
Scalarized Black Hole dynamics in Einstein dilaton Gauss-Bonnet Gravity

Justin L. Ripley∗ and FransPretorius†
Departmentof Physics,Princeton University,Princeton,New Jersey 08544,USA.

(Dated:February 11, 2020)

We report on a numerical investigation of the stability of scalarized black holes in Einstein dilaton
Gauss-Bonnet (EdGB) gravity in the full dynamical theory, though restricted to spherical symmetry.
We fnd evidence that for sufciently smallcurvature-couplings the resulting scalarized black hole
solutions are nonlinearly stable.For such smallcouplings,we show that an elliptic region forms
inside these EdGB black hole spacetimes (prior to any curvature singularity), and give evidence that
this region remains censored from asymptotic view.However,for coupling values “superextremal”
relative to a given black hole mass,an elliptic region forms exterior to the horizon,implying the
exterior Cauchy problem is ill-posed in this regime.

I. INTRODUCTION

We present numerical results on the nonlinear evolution of spherically symmetric black hole solutions in a modifed
gravity theory:Einstein dilaton Gauss-Bonnet (EdGB) gravity.EdGB gravity is one of the few known scalar tensor
theories that may admit sensible classical evolution (at least for some open subsets of initial data; see our earlier studies
[1, 2]), yet does not allow the Schwarzschild or Kerr stationary black hole solutions.Instead the expected solutions are
conjectured to be “scalarized” black holes [3–5] (the detailed form of this statement depends on the functional form
of the Gauss-Bonnet coupling and scalar feld potential[6,7]). The variant of EdGB gravity we consider is poorly
constrained by weak feld gravity measurements (e.g.from binary pulsars [8]), though to be consistent with the speed
of gravitationalwaves inferred by the binary neutron star merger GW170817 [9]requires a negligible cosmological
background for the dilaton feld [10]1. Assuming the latter,the strongest constraints on the theory may then come
from gravitational wave observation of the fnal moments of binary black hole inspiral.The theory thus provides an
interesting alternative to generalrelativity (GR) to compare against when gravity is in the strong feld dynamical
regime (see e.g.[12] and references therein).

From the perspective of efective feld theory,EdGB gravity can be motivated as the leading correction to GR in
a low energy expansion ofquantum gravity that incorporates mixing between a scalar degree offreedom and the
tensor (metric) degrees of freedom of GR [13, 14].Then one would not expect signifcant modifcations to GR away
from the Planck scale,and in particular not for astrophysicalblack holes.Alternatively,as we do here,one could
consider the coupling parameter of the theory to be arbitrary, and EdGB gravity taken verbatim as a classical theory
of gravity with a scale dependent modifcation to GR. Such a theory may not be mathematically well-posed in some
regimes (or in a generic sense not at all[15,16]),though a “healthy” sector of solutions could stillbe extracted by
treating it as an efective feld theory and limiting consideration to smallperturbative corrections to GR.Several
groups are pursuing such an “order reduction” approach to understanding EdGB gravity, and related theories where
beyond-Ricci curvature scalars are added to the Einstein Hilbert gravitational action [12, 17–23].Another approach,
inspired by the Israel-Stewart “fx” of relativistic hydrodynamics [24],is to explicitly modify the GR-extensions to
lead to well-posed equations [25, 26].

Our approach is instead to attempt to solve the complete classical feld theory, and discover which classes of initial
data (if any) lead to well-posed evolution.Our motivation is two fold.The frst is the desire to know how classical
gravity can in principle difer from the predictions of GR in the dynamical strong feld regime, as is applicable to the
last stages of binary black hole coalescence.This could give more meaning to quantitative statements of consistency
of observed waveforms with the predictions of GR, help constrain EdGB gravity, or discover modifcations to GR of a
class similar to that ofered by EdGB gravity.Though an efective feld theory approach as described above is likely
“guaranteed”,by construction,to give well-posed evolution schemes for smalldeviations to GR,it is still unknown
if this approach could be pushed to solve for modifcations large enough to provide waveforms distinguishable from
GR in an observation,given the typical signal-to-noise ratios expected from the current generation of ground based
detectors, and taking waveform degeneracies into account.

The second reason is that nonlinear modifcations ofgravity have been introduced in attempts to address the
discovery ofdark matter,dark energy,solve the fatness and horizon problems ofearly universe cosmology,and
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1 We note that in asymptotically fat spacetimes it has been explicitly shown that the speed of linearized tensor and scalar perturbations

in EdGB gravity approach light speed in regions far away from gravitating sources [11]
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resolve the issues of the initial cosmological singularity and singularities formed during gravitational collapse.EdGB
is an important and representative member of a class of modifed gravity theories, Horndeski theories, that have been
invoked to solve these various issues within classicalGR (for a recent review on Horndeskitheories see [27]),and it
thus is interesting to see if the theory is mathematically sensible as a classical feld theory.

Previous studies of EdGB black holes have focused on static solutions to the theory (e.g.[5–7]), the dynamics of the
EdGB scalar in the decoupling limit (e.g.[17, 20, 28]), or linear perturbations of static EdGB black hole backgrounds
(e.g. [29]). Additionally,a recent work [22]explored the dynamics ofthe scalar and metric felds ofthe theory
from an efective-feld theory framework.There it was shown that scalarized, rotating EdGB black hole solutions are
stable for small enough couplings, up to leading order in metric and scalar feld perturbations.Restricted to spherical
symmetry, our results extend this to all orders in the Gauss-Bonnet coupling, showing consistency for small couplings,
and showing where and how the theory breaks down for large couplings.

In a previous work,we studied the dynamics ofEdGB gravity in spherically symmetric collapse using horizon-
avoiding coordinates [1, 2].There we considered collapse of a dense concentration of the dilaton feld, and for sufcient
mass could show a horizon was forming,though we could not evolve beyond that time.Here,we give results from
a new code solving the EdGB equations in horizon penetrating coordinates, allowing us to investigate the long-term
stability of scalarized black holes (for times up to of order t ∼ 103m, where m is the mass of the black hole).Also,
we begin with the Schwarzschild solution as initial data (with an optional exterior dilaton feld perturbation).

Upon evolution ofSchwarzschild initialdata,we fnd that the scalar hair grows,and an elliptic region forms in
the interior ofthe black hole.This indicates black hole physics in EdGB gravity has aspects ofit governed by a
mixed elliptic-hyperbolic equation (or simply mixed-type equation), and it is unclear how this could afect the Cauchy
problem exterior to the horizon.I.e., there is no a-priorireason to expect this elliptic region to “obey” cosmic
censorship,and leave the scalar in the exterior domain to be governed by a hyperbolic partialdiferentialequation
(PDE). Instead, we will simply assume that this is possible, and excise the elliptic region from the domain.If during
subsequent evolution no new elliptic region forms, and the solution settles to a stationary state, we will claim this is a
self-consistent application of excision, and the resulting hairy black hole is stable (to within limitations of numerical
evolution)2. We do fnd this to be the case for Gauss-Bonnet couplings below an extremallimit for a given black
hole mass.We compare these solutions to the scalarized decoupled black hole solutions of EdGB gravity,and fnd
good agreement,the better the smaller the Gauss-Bonnet coupling is (for a fxed black hole mass).However,above
the extremal limit,an elliptic region does form outside the horizon,indicating a break-down of the exterior Cauchy
problem for small black holes (relative to the EdGB coupling scale).

An outline ofthe rest ofthe paper is as follows.In Sec. II we describe the equations ofmotion,variables,and
metric ansatz we use.In Sec.III we describe aspects of the numericalcode,including our excision strategy,as well
as some diagnostic quantities we monitor.In Sec.IV we describe the results mentioned above in detail,and end in
Sec. V with concluding remarks.We leave some convergence results,and a derivation of the decoupling limit about
a Schwarzschild black hole in Painlev´e-Gullstrand coordinates, to the appendices.We use geometric units (8πG = 1,
c = 1) and follow the conventions of Misner, Thorne, and Wheeler [31].

II. EQUATIONS OF MOTION

The action for the EdGB gravity theory we consider is

S =
1
2

Z
d4x

√
−g R − (∇φ)2 + 2λf(φ)G , (1)

where f (φ) is a (so far unspecifed) function, and G is the Gauss-Bonnet scalar

G ≡
1
4
δµναβ

ρσγδ Rρσ
µν Rγδ

αβ , (2)

where δµναβ
ρσγδ is the generalized Kronecker delta.In geometric units,the Gauss-Bonnet coupling constant λ has

dimensions length squared.Varying (1) with respect to the metric and scalar felds,the EdGB equations of motion
are

E (g)
µν ≡ Rµν −

1
2
gµν R + 2λδγδκλ

αβρσ Rρσ
κλ (∇ α∇ γf (φ)) δβ (µgν)δ − Tµν = 0, (3a)

2 Also in this case, that we can freely specify the initial data for all characteristics is not in contradiction with the result of Morawetz on
the Tricomi mixed-type equation [30],which seems the relevant mixed-type equation for EdGB gravity here [2];rather, following the
excision philosophy, we simply do not care what irregularities or lack of uniqueness occur in the interior of the excised region.



3

Tµν = ∇µφ∇νφ −
1
2
gµν (∇φ)2,

E (φ) ≡ ∇µ∇ µφ + λf0(φ)G = 0. (3b)

In this work we will only consider the coupling function

f (φ) = φ. (4)

While other coupling functions are often considered in the literature on EdGB black holes, this is the simplest which
is thought to give rise to stable scalarized black hole solution;see [3,5, 17,20,32]and references therein.This
coupling may additionally be motivated as the lowest order term in the efective feld theory expansion of a metric
theory coupled to a scalar feld (e.g.[8]).From the symmetry λ → −λ, φ → −φ, we only consider λ ≥ 0.

We evolve this system in Painlev´e-Gullstrand (PG)-like coordinates (e.g.[33–36])

ds2 = −α(t, r)2dt2 + (dr + α(t, r)ζ(t, r)dt)2 + r2 dϑ2 + sin2ϑdϕ2 , (5)

so-named since t = const. cross sections are spatially fat (the Schwarzschild black hole in these coordinates is given
by α = 1, ζ =

p
2m/r).

We defne the variables

Q ≡ ∂r φ, (6a)

P ≡
1
α

∂tφ − ζQ, (6b)

and take algebraic combinations of Eq.(3b) and the tr,rr, and ϑϑ components of Eq.(3a) (c.f. [2]) to obtain the
following evolution equation for the {P, Q} variables:

E (Q) ≡ ∂tQ − ∂r (α [P + ζQ]) = 0, (7a)

E (P ) ≡ A(P )∂tP + F (P ) = 0. (7b)

The quantities A(P ) and F(P ) are lengthy expressions of {α, ζ, P, Q} and their radialderivatives.We present their
explicit forms in Appendix C. In the limit λ = 0 Eq. (7b) reduces to

∂tP −
1
r2∂r r2α [Q + ζP ]= 0. (8)

Interestingly, in PG coordinates the Hamiltonian and momentum constraints do not change their character as elliptic
diferential equations going from GR to EdGB gravity:

E (g)
µν nµnν ∝ ∂r (r − 8λf0Q) α2ζ2 − 8λf0

P
α

∂r α3ζ3 − r2α2ρ = 0, (9a)

E (g)
µr nµ ∝ 1 − 8λf0

ζ
r
P − 8λf0Q

r
ζ∂r α −

1
2
rαj r

+2λf0 Q
rα2∂r α2ζ2 + 4λ

ζ
r
∂r (f 0P ) = 0, (9b)

where

ρ ≡ nµnνTµν =
1
2

P 2 + Q2 , (10a)

j r ≡ −γr µnνTµν = −P Q, (10b)

f 0 ≡ df /dφ,and nµ ≡ (−α, 0, 0, 0).While Eqs.(9a) and (9b) hold for any f ,as mentioned above we only consider
f (φ) = φ in this article.

III. DESCRIPTION OF CODE AND SIMULATIONS

A. Diagnostics

As PG coordinates are spatially fat the Arnowitt-Deser-Misner mass prescription always evaluates to zero,and
does not capture the correct physical mass of the spacetime.Instead then we use the Misner-Sharp mass [37]

mMS (t, r) =
r
2

1 − (∇r)2 =
r
2
ζ(t, r)2. (11)
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evaluated at spatial infnity to defne the spacetime mass (and this does give the correct mass for the Schwarzschild
solution in GR)

m ≡ lim
r→∞

mMS (t, r). (12)

The Misner-Sharp mass can be thought of as the charge associated with the Kodama current, which is conserved in
any spherically symmetric spacetime (regardless of whether the Einstein equations hold ) [38–40].Going through this
“derivation” of the Misner-Sharp mass, we fnd that we can think of mMS (t, r) as representing the radially integrated
energy density of the following (conserved) stress-energy tensor for EdGB gravity [2]

Tµν ≡ − 2λδγδκλ
αβρσ Rρσ

κλ (∇ α∇ γφ) δβ(µgν)δ + ∇µ∇ νφ −
1
2
gµν (∇φ)2 . (13)

There is no other defnition for a covariantly conserved stress-energy tensor that does not involve both the Riemann
tensor and derivatives of the scalar feld (besides the Einstein tensor itself, or a constant times the stress-energy tensor)
in EdGB gravity.We note that the stress-energy tensor 13 also conforms with earlier choices for the stress-energy
tensor of EdGB gravity [3].

As described in the next section we compactify so that infnity is at a fnite location on our computationalgrid.
The asymptotic mass m is preserved up to truncation error in our simulations of both EdGB gravity and GR. Given
a spacetime with mass m, we defne the dimensionless curvature-coupling

C ≡
λ

m2 . (14)

We will classify diferent solutions based on their curvature couplings C, with GR the limit C = 0; empirically (as we
discuss in our results IV) we fnd strong EdGB corrections arising when C & 0.1.

Following the procedure used in [1,2],we calculate the radialcharacteristics of the scalar degree of freedom via
Eqs. (7a) and (7b), after having removed the spatial derivatives of α and ζ from these equations using the constraints
(9a, 9b).The corresponding characteristic speeds c± are

c± ≡ ∓ξt/ξr , (15)

where ξa ≡ (ξt, ξr ) solves the characteristic equation

det
δE(P ) /δ(∂aP ) δE(P ) /δ(∂aQ)
δE(Q) /δ(∂aP ) δE(Q) /δ(∂aQ) ξa = 0. (16)

In the limit λ = 0, these speeds reduce to the radial null characteristic speeds in PG coordinates c(n)
±

c(n)
± ≡ α (±1 − ζ) . (17)

We see that ζ = 1 marks the location of a marginally outer trapped surface (MOTS) (e.g.[41] and references therein).
We take the location of the MOTS to represent the size of the black hole on any given time slice.

The characteristic equation, Eq. (16), takes the following form when expressed as an equation for the characteristic
speeds c

Ac2 + Bc + C = 0, (18)

where

A ≡
δE(P )

δ (∂tP )
δE(Q)

δ (∂tQ)
−

δE(P )

δ (∂tQ)
δE(Q)

δ (∂tP )
, (19a)

B ≡ −
δE(P )

δ (∂tP )
δE(Q)

δ (∂r Q)
−

δE(P )

δ (∂tQ)
δE(Q)

δ (∂r P )
−

δE(P )

δ (∂r P )
δE(Q)

δ (∂tQ)
−

δE(P )

δ (∂r Q)
δE(Q)

δ (∂tP )
, (19b)

C ≡
δE(P )

δ (∂r P )
δE(Q)

δ (∂r Q)
−

δE(P )

δ (∂r Q)
δE(Q)

δ (∂r P )
. (19c)

Where the discriminant D ≡ B2 − 4AC > 0 are regions ofspacetime where the equations are hyperbolic,where
D < 0 the equations are elliptic,and following the language of mixed-type PDEs (e.g.[42]and references therein),
the co-dimension one surfaces where D = 0 separating elliptic and hyperbolic regions are called sonic lines.In the
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GR limit λ = 0 the scalar equations are always hyperbolic (D > 0),though as we found in [1,2], for sufciently
strong couplings C the discriminant D is not of defnite sign, and the scalar equations are then of mixed-type (similar
conclusions have been drawn for other member of the Horndeski class of theories; see e.g. [43–45]).As we are working
in spherical symmetry, the tensor degrees of freedom are pure gauge.Our hyperbolicity analysis can thus be thought
of as applying to the scalar “sector” of EdGB gravity.3

B. Spatial compactifcation

In vacuum when P = Q = 0, the general solution to Eqs. (9a) and (9b) is ζ ∝ r−1/2 and α = const.4. We found
that this fallof in ζ made it difcult to impose stable outer boundary conditions at a fxed, fnite r.To alleviate this
problem, we spatially compactify through a stereographic projection

r ≡
x

1 − x/L
, (20)

where L is a constant, and discretize along a uniform grid in x, with spatial infnity x = L now the outer boundary
of our computationaldomain.For all the simulations presented in this article we chose L = 5m,where m is the
mass of the initial Schwarzschild black hole.At x = L we impose the conditions α|x=L = 1 , ζ|x=L = 0, P |x=L = 0,
Q|x=L = 0, φ|x=L = 0. These conditions are consistent with our initialconditions and asymptotic fallof of the
metric and scalar feld.For the latter, generally φ → 1/r, though if we impose exact Schwarzschild initial data outside
some radius r1 (such that φ(r > r1, t = 0) = 0 and ∂tφ(r > r1, t = 0) = 0),the Gauss-Bonnet curvature willsource
an asymptotic feld that decays like 1/r4; by causality (as long as the equations are hyperbolic) the 1/r component
sourced by the black hole, or any scalar radiation from a feld we put in at r < r1, will never reach spatial infnity.

C. Initial data

The computationaldomain covers x ∈ [xexc, L] (r ∈ [rexc, ∞]), where xexc (rexc) is the excision radius,and can
vary with time (described in the following section).We set initialdata at t = 0 by specifying the values ofP
and Q, and then solve for α and ζ using the momentum and Hamiltonian constraints.These ordinary diferential
equations (ODEs) are discretized using the trapezoid rule and solved with a Newton relaxation method, integrating
from x = xexc to x = L. At x = xexc (some distance inside the horizon,as discussed in the next section) we set α
and ζ to their Schwarzschild values:

α|t=0,x=x exc = 1, ζ |t=0,x=x exc =

s
2m

r(xexc)
. (21)

If we begin with zero scalar feld energy (Q|t=0 = P |t=0 = 0), solving the constraints recovers the Schwarzschild
solution on t = 0 to within truncation error.

D. Excision

At every time step we solve for α, ζ, P , and Q by alternating between an iterative Crank-Nicolson solver for P and Q
and the ODE solvers for α and ζ, until the discrete infnity norm of all the residuals are below a pre-defned tolerance
(typically the tolerance was . 10−10, smaller than the typically size of the one-norm of the independent residuals.
This strategy is a similar strategy to that used in our earlier code based on Schwarzschild-like coordinates, and more
details can be found in [2]).The excision strategy assumes all characteristics of hyperbolic equations are pointing out
of the domain at the excision surface x = xexc. This implies that for P and Q we cannot set boundary conditions
there,rather their evolution equations must be solved,with the fnite diference stencils for the radialderivatives
appropriately changed to one-sided diferences.For α, as with the initialdata, the inner boundary condition is
arbitrary, and after each iteration we rescale it so that α(t, x = L) = 1.For ζ, to obtain a consistent solution to the

3 Note that in a less symmetrical spacetime more care would need to be taken to distinguish between scalar and tensor dynamics due to
the derivative coupling between the scalar and metric felds in the EdGB equations of motion; see Eqs. 3.

4 In EdGB gravity curvature always sources a scalar feld,though for r  m for an isolated source in an asymptotically fat spacetime,
the fall of of the curvature-sourced scalar feld is sufciently fast not to alter, through back reaction, the fall of of the metric derived
when P = Q = 0.
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full feld equations requires that the boundary condition ζ(t, x = xexc) be set by solving the corresponding evolution
equation for ζ there (optionally ζ could be evolved over the entire domain using this equation).Taking algebraic
combinations of the equations of motion (3a), an appropriate evolution equation for ζ can be obtained

A (ζ) ∂tζ + F(ζ) = 0, (22)

The expressions for A(P ) and F(P ) are lengthy expressions of λ,{α, ζ, P, Q},and their radialderivatives.We defer
showing their full form to Appendix C. In the limit λ = 0, Eq. (22) reduces to

∂tζ − αζ∂r ζ −
α
2r

ζ2 −
r
2ζ

Ttr = 0. (23)

Eq. (22) provides the boundary condition for ζ at the excision surface.We then integrate outwards in r using the
Hamiltonian constraint, Eq. (9a) as described above to solve for ζ.

The formation ofa MOTS is signaled by ζ = 1 (Eq.(17)),and we always place the excision surface inside the
MOTS5. The location of xexc is updated every time step before solving for the scalar and metric felds.The location
of the excision point is chosen so that it is always interior to the MOTS, but lies exterior to (or directly on) the sonic
line (for further discussion see Sec.III A and Sec.IV D). The location for rexc on our initialdata slice depended on
the strength of the curvature coupling C, which we detail in our Results, Sec. IV.

E. Fixed mesh refnement  ith a hyperbolic-ODE system

To achieve the necessary long term accuracy over thousands of m in evolution using limited computational resources,
we evolved some simulations using a Berger and Oliger (BO) style mesh refnement algorithm [46].Due to the nature
of our initial data and perturbations, a fxed hierarchy sufces, with the higher resolution meshes confned to smaller
volumes centered about the origin.For those runs,we typically used 4 additionallevels beyond the base (coarsest)
level, with a 2 : 1 refnement ratio between levels; specifcally, we set the inner boundary for all levels at xexc, and the
outer refnement boundary locations at xl /m = {5.00, 2.30, 2.00, 1.75, 1.55}, from coarsest to fnest (the initial horizon
location r = 2m, and we chose the excision radius xexc so that rexc(xexc) = 0.8 × 2m; see Eq. (20)).

The originalBO algorithm was designed for purely hyperbolic systems ofequations;to include the ODE con-
straint equations,we employ the extrapolation and delayed solution modifcation developed for such coupled ellip-
tic/hyperbolic systems [47].Here, for the hyperbolic equations (governing P and Q), the solution is obtained on the
mesh hierarchy with the usualBO time-stepping procedure :one time step is frst taken on a coarse parent level
before two6 steps are taken on the next fner child level,and this is repeated recursively down the mesh hierarchy.
During this phase the ODEs are not solved, and where the values of the corresponding constrained variables (α and
ζ) are needed to evaluate terms in the hyperbolic equations,approximations for these variables are obtained via
extrapolation from earlier time levels.Instead,the ODEs are solved after the fne-to-coarse levelinjection phase of
the hyperbolic variables,when the advanced time of a given parent levelis in sync with alloverlapping child levels
(thus,on the very fnest levelthis scheme reduces to the unigrid algorithm described in the previous section).For
more details see [47].

One diference with our system ofequations compared to that described in [47],is there some form ofglobal
relaxation method was assumed for the elliptics,while here the ODE nature ofour constraint equations requires
integration from the inner to outer boundary.This might complicate things for a general hierarchy with disconnect
grids on a given level.Here,since we only have one grid per level,and each always includes the physicalinner
boundary,it is reasonably straight forward to integrate the ODEs during the solution phase ofthe algorithm (see
also section 6.7 of [48]):we begin on the fnest level,setting the boundary conditions as required at x = xexc, then
integrate outward, using the solution at the last point on a child level as an initial condition for continued integration
on the parent level(with the solution at interior points on the child levelinjected to common points on the parent
level).This is schematically shown for two levels in Fig. 1.For ζ, the boundary condition at x = xexc is obtained by
its corresponding evolution equation as described in the previous section; α at x = xexc is set by extrapolation from
prior time levels,and we only globally rescale α to satisfy our outer boundary condition α(t, x = L) = 1 at times
when all levels of the hierarchy are in sync.

5 In all cases we have considered we fnd that the “characteristic horizon” (the location where c+ < 0 for the EdGB scalar feld) is exterior
to the MOTS, so placing the excision point interior to the MOTS should lead to well posed evolution, provided the equations of motion
for the EdGB scalar remain hyperbolic.

6 because of our 2 : 1 refnement ratio in space and time.
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FIG. 1: Schematic illustration of the solution of ODEs at synchronized levels with fxed mesh refnement in our
setup:we integrate from left to right (the compactifed radial coordinate x increases from left to right).

Figure grid layout grid resolution ∆x CFL number initial data

2,3,4,5,6,12 fxed mesh refnement 0.38 0.25 Schwarzschild
7 unigrid 0.024 0.5 Schwarzschild with bump:

φ0 = 0.1,a = 45,b = 55.
8 unigrid 0.012 0.2 and 0.1 Schwarzschild
9 unigrid 0.049 0.2 Schwarzschild
10 unigrid 0.049 0.4 Schwarzschild
11 unigrid 0.012 0.2 Schwarzschild

TABLE I: Simulation parameters.Grid resolution ∆x refers to the base grid resolution for the fxed mesh
refnement runs.A discussion of Schwarzschild initial data can be found in Sec. IV B, and a discussion of

“Schwarzschild with bump” initial data can be found in Sec. IV C. See also Sec. IV A.

IV. SCALARIZED BLACK HOLES: NUMERICAL RESULTS

A. Overvie  of simulations and plots

To help keep track of the various simulation results we present,we collect some of our simulation parameters in
Table. (I).We found for long time evolution simulations (t & 103m) fxed mesh refnement was essential to maintain
high accuracy evolution (δm/m . 10−2). Unigrid evolution was sufcient for shorter simulation runs.When we quote
a value of resolution ∆x,it represents the resolution of the coarsest (base) levelif fxed mesh refnement was used,
otherwise it is the resolution of the unigrid mesh.We found that stably resolving the initial growth of the sonic line
that formed inside the EdGB black hole required using smaller Courant-Friedrichs-Lewy (CFL) numbers,but CFL
numbers as large as 0.5 led to stable evolution if we excised well away from the sonic line.

B. Gro th of “hair” from Sch arzschild initial data

For most ofour simulations we begin with a (t = const.) slice ofthe Schwarzschild black hole solution in PG
coordinates;which is (as is any spacelike slice ofSchwarzschild) an exactsolution to the initialvalue problem in
EdGB gravity.Specifcally, at t = 0, for x > xexc (the initial excision radius as described in Sec. III D), we set

φ|t=0 = 0, Q|t=0 = 0, P |t=0 = 0, α|t=0 = 1, ζ |t=0 =

s
2m
r(x)

. (24)

We then evolve this, performing a survey of outcomes varying the EdGB coupling parameter λ (in the GR case λ = 0,
as expected, the resultant numerical solution is static to within truncation error).

Previous studies of static scalarized black hole solutions in EdGB gravity have found that regularity of the scalar
feld at the horizon places an upper limit on the coupling parameter.For the linear coupling case we consider, this is
(see e.g.[5])

λ
r2

h
≤ (192)−1/2 ≈ 0.07, (25)

where rh is the areal radius of the horizon.For black holes much larger than this,rh ≈ 2m (the space time is close
to Schwarzschild),though approaching the extremallimit a non-negligible amount of the spacetime mass m can be
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contained in the scalar feld, and simply replacing rh with 2m to express the above in terms of our curvature-coupling
parameter C (14) gives a poor estimate of the corresponding extremal value Cextr . From Figure 4 of[5] we can infer
a more accurate translation :

C ≤ C extr ≈ 0.22. (26)

We fnd the extremallimit is not characterized by the appearance of a naked curvature singularity,but instead the
formation of a sonic line (and elliptic region) outside of the horizon of the black hole.Our measured extremal limit
of Cextr ∼ 0.23, as shown in Sec. IV D, is quite close to the above limit from [5].

Note that the “extremal limit” for a scalarized EdGB black hole is of a diferent nature than the extremal limits of
Kerr or Reissner-Nordstrom black holes.The spin or electric charge of a black hole is set by the black hole’s formation
history:black holes of the same mass can have diferent spins or charges depending on the initial confguration and net
charge and angular momentum of the matter that fell in to form the black hole.By contrast for an EdGB black hole
the fnal scalar charge is set by the Gauss-Bonnet coupling, and Gauss-Bonnet curvature at the horizon, independent
of its formation history [3, 5].

Given that the Schwarzschild solution,of any mass,is valid initialdata in EdGB gravity,we can certainly begin
with superextremalblack holes in our evolution (and again to be clear,here we use the term “superextremal” to
refer to C > Cextr ; there is no spin or charge in our numerical solutions).As we show below however, these develop
elliptic regions outside the horizon.Moreover,our results in [1,2]show that trying to form a superextremalblack
hole from gravitational collapse of the dilaton feld (in spherical symmetry) will result in an elliptic region appearing
before a horizon.This suggests superextremal black holes in EdGB gravity exist in the regime of the theory governed
by mixed-type equations,and their presence or “formation” (however that could be interpreted in a mixed-type
problem) would mark a breakdown of the Cauchy problem.Also note that failure of the Cauchy problem is not a
priori connected to regions of strong curvature or black hole formation;as further shown in [1,2],strong coupling
and mixed-type character can be present for arbitrarily small spacetime curvature.

We frst present results from evolution of Schwarzschild black hole initial data, and curvature couplings below the
extremal limit.In all cases, if we move our excision radius sufciently far interior to the horizon, we fnd that at some
time an elliptic region forms in the interior.However,for these cases we can choose an excision radius closer to the
horizon so that the evolution settles to a stationary state without any elliptic region forming in this new domain.As
discussed in the introduction,we view this as a consistent initialboundary value evolution of EdGB gravity where
the elliptic region is “censored” from the exterior hyperbolic region.In Figs. 2 and 3 we show examples of scalar hair
growth for these cases (with the elliptic region excised), and their diference from the static “decoupled” scalar feld
profles for a Schwarzschild black hole background (see Appendix B),for various curvature-couplings.These runs
employed the fxed mesh refnement algorithm described above, with the base level grid having ∆x = 0.39 resolution,
Courant-Friedrichs-Lewy (CFL) number of 0.25, and an excision radius at fxed at rexc = 0.95×2m.We fnd the scalar
feld settles down to solutions that difer little from the static decoupled scalar feld profle,although the diference
grows as the curvature coupling approaches the extremallimit (c.f. Fig. 3 of [5]).Nevertheless,in agreement with
the results of [5], the diference of the full solution from the static decoupled limit solution remains small outside the
black hole horizon.From convergence studies we fnd we can resolve the diference of the scalar feld profle from its
decoupled value wellwithin truncation error;see Fig.4. For the case C = 0.16,in Fig. 5 we show growth of Ricci
curvature sourced by the scalar feld, and in Fig. 6 a corresponding plot of convergence and estimated truncation error
in R.

C. Perturbed Sch arzschild initial data

Schwarzschild initial data is not generic; in particular, the scalar feld is (initially) only growing in response to the
Gauss-Bonnet curvature source.To investigate a slightly broader class ofinitial conditions,here we add a small,
mostly ingoing propagating perturbation to φ outside the horizon:

φ(t, r) t=0 =




φ0 exp
h
− 1

(r−a)(b−r)

i
exp −5 r−(a+b)/2

a+b

2
a < r < b

0 otherwise
, (27a)

Q(t, r) t=0 =∂r φ(t, r) t=0, (27b)

P (t, r)t=0 =0. (27c)

This family of initial data (rescaled “bump functions” multiplied by a Gaussian) is smooth and compactly supported
outside the initialblack hole horizon for a > 2m.With a fxed curvature-coupling C,we fnd that we can stably
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(a) C = 2.5 × 10−3

(b) C = 0.16

FIG. 2: Growth of scalar “hair” from Schwarzschild initial data.Shown is the scalar feld profle at several times
during an evolution for two diferent cases of the curvature coupling C (14); the extremal limit (see the discussion in

Sec. IV B) is Cextr ≈ 0.23 .The horizon (MOTS) is located at xh/m ≈ 1.48, and spatial infnity is at x/m = 5.
Notice the diferent range of scales on the y-axis of each fgure.Also shown for comparison is the estimate of the

fnal profle using the decoupled scalar approximation (Appendix B); see also Fig.3.For simulation parameters see
Table. I.

evolve an initialblack hole plus scalar feld bump if the amplitude of the latter is sufciently small;or equivalently
if the metric curvature measured by the Ricciscalar R induced by the scalar feld bump is sufciently small.For
our initialdata for α and ζ,we set their values at the excision surface as in Eq.(24),and then integrate outwards
in r. An example of such a case is shown in Fig.7. When the induced curvature is large,an elliptic region forms
outside the black hole horizon (and soon after that the code crashes).As a rough estimate, we fnd this occurs when
|R × λ|∞ & 0.1.This result is consistent with our earlier fndings of collapse of a scalar feld pulse without any interior
black hole [1, 2].
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FIG. 3: Diference between the late time (t ∼ 2000m) scalar feld profle obtained from the non-linear simulations to
that of the decoupled estimate (see Appendix B), for several values of the curvature coupling C; see also Fig. 2.The
black hole horizon (MOTS) is at x/m ≈ 1.48, and spatial infnity is at x/m = 5.As expected, the decoupling limit
approximation improves the further C is away from the extremal limit Cextr ∼ 0.23.For simulation parameters see

Table. I.

D. Internal structure of an EdGB black hole, and the near extremal limit

For small values of the curvature coupling we can consistently excise any elliptic region that forms interior to the
horizon.We always excise the Schwarzschild curvature singularity at r = 0,and in none of the cases we have run
(smallor large curvature coupling) do we see any signs of a curvature or scalar feld singularity forming away from
r = 0 while the equations remain hyperbolic.We can typically evolve for some time after an elliptic region forms
without excising it before the code crashes,however this as an artifact of fnite resolution,and we can only expect
convergence to the continuum limit using our hyperbolic scheme until the frst appearance of the sonic line.In other
words, to say anything rigorous about what might occur within the elliptic region would require solving a mixed-type
problem, and we do not have the tools for doing so.

With increasing values ofthe curvature coupling approaching the extremallimit (26),as the scalar feld grows,
the location at which the sonic line frst appears moves closer to the MOTS.Prior to this,we excise some distance
within the MOTS, though when the sonic line appears we increase the excision radius to be at the sonic line7. We
then employ a “high water mark” strategy during subsequent evolution, increasing the excision radius to match the
location of the sonic line if it grows, though do not reduce the excision radius if the sonic line shrinks (presumed to
be happening if the characteristic discriminant on the excision boundary increases in magnitude away from zero).

For cases where the elliptic region remains censored,we typically fnd that initially the sonic line does grow,and
then (presumably) shrinks within the excision radius as the solution settles to a stationary state.For interest,we
estimate the location of the sonic line by extrapolation, as follows.Recall, the equation for the radial characteristics
is (Eq. (16))

Ac2 + Bc + C = 0, (28)

where A, B, C are functions of α, ζ, P, Q, and their radial derivatives.The characteristics thus satisfy

c± =
1

2A
−B ±

p
B2 − 4AC , (29)

7 The scalar and null characteristics are generally diferent from each other in EdGB gravity.For our excision strategy to be stable,we
require all of the metric and scalar characteristics to point into the excised region.In all cases we have studied, the scalar characteristics
always are not tangent to the sonic line (the characteristics can be defned up to the sonic line, which is also why we classify the EdGB
equations as Tricomi type here [1, 2]).Thus excising on the sonic line should be fne, as long as it remains within the horizon.
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(a) C = 2.5 × 10−3

(b) C = 0.16

FIG. 4: Convergence and truncation error estimate at t ∼ 100m for the scalar feld φ.Shown are point-wise
diferences of the solution computed with diferent resolutions; the decrease going to successively higher resolutions
is consistent with second order convergence, and the magnitude for a given pair is an estimate of the error in the

scalar feld profle at those resolutions.Comparing with Fig. 3, we see we can resolve the diference of the scalar feld
from the decoupled value well above truncation error for the range of curvature-couplings considered here.We

rescale the smaller truncation error estimate by 4, which is the expected convergence rate of our code based on the
order of the second order fnite diference stencils we use.For simulation parameters see Table. I.
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FIG. 5: Evolution of the Ricci scalar for the case C = 0.16; see Fig.2 for evolution of the scalar feld for this same
simulation.The small “features” in the Ricci scalar at the t = 10m time slice are located at grid refnement

boundaries, and converge away with higher base resolution (compare with Fig. 6).For simulation parameters see
Table. I.

FIG. 6: Convergence and truncation error estimate at t ∼ 100m for the Ricci scalar R, for the C = 0.16 case (see
Fig. 4 for a similar plot of the scalar feld φ for this case, and the caption there for a discussion of the error
estimates).The oscillations near x/m ∼ 2.3 are are at at grid refnement boundary.We rescale the smaller

truncation error estimate by 4, which is the expected convergence rate of our code based on the order of the second
order fnite diference stencils we use.For simulation parameters see Table. I.
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FIG. 7: Schwarzschild initial data perturbed by an EdGB scalar bump (see Eq. (27a)) outside the horizon.The
mass of the initial Schwarzschild black hole is ms = 20, while the scalar bump adds an additional ∼ 3 in mass,

giving a net mass m = 23; thus with λ = 1 the curvature coupling is C = λ/m2 ≈ 2 × 10−3. Some of the scalar feld
falls into the black hole, while some disperses to infnity, and at late times the scalar feld approaches the decoupled

scalar feld profle.For simulation parameters see Table. I.

and the location ofthe sonic line is at the zero ofthe discriminant,D ≡ B 2 − 4AC. After excising,if D becomes
positive defnite within the computational domain, we estimate the location of the sonic line as the zero of a quadratic
polynomial ftted to the function

c+ − c− =
1
A

p
B2 − 4AC, (30)

using a set of points adjacent to the excision boundary.In typical cases for Schwarzschild initial data, and subextremal
curvature couplings,this estimate suggests the true location ofthe fnalstationary sonic line lies within ∼ 94% of
its maximum value (the excision point); see Fig. 8 for a survey of the late time values of the excision radius, MOTS
location and sonic line estimate,and Fig.9, for the evolution of these quantities for one example (including several
resolutions).In the latter fgure, the shrinking of the MOTS after some initial growth coincides with violation of the
null convergence condition (Rµν kµkν ≥ 0 for all null vectors kµ ; see e.g.[49]),which is known to occur in EdGB
gravity (for more details in the sphericalcollapse problem see [2]).A plot of Rµν kµkν is shown in Fig.10. We
note that the stable violation ofthe Null Convergence Condition (NCC) is thought to be a key ingredient in the
construction of singularity free cosmological and black hole solutions (for a review, see e.g.[50]).This violation of the
NCC appears to be transient:as the scalarized black hole settles to a stationary solution, we fnd the horizon stops
shrinking and the region of NCC violation disappears.The slow increase in the horizon size for t/m & 50 is due to
numerical error; we fnd it converges to zero with increasing resolution.

For curvature couplings above Cextr , the sonic line can move outside the MOTS,or initially appear outside it.
Linearly extrapolating the data shown in Fig.8 to the location where the late time MOTS willcross the sonic line,
we estimate Cextr ∼ 0.23,close to but slightly larger than the value Cextr ∼ 0.22 coming from seeking exactly
static EdGB black hole solutions with a non-singular φ feld on the horizon[5] (though even beyond caveats with our
extrapolations, we do not expect these two methods to give identical numerical values for an extremal coupling).In
Fig. 11 we show an example evolution of Schwarzschild initialdata with superextremalcurvature coupling.We see
the sonic line quickly overtakes the black hole horizon, leading to a “naked” elliptic region.

V. DISCUSSION

In this article we have presented numerical evidence that in spherical symmetry, and for sufciently small curvature
couplings (what we callsubextremal),EdGB black holes are nonlinearly stable.For subextremalcouplings even
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FIG. 8: The location of the MOTS rMOTS , excision radius rexc, and estimated sonic line position rsonic , as a
function of the curvature coupling C, measured at t ∼ 80m during the evolution of Schwarzschild initial data, which
is sufciently late to give a good estimate of their static end state values (see Fig. 9).Due to our high water mark
excision strategy, the excision point represents the largest measured radius the sonic line attained during evolution.
Extrapolating the curves for the MOTS and sonic lines, we estimate the “extremal” coupling for our initial data to
be Cextr ∼ 0.23.These results were obtained with unigrid evolution using ∆x = 0.012 (corresponding to the highest
resolution curves shown in Fig. 9).For C ≥ 0.17 runs the CFL number was 0.2, while for C < 0.17 the CFL number

was 0.1.For other simulation parameters see Table. I.

FIG. 9: Evolution of the MOTS, excision point, and sonic line as a function of time, for curvature coupling
C = 0.1875 (c.f.Fig. 8), and from runs at three resolutions :the labels 0, 1, 2 refer to unigrid resolutions

∆x = 0.049, ∆x = 0.024, and ∆x = 0.012, respectively (a CFL factor of 0.2 was used in all cases).At early times as
the sonic line grows, we increase the location of the excision surface to match; after reaching a maximum radius, the

sonic line presumably starts to shrink again, and then the curves in the fgure show an estimate of this location
based on extrapolation of the characterstic speeds (see Sec. IV D). The resolution study demonstrates that at late
times we are converging to a static solution (in the vicinity of the horizon).For other run parameters see Table. I.
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FIG. 10: Ricci tensor contracted with outgoing null vector kµ = (1, α (−1 + ζ) , 0, 0) (Rµν kµkν) at time t/m = 14.
The curvature coupling C = 0.16.We see that the null convergence factor is not positive defnite; where it is

negative indicates a region of NCC violation.The region of NCC violation is localized near the black hole horizon
and region of strongest scalar feld growth.This resolution study demonstrates we can resolve the stable violation of

the null convergence condition in EdGB gravity during the formation of a scalarized black hole solution.For
simulation parameters see Table. I.

FIG. 11: Example evolution of Schwarzschild initial data with superextremal curvature coupling:C = 0.275.We
excise along the sonic line, so the excised region can be thought of as the elliptic region.The sonic line very quickly

reaches and overtakes the MOTS, and the elliptic region subsequently becomes “naked”, shortly after which the
code crashes.We note our code crashes if we do not excise the elliptic region, regardless if it is interior or exterior to

the black hole horizon.For simulation parameters see Table. I.
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moderately close to the extremallimit, solving the decoupled scalar equation for the scalar feld profle provides a
good ft to the numericalsolution obtained in the fulltheory.Beginning from Schwarzschild initialdata,instead of
developing a non-central curvature singularity in the interior as was found for static solutions [5], we fnd the formation
of a sonic line and elliptic region in the interior.Our treatment of the EdGB equations as hyperbolic does not allow
us to conclude anything about possible extensions of the spacetime into the elliptic region.For subextremalblack
holes, our statement about their stability relates to the region exterior to the horizon, and assumes that our excision
strategy used to eliminate the interior elliptic region is self-consistent (which is supported by the stability/convergence
of the corresponding numericalevolutions).For superextremalcases,the sonic line forms or evolves to be outside
the horizon, meaning we cannot excise it, and we would need to treat the exterior equations as mixed-type to obtain
sensible solutions (or said another way, then the exterior evolution ceases to satisfy a well-posed Cauchy initial value
problem).The particular value ofthe curvature coupling we fnd for the extremallimit is similar to,but slightly
diferent from that given for static EdGB black holes solutions [3, 5]; this is not particularly surprising given we are
dynamically forming them from Schwarzschild initial data.

There are various ways in which this work could be extended.One is to explore a wider class of initial conditions;
for example,collapse to a black hole from a regular matter source,whether the pure EdGB scalar feld as in [2],
or coupled to another source ofmatter driving most ofthe collapse (e.g.extending the study of[28],which only
considered the decoupled EdGB feld on top ofOppenheimer-Snyder style collapse,to the full EdGB equations).
Recent work suggests that whether or not scalarized black holes form in the theory depends on the functional form of
f (φ) (see Eq. (1)) [6, 51]; with the methods presented in this paper one could explore these questions with numerical
solutions to the fulltheory in sphericalsymmetry.Another future direction is to study criticalcollapse in EdGB
gravity using adaptive mesh refnement.

Finally, this work could be extended by considering numericalsolutions ofEdGB gravity in axisymmetry,or
without any symmetry restrictions.This would couple in propagating metric degrees of freedom, and hence introduce
a qualitatively diferent aspect of the theory not available in spherical symmetry.If, similar to the conclusions found
here and in [1, 2], there exist subsets of initial data that ofer well-posed hyperbolic evolution, then EdGB gravity may
still be viable as an interesting modifed gravity theory to confront with gravitational wave binary merger data.On
the other hand, if the linear analysis in [15, 16] that EdGB gravity is generically ill-posed in a particular gauge applies
to all gauges, then the well-posed cases we have found could be an artifact of spherical symmetry, and including any
gravitational wave degrees of freedom would render the theory ill-posed.
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Appendix A: Convergence of an independent residual

In Fig. (12) we present the two norm of the Eϑϑ component of the equation of motion for a representative case,
excising the elliptic region,and evolved with fxed mesh refnement.We see second order convergence to zero over
the entire run-time t ≈ 2 × 103m of the simulation.The plot only shows the norm computed on the coarsest level,
although we observe second order convergence over alllevels of fxed mesh refnement (four in addition to the base
level).As an example of how this translates to solution error, for the highest resolution case shown in Fig.12, after the
early time transient behavior and the solution has settled to be nearly static at the horizon (see Fig.9), we see a net
drift in the mass of the black hole of δm/m ∼ 0.4% over the remainder of the simulation.Other curvature couplings
give similar results.If we do not excise the elliptic region we begin to loose convergence there,and eventually the
code crashes, as expected.

Appendix B: Decoupled EdGB scalarized black hole solutions

For reference, we present the decoupled scalar solutions for EdGB gravity in PG coordinates.The decoupling limit
for EdGB gravity is the solution of the scalar wave equation

φ + λR GB = 0, (B1)
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FIG. 12: Second order convergence to zero of the ϑϑ component of the equation of motion (3a) from a representative
run: Schwarzschild black hole initial data, and curvature coupling C = 0.16.Shown is log2 (|Eϑϑ |2) versus time

computed on the base level of a fxed mesh refnement run (other levels also show second order convergence to zero).
The log2 is chosen so the second order convergence is more apparent.For simulation parameters see Table. I.

about a GR background.Our background is the Schwarzschild spacetime:

α = 1, ζ =

r
2m
r

. (B2)

We assume a static solution, φ(r), for which Eq. (B1) becomes

1
r2

d
dr

r2 1 −
2m
r

dφ
dr

+
48λm2

r6 = 0. (B3)

The solution to this equation is

φ(r) =
2λ
m

1
r

+ 2λ
1
r2 +

8mλ
3

1
r3 +

c1m + 2λ
2m2 log 1 −

2m
r

+ c2, (B4)

where c1 and c2 are integration constants.Regularity at the black hole horizon sets c1 = −2λ/m, and requiring
φ(r = ∞) = 0 sets c2 = 0. We have

φ(r) =
2λ
m2

m
r

+
m2

r2 +
4
3

m3

r3 , (B5)

which is the solution we compare our numericalresults against in this article.Note from [17]that the dynamical
solution to Eq. (B1) has been shown to asymptotically settle to the static solution (B5) for Schwarzschild backgrounds.

Appendix C: Form of functions A(P ) F (P ) , A (ζ) , and F(ζ)

Here we provide the (lengthy) expressions for the functions A(P ) and F(P ) , (see Eq.(7b)), A(ζ) , and F(ζ) (see
Eq. (22)), which we produced using Mathematica [52].While we work only for f (φ) = φ in this article, we show the
complete expressions for reference.

A (P ) ≡ 1 + −
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r
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16λP ζ
r
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16λQ

r
−

16λP ζ
r

f 0+
64λ2Q2

r2 +
128λ2P Qζ

r2 +
64λ2P 2ζ2

r2 −
32λ2ζ4

r4 (f 0)2

+
256λ3Q2ζ4 (f 0)2 f 00

r4 +
256λ3ζ4 (f 0)3 ∂r Q

r4 +

 
128λ2ζ4 (f 0)2

r3α
+ −

1024λ3Qζ4

r4α
−

768λ3P ζ5

r4α
(f 0)3

!

∂r α

+

 
128λ2ζ3 (f 0)2

r3 + −
1024λ3Qζ3

r4 −
768λ3P ζ4

r4 (f 0)3

!

∂r ζ , (C1c)

F (ζ) = −
1
4
rP 2α −

1
4
rQ2α −

rP Qα
2ζ

−
αζ2

2r

+ 6λP2Qα + 2λQ3α +
4λP Q2α

ζ
+ 2λP3αζ + 2λP Q2αζ −

4λQαζ2

r2 −
4λP αζ3

r2 f 0

+
64λ2Q2αζ2

r3 +
128λ2P Qαζ3

r3 +
80λ2P 2αζ4

r3 −
16λ2Q2αζ4

r3 (f 0)2

+ −
4λP Qαζ

r
−

4λP2αζ2

r
+

32λ2PQ 2αζ
r2 +

64λ2P 2Qαζ2

r2 +
32λ2P 3αζ3

r2 f 0 f 00

+ −
4λαζf0

r
+

32λ2Qαζ
r2 +

32λ2P αζ2

r2 (f 0)2 ∂r P

+ −
4λαζ2f 0

r
+

32λ2Qαζ2

r2 +
32λ2P αζ3

r2 (f 0)2 ∂r Q

+
256λ3P ζ5

r4α
+

256λ3Qζ6

r4α
(f 0)3 (∂r α)2

+

 

− αζ +
12λQαζ

r
+

12λP αζ2

r
f 0

+ −
32λ2Q2αζ

r2 −
96λ2P Qαζ2

r2 −
48λ2P 2αζ3

r2 −
16λ2Q2αζ3

r2 +
32λ2αζ5

r4 (f 0)2

+ −
256λ3P Qαζ4

r4 −
256λ3Q2αζ5

r4 (f 0)2 f 00−
256λ3αζ4 (f 0)3 ∂r P

r4 −
256λ3αζ5 (f 0)3 ∂r Q

r4

!

∂r ζ



20

+

 

−
128λ2αζ4 (f 0)2

r3 +
768λ3Qαζ4

r4 +
768λ3P αζ5

r4 (f 0)3

!

(∂r ζ)2

+

 

−
4λQζ2

r
−

4λP ζ3

r
f 0+

32λ2Q2ζ2

r2 +
32λ2P Qζ3

r2 −
32λ2ζ4

r4 +
16λ2P 2ζ4

r2 −
16λ2Q2ζ4

r2 (f 0)2

+
256λ3Q2ζ4

r4 +
256λ3P Qζ5

r4 (f 0)2 f 00+
256λ3ζ5 (f 0)3 ∂r P

r4 +
256λ3ζ4 (f 0)3 ∂r Q

r4

+
64λ2ζ3

r3 −
128λ2ζ5

r3 (f 0)2 + −
512λ3Qζ3

r4 −
256λ3P ζ4

r4 +
1024λ3Qζ5

r4 +
768λ3P ζ6

r4 (f 0)3 ∂r ζ

!

∂r α. (C1d)
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