
plored in circular symmetry (the analogue in 3D of splieh rapidly spinning black holes the interior evolution
ical symmetry in 4D)An advantage over the chargedends along a regular Cauchy horizon that extends all the
collapse models is that here we use rotating matter, wag to a regular, timelike orilyirall cases, the exterior
can study how angular momentum itself affects the iap@ears to asymptote to a stationary BTZ solutlon.
rior structure However, there are several differencesthre interior an inner horizon does form, though it is never
3 vs 4-dimensional gravity that bare keeping in mindsiationaryand for slowly rotating black holes it moves
anticipating how closely the 3D madight be able to inward and terminates at the spacelike singuNsrity.
capture qualitative features of the 4D désg.among ertheless, in all cases we see an outgoing shocklike feature
these are that in 3D a negative cosmologicahstant form in the interior as found by Marolf and Ori.
is required for black hole solutions [35}at 3D Ein- The remaindemnf this work will begin with a brief
stein gravity does not admit a Newtonian limit [36], averview ofhe BTZ spacetime and the Marolf-Ofio-
furthermore that there are no freely propagating (gravising effect (Sell), the system of equations we solve
tational wave) degrees of freedom, as the Weyl tens¢gé<. Ill), and then our numericallgorithm (SeclV).
identically zero and matter fully constrains the dynaffiids section is followed by our results (S8¢.and we
and curvature through the Einstein equations. conclude with a discussion (88cWe leave the full ex-

It is therefore quite surprising that an analogue to pressions of the equations we solve, and some convergenc
Kerr solution even exists in 3Damely the celebrated resultsito the appendix (Sec#-B). We use geometric
Banados, Teitelboim, and Zanelli (BTZ) black hole solurits where the speed of light ¢ = 1 and Newton’s con-

stant G = 1/2, and use the —++ signature for the metric
tensor.Unless otherwise stated, we will use a Brime (
denote the ordinary partial derivative of a function f (¢, r)
2 An added benefit of this model is its potential relevance to  with respect to the radial coordinate r, and similarly the
string theory and conformalfield theories (CFTs) through the overdot (') for the partial with respect to coordinate time

AdS/CFT correspondence (see e.g.[31-34])though we do not ) -
explore that heEe. ( g[ ]) g t, |.e.fOE af(t, r)/ar ande af (t, I’)/at.
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FIG. 2. Penrose diagrams for the Ad$lack hole spacetimes we observe in our numesadations (similar annotation as
explained in the caption of Fig. 1, and in contrast to the eternal BTZ black hole shown in the middle pankbtbdiet
the structure interior to the event horizon is strongly dependent on the valihe@pin parameter aSee SecV B for a
detailed explanation.

Il. THE BTZ GEOMETRY a black hole spacetime for M >the M = —1 case is
pure AdS, and —1 < M = 0 correspond to spacetimes
The Einstein field equations with a negative cosmoY¢§h naked conical singularities at the drligmee if we
ical constant A = —¥are want to form a black hole by gravitational collapse begin-
ning from regular initial data (in particular, data with no

1 _ initial conical singularity), a finite amount of total mass
Ruv = Qg“"R + AQw = KT, (1) in matter energy is required to lift the asymptotic space-
i o o time mass above M = 0.

metric te_nsor,l.Tthe stress-energy tensor of matter, aggmper of features analogous to those of Kerrong
Kk a coupling constant (that we set tdR@)BTZ black  these is that there is an extremal limit a = 1 above which

hole is a solution to the above with # 0. Using the  there are no horizons; below this limit, the two horizons
analogue of Boyer-Lindquist coordinates, the line ele;gistinct and are located at

of the BTZ geometry can be written as r
- ; _ _ M2 p
ds® = —fdé +f~1df* +F*(d6 +BdtF,  (2) Feo= — 1 1-4. (4)
with Also as with Kerr, BTZ possessesan ergoregion be-
) L tween l;y]e event horizorratand the circle with radius
f=-M+ - + ] Ferg = M; within this region all causal curves are re-
_ J (3)  quired to rotate about the black hole in the same sense
= —2=. as its spin. BTZ black holes also admit a no-hair the-
2r orem [32]—which is important for the structuréhef

Here M and J are the black hole mass and angular mé2auchy horizon (see Sel¢g—among a number of other
mentumyespectively (and note that in 3D gravity M interesting results; see [38] and the reviews in [32, 39, 45]
is dimensionless, while J has dimension of lenGhiy. To close this sectiorwe will outline a derivation of

line element represents a space of constant curvaturd@gd{prolf-Ori focusing effect along the inner horizon of
the Kretschmann scalar K = R#°R,,,,, evaluatesto an eternal BTZ spacetime, as this analytic result will be
K = 12/" %), and all of the nontriviakcausalstructure Uuseful to compare with our subsequent numerical results.

encoded in the metric can be considered topoldgical The question here is the followinguppose there is a

naturé. Without spinithe metric above only describefulse of outgoing radiation (always coming from matter
in the 3D case) propagating near the inner horizon; how

is this pulse perceived by an infalling observer at late
times? Specificalljhow willthe observed profile of the
3 |n fact, one way to derive the BTZ solution is by making ap- pulse change as a function of when the infalling observer

propriate identifications within AdS spacetime [38]and even ~ Crosses the event horizoms measured by an external
more complicated multi-black hole/wormhole solutions can be timekeeper?

constructed in this manner [44]. For simplicity we will begin the calculation by con-
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sidering our observers to be ingoing gedldesics with compute the extent dlie pulserZ + & at some later
zero angulatTmomentum (in the code we study both time v; to leading order inh&— it is

timelike and nulbbservers).To that end, we rewrite

the BTZ metric in ingoing Eddington-Finkelstein coordi- or ~ &roe™ -V, (11)
nates, which are regular at both horizons, by transform-

ing to a null coordinate v and new angular coordinatd Nis result shows the sharpeningtfe pulse is expo-
0: nentialin ingoing Eddington-Finkelstein timaea rate

controlled by the surface gravity fe inner horizon.

In terms of the time (defined above) that we compute
in the code,(11) translates to the following power law
relationship:

dt = dv —‘;i, de =@ +$dr‘ (5)

giving
, &F ~ &o(V/N + 1)y *-/%+, (12)
- _f 12 A 4R
ds’ = ~fdV* + 2dvd+ 1 dd +Bdv . (6) The steepening of features implied by (12) is the ana-

For the remainder dhis section let an overdot denoteIogue of the blueshift effect on the Cauchy hogiman,

the derivati ith b affi ter Ai one can anticipate that it could have a similar drastic
he derivative with respedb atlineé parameter AlL.e.. .5 raaction on the geometpyovided an inner hori-

() = d()/dA. A zero angular momentum geodesic hagyn of similar structure forms during collapgdarolf
6 = —Bv; of theseingoing null geodesics are v = constind Ori considered this possibility and suggested that
curves (withr = const.), and outgoing nulgeodesics when backreaction is taken into account, features of the
satisfy geometry are similarly focusefflectively producing an

- asymptotically divergent tidatce experienced by ob-

o +£Vz -0 (7) Servers crossimg.” Thus even though they argued that

T ’ this “gravitational shock-wave” never becomes a true cur-
vature singularity until it reaches the Cauchy horizon, at
late times it is nevertheless just as disastrous to an in-
dv 2 falling observer (or perhaps even more so, depending on

FoF (8)  how the spacetime extends across the Cauchy horizon).

of which a first integral can be written as

Our numericakode doesnot use ingoing Eddington-
Finkelstein coordinates, and of course the metric will ‘o
be the exact BTZ spacetime, so some care must be take
in defining quantities that can be meaningfully compared. ] ) o ]
To do so,we integrate affine timg A&long the outgo- As delscrlbed n lseCl, itis pOSSIt?'e to solve forthe

ing nullgenerator ofhe event horizon= r,; thisis formation of rotating black holes in;Ad§le retaining
unique up to an overaltonstant scale and shiftwe the cn_’cular symmetry of the governing partial differential
will then define the time parame“eto" be the affine equatlons (PDEs)In order to do so, we follow the Work.
time A at which the infalling geodesic crosses the ev@nglmuzna and Gundlach [46], and study the dynamics
horizon. For the BTZ spacetime abové; is straight-  Of a spacetime with the following metric ansatz

forward to find the relationship between affine parame- -

ter and Eddington-Finkelstein coordinate v along either ds’ = f(—dt® + dr') +r*(d6 + Bdt) (13)
horizon from (7):

THE EINSTEIN-KLEIN-GORDON SYSTEM
ASYMPTOTICALLY AdS 3 SPACETIME

where f = &4t" /cod(r/"), proper circumferences"
AL « @KeV (9) € tan(r/), and B(r, t)is also in generak func-

- tion of rand t. Pure AdS spacetime is given by the
where k = (F2 —72)/(* 27 ) is the surface gravity on thEmit A, B, B = 0. The radialcoordinate r € [G7]is
corresponding horizon (note also that from (9) it is cle@mpactifiedvith timelike infinity reached in the limit
that inner horizon generators reach the Cauchy horiZort /2. That the (r, t) sector ofhe metric is con-

as v -  in finite affine time_). Thus we define formal to Minkowski spacetime?—dt/? then also im-
plies the timelike coordinate t is similarly compactified,
V=N(E+Y —1), (10) and (barring the appearance of singularitbesdinate

or otherwise), the full Cauchy development should by re-
where N is some (arbitrary) overatinstant scalend vealed in finite tlt is also straightforward to see that
we (arbitrarily) set(v = 0) = 0. any causal curve must be interior to the radial lightcones
At an initial time v = 0, let the extent of our outgoidy= +dr, and thus this coordinate system automatically
test pulse range in proper circumferenceftmm_"+  gives us a Penrose compactificatiosafitions. Both
brp (to which side off— the pulse is,i.e. the sign of r =0 andr = "n/2 are timelike curvelsence we need
6ro, does not matter)Then, from (8),it is possible to boundary conditions for a well-posed Cauchy evolution;



at the origin we impose regularity, and at timelike infin- A. Diagnostics
ity that the metric is AdS with no incoming radiation
(Dirichlet conditions on the matterllhese boundary  Tg help interpret aspects of the geometry, we integrate
conditions are written down explicitly in Appendix A.yarious sets ofimelike and nullgeodesics.Owing to

‘To source dynamics in the spacetimve, couple the the circular symmetry dhe spacetimesach geodesic
Einstein equations (1) to a complex scalar field W(t, rpf3sesses a conserved angutamentum L;we have

satisfying the Klein-Gordon equation only investigated L = 0 geodesics hee also com-
_ pute a few otherdiagnostic quantitiesAmong these
V=0, (14)  3re the Riccicalar (R = R})) and Kretschmann scalar

(K= RH¥PIR,p0), constructed from the Riemann cur-
vature tensoR 00 We also compute the Hawking
quasilocalmassaspectMy = ’; — (V7P)2, which in
vacuum equals the BTZ mass M in the limit r —>7"
_ , (15)  Throughout our evolution we monitor the outgoing null
where an asterisk denotes complex conjudatadtow  expansion © = (3 + 8,)7, and keep track ofhe cor-
the scalar field to carry angular momentum, yet maipéajgbnding horizons where © = 0In our dynamical
a circularly symmetric stress-energy tenserimpose gpacetimes M and J (19) asymptote (r -1 to the
the foIIowing ansatz for the scalar field profile (this i-‘cﬁ?%erved mass and angular momentum of the spacetime;
m =1 case in Jalmuzna and Gundlach [46]): when a black hole forms, at late times these values con-
a . . . verge to quantities consistent with the proper circumfer-

W(t, r, 8) =Bsin(r/") o(t, r) + iy(t, r). (16) encge of tﬁe corresponding BTZ black hoﬁe’fevent horizon
(4), which we measure on the outermost apparent horizon
(outermost marginally trapped surface).

with stress-energy tensor

1
T (t, 1) =5 WV + gWa,W*— g, 0°%9,Wa,W* ,

The net, conserved angular momentum of matter is
z v
J net = —4 Tuu‘fynv h de' (17)
r IV. NUMERICAL METHODS

where the integral is performed over a spacelike hypersur-

face I” witly unit timelike normal vectorr{(9/ot)” — We follow the methodsof [40, 46] to evolvethe
B(a/06) 1/ f, axialKilling vector & = (3/00) YV, and Einstein-Klein-Gordon system outlined above and in Ap-
induced metric determinant irE[A74. From (17) we pendix A. In brief, we use a so-called free evolution

can define an angular momentum density schemeHere,the constraint equations are only solved
Vv at t = 0, after which the Einstein evolution and Klein-
Jqt, r) = —8nT,&n" h. (18) Gordon equations are used to evolve all metric and scalar

quantities forward in timeThe constraints are mon-
Using the Einstein equations we can reexpress (18) iftored during evolutiorand their convergence to zero
terms of the metric only, giving the following expressiRécked to ensure we have a self-consistent solution (see
for the net angular momentum within a disk of radiugppendix B).We adopt a Crank-Nicolson finite differ-

at some time t: ence scheme that is second order accurate in time, along
730 with fourth order spatialifferences in rWe also im-
J(t r)=——. (19) plement Kreiss-Oliger style dissipation [48lich sig-
f nificantly improves the stability ofir algorithm near

For the vacuum (T= 0) BTZ spacetimes (19) evaluatdZ'® OUter spatial boundavye slolvle the_ﬁnlte_dr:ffere_ncle
to the corresponding (constant) angular momentum %guatlons using Gauss-Seidel relaxation, with typical res-

the BTZ black hole [46]. ?alnlé‘t:i)orn/\s 2£u7tp=to()81193 gridpoints in rand a Courant
The explicit form ofthe Einstein (1,15) and Klein- o T
Gordon (14) equations in termsafr metric (13) and

scalar field (16) ansatz are given in Appendix A. A. Singularity excision

The novefeature of our numericakethod is our ex-

4 We have a factor of 4 difference compared to the equivalent ex-C'Slor_1 procedure, which improves Up‘?n th&_]t O,f_[40' 46]in
pression in [47] due to a different normalization of our scalar fiefat it allows us to evolve the spacetime significantly be-
and different normalization of Newton's constant G. yond the formation of an apparent horizolke stud-

ies of black hole exteriors, where the purpose of excision
is to remove the interior singularities from the domain

to allow long-term evolution of the exterior, here we are

of course very much interested in uncovering as much of



the interior as possiblberefore, we choose for our exi
sion criterion growth of the magnitude of metric vari 2000
above a certain threshold (specificdllyz B00 and/or

[B] = 300),above which a divergence is usually immi

nent. When the threshold is reached at a given point

we excise it and all points to its causal futinie.pro- 150
cedure results in an excision boundary which is local
only null or spacelikewith the latter occurring ibur

threshold criterion is satisfied at multiple spacelike s t\
rated pointsSuch an excision boundary makes physic % 100¢

senseand is necessary for a mathematically well-pos
problem. Physically,if somehow a timelike singularity
formed, then to reveal it would require a prescriptior

“resolve” the singularity to allow evolution of the sp: 50@¢ b=

time within its lightconayhich the Einstein equations — =k

cannot provideMathematically thenwe cannot place | =~ t=%xc + AL B3=0 :
boundary conditions on the excision surfatkimeri- ok t=kxc + At B=Blkxc, n) :
cally, this can only be stably implemented if no phys ! ! !
characteristics dhe equations point into the compu- 0.94 0.96 0.98 1.00
tationaldomain from the excised regisa¢ch behavior r

is guaranteed by causality the excision boundary is
spacelike or nullo ascertain the nature of the excision
boundary in a given scenario in the continuum limit, ®g. 3. Piot of the metric quantity B(t, r) at the first timestep
do convergence studies by both increasing the grid rgaere a portion of the grid is excised (t sd ; solid gray
lution and raising our excision threshold critetfem line), along with 8 one timestep later for the two choices
extrapolating relevant diagnostic quantities (such asafyf> mentioned in Sec. IV A. Note that the case with
vature scalars or matter energy density) to an extragh-= 0 (dotted red line) introduces a significant jump in time
lated continuum limit of the excision surface. at the outermost nonexcised gridpoint mhile the choice
One technicaldifficulty in implementingexcision Po(t + AL, ro) = B(t, ro) (dashed blue line) does not. We
within our coordinate system is integrating our evol&PPt the latter choice fop Bas it improves the stability of
variable y to find the metric variable f the reduc- our algorithm.
tion ofthe equations to first order form (see Appendix
A), we define y(t, r) =9, r), and evolve a function of
y forward in time using the Einstein equatiSp®cifi-
cally, we evolve J Ey/f (19) via (A6), then after each
timestep compute B using
z,
B(t, r)=— y(Ndi + Bolt, ). (20)
Io V. RESULTS

Hence we integrate from a larger rgdinwsard, and8 , _ o

is essentially an arbitrary functiontishe representing  In this section we present our results, beginning in Sec.
residualgauge freedom in our choicenfjular coordi- V A with a description ofhe |.n|_t|_aldata we use.We

nate 8. When the outer boundary is at timelike infin-have explored other classesioftial data and a large

ity, ro = ‘n/2, we require &t, ‘n/2) = 0 for regular- range of parameters, though for clarity of the d|scu55|op
ity (which is why we integrate from large ramlivard, We focus on three particular cases that are representative
as it makes it easy to enforce this conditibng. diffi-  Of the three qualitatively different interior structures we
culty with excision comes in when the event horizon Ray@dound, as depicted in the right three panels of Fig. 2.
7. (t, r) reaches the outer boundary, and we then nedd&t@iled descriptions of the solutions for these three cases
excise inward along the Cauchy horizgnssaif2. At~ are givenin Sec. V B.

first, we imposed what we thought would be the simplest
choice for the integration constant along the Cauchy hori-
zon,Bo(t, ) = 0. Howeverf(t, r) tends to grow very
rapidly moving inward in r just prior to excision (see Fig.
3), so setting B(t, r,) = 0 on the ingoing excision sur- We follow the same procedure as [46] to construct our
face introduces significant gauge dynamics that makieitial data. Of the scalar field variablébe quantities
challenging to achieve convergent re$ndtead then, @, ¢,V =¢ + By and W s — B, are freely specifiable

at each timestep t + At, we st F At, ) = B(t, ©); at t = 0.For our metric variables, at t = 0 we can choose

this procedure essentially freezes B at a given paint r

the excision surface to the value it had at the most recent
time when r =,mvas in the interior of the computational
domain.

A. Initial data
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FIG. 4. Penrose diagrams from an evolution with spin parameter a dft22anel:the color contours correspond ta)ln(”

The thick solid white contour indicates the location where the null expansion © = 0, and cross hatching (thin diagonal white
lines) denotes the trapped region © <Ror referencethe two contours = T+ are highlighted by dashed black linesd
correspond to the proper circumferences of the inner and outer horizons of a BTZ black hole (4) with the same mass M and
spin a as that of this spacetinRight panel:ithe color contours depict the Ricci scalar R—specifically a signed function that
goes like £ In(R) at large Rand linearly interpolates between the two branches near Rr=b@th panelsthe solid white

region is excised from the grid during numesggalution as explained in Sd¥.A. The red dotted line along the spacelike

and null parts of the excision boundary on the right panel indicates the surface where curvature is infinite (measured by bo
R and the Kretschmann scalar K), as determined by extrapolation (se& 8e2). The black circle is the location of future
timelike infinity ¥, also determined by extrapolatidhlote that there is a piece of the spacelike excision surface that looks
almost outgoing null, however our extrapolation to the singularity still gives a spacelike surface here.)

B =B = 0; A A and B (via y) are then constrained viamation ofblack holes with spins ranging from a = 0.2

Eqgs. (Al), (A2) and (A3) respectively. toa = 0.97For a < 0.2 the qualitative structure of the
Here we investigate evolutiortioé following family black hole is similar to that adthe a = 0.22 casebut

of approximately ingoing Gaussian pulses for the scatbe size of the spin-dependent features, in particular the

field:first defining Cauchy horizon, shrinks as a = 0, presumably smoothly
. connecting to the a = 0 case (see [40Thus, we fo-
F(r, A, ro, 0) = Ae r=ro’/o”, (21) cus on higher spins where we can clearly resoltireeall

interior featuresfFor 0.97 < a < 1 our method breaks
where A, rn and o are constant parameters, we choosgown at the numerical resolutions we are currently able
to achieveWe have checked a couple of cases where the

¢t =0,1) =F(r,d fog, 0) + F (=1, § rog, 0), initial data has a > 1, and no black hole (or any singular

V(t=0,r) =Rr, Ay g 0) + F—r, Ay, 1oy, 0), structure) formed within the time it took for the pulse of
wt=0,r)=F(r, 4 ny 0)+F(-r, & ny, 0), scalar field to traverse the universe several times.
W(t=0,r =fr A, foy, O) + Bl—r, A, foy, 0).(22) In the remainder ofthis section,we present results

from threespecificcases,a € (0.22, 0.77, 0.91that
Superposing a Gaussian with its reflection about r = @re representative dhe qualitatively differerinteri-
is a simple way to ensure regularity of the field at r =01®. we observeas illustrated in Fig. 2 above. The
There are numerous ways to provide angular momergarticular initialdata parameters are o = 0.05 for all
in the initialdata (see the source ternpy $n (A7)); in cases,and: ro, = 0.225, ¢, =0.232, 4 = 0.28 for
the above it comes from the Gaussians for ¢ and g b&irg0.22r0y = 0.2, §, = 0.25, 4 = 0.28 fora = 0.77;
centered at different locatiogsdind 5, respectively). rop = 0.2, 4, = 0.25, 4= 0.26 for a = 0.91.
We quantify the amount of spin in terms of the BTZ spin
parametera = |/ |/(M *) € [0, ahd we study the for-
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FIG. 5. Contour plots analogous to those of Bigor an evolution with a = 0. Nbte that the size of the spacelike branch in
coordinate r has decreased significantly, and that the dotted red line on the right panel indicating a surface of infinite curv:
(as measured by R, K) is only present beyond this small spacelike branch.

B. The black hole interior for three representativecase, there is a large portion of the Cauchy development
cases of the interior that never becomes trapped.

1. Penrose diagrams and trapped regions
2. The Cauchy horizon

In Figs. 4, 5, and 6 we show proper circumference ~
and Ricci scalar R on Penrose diagrams for the evolutidigs. 4-6 suggest that the extrapolated point where
with @ = 0.220.77 and 0.91 respectivédiyall cases a the apparent horizon meets the outer boundary is i
trapped region forms soon after evolution begins, th@@ghthat the ingoing nldkanch of the excision surface
it does so more rapidly for the two lower spin Ehges. €manating from the point on the outer boundary near
trapped region first appears at a single nonzero propér is asymptoting to the Cauchy horizdinthis is the
circumferencend as it grows is bounded by an outercase, the exterior of the spacetime should be complete in
and inner apparent horizofihe former rather quickly the sense that'ican only be reached in infinite proper
asymptotes to the nudlvent horizon ofhe spacetime, time by any causaturve,and the event horizon only
whose late-time circumference is consistent with thatréfches” the corresponding point on the Penrose dia-
a BTZ black hole,7; (4), with the same mass M and gram in infinite affine time (and of course the fact that
angular momentum J as that of the spacetifoe.the these disparate limits are at the same location on the
lowest spin case (Fid), the inner horizon quickly col- diagrams is only an artifact 6fie Penrose compactifi-
lapses tor= 0, and never resembles an outgoing nulfation). Moreoverijn the interior the opposite should
surface as in the BTZ spacetimBor the intermediate hold: any causakurve should reach the Cauchy hori-
spin case (Fig5), at intermediate times the inner horizon in finite affine (proper) time performed several
zon does appear close to nald tor = r_, though at checks on the numerical solutions to confirm that this be-
late times also collapses to= 0. For the high spin havior occursFirst, we integrated proper time T along
case (Fig.6), the inner horizon also is almost nudit 7= const.timelike curves exterior to the horizon (note
intermediate times, though not atrthe~ of the cor- that these curves are not geodesies)d extrapolated
responding BTZ spacetime, and eventually runs into t&&he point where T - «; these points are shown as
Cauchy horizon (we discuss below in & .2 why we the open black circles in Figh.6,and converge to the
identify the ingoing null part of the excised region asetfi€apolated location where the event horizon generator
Cauchy horizonand not merely the causflture ofa  reaches the boundaMe also integrated sets of outgo-
coordinate singularityi other words, for the high spining nullgeodesics throughout the spacetime (sed Fig.
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FIG. 6. Analogous plot to Fig4, except this time with a = 0.9Note the absence of a spacelike excised brascellas
the absence of surfaces of infinite curvature (as measured by R, K) on the right panel.

for an example of their trajectories for the a = 0.77 daslegyvior implies that the Cauchy horizon is composed of
confirming those interior to the event horizon end ortwtenull segments, the initial piege éanating from
Cauchy horizon or central singularity in finite affine tilme not including)*i, whereris nonzero except possi-
bly at its future endpoint, connected;to &n whichr~
extends continuously to zero.
3. Focusing of ingoing geodesics in the interior Such a featureftr?) and(A) further implies infalling
observers are subject to an asymptotically divergent tidal
Given how different the inner horizon structures arorce,experienced in a region @he Penrose diagram
from theirvacuum BTZ black hole counterpartsne ~ well before any singularity (for the lower a cases) or the
might expect the Marolf and Ori focusing effect discusaeahy horizen We emphasize that although this fea-
in Sec. 1l to be significantly lessened; even absent. ture is encountered as the observersrcross,’in the
Howeverijn all three cases (a = 0.22, 0.77, 0a®1ate dynamical spacetimes this is not the location of the inner
times approaching the Cauchy horizemfind a quan- horizon at late timeld.is remarkable and puzzling then
titatively similar growth in the rate of change of intefilbat the Marolf-Ori calculation still manages to give the
features as experienced by infalling obsetudtigy). 8  quantitatively correct growth rate, as it seemed to be an
we show proper circumference versus propgér fifoe ~ essentiapart of the calculation that ‘was marginally
severalnfalling timelike observebgginning from rest trapped—i.eoutgoing geodesics at larger radii have neg-
atr= 3,, for the a = 0.77 caNetice the near steplikeative expansion, while geodesics at smaller radii have pos-
drop in proper circumference that occursnebig. 9  itive expansiomesulting in the localization téatures
shows the rate of growth of this feature measured a Béatr—. In the dynamicatasethe asymptotic scaling
ple of ways (one following the BTZ calculation outling@igime where the power law rate matches the vacuum
Sec. Il), as well as the change in the observed scalar @¥idilation is in a region dhe spacetime that is fully
for both ingoing timelike and null geodesics (again fdrapged, and moreowves=T7_ is clearly spacelike there,
a = 0.77 case)At late times the rate of steepening foRs is evident from the Penrose diagrams #ig5.
the nullgeodesics follows the power law prediction (12)fThough more work is needed to completely understand
quite closely; we have not derived the analogous result for
timelike geodesics, though the numerical data also shows —
a power lawput with a different slope than in the null
case.Extrapolating these curves to the Cauchy horizo5nThough “well before” is somewhat an a'rt.ifact of how the regiqn
(V - ) suggests the knee becomes an actual step fun eyond the near-shock feature is magnified on the Penrose di-

. . .agram;this region is crossed in vanishingly smafiroper/affine
tion thereln the notation of [49] (see also [50, 51]), thl§?ne by geodegsics_ gly smafirop
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FIG. 7. Outgoing null rays plotted as a function of the circu
ferential radiusand a coordinate advanced time v = t+r, fo
the case with a = 0.77 (compare to Fig. Bpte that there
are three groups of nulays: those that begin at the origin
and return to the originat which timer = 0 has become

a spacelike singularityhose that asymptote to the Cauchy
horizon,reaching a finite value ofat late times;and those
that escape before the black hole foremgntually reaching
the timelike AdS boundary= .

the geodesic focusing effattis worth pointing out a
few key features of our solutions which hint at the trt
cause.After the ingoing pulse afcalar radiation trig-
gers apparent horizon formatidinpasses through the
origin and moves outward on a null trajectory, the en
time remaining in a region gffacetime where the null
expansion ©though negativés very close to zerds

a result, the pulse effectively sits at a constant value of

(on the nearly null contours oughly between 0r25™ FiG. 8. Top: proper circumferences versus proper time -

and 0.75" in the bottom panel of Fig. 8) throughout thg several ingoing timelike geodesics, beginning from rest at
entire history of the black holmtil it eventually runs 7= 37., at successively later timesfor the a = 0.77 case.

into the Cauchy horizobhis behavior leads us to specBottom: the same geodesics on a contour plot of along

ulate that the backreaction of this pulse of matter orwtiHfei* and the infinite curvature surface as in Fig.The
geometry gives rise to the large coordinate acceleratifif Parameter is, as discussed in Sedl, the affine time

the geodesics experienag,shown in the top panealf along. the outgoing nujlenerator of Fhe_event hon;on when

Fig. 8 (this is consistent with a similar effect calculat&ff 9iven geodesic crossesfior clarity in the top figurea

in a 4D charged shelmodelof collapse to a Reissner- constant shift has been added to T for each geodesic to display

. them in increasing orderimn and the horizontal solid line is
Nordstrom black hole [52I)remains uncleathough, the location of the inner horizon if the spacetime were BTZ,

why the calculation in the eternal BTZ background (see 7_ (which is not the location of the inner horizon in the

Sec.ll) correctly predicts the sharpening rate for nullgynamical spacetime; see Fig.NQte that the geodesics are

geodesicsn particular that the growth is controlled bygtrongly focused to the origin beyordr-, and the sharp-

a number close to the surface gravity of the inner homiessnof the focusing increases witfiie same phenomenon

of the vacuum case. occurs for nulgeodesics in terms of their affine parameters;
see Fig.9 for measurements of the sharpening rate for both
classes of geodesic.
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(AT T + 0@ + ¢ FIG. 10. Behavior of the norm of the scalar field components

lof| - o« Y15 ¢* + y? and the Kretschmann scalar K for @ = 0.22 (left

column) and a = 0.77 (right column) along a representative

outgoing null ray approaching the Cauchy horNmte. that

¢’ +y? does not diverge in either case, although its derivative

appears to for low spin (upper left panalpurcing a diver-

gence in the stress-energy and curvature (bottom left panel).

+ For higher spin (right column) the time derivative of the scalar

%ﬁ field remains finite and so does curvatdi@.a = 0.91the

behavior is qualitatively similar to the a = 0.77 case shown

in the right column.
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4. Regularity of the Cauchy horizon, and presence of a
spacelike singularity

10T 1§/ 10

v Dias, Reall, and Santos [43through study ofinear
perturbations of BTZ, found that a massless scalar field
should be of differentiability clag8Qwhere b-c gives

FIG. 9. On the top (bottom) panelsharpening ofarious the largest integer strictly less than its argument) at the
quantities along ingoing null (timelike) geodesics in terms@&uchy horizon, where

their affine parameters A (proper times &9,a function of

the timing coordinate (see Sec.ll and the caption of Fig. 2

8), from an evolution with a = 0.7The gradients of and b=+ 1 (23)

16~

.

square of the magnitude of the scalar fiéld ¢ are mea- r-
sured when the corresponding geodesic crassef.75r_, . . . .
and the net elapsed afgine tirgegA/\ (propertime At ) is  As a function of a = |J |/(M “Jone may easily combine
counted between the crossing at 0.75~ andr = 0.25~ the above equation with (4) to find that the field should
(see Fig. 8)The measured slopes do not depend much on t#he C° for a < 0.6, Efor 0.6 < a < 0.8, and increasingly
particular values chosen for the crossing radii, as long as tregular for higher spifisirthermore, by full contraction
are past the knee at~ - (Fig. 8). of the Einstein equation we have that the Ricci scalar is

proportionato the trace of the stress-energy tersor,

the Ricciscalar R, and consequently the Kretschmann

scalar K, should diverge if the scalar field,i®at not

if it is C* or greater.

Our fully nonlinear results appear to agree with this
linear analysisin Fig. 10 we illustrate the behavior of
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FIG. 11. Plots illustrating the method we use to find the presumed surface of infinite curdapiceed by the dashed red

lines on the right panels of Figs. 4 andlldng each r = const. line, if a quantity h(t) appears to be diverging approaching the
excision surface, we assume it does so like h(t) = £F*, with a constant power a and time-of-divergen@ntd measure

the two constants by fitting to the late time behavior as depicted above (this is done independently at each r, so in general
“constants” vary with rlt is important to note that this approach is not based on any theoretical model for the divergence
of these quantities; we are merely extrapolating the numericdlhgaddove examples show the divergence of the Ricci (R)

and Kretschmann (K) curvature invariants approaching the spacelike singularity (left plot) and the singular Cauchy horizon
(right plot) for the case with spin a = 0.Ra@te that K grows at double the rate R does, as one would expect due to the fact
that in 3D they obey the relation K = 4RR*’ — R2.

the scalar field and K along a representative outgoinGauchy horizon formed in a collapse scenario that does
null geodesic approaching the Cauchy horizbmde- not “break down” (in the language of [49]) to a different
termine the infinite curvature surfaces denoted by thdass of singularity in the intetidfigure 12 shows the
dashed red lines on the right panels of Figs. 4 and 5,bvedavior of the Ricci scalar R as a function of time at the
extrapolate the growth of R and K in coordinate timeotrigin, and illustrates the qualitative change in late-time
along coordinate r = condines,as illustrated in Fig. dynamics toward smaller curvature with increasing a.
11. As a secondary cheake also extrapolate along in-
going and outgoing null geodesics; both approaches yield
consistent locations for the infinite curvature s@face. Vl. CONCLUSION
the three cases presented hemrdy the a = 0.22 case
shows singular behavior of R and K on the Cauchy horiwe have numerically constructed circularly symmet-
zon. The Hawking mass M displays a similar trend, ric solutions to the Einstein-Klein-Gordon equations in
only diverging on the Cauchy horizon for the a = 0.23symptotically Ad$pacetime, which describe the grav-
caseln the larger spin cases where curvature is finitatdtienalcollapse of a scalar field with angular momen-
analysis of [43] suggests there should still be some leganofo form rotating black holdg have implemented
regularity at the Cauchy horizon; with our second ordgrexcision algorithm that appears to be able to reveal
accurate code and the resolutions we have run, we ai@ Bi9é continuum limit) the fulCauchy development
able to extrapolate higher derivatives of the scalar figfch family ofinitially (approximately) ingoing smooth
with enough accuracy to make any definitive stateme@aigssian scalar field pulse©ur main findingssum-
in this regard. marized schematically in F&y.are that there are four

As evidentfrom the Penrose diagranaf the three qualitatively different geometric structures describing the
cases, Figs4-6, the relative size of the spacelike branch
of the excision surface (which is always singular when———
present) decreases compared to the size of Cauchy hori-
zon as the spin increasRarticularly interesting is that 6 |n the “two ended” 4D Reissner-Nordstrom case, examples have
for spins greater than a = 0.87 the spacelike branch vaeen presented where the Cauchy development of sieitur-
ishes,and the then-regular Cauchy horizon extends all \k/)v?t':fi]Orr:S in theliizteriigr "Taﬂf tC[’S%]b“:LtlxatengUE?l;fhé’ TOEZS” cun
Ehe way in fronf to meet the .regl'”ar’ timelike origin atd mer?taslrc)i?lffgreﬁcses?‘go?n txr/]e “or;e-enod(eed" ipace?infez r:Ie?/aL:\t
F = 0.To our knowledge this is the first example of a n@lgravitationm collapse, however [50].
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null Cauchy horizon extends all the way inward to a reg-

ular, timelike origin at= 0. Our algorithm is not able

to follow the fulldevelopment dhe interior for near-

extremal0.97 . a = 1) black holesand though we do

not see any hints of qualitatively new features emerging

compared to the highest spin case we can fully resolve,

we cannot make definitive statements about this limit.
For all a > 0 cases we have studied, we find that the fo-

cusing effect experienced by infalling geodesic observers

crossing the inner horizon = r_ of a vacuum BTZ

black hole also occurs in the dynamicallapse interi-

ors. Remarkablythe rate offocusing is quantitatively

similar to the vacuum case (as originally derived in [27]),

and moreover it stidiccurs at roughly the same radius,

despite that now = “r_ is not an inner horizon (for

low spin cases the inner horizon collapses to the origin

r = 0 well before the rate dfocusing begins to match

the background calculatio@he dramatic consequence

of this focusing is that timelike (null) observers experi-

ence a drop in proper circumference feEamtor =0

in ever decreasing proper (affine) time the closer to the

Cauchy horizon they cross, extrapolating to a step func-

) o . tion drop at the Cauchy horizofhis behavior implies

FIG. 12. The magnitude of the Ricscalar R as a function 5 djverging tidal force is experienced before any singular-

f?i;glot%gjtl?g:es:i?segtrzgtrejt%:rf2 21r(])Cg;)nRo(?)pllgrﬁaix\éeﬁnitity (if present) is encounter&imilar conclusions were

and goes through a locataximum before decreasing in the?eachedl for the eterna_l 4D Kerr and Reissner-Nordstrom

approach to the Cauchy horizomhereas for lower spins it cases with a perturpatlvg anaIy$E7_]and a few fully

trends toward a divergence there. nonlinear case studies with numerics [23, 28-30].

Statements about what the 3D AdS collapse case might
say about the astrophysically relevant 4D black hole inte-

future boundary ofhe Cauchy developmenind that rior would be pure speculatibiowever, for some prop-
which one occurs in a particular collapse depends onéffiies we already know there are qualitative differences
spin parameter a of the black hole that foffoszero ~ between the twieor example, the work of Dafermos and
spin, the earlier work [40] revealed that a central (propfl6lmplies that in a black hole whose exterior ap-
circumferenae= 0), spacelike singularity forms in theproaches Kerr, the branch of the Cauchy horizon emanat-
interior. For smallspins 0 < a . 0.60, we find that a N9 from T is weakly singular for all subextremal spins,
null branch of a Cauchy horizon forms)anating from Unlike our high (a & 0.87) spin casése work of Van

future timelike infinity jon the Penrose diagram (but d& Moortel[50,51]shows a similar result for Reissner-
not coincident with j, along whichr €ontinuously de- Nordstromand moreover that the n@éuchy horizon

creases from the event horizon circumferende to (under reasonable assumptions) always “breaks down” to
7 = 0, eventually meeting up with a central spacelikedsg@ntrakingularityagain in contrast to our high spin
gularity.In this case the Cauchy horizon is “weakly sigaseslt is unclear whether the latter difference is a con-
gular”, in that the metric and scalar field are finite th@@@uence of charge versus angular momentum influencing
but their gradients diverge so that the curvature scaf#& interior; a simple way to gain more insight would be

R and K are singular. The Hawking mass also grows to look at the interiors of black holes formed from charged
here (the “mass inflation” phenomenon), seemingly €rgularly symmetric collapse in 3D AdS. Of cotinge,
divergence as the Cauchy horizon meets the central 4lfimate goal would be to study both 3D and 4D collapse
gularity.For 0.60 . a . 0.87 we find a similar Penrose With angular momentum and charge without any symme-
diagram to the lower spin cases, except that the Cau¢hyestrictions, though that would pose significant chal-
horizon never becomes singulasdadar field gradients lenges for either analytic or numerical stubiessur-

and curvature invariants extrapolate to finite values BFsingly rich set obutcomes found in the Agxase,

it. This behavior is consistent with the linear analysifowever—which is expected to be much simpler than the
of [43],and as they concludshows that formation of higher dimensional cases, where true dynamical gravita-
rapidly rotating black holes in 3D asymptotically Adstional degrees of freedom come into play—suggests that
spacetime violates the strong cosmic censorship con§aking on the challenge would be well worth the effort.
ture (though this picture might change in light of quan-

tum effectssee [54])For 0.87 . a . 0.97 we find that

the central spacelike singularity vanishes, and a regular,
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n the above, the matter source terms are

Sg =St/ WV X+ WY)+

cos(r/") sin(r/")
Appendix A: Equations of Motion —— Vo + Wy)

Sy = sirt(r/")(Y ¢ — Xy)
Sift(r/ ) (W ¢ — V y),

In this appendix we explicitly write down the partic-
ular variables we useguations we solvand the cor- y?
;elslpopdm[g‘lg]oundary and regularity conditiolsely and we have introduced the following auxiliary variables:
O We Uss the metri B X=¢0Y=yV=0+py W=p—Bp§

We use the metric ansatz (13), and scalar field ansg}(z tan(r/')) + 1/ ” / 3 O
(16) with corresponding stress-energy tensor Th&). an(r/")) (" sin(r/") cos(r/ 7)) Frha =

(/") — e =28 )/(*2sirt(r/")),
Einstein field equations (1) can be decomposed into é( tan(r/ )) + (co o . _
Hamiltonian constraint @ /(*2co8(17°)), Ca = 2sinf(r/")e?8724,

andj = r3y/f
1+ cddr/) In terms of the above first order varialites Klein-
B+ B% B— A%+ < sin(r/") cos(r/") Gordon equation for the two independent components of
A0 the complex scalar field take the form
- \ (A1) _
sin(r/") cos(r/") -X+ Vo= (BY +yp) =0
—A'B'+C3+lec4y2+4n$;o=0, Y+ WO+ (BX +yp) =0
: 3 :
0 -
the radial component of the momentum constraint —V+ X0+ ;X +CX - BW -BV + Cp=0
. 3 .
L : —W+ Y%+ Y+ CY + BV —BW + Coy = 0.
BO+B BO_AO+ \COS(r/\) _ r 1 .B 2y
sin(r/’) (A2) (A8)
A BO+ 1 +AnS = 0 We impose the following regularity conditions at the
*sin(r/") cos(r/") ¥ =0 originr =0
the angular component of the momentum constraint Adt, 0) = B(t, 0) = At, 0) = 0
0 Alt, 0) = B(t, 0) (A9)
J %+ 8m5,0=0, (A3) ot 0) = @t, 0) = 0,

and three independent components of the evolution £9

tions 4 2he following regularity/outer boundary conditions

atr= "n/2
. 2 2 2
_ 00, 4po0 2 0 - =
B +B%+ B +(B9%2 +B SN CosTT T T

-B2+ 2@+%C4y2+ 4ng =0,

A(t, ‘n/2) = BAt, 'n/2) = B(t, ‘n/2) =

. . Al0
o(t, n/2) = y(t, m/2) = (A10)
(A4)

Appendix B: Convergence Tests
—A+ A% ¢ - §C4y2 + 415 =0, (A5)

4 We have performed many tests to check the correct-

ness ofour code,including conservation dfe asymp-
totic mass and angular momentum, and that the scheme
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Hamiltonian constraint residual is converging at the expected ordHre latter rate of
Y convergence should be second order throughout the evo-
i : lution, though we sometimes see slightly better than sec-
ond order for lower resolutiopsesumably due to our
use of fourth order spatiifferences:or brevityhere
we only show—in Figl3—one set of convergence tests
Mormantum eancteaing rastdub] from a repres_entative _cas&amely convergencetihfe
] three constraint equations to zero for the a = 0.77 case.
R = As mentioned in the main texte use a free evolution
5l F AR AT \ -1 scheme, where the constraints are only solved at the ini-
tial time, and this is therefore a rather nontrivial test that
we are solving the correct system of equatipexifi-
cally,what is plotted in the figure are a set of ratios of
the L, norms versus time a¢he residuals oéach con-
straint,taken between pairs of successively higher reso-
lution runs:

2h, 2h
on(t) = lope B1)
where f'u" denotes a residual operator L acting on the
discrete solution u at resolution (grid spacing) h (and
analogously for the half resolution case at 2h), and N is
the number of points in the higher resolution run, related
to h by h = (fnax = fmin /(N = 1) = Cm/2(N — 1)).

FIG. 13. Plots of the rate of convergence to zegdtl)(B1) In the cor?tlnuum limiQy () should asymptote t6'2

for the residuals ofhe three constraint equations (A1-A3), Where m is the order of convergence.

here for the case with a = 0.Edch should be converging to

zero with @ (t) = 4 (in the continuum limitNe see a trend

with increasing resolution to this expected behavior until very

near the endat which time most of the grid is excised and

some field gradients have become quite lahgextracting

properties from the numericablutions for the results pre-

sented heraye do not use data from this “noisy” region;

particular all the extrapolation of quantities to the presumed

spacelike singularity (when present), Cauchy horizon} and i

are performed with data in the region where we have good

convergencédotted black lines are shown at(@ = 2, 4 to

help guide the eye.

N = 2049---- N = 4097— N = 8193
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