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We study the dynamics ofsmall inhomogeneities in an expanding universe collapsing to form
bound structures using full solutions of the Einstein-Vlasov (N -body) equations.We compare these
to standard Newtonian N -body solutions using quantities defned with respect to fducial observers
in order to bound relativistic efects.We focus on simplifed initialconditions containing a limited
range oflength scales,but vary the inhomogeneities from smallmagnitude,where the Newtonian
and general-relativistic calculations agree quite well,to large magnitude,where the background
metric receives an order one correction.For large inhomogeneities,we fnd that the collapse of
overdensities tends to happen faster in Newtonian calculations relative to fully general-relativistic
ones.Even in this extreme regime, the diferences in the spacetime evolution outside the regions of
large gravitational potential and velocity are small.For standard cosmological values, we corroborate
the robustness of Newtonian N -body simulations to model large scale perturbations and the related
cosmic variance in the local expansion rate.

I. INTRODUCTION

Recently, there has been a growing interest in quan-
tifying the importance of efects that are both nonlin-
ear and relativistic on the large scale evolution and
development of structure in the Universe [1–10].This
means studying efectsthat may be missed by the
standard tool for studying cosmological structure for-
mation:Newtonian N -body simulations.The moti-
vation for such studies ranges from answering claims
that small scalenonlinearitiesmay havea strong
“backreaction” on large scales on the one extreme [11–
15],to the desire to quantify small,subpercent rela-
tivistic efects which may soon become observable in
the era of precision cosmology [16–18].

There are a number ofchallenges in performing a
full, nonperturbative general-relativistic (GR) calcu-
lation of structure formation.Solving the Einstein
equationsrequiresboth solving a setof constraint
equations (typically elliptic) at the initialtime and
evolving hyperbolic equations forthe metric which
have characteristics that propagate at the speed of
light. The latter imposes a severe restriction on the
timestep of the simulation compared to the case where
the gravity is completely determined by an elliptic
equation and themattermovesnonrelativistically.
Resolving the smallscales ofcollapsed structures is
already very challenging within the Newtonian frame-
work [19, 20], and this restriction makes the GR case
much more severe.Hence,most calculations begin-
ning with a range of length scales very quickly become
underresolved.One approach is to only include some
general-relativistic corrections which do not break the

elliptic description of gravity [21,22]. However,this
requiresmaking a priori assumptionsabout which
terms can be neglected.

GR simulations also tend to discretize the metric
functions on grids,which makes it naturalto use a
fluid description ofthe cold dark matter which can
be discretized on the same grid.This is what has
been done for most full GR calculations of cosmologi-
cal structure to date (Refs. [9, 10, 23] are exceptions to
this). However, such fluid descriptions break down as
soon as multistream regions emerge,which of course
are generic features of structure formation.

Finally, there is the difficulty of distinguishing and
quantifying the magnitude of efects coming from non-
linear gravity, from those solely due to nonlinear per-
turbations in the matter (which willbe captured by
standard Newtonian calculations) [7].For example,
one cannot simply look at how inhomogeneous vari-
ous functions ofthe metric are in a GR simulation.
Related to this, when one is considering nonlinear de-
viations from a homogeneous spacetime,coordinate
ambiguities make it difficult to interpret the metric
functions directly,and one has to be carefulto com-
pute gauge invariant quantities in order to make a
meaningful comparison [9].

This work extendsthat of Ref. [7], where a di-
rect comparison of Newtonian and GR simulations of
structure formation was performed utilizing the dic-
tionary of Refs.[24,25]to generate consistent initial
conditions in both simulations and to compare observ-
ables.In Ref. [7], a fluid description of the matter was
used for the GR calculations,which meant that the
comparison became unreliable past the point where
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multistream regions would develop.Here, we use the
methods of Ref. [23] to solve the Einstein-Vlasov equa-
tions, allowing us to continue the comparison as bound
structures are formed.We sidestep some of the com-
putational challenges mentioned above by considering
simplifed initialconditions,where the perturbations
are concentrated at a single wavelength, but consider
various magnitudes for the inhomogeneities.For large
enough inhomogeneities (in excess of standard cosmo-
logical values),we do fnd appreciable deviations be-
tween the Newtonian and GR calculations,with the
collapse ofoverdensities happening faster in the for-
mer. However,in the regime where this occurs,it
is already clear from the Newtonian calculation it-
self that deviations are expected since the gravita-
tional potential and velocities relative to the speed of
light are becoming comparable to unity.Furthermore,
even in such cases, we fnd that outside the regions of
large gravitationalpotential,the agreement between
the two methods in observables like the evolution of
the density and the propagation of light is still good.

The remainder of this paper is as follows.In Sec. II,
we describe the initialconditionswe consider,the
methods we use to evolve in both a full GR and New-
tonian framework,and the diagnostic quantities we
use to compare the two.In Sec. III, we present the
results of our calculations evolving inhomogeneities of
various magnitudes,and in Sec.IV we conclude.In
the appendix,we present results estimating the nu-
merical errors in our calculations.We use units with
G = c = 1 throughout.

II. METHODOLOGY

A. Initial conditions

Following Refs.[1,7], we consider a simple set of
initial conditions consisting ofdensity perturbations
about a homogeneous solution.The homogeneous so-
lution is characterized by its initialexpansion rate
H0, and hence and density ρ0 := 8π/3H2

0, which sets
the overallscale.The perturbations are taken to be
in each of the Cartesian directions with initialwave-
length that is four times the Hubble radius at the
beginning ofthe calculation.That is, we take the
Newtonian density contrast to be

δN =
X

i

δ̄i sin(kxi ) , (1)

with k = πH 0/2. We introduce a smallasymmetry
between the diferent Cartesian directions by letting
δi = δ̄(1, 0.9, 1.1),and we consider varying magni-

tude density perturbationsδ̄ × 102 = 0.25, 0.5, 1, and
5. The initialvelocity is given by the Zel’dovich ap-
proximation [26]

vi = H0δi cos(kxi )/k . (2)

These initial conditionshave a maximum over-
density at (0, 0, 0)and maximum underdensity at
(π/k, π/k, π/k).

As described in detailin Ref. [7], fully general-
relativistic initialdata are calculated using the dic-
tionary of Refs. [24,25]to determine the approxi-
mate metric and stress-energy tensor, and then solving
the full Einstein constraint equations in the conformal
thin-sandwich formulation [27] for any nonlinear cor-
rections.

B. Newtonian simulations

The Newtonian N -body simulations are performed
using the GADGET-2 code [28]with a TreePM al-
gorithm for the gravity solver [29].These simulations
serve as a reference to standard computational cosmol-
ogy, where the evolution of the cosmic density feld is
governed by Newtonian gravity, and is fully separated
from the background expansion, described in turn by
the Friedmann equation.GADGET-2 has been vali-
dated in a number of comparison studies verifying the
accuracy and robustness ofvarious numericalimple-
mentations of cold dark matter cosmologicalsimula-
tions (see, e.g., Refs. [30–32]).

We generate conditions by displacing particles from
a regulargrid according to the feld given by the
Zel’dovich approximation [26]

δxi = i ΨN (a = 1) , (3)

where ΨN is the Newtonian gravitationalpotential
given by

∂ i ∂i ΨN = 4πa2ρ0δN , (4)

and by convention the scale factor a is set to unity
at the beginning ofthe calculation. The resulting
density feld that is inferred from the positions of the
particles reproduces the input density up to the sec-
ond order corrections in the density contrast.As in
Ref. [7], we apply the corrections by means of a min-
imal adjustmentof particle’s masses.The particle
masses are set in such a way that they compensate
all local diferences between the actual (as calculated
by the employed density estimator,described below)
and input density evaluated at the position of every
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particle.We note that the introduced corrections are
small(subpercent level),but they guarantee a high-
accuracy match between initial conditions of the New-
tonian and GR simulations.

The density feld is not explicitly evolved in the N -
body simulations, and it can only be derived from the
positions ofthe particles.Here,we employ a well-
tested method for measuring matter density in cos-
mologicalsimulations ofcold dark matter,based on
tracing the evolution of the Lagrangian tessellation of
the dark matter manifold in phase space [33, 34].Den-
sity is estimated by means of scaling the initial density
according to a relative change of the volume of tetra-
hedral mass elements defned in the initial tessellation.
In single-stream regions (no shell crossing), local den-
sity at a given position is determined solely by a single
tetrahedral cell containing this point, while density in
multistream regions (after shellcrossing) arises from
multiple density contributions coming from all locally
overlapping tetrahedral cells.

The employed density estimator outperforms more
traditionaltechniques such as cloud-in-cell(CIC) in
several respects.Here, we emphasize that the estima-
tor can be applied locally, and it does not sufer from
undersampling in single-stream regions, making it an
ideal method for tracing the density feld in voids.On
the other hand,density estimates in multiple-stream
regions should be regarded with reservation, because
the full robustness ofthe estimator requires simula-
tions with a computationally heavy adaptive refne-
ment oftessellation cells [35].In particular,density
estimation in the center of dark mater haloes depends
on resolution, and there is no guarantee that the com-
putation can converge due to the cuspy nature of dark
matter density profles,although precision estimated
from comparing resultsbased on diferenttessella-
tions at fxed resolution isof the orderof 0.1 dex
[34]. The problem ofresolution dependence can be
circumvented by employing a density estimator with
a fxed smoothing scale in comoving coordinates in-
stead.Bearing this in mind, we include CIC estimates
of density in some cases for comparison with the GR
calculation (which does not utilize tetrahedral cells).

Unless otherwise stated, the results shown here are
obtained used N = 1963 particles.We also run se-
lect cases using N = 1283 in order to estimate nu-
merical errors.The simulations were carried out with
a force softening of5 × 10−4 (high resolution) and
8 × 10−4 (low resolution) in units ofthe simulation
domain length L.

In order to compute the trajectories of freely falling
test particles,we follow the evolution of the tetrahe-
dral cells containing the initialpositions ofthe test
particles.The positions of the evolved test particles

are then computed by interpolating between the dis-
placements of cells vertices, which are always given by
dark matter particles.

C. GR simulations

The fully general-relativistic N -body simulations
are performedusing the methods describedin
Ref. [23].This code was also recently used to follow
black hole formation from collisionless matter [36].As
in the Newtonian simulations, we determine the initial
particle positions by starting from a uniform lattice
of particles and then displacing each particle slightly
according to the Zel’dovich approximation (given by
Eq. (31) in Ref.[24]).However, there will be a small
nonlinear correction to the density feld which we will
need to apply to the particle distribution.To do this,
we use slightly nonuniform masses for the particles,
given by rescaling the masses in proportion to the ra-
tio of the desired density to that obtained from the
Zel’dovich approximation.

Though the code used here does implement adap-
tive mesh refnement (see Ref.[23]),for this study
we restrict to uniform grids.We do this mainly for
efficiency,though we note that the results in the ap-
pendix indicate that, at late times in our simulations,
the numerical error is mainly dominated by the num-
ber of particles.For most of the results presented here,
we use resolution with 96 points across the wavelength
of the initialperturbation,and 43 particles per grid
cell. However,we run select cases at multiple reso-
lutions utilizing 2/3× and 4/3× as many grid points
in order to establish convergence and estimate trun-
cation error.See the appendix for details.

For comparison,we also include a few results that
are calculated by treating the matter as a pressureless
fluid as described in Ref. [7].

D. Comparing observables

In order to compare the results ofthe Newtonian
and GR N -body evolutions, we compute several quan-
tities defned with respect to fducial observers, as de-
tailed in [7]. We compute the matter density along
the worldlines of timelike observers and use this quan-
tity as a function ofproper time ρ(τ ) to defne an
efective density contrast:

δobs(τ ) := (ρ(τ )/ρ0)a−3
p − 1, (5)
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where

ap := [3τ H0/2 + 1]2/3 (6)

is a convenient parametrization ofthe proper time
using the Lemaˆıtre-Friedmann-Robertson-Walker
(LFRW) expression for the scale factor that would
hold in the homogeneous case.We emphasize that
since H0 (and hence ρ0 := 8π/3H2

0) is just a constant
that sets the overallscale ofour initial conditions,
δobs(ap) is just a convenientreparameterization of
density as a function of proper time.

We also measure properties of the spacetimes using
null geodesics which are “emitted” and subsequently
“observed” by fducial timelike observers.If ka is the
four momentum ofthe null geodesic and ua is the
four velocity ofemitter/observer,we can compute a
redshift factor

ing the efective spacetime using the Newtonian-GR
dictionary of[24,25]and integrating the resulting
geodesic equation.Hence,the Newtonian calculation
also includes relativistic efects in the propagation of
light,etc.,and the comparison is really of how much
the spacetimes implied by the two methods of calcu-
lation difer.

III. RESULTS

With the initialconditions we have chosen,as the
spacetime expands and the inhomogeneities move in-
side the horizon, a growing void emerges at the point
of maximum underdensity, and a bound, multistream
region (i.e.a halo) is formed at the point of maximum
overdensity.In the top and middle panels of Fig.1,
we show the density contrast measure δobs at these
two points for cases with diferent magnitudes of the
initial inhomogeneities.The Newtonian and GR cal-

culations show good agreement at the underdensity for
all cases, even as the density contrast becomes highly
nonlinear.

For the overdensity,two diferences are noticeable.
The frst is that the collapse and halo formation oc-
curs slightly earlier for the Newtonian case,and this
diference increases as the initialinhomogeneities be-
come larger (and hence more relativistic).The second
is that the saturation density is signifcantly larger for
the Newtonian case.We shall not focus too much on
the latter since this is fairly sensitive to numerical ef-
fects such as the fnite number ofparticles and the
smoothing length.In the bottom panelof Fig.1, we
show for thēδ = 0.01 case a comparison of how this
quantity changes, both with numerical resolution, and
with a particle versus pressureless fluid treatment of
the matter.Here it can also be seen that with a CIC
estimate of the density, the maximum density contrast

The diferences in the evolution of multistream re-
gions can be tracked by considering a set offducial
observers, comoving with the matter, that are initially
displaced from the halo by some distance,and com-
paring the proper time it takes for them to eventu-
ally fall through the point ofmaximum overdensity
and begin to oscillate around it.This is illustrated
in Fig. 2, where it is apparent thatas the size of
the inhomogeneities increases,and the collapse takes
place more quickly and at scales more comparable to
the Hubble scale, the relative discrepancy between the
Newtonian and GR cases increases,with the Newto-
nian case exhibiting faster collapse.(We note that in
generalthese coordinate distances are gauge depen-
dent, but the time the particles cross the overdensity
is not.)

Figure 3 shows the diferences between the Newto-
nian and GR positions of freely falling particles from
Fig. 2 as a function of the absolute magnitude of the
infall velocity inferred from the Newtonian simulation.
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FIG. 1. Top: the δobs measure of the density contrast at
the points ofminimum density for the casesδ̄ = 0.0025,
0.005,0.01,and 0.05. (The Newtonian and GR curves
for the underdensities are essentially indistinguishable on
the scale ofthe plot.) Middle: same as above,but for
the density contrast at the points ofmaximum density.
The curves labeled “CIC” use a cloud-in-cellestimate of
the density—similar to the way the calculation is done for
GR simulations—instead of the tetrahedralcellestimate.
Bottom: a comparison ofthis quantity at the point of
maximum overdensity for̄δ = 0.01 for severaldiferent
resolutions and utilizing a fluid versus particle treatment.

For the sake of clarity,we only show the trajectories
up until the time where they frst cross the halo center
in the Newtonian run.The comparison demonstrates
that the Newtonian trajectories closely follow their
GR counterparts,as long as infallvelocities do not
exceed the limits of nonrelativistic dynamics.Notice-
able discrepancies between the two simulations occur
when the particles reach relativistic velocities.The
apparent diferences reflect the limited accuracy of the
Newtonian simulations when there is a violation of
the nonrelativistic assumption.Particles in the New-
tonian simulations are accelerated to larger velocities,
giving rise to a faster collapse onto the central object
than in the GR simulations.

We can also compare the diferences in the efective
spacetimes using the propagation of light.In Fig. 4,
we compare the luminosity–redshift relation for fdu-
cial light rays propagating between the points of min-
imum and maximum density.From the comparison
with the homogeneous solution shown in the left col-
umn of Fig.4, one can see that the cases considered
here have large, nonlinear deviations from the LFRW
behavior. Nevertheless,as evident in the right col-
umn, the diferences between the GR and Newtonian
case remain much smaller,in most cases subpercent
and consistent with numericaltruncation error (see
the appendix and Ref.[7]),indicating the diferences
in the spacetimes are small.

For the larger amplitude inhomogeneities, light rays
emitted from the overdensity at later times have a
DL (z) that is slightly smallerfor the GR calcula-
tion than the Newtonian counterpart at smallz, but
slightly larger at larger z as they move away from re-
gion of high gravitationalpotential. For light rays
emitted from the minimum density void,the difer-
encesbetween the GR and Newtonian calculations
generally remain small—atthe subpercentlevel—
until the overdensity is approached.In the vicinity
of the overdensity,the gravitational potentialcan be
strong enough to cause a blue-shift, as evident in the
top panel of Fig. 4.

Finally, we mention further details of the case with
δ̄ = 0.05.This choice of initialconditions represents
the extreme limiting case where the Newtonian treat-
ment completely breaks down, and the Newtonian po-
tentialreaches |ψ|∼ 1/2 after a 15-fold increase of
scale factor.As shown in Fig. 1, though the collapse at
the overdensity (middle panel) occurs faster (in terms
of proper observer time) in the Newtonian calculation
than the fullGR one, and the two calculations be-
gin to noticeably difer well before halo formation, the
evolution ofthe density in the void (top panel) still
agrees well, with very little “backreaction” of the high-
curvature region on the global expansion.In Fig. 5, we
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FIG. 2. The coordinate distances from the point ofmaximum density ofa set offducialparticles for the GR and
Newtonian simulations,as a function of the proper-time scale factor of the particle.For each panel, the top half shows
the GR results,while the bottom halfshows the Newtonian results.The red, green,and blue curves correspond to
particles initially displaced from the point of maximum overdensity in the x, y, and z coordinate directions, respectively.
The diferent panels correspond to (left to right,top to bottom)δ̄ = 0.05,0.01,0.005,and 0.0025.Though the actual
distance is gauge dependent (which in particular is the reason for the initial oscillations in the GR curves), the time the
particles cross the overdensity is not.For theδ̄ = 0.05 case,the Newtonian calculation has to be terminated when the
Newtonian potential becomes large.

also show the luminosity distance-redshift relation for
this case,which continues the trend found in Fig.4,
with increasing deviation between the Newtonian and
GR calculations.Again,even for this extreme case,
the diferences between the light propagation in the
void region are small.We are also not able to con-
tinue the GR calculation forward indefnitely,but it
appears that a black hole is being formed at the over-
density.However,accurately tracking the attendant
small scales requires adaptive mesh refnement, which
we leave to future work.

IV. DISCUSSION AND CONCLUSION

In this work, we have shown thata meaningful
comparison can be carried out between standard N -
body simulations of cosmological structure formation,
which assume Newtonian-type gravity on the back-
ground of a homogeneously expanding universe,and
full solutions of the Einstein-Vlasov equations, which
make no assumptions regarding a background cosmol-
ogy. For computationalexpediency,we have focused
on a simple set ofinitial conditions,with inhomo-
geneities at a single length scale,but considered a
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FIG. 3. Diferences in the coordinate distances between
the GR and Newtonian simulations for a subset of freely
falling fducialparticles from Fig.2, as a function ofthe
absolute magnitude ofinfall velocity inferred from the
Newtonian simulations.The Newtonian trajectories follow
their GR counterparts quite closely , as long as the evolu-
tion is nonrelativistic.Signifcant diferences between the
simulations occur when the evolution enters the relativistic
regime.

range of amplitudes, including going all the way to the
limit where the nonrelativistic assumptions underly-
ing the Newtonian calculation break down.Tackling
a more realistic power spectrum ofdensity fluctua-
tions willrequire more advanced techniques,such as
adaptive mesh refnement,and willbe quite compu-
tationally expensive given the stringent requirements
place on time steps due to the fact that information
propagates at the speed of light.

We fnd that for smallinitial density fluctuations,
the Newtonian and GR calculations show excellent
agreement (with diferences typically subpercent and
consistent with truncation error) well into the regime
where the deviations from homogeneity become non-
linear. For large density fluctuations,the dominant
relativistic correction seems to be that the collapse of
overdensities occurs slower in the fullGR calculation
compared to the Newtonian one.These discrepancies
can already be anticipated from the Newtonian cal-
culation alone as the gravitational potential and infall
velocities are approaching relativistic values.Even for
such cases, the efect on the expansion outside the high
density/velocity regions (e.g.in the voids) is found to
be small, bounding backreaction efects.

Comparing the properties oflight propagation in
the Newtonian and GR calculations, we demonstrated
that the resulting distance-redshift relations agree at
the subpercent level as long as the Newtonian poten-
tial does not exceed the limit of a weak feld approx-
imation,i.e. |ΨN | ≤ 0.1.As a limiting case, we have
considered initialconditions allthe way up to ones
where the fluctuations in the density exceed the av-
erage value at the corresponding scales in the stan-
dard ΛCDM model by factor of ∼ 500 (that is, at the
present time they roughly correspond to ∼ 0.5 at a
Gpc scale).Since our simulations test the evolution on
cosmologicalscales of perturbations with amplitudes
exceeding those applicable to observationalcosmol-
ogy,we conclude that the obtained results provide a
strong validation of the standard Newtonian approach
employed in observationalcosmology.In particular,
our comparison implies that GR corrections to the
Newtonian calculation ofthe cosmic variance in the
localmeasurement of the Hubble constant are negli-
gible. This strengthens the conclusion that a ∼ 9%
diference between the localand cosmic microwave
background (CMB) based measurements of the Hub-
ble constant, currently at 4.4σ statistical signifcance
[38], cannot be ascribed to the cosmic variance which
is estimated at ∼ 0.5 percent [39–41].This in line
with the conclusion of a recent study in Ref. [42] that
looked at variations in the localexpansion in a par-
ticular gauge using GR-fluid simulations (that hence
cannot describe multistream regions) with a cosmo-
logically motivated power spectrum.

The methods described here could be applied to
study the formation of primordial black holes during
a matter-dominated era (see e.g.[43]and references
therein), or scenarios where black holes make up some
fraction of the dark matter.They could also be used
to study ultralarge scale structure [44],which could
be related to understanding persistent CMB anoma-
lies at large angular scales,which seem to indicate a
violation ofstatisticalisotropy and scale invariance
of inflationary perturbations [45].Comparable scales
will be also probed by the upcoming deep imaging
cosmologicalsurveys.In particular,the Large Syn-
optic Survey Telescope willreach an unprecedented
efective volume of ∼ 4H−3

0 [46].
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FIG. 4. The fractional diference in the luminosity distance versus redshift factor DL (z) for either the Newtonian or GR
N -body calculations from a homogeneous solution (left column), and from each other (right column), for a set of fducial
null geodesics that are emitted at the point ofmaximum density in the direction of the point of minimum density,or
vice versa.Top to bottom, the diferent rows correspond toδ̄ = 0.01, 0.005, and 0.0025 .In the left column, the vertical
axis is linear from −10−2 to 10−2 , and logarithmic outside this range.We note that z is defned individually for each
null ray based on its emission time through Eq. 7, as opposed to being a global quantity.
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APPENDIX: NUMERICAL ERROR RESULTS

In this appendix,we include some results on nu-
merical convergence.For the GR simulations, we ini-
tially fnd the numerical error to be dominated by the
grid spacing, which also sets the integration time step.
However, at late times, as large under and overdensi-
ties develop,the number of particles used to sample

the matter distribution becomes important.In Fig. 6,
we show the convergence ofthe Einstein constraints
with increasing numerical resolution for theδ̄ = 10−2

case.The results have been scaled assuming second
order convergence with grid spacing.

In Fig. 7, we show the halo crossing time for this
same case as a function of resolution, for both the GR
and Newtonian simulations.The discrepancies with
resolution in the time of frst crossing are small com-
pared to the diferences between the GR and Newto-
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FIG. 6. Convergence of the L2 norm of the generalized
harmonic constraint (Ca := Ha − x a) for the δ̄ = 10−2

case,shown as a function ofa volume-averaged measure
of the scale factor.The diferent resolutions have been
scaled assuming second order convergence with the grid
spacing, though at later times error from the fnite number
of particles begins to dominate.

nian simulations (though they do become more pro-
nounced for subsequent oscillations).

Finally, we compare the resolution dependence of
the luminosity distance-redshift measures in Fig.8.
From this it can be seen that most of the . 1% dif-
ferences between the GR and Newtonian simulations
seen at early times or in the propagation outside the
very high density regime are attributable just to trun-
cation error.In contrast, the signifcant diferences in
propagation in the vicinity ofthe large overdensity
exceed the truncation error,and in some cases are
underestimated at lower resolutions.
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