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Velocity and density characteristics of subducted
oceanic crust and the origin of lower-mantle
heterogeneities
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Seismic heterogeneities detected in the lower mantle were proposed to be related to sub-

ducted oceanic crust. However, the velocity and density of subducted oceanic crust at lower-

mantle conditions remain unknown. Here, we report ab initio results for the elastic properties

of calcium ferrite‐type phases and determine the velocities and density of oceanic crust along

different mantle geotherms. We find that the subducted oceanic crust shows a large negative

shear velocity anomaly at the phase boundary between stishovite and CaCl2-type silica,

which is highly consistent with the feature of mid-mantle scatterers. After this phase tran-

sition in silica, subducted oceanic crust will be visible as high-velocity heterogeneities as

imaged by seismic tomography. This study suggests that the presence of subducted oceanic

crust could provide good explanations for some lower-mantle seismic heterogeneities with

different length scales except large low shear velocity provinces (LLSVPs).
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The lower mantle is the largest continuous region within
Earth, occupying ~55% of the volume and ~52% of the
mass of the Earth, and plays a dominant role in the ther-

mochemical and geodynamic evolution of the planet1. It was
previously regarded as homogeneous except for the large low
shear velocity provinces (LLSVPs)2,3 and velocity anomalies near
the core-mantle boundary (CMB)4–7. However, with the
advancements in seismology, numerous heterogeneities with
different length scales have been detected in the lower mantle. For
instance, seismic tomography models8–13 revealed the presence of
large-scale seismic velocity anomalies in the entire lower mantle,
including low-velocity columns beneath many prominent hot-
spots and positive velocity anomalies near subduction zones,
which are regarded as hot plumes and cold slabs. Anisotropic
tomography14 further suggested that there could be complex
interactions between plumes and slabs in the mid mantle. Using
different types of scattering, seismological studies have also found
small-scale heterogeneities with thicknesses of several or tens of
kilometres and a velocity perturbation of 0.1–1% throughout the
mantle15,16. In particular, strong scatterers with shear velocity up
to ~ 12% lower than the ambient mantle are detected within a
depth ranging from ~1400–1700 km17–20 in some areas, such as
regions beneath Mariana and Peru. The predominant depth of the
strong scatterers significantly varies at different locations19.

One of the unique features of the Earth is its active plate tec-
tonics driven by vigorous mantle convection. Tomography stu-
dies imaged that some subducted slabs seem stagnant at the
mantle transition zone or mid lower mantle21, while some could
reach the lowermost part of mantle22–24. This finding is based on
the consensus that the relatively cold slabs show significantly high
seismic velocities compared to the surrounding mantle, though
the velocity properties of subducted materials at high P–T con-
ditions have not yet been well investigated. Oceanic crust, which
is the upper layer of the subducted oceanic lithosphere, has a
quite distinctive chemical composition from the pyrolite model
and is likely a major source for compositional heterogeneities in
the lower mantle. Previous studies16,19,20 have attributed the
detected strong small-scale heterogeneities in the mid mantle to
the phase transition from stishovite to the CaCl2-type silica25–27,
which can cause a low velocity anomaly for the oceanic crust at
the phase boundary28. However, we note that the estimated
anomalies of the mid-mantle scatterers appear significantly larger
than those expected for the oceanic crust28, probably because the
elastic properties of relevant materials were calculated at static
conditions and hence the thermal effect cannot be taken into
account. Moreover, the accumulation of subducted oceanic crust
at the CMB was also speculated to play an important role in the
formation of LLSVPs29,30, around which the presence of seismic
scatterers was also reported18,31. Consequently, the elastic and
velocity properties of subducted oceanic crust at the lower-mantle
conditions are crucial for interpreting the origins and evolutions
of these seismic heterogeneities, modelling of small-scale mantle
scattering, and evaluating the interaction between subduction and
the lower mantle.

Oceanic crust is mainly composed of Mid-Ocean Ridge Basalt
(MORB), which is more silicic than pyrolite. Previous experi-
ments32 demonstrated that the natural MORB assemblage at the
P–T conditions of lower mantle consists of SiO2 silica (stishovite
and CaCl2-type silica), calcium perovskite (CaPv), bridgmanite
(Bdg), and two types of aluminum-rich phases: the new Al-rich
phase (NAL) and calcium ferrite‐type (CF-type). NAL and CF-
type phases could coexist up to ~50 GPa, beyond which the NAL
phase disappeared and only CF-type phase was identified. Further
experiments33 evaluating the phase relations of the
NaAlSiO4–MgAl2O4 system indicated that CF-type phase is the
high-pressure polymorph of NAL phase. Combining chemical

compositions and mineral volume proportions present in natural
MORB32, we find that MORB consists of approximately 39% Fe-
and Al-bearing bridgmanite (Mg0.58Fe0.16Al0.26Si0.74Al0.26O3),
30% Ca-perovskite (CaSiO3), 16% SiO2, and 15% Fe-bearing CF-
type phase (Na0.4Mg0.48Fe0.12Al1.6Si0.4O4). Therefore, the elastic
properties of these minerals, which are sensitive to the incor-
poration of substitutional solutes, are of great importance for the
determination of velocity and density of MORB. Previous ab
initio calculations within the local density approximation (LDA)
have obtained the reliable and accurate elasticity of Fe-free and
Fe-bearing bridgmanite (MgSiO3 and Mg0.875Fe0.125SiO3)34, cor-
undum (Al2O3)35, Ca-perovskite36, and stishovite and CaCl2-type
silica37 at high P–T conditions. However, the elastic properties of
CF-type phase have not been investigated under lower-mantle
conditions.

Here we obtain the elastic properties of CF-type phase at high
pressure and temperature using ab initio calculations. Combining
our results with previous studies, we determine the velocities and
density of subducted oceanic crust under lower-mantle conditions.
Our results show that the velocity anomalies produced by sub-
ducted oceanic crust strongly depend on depth and its presence can
explain some seismic heterogeneities in the lower mantle.

Results
Equation of state of CF-type phases. We calculated the elastic
properties of two end-members of CF-type phases (NaAlSiO4

and MgAl2O4) and considered the iron incorporation
(Mg0.75Fe0.25Al2O4) using the same methodology as our previous
studies (see methods). As shown in Fig. 1, the predicted pressure-
dependent volumes agree well with available experimental mea-
surements at 300 K38–44, and the largest discrepancy is <1%,
except some data from Dubrovinsky et al. (2002)45, which deviate
from other experimental data and our LDA calculations by up to
~2.5%. We note that the experimentally measured density of
Na0.4Mg0.6Al1.6Si0.4O4 CF-type phase is also consistent with our
results up to ~80 GPa, above which experimental data slightly
deviate from our results (Supplementary Fig. 1). These compar-
isons clearly demonstrate the high reliability of our results.

Elastic and velocity properties of CF-type phases. The calculated
bulk moduli (KS), shear moduli (G), compressional velocities
(VP), and shear wave velocities (VS) of CF-type minerals at var-
ious pressures and temperatures are shown in Fig. 2. The pres-
sure- and temperature-dependent elastic tensors are presented in
Supplementary Fig. 2. Our results suggest that different CF-type
phases have similar pressure and temperature dependences for
KS, G, VP, and VS (Fig. 2), consistent with Zhao et al. (2018)46.
The temperature dependences of these properties are almost
linear but are significantly weakened at high pressure (Fig. 2). For
instance, the first temperature derivatives at 30 GPa (∂KS/∂T=
−1.72 × 10−2, ∂G/∂T=−1.48 × 10−2 GPa K−1, ∂VP/∂T=
−2.63 × 10−4, and ∂VS/∂T=−1.98 × 10−4 km s−1 K−1) are
markedly lower than those at 100 GPa (∂KS/∂T=−1.17 × 10−2,
∂G/∂T=−0.97 × 10−2 GPa K−1, ∂VP/∂T=−1.00 × 10−4, and
∂VS/∂T=−0.87 × 10−4 km s−1 K−1). In contrast, noticeable
nonlinear dependences on pressure are observed for elastic
moduli and wave velocities, especially VP and VS (Fig. 2 and
Supplementary Table 1). At 2000 K, the first pressure derivatives,
∂KS/∂P, ∂G/∂P, ∂VP/∂P, and ∂VS/∂P, decrease from 3.82, 1.70,
43.47 km s−1 MPa−1, 20.74 km s−1 MPa−1 at 30 GPa to 3.41,
1.17, 23.42 km s−1 MPa−1, and 8.96 km s−1 MPa−1 at 100 GPa,
respectively.

The chemical composition affects the elastic moduli and wave
velocities of CF-type phases. Compared to MgAl2O4, NaAlSiO4

has a slightly smaller Ks but larger G. The contrasts in Ks and G

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13720-2

2 NATURE COMMUNICATIONS | (2020)11:64 | https://doi.org/10.1038/s41467-019-13720-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


among these end-members range from ~−4% to ~0% and from
~4% to ~1% respectively, when pressure increases from 30 to 100
GPa (Fig. 2 and Supplementary Fig. 3). Therefore, the velocities of
these CF-type phases differ by 0.5–2.5% for VS and by less than
1% for VP. Notably, these differences are evidently diminished at
high pressure (Supplementary Fig. 3). In addition, the incorpora-
tion of 25 mol% of iron into MgAl2O4 does not significantly affect
KS but obviously decreases G, e.g., by 5.5% at 60 GPa and 2000 K,
which causes a reduction of 3.3% in VP and of 5% in VS. These
reductions are amplified by temperature but lessened by pressure.
The wave velocities and densities of CF-type phases along the
normal mantle geotherm47 are compared with those of other
lower-mantle minerals in Fig. 3. NaAlSiO4 and MgAl2O4 have
similar VP and VS that are ~2.8–6.0% and 2.6–5.8% lower
than those of bridgmanite, respectively, although their densities
are almost identical to that of bridgmanite. Instead,
Mg0.75Fe0.25Al2O4 has a relatively higher density and much lower
VP and VS. The maximum differences in VP, VS, and density
between Mg0.75Fe0.25Al2O4 and bridgmanite are up to −8%,
−10%, and 4%, respectively. On the basis of our results for these
three end-members, we can obtain the elasticity and velocity of
CF-type phase with different compositions, such as Na0.4M-
g0.6Al1.6Si0.4O4, whose G is consistent with experimental data48 at
300 K.

Discussion
MORB with a distinctive chemical composition from the normal
mantle is likely a major source for small-scale scatterers with the

thickness of several kilometres in the lower mantle. Seismic
modelling of whole-mantle small-scale scattering suggested a
length scale of ~8 km and a wide range of velocity perturbations
varying from ~0.1% to ~1% under the assumption that hetero-
geneities were randomly and evenly distributed throughout the
mantle15,16. Combining our results with previous data34–37, we
estimated the velocities and density of the natural MORB
assemblage32 at the lower-mantle conditions. We find that MORB
has higher velocities than the ambient mantle through most of the
lower mantle but lower velocities than the ambient mantle at the
mid mantle depths (see Fig. 4). Particularly, the velocity contrasts
between MORB and the normal mantle are extremely sensitive to
the depth at the mid mantle. Thus, velocity heterogeneities caused
by the presence of MORB are noticeably depth-dependent and
unevenly distributed throughout the mantle even if MORB dis-
tributes evenly throughout the mantle. This finding is more
complicated than the single layer heterogeneity model adopted by
Bentham et al. (2017)16. In addition, the density/velocity fluc-
tuation scaling factors of MORB also strongly depend on depth.
Because MORB is denser than ambient mantle, scaling factors
even become negative at the mid mantle where the velocity
perturbations are negative. Thus, the simple density/velocity
fluctuation scaling factors that have been widely used to model
the small-scale scattering throughout deep Earth15 are not valid
for MORB. How the depth-dependent velocity heterogeneities
and density/velocity fluctuation scaling factors affect the seismic
scattering modelling is worth investigating.

MORB has distinctly slower wave velocities by up to ~ −7% for
VS and ~ −1.8% VP at ~60 GPa (Fig. 4d, e), where stishovite
transforms to CaCl2-type silica25. Such large negative velocity
anomalies within MORB, which are mainly caused by softening
of the shear modulus of stishovite at the phase boundary37,
provide good explanations for the observed seismic scatterers or
small-scale heterogeneities with quite low shear velocities19,20 in
the mid mantle (Fig. 5). Remarkably, the observed VS anomalies
of the mid mantle scatterers19,20 are consistent with those from
our mineralogical predictions, despite the large uncertainties in
seismological estimates. Tsuchiya (2011)28 predicted negative VP

and VS contrasts between MORB and pyrolite at the phase
boundary of silica; however, the depth for such negative velocity
perturbations is significantly shallower than our results, mainly
because the temperature effect has not been taken into account28.
We obtained similar results (negative velocity anomalies and their
depths) in Tsuchiya (2011)28 when only elastic data at static
conditions were used. The magnitude of the maximum velocity
anomaly for MORB is not significantly sensitive to the tem-
perature variation (Fig. 4), but the depth where the maximum
velocity anomaly occurs is mainly controlled by the phase
boundary between stishovite and CaCl2-type silica, which
strongly depends on temperature and alumina and water contents
bearing in silica25. The incorporation of alumina plus hydrogen
into silica can strikingly decrease the transition pressure, while
increasing temperature significantly elevates it due to the positive
Clapeyron slope25. Therefore, the variations of bright depth for
scattering17–19, where the strong seismic scatterers were observed
in the mid-lower mantle, may reflect the differences in tem-
perature and Al2O3 and H2O contents of silica in the oceanic
crust.

After the phase transition of silica, MORB along the normal
geotherm has relatively higher wave velocities than the ambient
mantle (Fig. 3). The VP and VS perturbations are up to ~ +1.8%
and +1.2%, respectively. If assuming a temperature anomaly of
−500 K existing in MORB, the positive VP and VS anomalies
increase to +2.5% and +2.0% (Fig. 4d, e), respectively. Stixrude
and Lithgow-Bertelloni (2012)49 also found that MORB has a
faster VS than the pyrolitic composition along the normal mantle
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geotherm at the depth range of 1500–2500 km, and the VS con-
trast is comparable to our results; however, they did not find the
shear softening of MORB at the mid mantle because they ignored
the phase transition from stishovite to CaCl2-type silica. Seismic

tomography8–12 indicates that the positive shear velocity
anomalies in the mid-lower mantle beneath some local regions,
which are generally regarded as the presence of subducted slab,
can be larger than +1.5% and even to +2%. Such a large positive
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velocity anomaly cannot be simply caused by temperature var-
iations alone and must have also a compositional origin. For
example, a temperature reduction of 500 K can only increase the
VP and VS of a pyrolitic composition by <1% (Supplementary
Fig. 4). Our results suggest that MORB is an important candidate
for these compositional heterogeneities. MORB could perhaps
accumulate in the mid lower mantle, since there may be some
barriers for subduction such as an increase in viscosity induced by

the spin transition of iron50 or the ancient mantle high-viscosity
structures51. Furthermore, our results also confirm that MORB is
denser than the surrounding mantle at lower mantle pressures
(Fig. 4c). The excess density perturbation decreases with depth
and is ~ +1.4% on average (Fig. 4f) when MORB has the same
temperature to the ambient mantle, consistent with the previous
estimations32,52. The negative buoyancy of the oceanic crust plays
a key role in its descent to the CMB, which is also revealed by
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seismic tomography8–10. However, recent geodynamical simula-
tions argued that not all of the subducted oceanic crust would
accumulate at the CMB because the negative buoyancy provided
by this thin domain is not quite sufficient to overcome viscous
forces53. Therefore, from a geodynamics perspective, the partial
accumulation of MORB likely occurs at lower-mantle depths far
above the CMB and generates seismologically well-known high
velocity heterogeneities (Fig. 5).

In addition, the accumulation of subducted oceanic crust at the
CMB was also speculated as a possible origin for LLSVPs29, the
thermochemical heterogeneities characterized by slow shear wave
velocities2,3. Coincidentally, seismological studies detected small-
scale scatterers above the Pacific LLSVP and near the edge of the
African LLSVP18,31. However, our results demonstrate that the
VP and VS of MORB are at least 0.6% higher than those of the
ambient mantle even when the temperature anomaly within
MORB is +500 K (Fig. 4d, e), and negative velocity anomalies can
be produced only when MORB is at least +1000 K hotter than the
ambient mantle. This is obviously in contradiction with the large
negative VS anomalies (up to −3%) within LLSVPs2,3, thus
indicating that the distinct composition of LLSVPs unlikely ori-
ginates from the subducted oceanic crust. The spatial distribu-
tions of seismic scatterers around LLSVPs might coincidentally
result from the mantle convection. Nonetheless, it is still
unknown whether the fragments of subducted oceanic crust
remain in LLSVPs, and further detections of inside seismic
scatterers probably will help to clarify this problem.

A recent work conducted by Thomson et al. (2019)54 suggested
that subducted oceanic crust would be visible as low-seismic-
velocity anomalies throughout the lower mantle when data are
extrapolated to the lower-mantle conditions. The discrepancy
between our results and Thomson et al. (2019)54 resulted from
the usage of different elastic and velocity data for Ca-perovskite.
The calculated data used in this study are from previous ab initio
molecular dynamic simulations36, while the Ca-perovskite data
adopted in Thomson et al. (2019)54 were extrapolated from low
pressure to the deep mantle conditions. Since velocities measured
for Ca-perovskite54,55 are considerably lower than computational
predictions at the conditions of the uppermost lower mantle, the
extrapolated data would be expectedly lower than theoretical
calculations36 under deep mantle conditions. It is still unknown
what results in the discrepancies in sound velocities of Ca-
perovskite between theoretical and experimental studies, and
future research is needed to solve this problem. However, the
uncertainties from extrapolation cannot be ignored because
experimental measurements, especially high-temperature data,
which also shows significant discrepancies54,55.

The presence of subducted oceanic crust in the lower mantle
can provide good explanations for some detected velocity het-
erogeneities with different length scales, indicating the cycling of
crustal materials into the deep mantle (Fig. 5). The velocity and
density characteristics of subducted oceanic crust support that it
could not only produce a number of remnant fragments with
several kilometer thicknesses that are detected by seismic scat-
tering19 in the lower mantle but may also partially accumulate in
the mid lower mantle or at the CMB to form the mesoscale
chemical heterogeneities with positive velocity anomalies8,9. How
the subducted oceanic crust produces the seismic heterogeneities
with different length scales can be further evaluated by using the
geodynamic modelling for the interaction between the subducted
slab and the lower mantle. Furthermore, geodynamic simula-
tions56 suggested that the subducted oceanic crust would also be
entrained into mantle plumes, inducing the geochemical com-
plexity of hotspot lavas. In that case, the basaltic fragments
involved in the mantle plume would probably be detected by
seismic scattering, which could independently validate the

relationship between the geochemical heterogeneity and oceanic
crust. The current scenario of subducted oceanic crust in the
lower mantle provides important clues about the interaction
between the subducted slab and the lower mantle and the ther-
mochemical evolution of the lower mantle.

Methods
First-principles calculations. Ab inito calculations were performed using Quan-
tum Espresso package57 based on the density functional theory (DFT), plane waves,
and pseudopotentials. The local density approximation (LDA) was adopted as the
exchange correlation functional. Pseudopotentials for magnesium, silicon, alumi-
num, and oxygen used in this study are well described in previous studies37,58,59.
The pseudopotentials for sodium and iron were generated by Vanderbilt method60

with a valence configuration of 2s22p63s1 for Na, and 3s23p63d6.54s14p0 for Fe. The
energy cutoff for plane waves was 70 Ry and the Brillouin zone for the electronic
state summation was sampled on a 2 × 2 × 10 mesh for CF-type phase (NaAlSiO4,
MgAl2O4, and Mg0.75Fe0.25Al2O4). To sufficiently describe the large on-site Cou-
lomb interactions among the Fe 3d electrons in the Fe-bearing CF-type phase
(Mg0.75Fe0.25Al2O4), we used the LDA+U method, introducing a Hubbard U
correction to the LDA. The U value for ferrous Fe in CF-type phase is 2.7 eV, which
was non-empirically determined using the linear response method61. Structures of
CF-type phase were well optimized at variable pressures using the variable cell-
shape damped molecular dynamics approach62. Vibrational density of states
(VDoS) at different equilibrium volumes were calculated using the finite dis-
placement method. The elastic tensors at static conditions were derived from the
linear relationship between stress and strain. The strain magnitude applied to
relaxed structures was 1%.

Elasticity of CF-type phases at high pressure and temperature. The usual
method used to calculate the elasticity at high temperature and pressure usually
needs lots of vibrational density of states of material under different volumes and
different strains63, which requires huge computational effort and hampers the
accurate numerical evaluations of elastic properties at high P–T conditions. Wu
and Wentzcovitch (2011)63 developed a semi-analytical approach without requir-
ing the vibrational density of states under strain by analyzing the relation between
volume dependence of and strain dependence of the vibrational frequencies, which
reduces the computational workload by one order of magnitude compared to the
usual method without loss of accuracy. This method has been also successfully
applied to bridgmanite34, ferropericlase64, stishovite and CaCl2-type silica37, and
corundum35. In this work, based on the elastic tensors at static conditions and
VDoS at variable equilibrium volumes, we also calculated elastic properties of CF-
type phases at high pressure and temperature using this semi-analytical approach.
The adiabatic bulk modulus KS and shear modulus G were obtained by computing
the Voigt-Reuss-Hill averages65 from elastic tensors. Thus, compressional and

shear velocities were calculated from the equations VP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKS þ 4

3GÞ=ρ
q

and VS ¼ffiffiffiffiffiffiffiffi
G=ρ

p
(ρ is density).

To estimate the effect of pseudopotentials’ quality on elastic properties, we also
used harder pseudopotentials that includes semicore states with smaller core radii
to conduct static calculations, which requires a cutoff energy of 400 Ry. We found
that there are only minor differences (<0.3%) in elastic moduli and density at static
conditions when different pseudopotentials were used. Previous studies59 on elastic
properties and density of bridgmanite also reported minor differences in the results
obtained using different pseudopotentials. The intrinsic anhamonicity ignored by
quasi-harmonic approximation (QHA) should be negligible at the lower-mantle
pressure and temperature conditions and can be estimated by the difference in the
results calculated from QHA and molecular dynamic (MD) simulations. By
comparing the elastic moduli and density of MgSiO3 bridgmanite obtained from
QHA and MD within LDA66, we also found only minor differences (<0.5%)
produced by the anharmonicity at high pressures. Thus, these differences produced
by different pseudopotentials and the anharmonic effect were adopted as the
uncertainties of the calculated results (<0.8%).

Elastic moduli and velocities of MORB. On the basis of the elastic properties of
bridgmanite, ferropericlase, and Ca-perovskite at the conditions of the lower
mantle, previous studies59,67,68 suggested that a pyrolitic composition can repro-
duce the reference velocities and densities of PREM69. An appropriate and likely
composition for a pyrolitic lower mantle67,68,70 is likely composed of 15% ferro-
periclase (Mg0.82Fe0.18O), 78% Fe-bearing bridgmanite (Mg0.92Fe0.08SiO3), and 7%
Ca-perovskite (CaSiO3), which is adopted in this work. The MORB composition32

consists of ~39% Fe- and Al-bearing bridgmanite (Mg0.58Fe0.16Al0.26Si0.74Al0.26O3),
30% Ca-perovskite (CaSiO3), 16% SiO2, and 15% Fe-bearing CF-type phase
(Na0.4Mg0.48Fe0.12Al1.6Si0.4O4).

The elastic properties of Ca-perovskite, Fe-free and Fe-bearing bridgmanite
(MgSiO3 and Mg0.875Fe0125SiO3), corundum (Al2O3), ferropericlase
(Mg0.82Fe0.18O), stishovite, and the CaCl2-type silica at high P–T conditions are
reported in previous theoretical studies34–37,64. Combining these data with our
elastic data of CF-type phase (NaAlSiO4, MgAl2O4, and Mg0.75Fe0.25Al2O4), we

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13720-2

6 NATURE COMMUNICATIONS | (2020)11:64 | https://doi.org/10.1038/s41467-019-13720-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


calculated elastic moduli and densities of all the above phases with chemical
compositions as shown in the MORB using the interpolation method. Thus, elastic
moduli and densities of the MORB were calculated using:

ρ ¼
X
i

fiρi ð1Þ

M ¼ 1
2

X
i

fiMi þ
X
i

fiM
�1
i

 !�1" #
ð2Þ

where ρi, Mi, and fi are the density, bulk modulus (KS) or shear modulus (G), and
the fraction of the ith mineral, respectively. Then, the compressional and shear

velocities (VP and VS) were derived from VP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKS þ 4

3GÞ=ρ
q

and VS ¼
ffiffiffiffiffiffiffiffi
G=ρ

p
.

The uncertainties of calculated velocities and density of MORB were estimated
based on the errors for elastic properties (<0.8%) and the concentration of dilute
substitutional solutes (±1 mol%).

Data availability
The data sets in this study are available as Supplementary Information and from the
corresponding authors.
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