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We report on a numerical investigation of the stability of scalarized black holes in Einstein dilaton
Gauss-Bonnet (EdGB) gravity in the full dynamical theory, though restricted to spherical symmetry.
We find evidence that for sufficiently snaaltvature-couplings the resulting scalarized black hole
solutions are nonlinearly stabl&or such smallcouplingswe show that an elliptic region forms
inside these EdGB black hole spacetimes (prior to any curvature singularity), and give evidence that
this region remains censored from asymptotic \Heweverfor coupling values “superextremal”
relative to a given black hole mass) elliptic region forms exterior to the horizamplying the
exterior Cauchy problem is ill-posed in this regime.

I. INTRODUCTION

We present numerical results on the nonlinear evolution of spherically symmetric black hole solutions in a mc
gravity theoryEinstein dilaton Gauss-Bonnet (EdGB) graviBgGB gravity is one of the few known scalar tensor
theories that may admit sensible classical evolution (at least for some open subsets of initial data; see our earli
[1, 2]), yet does not allow the Schwarzschild or Kerr stationary black holénshibaibtise expected solutions are
conjectured to be “scalarized” black holes [3-5] (the detailed form of this statement depends on the functional
of the Gauss-Bonnet coupling and scalar field poté6tid). The variant of EDGB gravity we consider is poorly
constrained by weak field gravity measuremen®(e.bginary pulsars [8]), though to be consistent with the speed
of gravitationaWaves inferred by the binary neutron star merger GW1708&@UB¢s a negligible cosmological
background for the dilaton field {18ksuming the lattethe strongest constraints on the theory may then come
from gravitational wave observation of the final moments of binary black hol&hesgiemry thus provides an
interesting alternative to genesdativity (GR) to compare against when gravity is in the strong field dynamical
regime (see e.pl2] and references therein).

From the perspective of effective field thed®B gravity can be motivated as the leading correction to GR in
a low energy expansion gfiantum gravity that incorporates mixing between a scalar defireedafmn and the
tensor (metric) degrees of freedom of GR [13THet.one would not expect significant modifications to GR away
from the Planck scal@nd in particular not for astrophysibéck holes Alternativelyas we do heregpne could
consider the coupling parameter of the theory to be arbitrary, and EdGB gravity taken verbatim as a classical tt
of gravity with a scale dependent modification to GR. Such a theory may not be mathematically well-posed in s
regimes (or in a generic sense not afl&lj16]),though a “healthy” sector of solutions couldosgtifixtracted by
treating it as an effective field theory and limiting consideration topenitbative corrections to GBeveral
groups are pursuing such an “order reduction” approach to understanding EdGB gravity, and related theories w
beyond-Ricci curvature scalars are added to the Einstein Hilbert gravitational action [ARpte23pproach,
inspired by the Israel-Stewart “fix” of relativistic hydrodynamids 4dxplicitly modify the GR-extensions to
lead to well-posed equations [25, 26].

Our approach is instead to attempt to solve the complete classical field theory, and discover which classes of
data (if any) lead to well-posed evoluti@ar motivation is two foldhe first is the desire to know how classical
gravity can in principle differ from the predictions of GR in the dynamical strong field regime, as is applicable tc
last stages of binary black hole coalescEnisecould give more meaning to quantitative statements of consistency
of observed waveforms with the predictions of GR, help constrain EdGB gravity, or discover modifications to GR
class similar to that offered by EAGB gravibyough an effective field theory approach as described above is likely
“guaranteed’hy constructiorto give well-posed evolution schemes for dmaditions to GRit is still unknown
if this approach could be pushed to solve for modifications large enough to provide waveforms distinguishable f
GR in an observatiomiven the typical signal-to-noise ratios expected from the current generation of ground bas
detectors, and taking waveform degeneracies into account.

The second reason is that nonlinear modificationgratity have been introduced in attempts to address the

discovery oflark matter,dark energysolve the flatness and horizon problemafly universe cosmologynd
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1 We note that in asymptotically flat spacetimes it has been explicitly shown that the speed of linearized tensor and scalar perturbations
in EAGB gravity approach light speed in regions far away from gravitating sources [11]
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resolve the issues of the initial cosmological singularity and singularities formed during gravitatiBd&Bcollapse.
is an important and representative member of a class of modified gravity theories, Horndeski theories, that hav
invoked to solve these various issues within cl&Ritf@r a recent review on Horndeldkéories see [273hd it

thus is interesting to see if the theory is mathematically sensible as a classical field theory.

Previous studies of EAGB black holes have focused on static solutions to the tBedly, tbgdynamics of the
EdGB scalar in the decoupling limit (ELd@, 20, 28]), or linear perturbations of static EAGB black hole backgrounds
(e.g. [29]). Additionally,a recent work [22dxplored the dynamics tifie scalar and metric fields bie theory
from an effective-field theory framewhbdce it was shown that scalarized, rotating EAGB black hole solutions are
stable for small enough couplings, up to leading order in metric and scalar field peResgtitied<o spherical
symmetry, our results extend this to all orders in the Gauss-Bonnet coupling, showing consistency for small cou
and showing where and how the theory breaks down for large couplings.

In a previous workwe studied the dynamics BAGB gravity in spherically symmetric collapse using horizon-
avoiding coordinates [1,Thkre we considered collapse of a dense concentration of the dilaton field, and for suffic
mass could show a horizon was formtihgugh we could not evolve beyond that tidere,we give results from
a new code solving the EdGB equations in horizon penetrating coordinates, allowing us to investigate the long-t
stability of scalarized black holes (for times up to of order®tny ilBere m is the mass of the black hotdso,
we begin with the Schwarzschild solution as initial data (with an optional exterior dilaton field perturbation).

Upon evolution oSchwarzschild initialata, we find that the scalar hair grovend an elliptic region forms in
the interior otthe black hole.This indicates black hole physics in EAGB gravity has aspecitsgdverned by a
mixed elliptic-hyperbolic equation (or simply mixed-type equation), and it is unclear how this could affect the C
problem exterior to the horizorl.e., there is no a-priorireason to expect this elliptic region to “obey” cosmic
censorshipand leave the scalar in the exterior domain to be governed by a hyperbolidiffergatiaéquation
(PDE). Instead, we will simply assume that this is possible, and excise the elliptic region from tiheldongain.
subsequent evolution no new elliptic region forms, and the solution settles to a stationary state, we will claim tt
self-consistent application of excision, and the resulting hairy black hole is stable (to within limitations of numel
evolutiom). We do find this to be the case for Gauss-Bonnet couplings below an exfireinfdr a given black
hole massWe compare these solutions to the scalarized decoupled black hole solutions of EdGBngi&ividy,
good agreemerthe better the smaller the Gauss-Bonnet coupling is (for a fixed black holelowass¢rabove
the extremal limign elliptic region does form outside the horizditating a break-down of the exterior Cauchy
problem for small black holes (relative to the EdAGB coupling scale).

An outline ofthe rest ofthe paper is as followdn Sec. Il we describe the equations mfotion,variablesand
metric ansatz we usk Sec.lll we describe aspects of the numenioale,including our excision strategy well
as some diagnostic quantities we monibo$ec.lV we describe the results mentioned above in éeidiénd in
Sec. V with concluding remark¥e leave some convergence resmidsa derivation of the decoupling limit about
a Schwarzschild black hole in Painlev’e-Gullstrand coordinates, to the appendigeometric units (8nG = 1,
¢ = 1) and follow the conventions of Misner, Thorne, and Wheeler [31].

Il. EQUATIONS OF MOTION

The action for the EAGB gravity theory we consider is

s=2 o' =g R~ (VpF + 2Af(p)G , (1)

where f (@) is a (so far unspecified) function, and G is the Gauss-Bonnet scalar

6 = 20 R, @

where g;gg is the generalized Kronecker deltén geometric unitsthe Gauss-Bonnet coupling constant A has
dimensions length squar®drying (1) with respect to the metric and scalar flble£dGB equations of motion
are

1
E/9 =Ry — S9wR + 2M00 R (VY F (9)) 8 ubns — Tuw = O, (3a)

2 Also in this case, that we can freely specify the initial data for all characteristics is not in contradiction with the result of Morawetz on
the Tricomi mixed-type equation [30¥yhich seems the relevant mixed-type equation for EdGB gravity here [ather, following the
excision philosophy, we simply do not care what irregularities or lack of uniqueness occur in the interior of the excised region.
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E@W =V, VHe + AMe)G = 0. (3b)
In this work we will only consider the coupling function
f(o) =09 (4)

While other coupling functions are often considered in the literature on EAGB black holes, this is the simplest w|
is thought to give rise to stable scalarized black hole solut@mnf35, 17,20, 32]and references thereifhis
coupling may additionally be motivated as the lowest order term in the effective field theory expansion of a me
theory coupled to a scalar field (EB8¢)..From the symmetry A - —A, ¢ - —¢, we only consider A = 0.

We evolve this system in Painlev’e-Gullstrand (PG)-like coordinat@3<26d)

d? = —a(t, r}d2 + (dr + alt, NZ(t, NdH P dP + sifddd? (5)

so-named sche t = const. cross sections are spatially flat (the Schwarzschild black hole in these coordinates is
bya=1,7= 2m/r).
We define the variables

Q=29 (6a)
) (6b)

and take algebraic combinations of(BY) and the tryr, and 99 components of E¢Ba) (c.f.[2]) to obtain the
following evolution equation for the {P, Q} variables:

Ew) =30 —-a(a[P+Q]) =0, (7a)
E(p) EA(p)atP + F(p) = 0. (7b)

The quantities 4, and Fp) are lengthy expressions of {a, {, P, Q} and their dedigbtivesWe present their
explicit forms in Appendix C. In the limit A = 0 Eqg. (7b) reduces to

3P — r—lzar r’alQ +¢P1=0. (8)

Interestingly, in PG coordinates the Hamiltonian and momentum constraints do not change their character as e
differential equations going from GR to EdGB gravity:

E9n"n « 3, (r — 8AFQ) &?7% — 8Af0§ar a3 - ra’p =0, (9a)

¢ Q 1 .

+2/\f0r%a, 27 + 4A§ar (fP) =0, (9b)

where
p=AnT,, =% P+ @, (10a)
jr=—¥n'Tw = =P Q, (10D)

f0= df /dg,and n, = (—a, 0, 0, OMWhile Egs.(9a) and (9b) hold for any fas mentioned above we only consider
f () = ¢ in this article.

Illl. DESCRIPTION OF CODE AND SIMULATIONS
A. Diagnostics

As PG coordinates are spatially flat the Arnowitt-Deser-Misner mass prescription always evaluatesrit zero,
does not capture the correct physical mass of the spalkstieael. then we use the Misner-Sharp mass [37]

mus (£, 1) =% 1— (VR = gc(t, rp. (11)
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evaluated at spatial infinity to define the spacetime mass (and this does give the correct mass for the Schwarzs
solution in GR)

m Erlim mus (t, r). (12)

The Misner-Sharp mass can be thought of as the charge associated with the Kodama current, which is conserve
any spherically symmetric spacetime (regardless of whether the Einstein equations hGlind38+d0§h this
“derivation” of the Misner-Sharp mass, we find that we can thjgKtpf)as representing the radially integrated
energy density of the following (conserved) stress-energy tensor for EAGB gravity [2]

1
T = = M550 R (VY ,0) & 0ys + VuV v — 50w (V9)°. (13)

There is no other definition for a covariantly conserved stress-energy tensor that does not involve both the Rier
tensor and derivatives of the scalar field (besides the Einstein tensor itself, or a constant times the stress-energ
in EAGB gravity. We note that the stress-energy tensor 13 also conforms with earlier choices for the stress-ener
tensor of EAGB gravity [3].

As described in the next section we compactify so that infinity is at a finite location on our compmrtdtional
The asymptotic mass m is preserved up to truncation error in our simulations of both EAGB gravity and GR. Giv
a spacetime with mass m, we define the dimensionless curvature-coupling

A

CW'

(14)

We will classify different solutions based on their curvature couplings C, with GR the limit C = 0; empirically (as
discuss in our results 1V) we find strong EdGB corrections arising when C & 0.1.

Following the procedure used in4],we calculate the radiaharacteristics of the scalar degree of freedom via
Egs. (7a) and (7b), after having removed the spatial derivatives of a and { from these equations using the cons
(9a, 9b).The corresponding characteristic spaedsec

Cx = F&/r, (15)
where £ = (&, &) solves the characteristic equation

6E(p)/6(3,2P ) OE(p)/6(3,0)

A€t 5E o) /6(3.P ) 6E(0)/6(3,Q) &

= 0. (16)

In the limit A = 0, these speeds reduce to the radial null characteristic speeds in PG cd_ﬂrdinates c

AN =a(+x1-27. (17)

We see that £ = 1 marks the location of a marginally outer trapped surface (M@T} ptelgeferences therein).
We take the location of the MOTS to represent the size of the black hole on any given time slice.

The characteristic equation, Eq. (16), takes the following form when expressed as an equation for the charact
speeds ¢

Ac’+ Bc+C=0, (18)
where
OEp) OE (g OEp) O6E(g)
A= — , 19
5@P)6@0)  5(20)5 @P) (192)
g=_ OEr) OEo _ OEp) OFEq _ OEp) OEq) _ OEp) O (19b)
6(aP)6(2Q) 6(aQ)6 (aP) 6(aP)6(aQ) ©6(aQ)6(aP) ’
_OEp) OEwq _ OEp) OEq (19¢)

6(aP)6(aQ) 06(3Q)6(@P)

Where the discriminant D = B— 4AC > 0 are regions ofpacetime where the equations are hyperboliere
D < 0 the equations are elliptamd following the language of mixed-type PDEs [éZJand references therein),
the co-dimension one surfaces where D = 0 separating elliptic and hyperbolic regions are calledlsottie lines.
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GR limit A = 0 the scalar equations are always hyperbolic (D >tBpugh as we found in [2], for sufficiently

strong couplings C the discriminant D is not of definite sign, and the scalar equations are then of mixed-type (si
conclusions have been drawn for other member of the Horndeski class of theories; sed\e we[43=4kjking

in spherical symmetry, the tensor degrees of freedom are pudeigbyperbolicity analysis can thus be thought

of as applying to the scalar “sector” of EAGB graVvity.

B. Spatial compactification

In vacuum when P = Q = 0, the general solution to Eqgs. (9a) and (9b) i3'®cand a = const?. We found
that this falloff in { made it difficult to impose stable outer boundary conditions at a fixelh iHdeiate this
problem, we spatially compactify through a stereographic projection

X
1—x/L

where L is a constant, and discretize along a uniform grid in x, with spatial infinity x = L now the outer boundar
of our computationalomain. For all the simulations presented in this article we chose L =vlimere m is the

mass of the initial Schwarzschild black dl&.= L we impose the conditionsg| =1, k= =0,P}-, =0,

Qlx=t =0, ¢p|x=. = 0. These conditions are consistent with our init@iditions and asymptotic faff ofthe

metric and scalar fiekbr the latter, generally ¢ —» 1/r, though if we impose exact Schwarzschild initial data outsic
some radiusyr(such that ¢(r > 1, t = 0) = 0 and@(r > r;, t = 0) = 0)the Gauss-Bonnet curvature wdlrce

an asymptotic field that decays liké;1ly causality (as long as the equations are hyperbolic) the 1/r component
sourced by the black hole, or any scalar radiation from a field we put in,atil sever reach spatial infinity.

r (20)

C. Initial data

The computationalomain covers x €d, L] (r € [rexe, ®]1), where %y (rexc) is the excision radiugnd can
vary with time (described in the following sectioWYe set initialdata at t = 0 by specifying the values &f
and Q, and then solve for a and ¢ using the momentum and Hamiltonian consttaiede.ordinary differential
equations (ODEs) are discretized using the trapezoid rule and solved with a Newton relaxation method, integrat
from x = %, to X = L. At X = Xoxc (SOme distance inside the horizmgdiscussed in the next section) we set a
and  to their Schwarzschild values:
S

2m
MXexc)

a|t=0,x=xexc =1, El{=0,x=xexc = (21)

If we begin with zero scalar field energy:{@|= P |;=0 = 0), solving the constraints recovers the Schwarzschild
solution on t = 0 to within truncation error.

D. Excision

At every time step we solve for a, ¢, P, and Q by alternating between an iterative Crank-Nicolson solver for P
and the ODE solvers for a and ¢, until the discrete infinity norm of all the residuals are below a pre-defined tolel
(typically the tolerance was . 1¥, smaller than the typically size of the one-norm of the independent residuals.
This strategy is a similar strategy to that used in our earlier code based on Schwarzschild-like coordinates, and
details can be found in [ARe excision strategy assumes all characteristics of hyperbolic equations are pointing «
of the domain at the excision surface x.z.xThis implies that for P and Q we cannot set boundary conditions
there,rather their evolution equations must be solwéldh the finite difference stencils for the rad&ivatives
appropriately changed to one-sided differenfemsa, as with the initialdata, the inner boundary condition is
arbitrary, and after each iteration we rescale it so that a(t, x = Epe=C1to obtain a consistent solution to the

3 Note that in a less symmetrical spacetime more care would need to be taken to distinguish between scalar and tensor dynamics due to
the derivative coupling between the scalar and metric fields in the EdGB equations of motion; see Egs. 3.

4 In EAdGB gravity curvature always sources a scalar fielthough for r m for an isolated source in an asymptotically flat spacetime,
the fall off of the curvature-sourced scalar field is sufficiently fast not to alter, through back reaction, the fall off of the metric derived
when P=Q = 0.
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full field equations requires that the boundary condition {({,ck bexet by solving the corresponding evolution
equation for  there (optionally C could be evolved over the entire domain using this eqlakiag)algebraic
combinations of the equations of motion (3a), an appropriate evolution equation for  can be obtained

Aol + Fgp =0, (22)

The expressions for#A and Fp) are lengthy expressions of &, ¢, P, Q}and their radiadlerivativesWe defer
showing their full form to Appendix C. In the limit A = 0, Eq. (22) reduces to

an_r _
%C — aGag — 5. ¢ = 2T = 0. (23)
Eq. (22) provides the boundary condition for ¢ at the excision su¥acehen integrate outwards in r using the
Hamiltonian constraint, Eq. (9a) as described above to solve for .

The formation of MOTS is sighaled by ¢ = 1 (Eq.(17)),and we always place the excision surface inside the
MOTS?>. The location of . is updated every time step before solving for the scalar and metfibditddation
of the excision point is chosen so that it is always interior to the MOTS, but lies exterior to (or directly on) the sc
line (for further discussion see $k@& and Sec.lV D). The location fordy. on our initialdata slice depended on
the strength of the curvature coupling C, which we detail in our Results, Sec. IV.

E. Fixed mesh refinement with a hyperbolic-ODE system

To achieve the necessary long term accuracy over thousands of m in evolution using limited computational re
we evolved some simulations using a Berger and Oliger (BO) style mesh refinement alBomkttorthéGilature
of our initial data and perturbations, a fixed hierarchy suffices, with the higher resolution meshes confined to sr
volumes centered about the origor. those runswe typically used 4 additiohneVels beyond the base (coarsest)
level, with a 2 : 1 refinement ratio between levels; specifically, we set the inner boundary fexalaheltteat x
outer refinement boundary locationgrat=x {5.00, 2.30, 2.00, 1.75, 1.55}, from coarsest to finest (the initial horiz
location r = 2m, and we chose the excision ragiusmoxhat gxc(Xexc) = 0.8 X 2m; see Eqg. (20)).

The originalBO algorithm was designed for purely hyperbolic systenagoationsfo include the ODE con-
straint equationsye employ the extrapolation and delayed solution modification developed for such coupled ellj
tic/hyperbolic systems [4R&re, for the hyperbolic equations (governing P and Q), the solution is obtained on the
mesh hierarchy with the usuB0 time-stepping procedureone time step is first taken on a coarse parent level
before twbsteps are taken on the next finer child lewal,this is repeated recursively down the mesh hierarchy.
During this phase the ODEs are not solved, and where the values of the corresponding constrained variables (a
() are needed to evaluate terms in the hyperbolic equata@pspoximations for these variables are obtained via
extrapolation from earlier time leviisteadthe ODEs are solved after the fine-to-coarseilgeektion phase of
the hyperbolic variableghen the advanced time of a given parentiteiesync with albverlapping child levels
(thus,on the very finest leviis scheme reduces to the unigrid algorithm described in the previous $extion).
more details see [47].

One difference with our system efluations compared to that described in [#/ihere some form oflobal
relaxation method was assumed for the elliptitsle here the ODE nature odur constraint equations requires
integration from the inner to outer boundBnis might complicate things for a general hierarchy with disconnect
grids on a given levelHere,since we only have one grid per levahd each always includes the physioaler
boundaryit is reasonably straight forward to integrate the ODEs during the solution plieeeatdorithm (see
also section 6.7 of [48We begin on the finest lewadfting the boundary conditions as required at xsthen
integrate outward, using the solution at the last point on a child level as an initial condition for continued integr
on the parent levéith the solution at interior points on the child limjetted to common points on the parent
level).This is schematically shown for two levels in FiprlZ, the boundary condition at x gcis obtained by
its corresponding evolution equation as described in the previous section; g.dab set vy extrapolation from
prior time leveland we only globally rescale a to satisfy our outer boundary condition a(t, x = L) = 1 at times
when all levels of the hierarchy are in sync.

5 In all cases we have considered we find that the “characteristic horizon” (the location whefefor the EdGB scalar field) is exterior
to the MOTS, so placing the excision point interior to the MOTS should lead to well posed evolution, provided the equations of motion
for the EdGB scalar remain hyperbolic.

6 because of our 2 : 1 refinement ratio in space and time.



Excision boundary Set boundary condition
OO0

Finer level Coarser level

FIG. 1: Schematic illustration of the solution of ODEs at synchronized levels with fixed mesh refinement in our
setup:we integrate from left to right (the compactified radial coordinate x increases from left to right).

Figure grid layout grid resolution Ax CFL number initial data
2,3,4,5,6,12 fixed mesh refinement 0.38 0.25 Schwarzschild
7 unigrid 0.024 0.5 Schwarzschild with bump:
@ = 0.1,a = 45,b = 55.
8 unigrid 0.012 0.2 and 0.1 Schwarzschild
9 unigrid 0.049 0.2 Schwarzschild
10 unigrid 0.049 0.4 Schwarzschild
11 unigrid 0.012 0.2 Schwarzschild

TABLE I: Simulation parameter&rid resolution Ax refers to the base grid resolution for the fixed mesh
refinement runé. discussion of Schwarzschild initial data can be found in Sec. IV B, and a discussion of
“Schwarzschild with bump” initial data can be found in Sec. IV C. See also Sec. IV A.

IV. SCALARIZED BLACK HOLES: NUMERICAL RESULTS
A. Overview of simulations and plots

To help keep track of the various simulation results we pregend|lect some of our simulation parameters in
Table. (I). We found for long time evolution simulations (¥8) Tixed mesh refinement was essential to maintain
high accuracy evolution (6m/m =10 Unigrid evolution was sufficient for shorter simulatiowhemswe quote
a value of resolution AX represents the resolution of the coarsest (baseif lexetl mesh refinement was used,
otherwise it is the resolution of the unigrid mMW#eHound that stably resolving the initial growth of the sonic line
that formed inside the EdGB black hole required using smaller Courant-Friedrichs-Lewy (CFL) towtnGELs,
numbers as large as 0.5 led to stable evolution if we excised well away from the sonic line.

B. Growth of “hair” from Schwarzschild initial data

For most ofour simulations we begin with a (t = const.) slicetbe Schwarzschild black hole solution in PG
coordinateswhich is (as is any spacelike sliceSthwarzschild) an exasdlution to the initialvalue problem in
EJGB gravity.Specifically, at t = 0, for x sx(the initial excision radius as described in Sec. lll D), we set

s
2m

Pl=0o =0, Qlt=0=0, Plo0o=0, @alt=0=1 (4o = ) (24)

We then evolve this, performing a survey of outcomes varying the EAGB coupling parameter A (in the GR case ,
as expected, the resultant numerical solution is static to within truncation error).

Previous studies of static scalarized black hole solutions in EdAGB gravity have found that regularity of the scal
field at the horizon places an upper limit on the coupling paréaordites.linear coupling case we consider, this is
(see e.q.[5])

A
P
h
where f is the areal radius of the horizdior black holes much larger than thiss 2m (the space time is close
to Schwarzschildjhough approaching the extretmait a non-negligible amount of the spacetime mass m can be

< (19272 = 0.07, (25)
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contained in the scalar field, and simply replgdainidh 2m to express the above in terms of our curvature-coupling
parameter C (14) gives a poor estimate of the corresponding extremgi- v&iwenCFigure 4 of5] we can infer
a more accurate translation :

C = C extr = 0.22. (26)

We find the extremé&mit is not characterized by the appearance of a naked curvature sinfgutanisyead the
formation of a sonic line (and elliptic region) outside of the horizon of the bla@irhokeasured extremal limit
of Cextr ~ 0.23, as shown in Sec. IV D, is quite close to the above limit from [5].

Note that the “extremal limit” for a scalarized EdGB black hole is of a different nature than the extremal limit:
Kerr or Reissner-Nordstrom black hdlke.spin or electric charge of a black hole is set by the black hole’s formatio
history:black holes of the same mass can have different spins or charges depending on the initial configuration
charge and angular momentum of the matter that fell in to form the bByglcboteast for an EAGB black hole
the final scalar charge is set by the Gauss-Bonnet coupling, and Gauss-Bonnet curvature at the horizon, indepe
of its formation history [3, 5].

Given that the Schwarzschild solutimnany massis valid initialdata in EAGB gravitywe can certainly begin
with superextremalack holes in our evolution (and again to be cléare we use the term “superextremal” to
refer to C > Gy¢r; there is no spin or charge in our numerical solutims)e show below however, these develop
elliptic regions outside the horizdtoreoverpur results in [12]show that trying to form a superextrebiakk
hole from gravitational collapse of the dilaton field (in spherical symmetry) will result in an elliptic region appea
before a horizofThis suggests superextremal black holes in EAGB gravity exist in the regime of the theory gover
by mixed-type equationand their presence or “formation” (however that could be interpreted in a mixed-type
problem) would mark a breakdown of the Cauchy proli&so.note that failure of the Cauchy problem is not a
priori connected to regions of strong curvature or black hole forrasffierther shown in [2], strong coupling
and mixed-type character can be present for arbitrarily small spacetime curvature.

We first present results from evolution of Schwarzschild black hole initial data, and curvature couplings below
extremal limitln all cases, if we move our excision radius sufficiently far interior to the horizon, we find that at s
time an elliptic region forms in the intefitoweverfor these cases we can choose an excision radius closer to the
horizon so that the evolution settles to a stationary state without any elliptic region forming in this Asw domain
discussed in the introductiame view this as a consistent inith@lundary value evolution of EAGB gravity where
the elliptic region is “censored” from the exterior hyperbolidnrddggsn2 and 3 we show examples of scalar hair
growth for these cases (with the elliptic region excised), and their difference from the static “decoupled” scalar
profiles for a Schwarzschild black hole background (see Appendlix Barious curvature-couplingfiese runs
employed the fixed mesh refinement algorithm described above, with the base level grid having Ax = 0.39 resc
Courant-Friedrichs-Lewy (CFL) number of 0.25, and an excision radius atfixe®.85x2mWe find the scalar
field settles down to solutions that differ little from the static decoupled scalar fiemthafdé, the difference
grows as the curvature coupling approaches the exineiin@l.f. Fig. 3 of [5]).Nevertheles#& agreement with
the results of [5], the difference of the full solution from the static decoupled limit solution remains small outsid
black hole horizofrom convergence studies we find we can resolve the difference of the scalar field profile frorn
decoupled value walithin truncation errosee Fig.4. For the case C = 0.16n Fig. 5 we show growth of Ricci
curvature sourced by the scalar field, and in Fig. 6 a corresponding plot of convergence and estimated truncatic
in R.

C. Perturbed Schwarzschild initial data

Schwarzschild initial data is not generic; in particular, the scalar field is (initially) only growing in response to
Gauss-Bonnet curvature sourdam investigate a slightly broader classnifial conditionshere we add a small,
mostly ingoing propagating perturbation to ¢ outside the horizon:

2 h i
3 1 _g r-(e+by2 ?
olt, ), = [ Po €XP —=ay=r €XP =5 —53p as<rs< b (27a)
0 otherwise
P(t, r),_,=0. (27¢)

This family of initial data (rescaled “bump functions” multiplied by a Gaussian) is smooth and compactly suppor
outside the initialblack hole horizon for a > 2mWith a fixed curvature-coupling @e find that we can stably
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(b)C=0.16

FIG. 2: Growth of scalar “hair” from Schwarzschild initial 8atawn is the scalar field profile at several times

during an evolution for two different cases of the curvature coupling C (14); the extrem

Sec. IV B) is Gxtr = 0.23 The horizon (MOTS) is located at4n = 1.48, and spatial infinit

al limit (see the discussi
y is at x/m = 5.

Notice the different range of scales on the y-axis of eactAfsgusieown for comparison is the estimate of the

final profile using the decoupled scalar approximation (Appendix B); see aksor EighBlatio
Table. I.

evolve an initiddlack hole plus scalar field bump if the amplitude of the latter is sufficien

n parameters see

tlgreeqailyalently

if the metric curvature measured by the Ricalar R induced by the scalar field bump is sufficiently sirail.
our initialdata for a and {we set their values at the excision surface as it2Bg.and then integrate outwards
in r. An example of such a case is shown in FigWhen the induced curvature is large,elliptic region forms

outside the black hole horizon (and soon after that the code chashesjugh estimate, we fi
[IR x A} & 0.1.This result is consistent with our earlier findings of collapse of a scalar fie
black hole [1, 2].

nd this occurs when
Id pulse without any inte
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FIG. 3: Difference between the late time (t ~ 2000m) scalar field profile obtained from the non-linear simulatior

that of the decoupled estimate (see Appendix B), for several values of the curvature coupling C; s@dalso Fig. 2.

black hole horizon (MOTS) is at x/m = 1.48, and spatial infinity is at x/mAs=eéxpected, the decoupling limit

approximation improves the further C is away from the extremallirsit0C23 For simulation parameters see
Table. I.

D. Internal structure of an EAGB black hole, and the near extremal limit

For small values of the curvature coupling we can consistently excise any elliptic region that forms interior to
horizon.We always excise the Schwarzschild curvature singularity atandg & none of the cases we have run
(smallor large curvature coupling) do we see any signs of a curvature or scalar field singularity forming away fr
r = 0 while the equations remain hyperboWe can typically evolve for some time after an elliptic region forms
without excising it before the code cradh@sever this as an artifact of finite resolutind,we can only expect
convergence to the continuum limit using our hyperbolic scheme until the first appearance of theotbeic line.
words, to say anything rigorous about what might occur within the elliptic region would require solving a mixed
problem, and we do not have the tools for doing so.

With increasing values btiie curvature coupling approaching the extrémiil(26),as the scalar field grows,
the location at which the sonic line first appears moves closer to theMiOm %o this, we excise some distance
within the MOTS, though when the sonic line appears we increase the excision radius to be at thé séic line
then employ a “high water mark” strategy during subsequent evolution, increasing the excision radius to matct
location of the sonic line if it grows, though do not reduce the excision radius if the sonic line shrinks (presumec
be happening if the characteristic discriminant on the excision boundary increases in magnitude away from zer

For cases where the elliptic region remains cena@régpically find that initially the sonic line does cand,
then (presumably) shrinks within the excision radius as the solution settles to a stationafgrsieterestwe
estimate the location of the sonic line by extrapolation, as Reloalls.the equation for the radial characteristics
is (Eq. (16))

Ac’+Bc+C=0, (28)
where A, B, C are functions of a, ¢, P, Q, and their radial derivVidit#vesaracteristics thus satisfy
1 pP—
+ = = - + 2 —
C: =52 B B2 — 4AC , (29)

7 The scalar and null characteristics are generally different from each other in EdGB grawfyr. our excision strategy to be stablaye
require all of the metric and scalar characteristics to point into the excised régiat.cases we have studied, the scalar characteristics
always are not tangent to the sonic line (the characteristics can be defined up to the sonic line, which is also why we classify the EAGB
equations as Tricomi type here [1, 2]lhus excising on the sonic line should be fine, as long as it remains within the horizon.



11

|
N

|
(@]

I
~

—— | Pnx=0.35— @hx=0.1}
|Prx=0.19— Ghx=0.0% X 4
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
xX/m

(a) C=2.5x 103

log {difference)
&

I
o)

—— | @nx=0.35— @hx=0.1}
—3 |Prx=0.1— Ghx=0.0% X 4

log {difference)

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
xX/m

(b) C=0.16

FIG. 4: Convergence and truncation error estimate at t ~ 100m for the scal&hield @re point-wise
differences of the solution computed with different resolutions; the decrease going to successively higher resol
is consistent with second order convergence, and the magnitude for a given pair is an estimate of the error in
scalar field profile at those resolutibomparing with Fig. 3, we see we can resolve the difference of the scalar fiel
from the decoupled value well above truncation error for the range of curvature-couplings coiglered here.
rescale the smaller truncation error estimate by 4, which is the expected convergence rate of our code based ¢
order of the second order finite difference stencils tvar s&mulation parameters see Table. I.
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FIG. 5: Evolution of the Ricci scalar for the case C = 0.16; see Fig.2 for evolution of the scalar field for this sam
simulationThe small “features” in the Ricci scalar at the t = 10m time slice are located at grid refinement
boundaries, and converge away with higher base resolution (compare wikbrFsgm@)ation parameters see

i
: il

—— |Rax=0.35— Rax=0.1$ x mi
— |Rax=0.19~ Rax=0.0§ X M x 4

log {difference)
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FIG. 6: Convergence and truncation error estimate at t ~ 100m for the Ricci scalar R, for the C = 0.16 case (s¢
Fig. 4 for a similar plot of the scalar field ¢ for this case, and the caption there for a discussion of the error
estimates)The oscillations near x/m ~ 2.3 are are at at grid refinement boWelagegcale the smaller

truncation error estimate by 4, which is the expected convergence rate of our code based on the order of the s
order finite difference stencils weRgesimulation parameters see Table. I.
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FIG. 7: Schwarzschild initial data perturbed by an EdGB scalar bump (see Eq. (27a)) outside th&Heorizon.
mass of the initial Schwarzschild black hole 4s 20, while the scalar bump adds an additional ~ 3 in mass,
giving a net mass m = 23; thus with A = 1 the curvature coupling is €=24n1%. Some of the scalar field
falls into the black hole, while some disperses to infinity, and at late times the scalar field approaches the deco
scalar field profil€or simulation parameters see Table. I.

and the location dfhe sonic line is at the zero tie discriminant) = B2 — 4AC. After excisingif D becomes
positive definite within the computational domain, we estimate the location of the sonic line as the zero of a qu
polynomial fitted to the function

1P ——ro
G —C =1 B2 — 4AC, (30)

using a set of points adjacent to the excision bokmdarigal cases for Schwarzschild initial data, and subextremal
curvature couplingthis estimate suggests the true locatidmeffinalstationary sonic line lies within ~ 94% of
its maximum value (the excision point); see Fig. 8 for a survey of the late time values of the excision radius, MC
location and sonic line estimaied Fig.9, for the evolution of these quantities for one example (including several
resolutions)in the latter figure, the shrinking of the MOTS after some initial growth coincides with violation of th
null convergence condition,R*k” = 0 for all null vectors k; see e.g.[49]),which is known to occur in EAGB
gravity (for more details in the sphericallapse problem see [2B.plot of Ry, k*k" is shown in Fig.10. We
note that the stable violation tfie Null Convergence Condition (NCC) is thought to be a key ingredient in the
construction of singularity free cosmological and black hole solutions (for a revi&@])sBa®wjolation of the
NCC appears to be transierds the scalarized black hole settles to a stationary solution, we find the horizon stops
shrinking and the region of NCC violation disappddrs.slow increase in the horizon size for t/m & 50 is due to
numerical error; we find it converges to zero with increasing resolution.

For curvature couplings abovg#, the sonic line can move outside the MOTSH, initially appear outside it.
Linearly extrapolating the data shown in Fig.8 to the location where the late time MQ@F6ssithe sonic line,
we estimate &¢ ~ 0.23, close to but slightly larger than the valug& ~ 0.22 coming from seeking exactly
static EAGB black hole solutions with a non-singular ¢ field on the horizon[5] (though even beyond caveats with
extrapolations, we do not expect these two methods to give identical numerical values for an extrernmal coupling
Fig. 11 we show an example evolution of Schwarzschilddatdakith superextremalrvature couplingVe see
the sonic line quickly overtakes the black hole horizon, leading to a “naked” elliptic region.

V. DISCUSSION

In this article we have presented numerical evidence that in spherical symmetry, and for sufficiently small cul
couplings (what we caslubextremal)zdGB black holes are nonlinearly stabl€or subextrematouplings even
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FIG. 8: The location of the MOTSwp7s , excision radiusy, and estimated sonic line positign.r as a
function of the curvature coupling C, measured at t ~ 80m during the evolution of Schwarzschild initial data, wl
is sufficiently late to give a good estimate of their static end state values (sBae&ig 8Uur high water mark
excision strategy, the excision point represents the largest measured radius the sonic line attained during evol
Extrapolating the curves for the MOTS and sonic lines, we estimate the “extremal” coupling for our initial data
be Gytr ~ 0.23.These results were obtained with unigrid evolution using Ax = 0.012 (corresponding to the highe
resolution curves shown in Fig.Fr C = 0.17 runs the CFL number was 0.2, while for C < 0.17 the CFL number
was 0.1For other simulation parameters see Table. I.

2. —:— I'MOT S,0 —-—  lexc,0 I'sonic,0
'mors,1 = Fexc,1 == I'sonic,1
— I'mOT S,2 —— rexc,2 rsonic,2'
1.
1.7
0 50 100 150 200 250
t/m

FIG. 9: Evolution of the MOTS, excision point, and sonic line as a function of time, for curvature coupling
C = 0.1875 (c.fig. 8), and from runs at three resolutiam®:labels 0, 1, 2 refer to unigrid resolutions
Ax = 0.049, Ax = 0.024, and Ax = 0.012, respectively (a CFL factor of 0.2 was used in &t eashs}imes as
the sonic line grows, we increase the location of the excision surface to match; after reaching a maximum radiu
sonic line presumably starts to shrink again, and then the curves in the figure show an estimate of this locatic
based on extrapolation of the characterstic speeds (see Sec. IV D). The resolution study demonstrates that at |
times we are converging to a static solution (in the vicinity of the Hayizother run parameters see Table. I.
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FIG. 10: Ricci tensor contracted with outgoing null ve¢ter(k, a (-1 + ¢), 0, O)[R'K") at time t/m = 14.
The curvature coupling C = 0.W¥e see that the null convergence factor is not positive definite; where it is
negative indicates a region of NCC violafiibr.region of NCC violation is localized near the black hole horizon
and region of strongest scalar field grdwtb.resolution study demonstrates we can resolve the stable violation of
the null convergence condition in EAGB gravity during the formation of a scalarized black hdtersolution.
simulation parameters see Table. I.

B trapped region
Hl cxcised (elliptic) re

2.00 2.05 2.10 2.15
r/m

FIG. 11: Example evolution of Schwarzschild initial data with superextremal curvature@euplitb We
excise along the sonic line, so the excised region can be thought of as the elliptie segi@iine very quickly
reaches and overtakes the MOTS, and the elliptic region subsequently becomes “naked”, shortly after which t
code crashe¥®Ve note our code crashes if we do not excise the elliptic region, regardless if it is interior or exterio
the black hole horizoRor simulation parameters see Table. 1.
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moderately close to the extrenmailit, solving the decoupled scalar equation for the scalar field profile provides a
good fit to the numericablution obtained in the fiHeory.Beginning from Schwarzschild indiata,instead of
developing a non-central curvature singularity in the interior as was found for static solutions [5], we find the fo
of a sonic line and elliptic region in the inte@ior.treatment of the EdAGB equations as hyperbolic does not allow
us to conclude anything about possible extensions of the spacetime into the elliptkoregibextremdilack
holes, our statement about their stability relates to the region exterior to the horizon, and assumes that our exc
strategy used to eliminate the interior elliptic region is self-consistent (which is supported by the stability/conve
of the corresponding numerieablutions).For superextremabsesthe sonic line forms or evolves to be outside
the horizon, meaning we cannot excise it, and we would need to treat the exterior equations as mixed-type to c
sensible solutions (or said another way, then the exterior evolution ceases to satisfy a well-posed Cauchy initial
problem).The particular value dhe curvature coupling we find for the extrdinat is similar to,but slightly
different from that given for static EAGB black holes solutions [3, 5]; this is not particularly surprising given we
dynamically forming them from Schwarzschild initial data.

There are various ways in which this work could be ext©maeid.to explore a wider class of initial conditions;
for examplegollapse to a black hole from a regular matter sowrbether the pure EdGB scalar field as in [2],
or coupled to another sourcemftter driving most dhe collapse (e.gextending the study ¢28],which only
considered the decoupled EdGB field on topgOgpenheimer-Snyder style collapeghe full EAGB equations).
Recent work suggests that whether or not scalarized black holes form in the theory depends on the functional f
f (@) (see Eqg. (1)) [6, 51]; with the methods presented in this paper one could explore these questions with num
solutions to the fultheory in sphericaymmetry Another future direction is to study criticalllapse in EAGB
gravity using adaptive mesh refinement.

Finally, this work could be extended by considering numesoaltions ofEdGB gravity in axisymmetryor
without any symmetry restrictidrdgs would couple in propagating metric degrees of freedom, and hence introdu
a qualitatively different aspect of the theory not available in spherical sifpraineitey.to the conclusions found
here and in [1, 2], there exist subsets of initial data that offer well-posed hyperbolic evolution, then EdAGB gravit
still be viable as an interesting modified gravity theory to confront with gravitational wave binary n@arger data.
the other hand, if the linear analysis in [15, 16] that EAGB gravity is generically ill-posed in a particular gauge a
to all gauges, then the well-posed cases we have found could be an artifact of spherical symmetry, and includin
gravitational wave degrees of freedom would render the theory ill-posed.
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Appendix A: Convergence of an independent residual

In Fig. (12) we present the two norm of thg Eomponent of the equation of motion for a representative case,
excising the elliptic regiand evolved with fixed mesh refinem@rg see second order convergence to zero over
the entire run-time t = 2 x3&Dof the simulatioriThe plot only shows the norm computed on the coarsest level,
although we observe second order convergence xeriabf fixed mesh refinement (four in addition to the base
level).As an example of how this translates to solution error, for the highest resolution case shown in Fig.12, aft
early time transient behavior and the solution has settled to be nearly static at the horizon (see Fig.9), we see ¢
drift in the mass of the black hole of 86m/m ~ 0.4% over the remainder of the si@thkticurvature couplings
give similar resultdf we do not excise the elliptic region we begin to loose convergenanidherentually the
code crashes, as expected.

Appendix B: Decoupled EdGB scalarized black hole solutions

For reference, we present the decoupled scalar solutions for EAGB gravity in PG cdbtedaexdteapling limit
for EAGB gravity is the solution of the scalar wave equation

¢+ AR GB = o, (B1)
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FIG. 12: Second order convergence to zero of the 99 component of the equation of motion (3a) from a represen
run: Schwarzschild black hole initial data, and curvature coupling CSh@wir6is log(|E g9 |2) versus time

computed on the base level of a fixed mesh refinement run (other levels also show second order convergence t
The log is chosen so the second order convergence is more appaséantulation parameters see Table. I.

about a GR backgroun@ur background is the Schwarzschild spacetime:
r

a=1 (= 27”’ (B2)
We assume a static solution, ¢(r), for which Eqg. (B1) becomes
1d , 2m do¢ 48Ant _
The solution to this equation is
_ 221 1 8mA1l cam+?2 2m
(p(r)—EF+2/b+ 3 3T o /}ogl — toe (B4)

where ¢ and ¢ are integration constantBegularity at the black hole horizon sefs==—2A/m, and requiring
@(r = ) = 0 setsc= 0. We have

_2A m nF  Aany

m r  r2 3r3 ' (B3)

o(r)

which is the solution we compare our numerazallts against in this articl&ote from [17§hat the dynamical
solution to Eq. (B1) has been shown to asymptotically settle to the static solution (B5) for Schwarzschild backgr

Appendix C: Form of functions A,F (), A, and F

Here we provide the (lengthy) expressions for the functignsatd Fp), (see Eq.(7b)), Az, and F) (see
Eq. (22)), which we produced using Mathematicalfbié we work only for f (¢) = ¢ in this article, we show the
complete expressions for reference.

2 272 4
_16A0_16APT .o, 64)?20 N 128}?2P Q7. 64)?/: < 32)56 (F9?
r r r r r

Apy=1+
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