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We here present the frst analytic efectiie  ylby (EFB) waieforms designed to accurately capture
the burst of graiitational radiation from the closest approach of highly eccentric compact binaries.
The waieforms are constructed by performing a relsummation procedure on the welllknown Fourier
series representation ofthe twolbody problem at leading postlNewtonian order.This procedure
results in two models:one in the timeldomain,and one in the Fourier domain,which makes use
of the stationary phase approximation.We discuss the computationalefciency ofthese models,
and fnd that the timeldomain model is roughly twice as fast as a numerical quadrupole waieform.
We compare the timeldomain model to both numerical, leading postlNewtonian order, quadrupole
waieforms and numerical relatiiity  ylby waieforms using the match statistic.While the match is
typically > 0.97 when compared to the quadrupole waieforms,it is much lower when comparing
to the numerical relatiiity  ylby waieforms, due to neglecting relatiiistic efects within the model.
We further show how to use these indiiidual waieforms to detect a repeated burst source.

I. INTRODUCTION

A tantalizing problem currently exists in the feld of
graiitationalwaie (GW) modeling and data analysis:
how best to modeland detect binary systems with ecl
centricity close to unity.Such systems may be formed in
the cores of dense stellar eniironments, where dynamical
friction forces black holes into the graiitationalcenter
of the system,increasing the probability of twol,threel
, and fourlbody interactions [1–13].These mechanisms
are capable of creating black hole (BH) binaries with a
wide range of eccentricities, but a subset are formed with
high eccentricity,close to the unbound limit.In globl
ular clusters,resonant interactions force these systems
into three distinct categories,namely:ejected inspirals,
inlcluster mergers,and GW captures.Ejected inspirals
and inlcluster mergers generally form with GW frequenl
cies f . 10−1 [14–16],making them possible candidates
for detection by the Laser Interferometer Space Antenna
(LISA) [17] and the Decihertz Interferometer Graiital
tionalwaie Obseriatory (DECIGO) [18].On the other
hand,GW captures generally form binaries with f≥
10−1 Hz, a subset of which form within the Laser Interl
ferometer Graiitationallwaie Obseriatory (LIGO) [19–
21] detection band with high (e ∼ 1) eccentricity [6], and
with estimated eient rates of 1l2 yr−1 Gpc−3 in the local
uniierse [22].
Highly eccentric sourcesfor groundlbased detectors

constitute some of the most relatiiistic signals possible,
with pericenter ielocities reaching greater than ten perl
cent the speed oflight. These systems,thus, present
themselies as unique laboratories for studying graiital
tionalphysics and astrophysics in the solcalled dynaml
ical, strong feld regime of graiity,where the spacetime
curiature is large and rapidly iarying [23].The accuracy
of generalrelatiiity (GR) within this regime has only
been tested with the currently detected quasilcircular
LIGO sources [24],where the ielocities ofthe compol
nent objects are only large in the late inspiral and merger.
Graiitational waie bursts from highly eccentric systems

would allow us to probe this regime during each closest
approach of the binary in the inspiral phase of the coalesl
cence [25].If matter is present in the binary components,
fnite size and tidal efects will become important in each
pericenter passage [26, 27].Further, if one of the binary
components is a neutron star (NS),flmodes on the NS
surface and other oscillation modes can be excited, which
would generate an obseriable GW signature and allow for
better constraints on the NS equation of state [28–34].
Howeier, the large pericenter ielocities present a tough

problem in terms of modeling, as typical postlNewtonain
(PN) [35,36]treatments ofthe twolbody problem may
not be sufciently accurate to model such systems.Idel
ally, one would wantto start by considering the full
numericalsolution of the Einstein feld equationsfor
such systems, but eien this presents computation difcull
ties.The timescale associated with closest approach can
be seieralorders of magnitude smaller than the orbital
timescale.Any numericalrelatiiity (NR) simulations
would haie to resolie these disparate time scales, which
is currently too computationally expensiie to produce
accurate simulations of more than a few orbits [28,37].
Kludge waieforms like those in [38] haie been shown to
be more accurate than PN waieforms for single bursts,
but without haiing fullNR simulations to compare to,
there is no way of knowing whether this modelis accul
rate enough to describe the full inspirallmergerlringdown
signal.
The lack of accurate models poses signifcant problems

if one wants to detect such signals, regardless of the del
tector being considered [39].One method is to search for
regions of excess power in timelfrequency space, and add
up the power oier multiple bursts,with the totalSNR
scaling as N1/4 where N is the number ofbursts [40].
The biggest concern with such a detection strategy is that
groundlbased detectors often pick up regions of anomal
lous excesspowerknown asglitches[41–43],some of
which resemble the GW bursts from highly eccentric bil
naries.Fortunately,if one knows where an initialburst
occurs in timelfrequency space and its morphology,one

ar
X

iv
:1

90
9.

02
14

3v
2 

 [g
r-

qc
]  

30
 M

ar
 2

02
0



2

can predict the location and morphology ofall subsel
quent bursts in timelfrequency space ifgiien a radial
tion reaction model.These burst models proiide a prior
on the bursts that would help us distinguish them from
glitches in the detector.Such a modelcurrently only
exists within the PN approximation [25, 44].
An alternatiie approach,that has proien to be both

fast and robust to modeling error, would be to use neural
networks to detect such signals [45–51].In this method,
deep learning networks are trained on sample data, with
an injected waieform model(s).The trained networks
can then be run on detector data in realtime,with del
tection sensitiiity comparable to, but still less than, that
of matched fltering [52, 53] and parameter estimation rel
sults comparable to Bayesian inference [54].This method
has the added beneft ofbeing fast,allowing for rapid
followlup for electromagnetic counterparts [55,56]. All
though promising, limitations of neural networks hinder
their ability to make statistically signifcant detections
at the moment, but are still a powerful tool for generatl
ing triggers [57].A study ofthe detectability ofhighly
eccentric binaries using this method is currently being
considered [58].
Despite the strengths ofthese search strategies,the

gold standard for detecting GWs is, at this point in time,
matched fltering,whereby an accurate waieform teml
plate is used to extract the GW signalfrom detector
noise [59, 60].The trouble with this method is the need
for accurate templates, since small phase errors can result
in the search missing the signalentirely [61].Yet, this
method has shown extreme success in detecting quasil
circular,spinlaligned binaries [43, 62, 63],due to extenl
siie modeling eforts [36,64]. The biggest challenge to
applying this search strategy to highly eccentric binal
ries is the requirements of phase accuracy across multiple
bursts.For lower mass systems that form on the edge of
the LIGO band, there can be hundreds of pericenter pasl
sages during the inspiral,and any modelwould haie to
be phase accurate oier all of these to achieie detection.
In this article, we take the frst steps toward achieiing

a matched fltering search for highly eccentric binaries.
We construct the frst analytic waieforms specifcally del
signed to accurately capture the burst of radiation from
an eccentric binary.We work to leading order within
the PN formalism [35], where the conseriatiie dynamics
of the binary are described by the Kepler problem,and
the dissipatiie dynamics are described by the quadrupole
approximation,i.e. Newtonian graiity plus quadrupolel
order radiation.Working within the PN formalism all
lows us to write all releiant quantities in a Fourier series
on harmonics of the orbital period, which follow directly
from Kepler’s equation.
The problem with this Fourier decomposition is that,

when the eccentricity ofthe binary approachesunity,
the series become badly coniergent.We address this isl
sue using the relsummation procedure in [65, 66], where
the Besselfunctions appearing in the Fourier series are
asymptotically expanded.The series are then relsummed

through integration,which results in closed form,anal
lytic expressions of Keplerian quantities for highly eccenl
tric binaries.This procedure destroys the periodic behail
ior the trajectory, efectiiely describing the dynamics of
the binary as a single  ylby.
We deielop two waieform modelsusing thisprocel

dure.In the frst, which we refer to as the EFBlT model,
we perform the relsummation in the time domain,and
employ a Taylor series radiation reaction model.The
waieform polarizations are giien by Eqs.(45),with the
necessary functions giien in Appendix B.The EFBlT
modelhas the beneftof being fasterto sample than
full numerical,leading PN order waieforms.The secl
ond model, referred to as the EFBlF model, utilizes the
stationary phase approximation to compute the analytic
Fourier transform of the Newtonian order waieforms for
eccentric binaries,and is constructed by performing the
relsummation in the Fourierdomain. The waieform
polarizations are giien by Eqs.(54) and expressions in
Appendix C,and depends on hypergeometric functions.
This makes sampling the EFBlF model computationally
expensiie.We ialidate the EFBlT modelagainst both
numericalleading PN order waieforms,and NR waiel
forms, using the match statistic.We show that the EFBl
T waieform is highly accurate to leading PN waieforms,
with matches > 0.98 for a (10, 10)Mbinary.
While the EFB waieforms are a faithful representation

of the numerical Newtonian order waieforms, it is imporl
tant to quantify their robustness to modeling error.If the
pericenter distance becomes sufciently small, nonllinear
strong feld efects will play an important role in the dyl
namics of the binary, which are not modeled in the EFB
waieforms.To study how important these extreme grail
ity efects are, we compute the match between the EFBlT
modeland NR  ylby waieforms,with the results giien
in Sec. V C. For the binary studied, the match is > 0.92
for pericenter distances rp > 8.75M . The match does,
howeier,drop of sharply as rp decreases,specifcally,
the match is 0.75 for rp = 8.125M .Thus, the modeling
of extreme graiity efects willbe criticalfor deieloping
waieforms that coier small pericenter distances.
Finally,while the EFB waieforms only coier a single

burst, we show how multiple EFB waieforms can be coml
bined to create a multilburst model.Each EFB waieform
is characterized by three parameters that eiolie in time,
namely the semillatus rectum,orbitaleccentricity,and
time of pericenter passage.While the latter of these efl
fectiiely describes an oierall timelshift of the waieform,
this is not independent of the preiious time of pericenter
passage and orbitalparameters when the burst is part
of a full inspiral sequence.Using the methods described
in [44], we deielop a timing model that accurately tracks
the eiolution of these quantities,applying a Newtonian
plus quadrupole radiation approximation.We compute
the match between a multilburst EFB waieform coml
bined with the timing model, and a numerical Newtonian
order waieform which coiers ten pericenter passages.We
show that the multilburst EFB modelachieies a match
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> 0.97 for the correct number ofwaieforms used,i.e.
one EFBlT waieform for each pericenter passage.Howl
eier, we further show that small errors, due to relatiiistic
efects for example, in the timing model can throw of del
tection.
This paper is organized as follows.Sec. II reiiews the

Newtonian order twolbody problem,and the necessary
ingredients for the remainder ofthe analysis.Sec.III
presents the relsummation procedure in the timeldomain
and the construction ofthe EFBlT waieform model,
while Sec. IV presents the SPA, relsummation procedure
in the Fourier domain, and the EFBlF model.In Sec. V,
we discuss the computation efciency ofthe waieform
models,and ialidate the EFBlT modelagainst numeril
cal waieforms.Finally, in Sec. VI, we discuss the future
prospects of such models.Throughout this work, we use
units where G = c = 1.

II. BINARY INSPIRALS AT NEWTONIAN
ORDER

We shallbegin with a briefreiiew ofthe dynamics
of binary systems at leading PN order,and some of the
difculties that arise in the problem.

A. The Kepler Problem

To begin, we reiiew the common parameterizations of
the twolbody problem in Newtonian graiity,commonly
called the Kepler problem.More specifcally, the Kepler
problem reduces to soliing the efectiie onelbody equal
tions ofmotion ~a = −(M/r2)~n,where ~a is the relatiie
acceleration of the binary, M = m1+m2 is the total mass
of the binary with m1,2 the component masses,r is the
relatiie radial separation of the two bodies, and ~n = ~x/r
with ~x the trajectory.Restricting the motion of the bil
nary to the xylplane, and writing ~n = [cos φ, sin φ, 0], the
equation of motion can be split into two equations,

r̈ + rφ̇2 = −
M
r2

, (1)

d
dt

r2φ̇ = 0 , (2)

goierning the radial and azimuthal motion, respectiiely,
and where the oierdot corresponds to deriiatiies with
respect to time.The latter of these admits one constant
of motion,specifcally the reduced orbitalangular mol
mentum h = r2φ̇. Using this to replacėφ in Eq. (1), this
equation can be directly integrated by multiplying by ˙r
to obtain

1
2
ṙ2 = ε −

h2

2r2
+

M
r

, (3)

with ε the reduced orbital energy.The existence of these
two constants of motion has now reduced the problem to
quadratures.

We may obtain a more explicit solution to the Kepler
problem by returning to Eq.(1). Writing w = 1/r and
changing iariables from t to φ, we obtain the equation

d2w
dφ2

+ w =
M
h2

. (4)

This equation may be directly solied to obtain

r =
p

1 + e cos(φ − ω)
(5)

where p = h2/m is the semillatus rectum ofthe orbit,
e is the orbital eccentricity, and ω is an integration conl
stant known as the longitude of pericenter.To obtain the
eiolution of φ, we use the defnition of h, which giies

φ̇ =
M
p3

1/2

[1 + e cos(φ − ω)]2 . (6)

The trajectory of the binary is now uniquely parameterl
ized by the azimuthalangle φ,or alternatiiely,by the
true anomaly V = φ − ω.The eiolution equation for V
is still giien by Eq. (6) since ω is a constant1. As a fnal
point, Eq. (5) can be inserted into Eq. (3) to obtain the
mapping between orbital energy and eccentricity, specifl
ically

e = 1 −
2h 2

M 2

1/2

. (7)

While the parameterization in termsof the true
anomaly V is complete, there is the problem of obtaining
V (t), which iniolies integrating Eq. (6).Technically, the
integralcan be done to obtain t(V ),but the resulting
function is too complicated to be inierted analytically.
Instead,we rely on a new parameterization in terms of
the eccentric anomaly u,with the mapping between V
and u giien by

cos V =
cos u − e
1 − e cos u

, sin V =
(1 − e2)1/2 sin u
1 − e cos u

. (8)

The time eiolution ofu may be obtained by applying
these equations to Eq. (6).After integrating, we obtain

` = m1/2 1 − e2

p

3/2

(t − tp) = u − e sin u ,(9)

where ` is the mean anomaly,and tp is an integration
constant. This equation,known as Kepler’s equation,
does not admit a closedlform solution for u(t) due to it
being transcendental.
Generally,one must solie Kepler’s equation numeril

cally.Howeier, it does lay the ground work for obtaining

1 In general, this is not true when considering perturbations of the
Kepler problem.
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a Fourier series representation for the solution to the Kel
pler problem.To see this, consider cos V giien by Eq. (8),
which may be written as a Fourier series of the form

cos V =
∞X

k=−∞

ckeik` , ck =
Z π

−π

d`
2π

cos u − e
1 − e cos u

e−ik` .

(10)
The coefcients ck can be found explicitly by changing
iariables in the integralfrom ` to u,and making use of
the integral defnition of Bessel functions of the frst kind

J n(x) =
1
2π

Z π

−π
du ei(nu−x sin u) , (11)

with the end result being

cos V = −e +
2
e
1 − e2

∞X

k=1

J k(ke) cos(k`) . (12)

Similarly

sin V = 2(1 − e2)1/2
∞X

k=1

J 0
k(ke) sin(k`) , (13)

where the prime corresponds to diferentiation with rel
spect to the argument.The entire Kepler problem is now
determined as a function of time.
While the solution to the Kepler problem is now coml

plete, the Fourier series representation does haie a drawl
back. As the eccentricity increases,moretermsare
needed in the sums of Eqs. (12)l(13) to obtain sufcient
phase accuracy [67].For high eccentricities(e ∼ 1),
the series conierge slowly,and one may need to keep
seieralhundred terms in the sums [65].This presents
a problem for deieloping waieform models using these
Fourier series, namely, while they may be fast and accul
rate for moderate eccentricities, they need not necessarily
be so for highly eccentric systems.In the next section,
we present a method for deieloping analytic waieform
models for eccentric graiitationalwaie bursts that cirl
cumients this issue.

B. Gravitational Waves

The discussion of the preceding section deals with only
the conseriatiie dynamics of the binary.The binary also
inspirals due to the emission ofGWs, which to leading
PN order are described by the quadrupole approximal
tion [35],

hij =
2

DL
Ï ij , (14)

where hij is the metric perturbation, DL is the luminosity
distance,

I ij = µx<i xj> (15)

is the quadrupole momentum of the binary,with xi the
binary’s trajectory, µ the reduced mass of the binary, and
<> corresponds to the symmetric trace free part of the
tensor.
To fnd the obseriable part of the metric perturbation,

we project into the transierse traceless gauge.We defne
the line of sight iector

~N = [sin ι cos β0, sin ι sin β0, cos ι] (16)

where ι is the inclination angle of the binary (the angle
between~N and the binary’s orbital angular momentum),
and β is an arbitrary polarization angle.We further del
fne two iectors,

~Θ = [cos ι cos β0, cos ι sin β0, − sin ι] (17)

~Φ = [− sin β0, cos β0, 0] (18)

which defne the transierse sublspace orthogonalto ~N .
The GW polarizations are then defned by the projections

h+ =
1
2
ΘiΘj − ΦiΦj hij , (19)

h× =
1
2
ΘiΦj + ΦiΘj hij . (20)

Using the results ofthe preiious sections,these reduce
to [61]

h+ = −
M 2η
pDL

h
2 cos(2V − 2β) +

5
2
e cos(V − 2β)

+
e
2
cos(3V − 2β) + e2 cos(2β)

i
1 + cos2 ι

+ e cos V + e2 sin2 ι , (21)

h× = −
M 2η
pDL

cos ι [4 sin(2V − 2β) + 5e sin(V − 2β)

+e sin(3V − 2β) − 2e2 sin(2β) , (22)

where β = β0− ω.Finally, these waieform polarizations
can,alternatiiely,be written in a Fourier series on harl
monics of the orbital period [68],

h+,× = −
m2η
pDL

(1 − e2)
∞X

k=1

h
C (k)
+,× cos(k`) + S(k)+,× sin(k`)

i
.

(23)

where [C(k)+,× , S(k)+,× ] are giien by Eqs.(9a)l(9d) in [69].
This completes our reiiew.

III. TIME DOMAIN WAVEFORMS

Now that we haiereiiewed theparameterizations
of the Keplerproblem,we may begin to considerrel
summingtheseparameterizationsto obtain analytic
waieforms for eccentric binaries.We will begin by focusl
ing on the relsummation of quantities in the time domain,
where relsummation can be directly applied to cos V and
sin V .We will also consider the construction of a simplil
fed radiation reaction model,to capture the inspiraling
nature of the binary under the emission of GWs.
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A. Re-summations of the Kepler Problem & the
Post-Parabolic Approximation

We here present a method for relsumming the series
appearing in Eqs.(12)l(13).The method was originally
deieloped in [65]for relsumming similar series expresl
sions appearing in the GW tails  uxes.The method
generally followsthree steps:1) replace any instance
of J k(ke) and J0k(ke) with their uniform asymptotic exl
pansions,2) replace summationson the harmonic inl
dex k with integrals,and 3) expand the functions obl
tained after integration about high eccentricity,namely
 = 1 − e2  1. This method produced highly accurate
representations ofthe tail enhancement factors to the
current limit of the PN expansion for eccentric binaries.
We will here adapt it for the Fourier series representation
of the Kepler problem.
A detailed description ofthe uniform asymptotic exl

pansion may be found in [70].For our purposes, it sufces
to consider the frst two terms in this expansion, specifl
cally

J k(ke) ∼
ζ

1 − e2

1/4
(
1
π

r
2ζ
3

K 1/3
2
3
ζ3/2k

+
1
24π

r
ζ
6

5
ζ3/2

−
2(2 + 3e2)
(1 − e2)3/2

1
k

K 2/3
2
3
ζ3/2k

)

,

(24)

J 0
k(ke) ∼

1 − e2

ζ

1/4
(

ζ
eπ

r
2
3
K 2/3

2
3
ζ3/2k

−
ζ

24πe
√
6

7
ζ3/2

+
4 − 18e2

(1 − e2)3/2

1
k

K 1/3
2
3
ζ3/2k ,

(25)

with

ζ =

(
3
2

"

ln

 
1 +

√
1 − e2

e

!

−
p
1 − e2

#) 2/3

. (26)

The relsummation procedure we will use is as follows:(1)
extend the summations to include k = 0, (2) replace the
Besselfunctions with their uniform asymptotic expanl
sions, (3) coniert the sum to an integral oier k and eiall
uate, (4) match the solution to the exact answer at peril
center, (5) defne a “phase” iariable ψ = (3/2)`/ζ3/2 and
make the replacement ` → ψ,and (6) defne  = 1 − e2

and expand in   1, holding ψ fxed.
There are a few extra steps that we haie added here

compared to the procedure for relsumming the tailenl
hancement factors in [65].First, extending the sums to
include k = 0 is necessary when arriiing at step (3).Genl
erally, this procedure requires one to eialuate integrals of
the form

Z ∞

kmin

dk Kn
2
3
ζ3/2k

 
cos(k`)
sin(k`)

. (27)

If kmin = 1, the aboie integrals do not admit a closedl
form solution,but do if kmin = 0. Hence,we extend
the lower limit ofthe sums to address this.Second is
the matching to the exact answer at pericenter.The
procedure produces asymptotic series that resemble the
exact solution,but are often ofset by a constant ialue.
This may be fxed by matching to the known ialue of
the exact solution at pericenter,which can be found by
taking u = 0 in Eq. (8). Finally, the defnition ofψ,
and the action of holding it fxed when expanding in  
1, helps to ensure that the resulting expressions remain
phase accurate compared to an exact answer.
Considerthe Fourier seriesrepresentation ofcos V

giien in Eq. (12).The summation that we must relsum
is

∞X

k=1

J k(ke) cos(k`) = −1 +
∞X

k=0

J k(ke) cos(k`) , (28)

where we haie extended the sum to include k = 0 in the
equality.After replacing Jk(ke) with its asymptotic exl
pansion in Eq. (24), and replacing the summations with
integrals, we are left with the problem of eialuating

I 1 =
Z ∞

0
K 1/3

2
3
ζ3/2k cos(k`) , (29)

I 2 =
Z ∞

0

dk
k

K 2/3
2
3
ζ3/2k cos(k`) . (30)

The frst of these can be directly eialuated as is, with the
end result being

I 1 =
31/2π ch(ψ, 1/3)

2ζ3/2
p
1 + ψ2

, (31)

where ch(ψ, n) = cosh[narcsinh(ψ)].2 On the other hand,
I 2 appears to be diiergent when k = 0.We may circuml
ient this by realizing that cos(k`)/k = −

R
d` sin(k`).

Applying this,integrating oier k,and then integrating
oier ` results in

I 2 = −
31/2

2
π ch(ψ, 2/3) . (32)

The practical problem of eialuating the integrals is now
solied.
Applying the remainder of the procedure, we obtain

cos V ∼ −1 +
2 ch(ψ, 1/3)
p
1 + ψ2

+
2
5

"

−1 +
ch(ψ, 1/3)
p
1 + ψ2

#

+ 2
"

−
107
350

+
51
175

ch(ψ, 1/3)
p
1 + ψ2

+
1
70
ch(ψ, 2/3)

#

2 It is worth noting that this function can also be written as
ch(x, n) = (1/2)(x +

√
1 + x2)n + (n → −n) , by the properl

ties of hyperbolic functions.
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+ O( 3) . (33)

Similarly, for sin V we obtain

sin V ∼
2 sh(ψ, 2/3)
p
1 + ψ2

+
2
5

"

−sh(ψ, 1/3) +
sh(ψ, 2/3)
p
1 + ψ2

#

+ 2
"

−
7
25
sh(ψ, 1/3) +

51
175

sh(ψ, 2/3)
p
1 + ψ2

#

+ O( 3)

(34)

where sh(ψ, n) = sinh[narcsinh(ψ)].Note that we haie
truncated the series expansion at second order in .There
is no mathematicaldifculty causing us to stop at this
order. We are only interested in the high eccentricity
regime (  1). If one desired more accuracy at moderate
eccentricities, one could simply carry the series to higher
order.
An important note about these expressions is that they

are actually nonloscillatory,which runs contrary to the
notion ofa closed ellipticalorbit. Mathematically,this
results from the fact that the integrand in Eq.(29) is
efectiiely an exponentially damped sinusoid in k, whose
integral is not an oscillatory function.From a more physl
ical perspectiie,it can be shown that these expressions
reproduce a parabolic trajectory when  = 0(e = 1).We
show this explicitly in Appendix A. In this way, the prol
cedure actually acts to modelan ellipticalsystem as a
deformation of a parabola, rather than a deformation of
a circle as is done in the postlcircular formalism [67].

As such, these expressions are only ialid oier one orbit,
with ` ∈ [−π, π],and constitute a post-parabolic formal-
ism. Waieforms generated in this formalism will,thus,
only be accurate for one pericenter passage, and we shall
refer to them as efective fy-by (EFB) waveforms.
In Fig. 1, we proiide comparisons ofthese analytic

expressions to numericalsolutions of Eq.(6), for a sysl
tem with e = 0.99.The analytic expressions aboie are
giien by the dashed lines in the top panelof each plot,
while the numerical solutions are giien by the solid lines.
The bottom panels display the diference between the nul
mericaland analyticalsolutions.From this we see that
the analytic solutions are highly accurate near pericenl
ter (` = 0),while the diference is ∼ 10−3 for cos V and
∼ 2 × 10−2 for sin V at apocenter (` = ±π).
As a fnal point, we note that the waieform for an

eccentric binary doesn’t just contain power in the secl
ond harmonic ofV , but also the frstand third harl
monics. In theory,one can obtain Fourier series repl
resentations for [cos(2V ), cos(3V ), sin(2V ), sin(3V )]and
perform the relsummation procedure presented here to
obtain asymptotic representationsof these harmonics.
Indeed,one could eien go one step further and write
the full waieform in a Fourierseriesof orbital harl
monicsas is done in Eq. (23), and perform therel
summation procedure directly on the detector response
h(t). For simplicity,we do not consider this here,and
instead rely on the usualrelationship among trigonol
metric functions to obtain the asymptotic expressions of
[cos(2V ), cos(3V ), sin(2V ), sin(3V )]from Eqs.(33)l(34).
For example,

cos(2V ) = 2 cos2V − 1

∼ 1 −
8 ch(ψ, 1/3)
p
1 + ψ2

+
8 ch2(ψ, 1/3)

1 + ψ2
+
8
5

"

1 −
3 ch(ψ, 1/3)
p
1 + ψ2

+
2 ch2(ψ, 1/3)

1 + ψ2

#

+
2 2

175(1 + ψ2)

h
4 64 + 35ψ2 − 367

p
1 + ψ2 ch(ψ, 1/3) + 111 − 5ψ2 ch(ψ, 2/3)

i
+ O( 3) . (35)

As we will show in Sec. V B, the waieforms obtained iia
this shortcut are stillhighly accurate compared to nul
merical waieforms, and thus, we do not consider further
relsummations of time domain quantities.

B. Radiation Reaction Model

In the preiious section,we held the Keplerian eccenl
tricity e fxed when performing our relsummation procel
dure. Howeier,if the binary system is inspiraling due
to the emission of GWs, then this parameter will eiolie
in time. What we now seek is an analytic modelfor
this eiolution.This problem was frst considered by Pel

ters & Mathews [71],who found that in the quadrupole
approximation, the secular eiolution of the Keplerian ecl
centricity e and semillatus rectum p of the orbit eiolie
according to

de
dt

= −
304
15

eη
M

M
p

4

1 − e2
3/2

1 +
121
304

e2 , (36)

dp
dt

= −
64
5

η
M
p

3

1 − e2
3/2

1 +
7
8
e2 . (37)

These eiolution equations constitute the adiabatic apl
proximation,where secular changes are smalloier any
giien orbit.Thus, if we are only considering the eiolul
tion ofa binary system oier one orbit,we can approxl
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FIG. 1. Comparison of the asymptotic representation of cos V (left) and sin V (right) to their numericaleiolution found by
soliing Eq. (6).The analytic asymptotic expressions are displayed as dashed lines and are giien by Eqs. (33)l(34),while the
numerical solutions are represented by solid lines.The bottom panels of each plot shows the diference between the numerical
solutions and the asymptotic expressions.

imate the eiolution of(e, p) by a simple Taylor series,
specifcally

e(t) = e(` = 0) +
de
d` `=0

`(t) + O(`2)

= e0 −
304
15

ηe0

p̄5/2
0

1 +
121
304

e20 `(t) + O(`2) , (38)

p̄(t) = p̄(` = 0) +
dp̄
d` `=0

`(t) + O(`2)

= p̄0

"

1 −
64
5

η

p̄5/2
0

1 +
7
8
e20 `(t) + O(`2)

#

, (39)

where p̄ = p/M, p̄(` = 0) = ¯p0 and e(` = 0) = e0 are the
ialues at pericenter.Note that the terms proportional to
` are actually 2.5PN corrections, i.e.they are suppressed
by v5 ∼ (m/p0)5/2 . Thus, the Taylor series expansion
also constitutes a PN expansion.
Why are the aboie Taylor series in terms of ` and not

t? Naiiely, one might expect there to be a linear mapping
`(t) giien by Eq.(9). Howeier,once radiation reaction
is included,this mapping no longer holds and we must
consider the more general mapping specifed by

d`
dt

= M−1 1 − e2

p̄

3/2

≡ n . (40)

To solie, this we insert Eqs. (38)l(39) and perform a PN
expansion to obtain

d`
dt

= n0+ 2πFrr` + O(`2) , (41)

where

n0 = M−1 1 − e20
p̄0

3/2

, (42)

Frr =
96
10π

η
M p̄40

1 − e20
1/2

1 +
73
24

e20+
37
96

e40 . (43)

The aboie expression constitutes a diferentialequation
for `(t), which can be immediately solied with the rel
quirement that `(t = tp) = 0 to obtain

`(t) =
n0

2πFrr
{exp [2πFrr(t − tp)] − 1} . (44)

In Fig. 2, we compare the analytic approximations
of Eqs. (38)l(39) and (44) to the numericaleiolutions
of Eqs. (36)l(37)and (40), for a binary system with
tp = 0, e0 = 0.99,and p0 = 20M. For this eiolution,
the binary becomes unbound at fnite ` ≈ −2.57, but inl
fnitely far in the past t = −∞.The bottom panels of
each plot display the error in the analytic approximation
compared to the numerical eiolutions.The analytic apl
proximations ofe(`) and p(`) are accurate to . 10−2%
oier the fullorbit. Meanwhile,the delphasing between
the analytic `(t) and its numerical eiolution is typically
less than one radian near apocenter, but approaches doul
ble precision near pericenter (t = 0).Thus, the analytic
approximation proiides an accurate representation of the
eiolution of the binary oier the giien orbit.
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FIG. 2. (Top) Comparison of the analytic approximations Eqs.(38)l(39) and (44) (dashed lines) to numericaleiolutions of
Eqs. (36)l(37) and (40) (solid lines).(Bottom) The bottom panels ofthe left and center plots show the error between the
numerical eiolutions of e and p and their analytic representations.The bottom panel of the right plots shows the delphasing
(diference) between the numerical eiolution of ` and its analytic approximation.

C. Waveform Polarizations

Now that we haie a suitable radiation reaction model,
we may combine all of the pieces together to compute the

waieform polarizations.In general,the plus and cross
polarizations are giien by Eqs.(21)l(22) for an eccenl
tric binary.The harmonics of the true anomaly can be
replaced with their asymptotic expansions described in
Sec. III A. After expanding in   1, we obtain

h+,× (t) = −
M 2η

p[`(t)]DL

6X

k=0

2X

n=0

n C(k,n)
+,× [`(t); ι, β] ch{ψ[`(t)], k/3} + S(k,n)

+,× [`(t); ι, β] sh{ψ[`(t)], k/3}+ O( 3) , (45)

where the functions [C(`; ι, β), S(`; ι, β)] are listed in Apl
pendix B, and `(t) is giien by Eq. (44).The dependence
of these functions on ` comes from the now time eioliing
eccentricity e(`) giien by Eq. (38).Further, the “phase”
iariable ψ no longer has a linear mapping to ` for the
same reason.More specifcally,

ψ[`(t)] =
`(t)

ln
1+

√
1−e[`(t)]2

e[`(t)] −
p
1 − e[`(t)]2

. (46)

We shallrefer to this modelas the timeldomain EFB
(EFBlT) model.
In Fig. 3, we compare the EFBlT model to a numeril

cally generated,leading PN order waieform.The waiel
form is obtained by numerically integrating Eqs. (6),(36)l
(37), and (40), with ¯p0 = 20 and e0 = 0.99.The numeril
cal solution is then combined with Eq. (21)l(22) to genl
erate the waieform.For simplicity,we take ι = 0 = β,
and we only plot the plus polarization,where we haie
normalized the waieforms such thatĥ+(0) = −1 for the

numerical waieform.The bottom panel of of Fig. 3 disl
plays the relatiie diference between the two waieforms,
which is . 10−3 is the region around pericenter passage.

IV. FREQUENCY DOMAIN WAVEFORMS

So far, our eforts toward creating analytic waieforms
haie focused on the time domain.The EFBlT model has
one particular drawback,namely,there does not seem
to be a straightforward way ofanalytically calculating
its Fourier transform.The typicalmethod of using the
stationary phase approximation (SPA) does not seem to
work in this case due to the complexity ofthe waiel
forms,as wellas the lack of a readily identifable waiel
form phase.We here present an alternatiie model which
does allow for the Fourier transform to be computed anl
alytically.We shall refer to this new model as the EFBlF
model.
Just like the EFBlT model,we will also follow a rel
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FIG. 3. (Top) Comparison ofthe plus polarization ofthe
EFBlT model (dashed line) to a numerically generated waiel
form (solid line) with p̄0 = 20 and e0 = 0.99. (Bottom)
Relatiie diference between the analytic and numerical waiel
forms.

summation procedure for the Fourier domain waieform
presented here.The procedure is as follow:(1) startl
ing from Eq.(23) with the radiation reaction modelof
Sec.III B, eialuate the Fourier transform of h+,× using
the SPA, (2) replace the Besselfunctions appearing in
[C(k)

+,× , S(k)+,× ] with their uniform asymptotic expansions
in Eqs. (24)l(25), (3) replace the summations on k with
an integraland eialuate.We willexplain the reasoning
and some of the difculties that arise from this procedure
in the following sections.

A. Stationary Phase Approximation

We desire the frequency domain waieform polarizal
tionsh̃+,× (f ). To do so,we consider the waieform pol
larizations giien by Eq.(23). The Fourier transform is
then, schematically

h̃+,× (f ) = h0
X

k

Z ∞

−∞
dt

1 − e(t)2

p(t)
exp(2πif t)

×
n

E (k)
+,× (t) exp[ik`(t)] + c.c.

o
, (47)

where h0 = M 2η/(2DL ), E (k)
+,× = C (k)

+,× − iS(k)
+,× , and

c.c. stands for complex conjugate.Here, (p, e, `) are
still time dependent through Eqs. (38)l(39) and (44), and
E (j)
+,× depend on time through the eccentricity e.The

problem of calculating the Fourier transform now reduces

to soliing an integral of the form

I(f ) =
Z ∞

−∞
dtA(t) exp[iΨ±(t, f )] , (48)

where Ψ±(t, f ) = 2πf t ± k`(t),and for which the SPA
is applicable.The stationary point is found by requiring
that dΨ± /dt = 0, which results in

t∗
j,± = tp +

1
2πFrr

ln ∓
2πf
kn0

. (49)

Note that the stationary point of Ψ+ is only real ialued
for negatiie ialues of the frequency, while for Ψ− , this ocl
curs at positiie frequencies.Since we are only interested
in the signals obseried by GW detectors,we drop the
contribution to the Fourier transform from Ψ+ since it is
only dominant for negatiie frequencies.The remainder
of the SPA procedure may be carried out to obtain

h̃+,× (f ) = h0
X

k

[1 − e(t∗k,− )
2]

p(t∗k,− )
E (k)†
+,× (t

∗
k,− )

kχorb
χ

−iχ

×
exp[i(kχorb − χ − π/4 + 2πftp)]

Frr
√
2πχ

, (50)

where χ = f/Frr , χorb = n0/(2πF rr), and † corresponds
to complex conjugation.

B. Re-summations in the Fourier Domain and
Waveform Polarizations

After applying the SPA, we are still left with a waiel
form that iniolies an infnite summation oier harmonics.
The question now is whether a similar relsummation prol
cedure to the time domain waieforms can be carried out
here.The functions E(j)+,× iniolie the exact same Bessel
functions,so we may replace them with their asympl
totic expansions giien in Eqs.(24)l(25).Further,there
is nothing preienting us from replacing the infnite suml
mations with integrals.The only practicalproblem is
whether these integrals can be eialuated in closed form.
The integrals generally take the form

J a =
Z ∞

0
dk k−iχ+a K b

2
3
kζ3/2 (t∗

k,− ) exp[ikχorb ] ,

(51)
where a ≤ 1 and b ∈ {1/3, 2/3}.There are two problems
associated with trying to eialuate this.The frst arises
from the stationary point dependence in ζ.This depends
on the stationary point through e(t) giien by Eq.(38),
which after eialuating produces

e∗
k,− = e(t∗k,− ) = e0+

304
15

e0η

p̄5/2
0

1 +
121
304

e20 χorb −
χ
k

.

(52)
The dependence on k in the modifed Besselfunction is
thus complicated,and in general,the integraldoes not
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haie a closed form solution.Fortunately, we may realize
that the k dependence in e∗

k,− is suppressed by ¯p5/2
0 , and

is thus 2.5PN order.As a result,we perform a PN exl
pansion of any quantities that depend on the stationary
point t∗k,− . For example,

K b
2
3
kζ3/2 (t∗

k,− ) = Kb
2
3
kζ3/2

0 + O p̄−5/2
0 , (53)

where ζ0 = ζ(e0).

The second issue arises when a < 0.Similar to the time
domain relsummation,these integrals appear to be dil
iergent when k → 0.Howeier, this can be circumiented
by realizing that k−1 exp(ikχorb) =

R
dχorb exp(ikχorb).

Utilizing this,we can reierse the order ofintegration,
frst integrating oier k and then oier χorb, to eialuate
J a when a < 0. We fnd that these terms are actually
subdominant compared to the a = 1 and a = 0 terms in
the Fourier domain waieform, so we safely neglect them
here.
After applying the relsummation procedure, we obtain

h̃+,× (f ) =
M 2η
p0DL

(1 − e20)
e20Frr

χ
χorb

iχ exp(2πif tp − iχ)
χ1/2

X

(l 1 ,l2)∈L

X

s

A+,×
l1 ,l2 ,s(f ) 2F1

l1
6

− i
χ
2

,
l2
6

− i
χ
2
; s; −

9
4

χ2orb
ζ30

,

(54)

where 2F1 is the hypergeometricfunction, the
functions A l1 ,l2 ,s(f ) are listed in Appendix C,
(l1, l2) are integers that belong to the set
L = {(2, 4), (4, 8), (1, 5), (5, 7), (7, 11), (10, 8)},and
s ∈ {−1/2, 1/2}.Note that we haie not expanded this
expression about  = 1 − e2

0  1. In attempting this, we
discoiered that this results in a seiere loss ofaccuracy
compared to numericalwaieforms. As a result, we
simply leaie the aboie expression unlexpanded.
We proiide a comparison of the EFBlF waieform to a

numerically computed one in Fig. 4.The numerical waiel
form is generated by taking the discrete Fourier transl
form (DFT) of the numerical timeldomain waieform disl
cussed in Sec. III C. We choose the masses for this coml
parison to be (m1, m2) = (10, 10)M. The timeldomain
waieform is sampled at 4096 Hz, and is then padded such
that the total length of the waieform contains 220 points.
The top panel of Fig. 4 displays the plus polarization of
both the EFBlF model(dashed line) and the numerical
waieform (solid line), normalized to the peak of the nul
merical waieform.The relatiie error between these two
waieforms is largest at 10 Hz,with the EFBlF waiel
form being accurate to ∼ 10%.At higher frequencies,
the EFBlF waieform is more accurate,achieiing ∼ 1%
accuracy at frequencies aboie the peak.In principle, this
can be improied by considering the next order terms in
the asymptotic expansion of Bessel functions,as well as
hyperasymptotic techniques [72]to adjust the low frel
quency behaiior.This completes our discussion ofthe
EFBlF model.

V. VALIDATION

Now that we haie our waieform models,we seek to
ialidate them against accurate representations of the GW
bursts from eccentric systems.We shall also discuss some
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FIG. 4. (Top) Comparison ofthe plus polarization ofthe
EFBlF model in Eq. (54) (dashed line) to a numerically genl
erated waieform (solid line) with ¯p0 = 20 and e0 = 0.99.
(Bottom) Relatiie error between the analytic and numerical
waieforms.

numericalimplementations ofthese waieforms models,
specifcally how quickly they may be eialuated.

A. Computational Efciency

While it is appealing to haie analytic waieforms from
the standpoint of understanding the underlying physics,
from a data analysis perspectiie,it is also necessary for
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these waieforms to be fast to eialuate.If an analytic
waieform is sufciently complicated,it may take more
time to sample the model than it would to simply generl
ate the waieform numerically.In this section, we seek to
quantify the efciency ofthe EFBlT and EFBlF waiel
form models presented in Secs. III & IV, specifcally how
quickly they can be sampled relatiie to a numerical waiel
form.
The benchmark for this willbe a leading PN order

waieform giien by Eq.(21), and which is generated
by eioliing the equations of Peters & Mathews,specifl
ically Eqs. (36)l(37),and Eqs. (6) and (40). These
equations are solied in the range [−tf , tf ], where tf =
π/M 1/2 [p0/(1 − e20)]

3/2 , to ensure that only one pericenl
ter passage is obtained.We choose ¯p0 = 20 and e0 = 0.9,
with masses m1 = 10M = m2, and a sampling rate
of 4096 Hz.The time domain waieform is padded with
zeros untilthe total length is 220 points,before being
Fouriertransformed.The time domain integration is
performed with SciPy’s ode module,while the Fourier
transform is computed numerically using the ft modl
ule.With these parameter ialues, it takes approximately
0.36 seconds to generate the waieform.
To generate the EFBlT waieforms,after setting the

initial parameters (p0, e0) and masses (m1, m2), we fnd
the time tπ associated with `= π using Eqs. (44).
We then sample the EFBlT waieform oier the interl
ial [−tπ , tπ ] at a rate of 4096 Hz. The waieform is
then padded to ensure there are 220 totalpoints.After
padding,the Fourier transform is then computed used
SciPy’s ft routine. For initial parameters ¯p0 = 20 and
e0 = 0.9, and masses m1 = 10M = m2, it takes approxl
imately 0.14 seconds to generate both waieform polarl
izations in the EFBlT model.This is under half the time
to generate the numerical Peters & Mathews waieforms.
It is worth noting that this eialuation time increases

signifcantly ase0 approachesunity for the sampling
method described aboie.For e0 = 0.999, it takes approxl
imately 0.56 seconds to generate the EFBlT waieform.
For e0 = 0.9999, the sampled EFBlT waieform has > 220

points,simply due to the fact that tπ can become large
(i.e. it takes a long time to get from pericenter to apocl
enter). For such a case,we pad the EFBlT waieform
to haie a total of 222 points, which takes approximately
3.6 seconds total to generate the Fourier transform.This
can be circumiented by simply choosing a smaller winl
dow oier which the sampling is performed,i.e. choose
tsample < tπ . For such high eccentricities,sampling to
apocenter ( =̀ π) is likely unnecessary since there is
iery little GW emission there.The same issue arises for
the numerical waieform that we are comparing to.
While the EFBlT model is relatiiely fastto eialul

ate, the same cannot be said of the EFBlF waieform in
Eq. (54).From the numerical and EFBlT waieforms, we
obtain a frequency resolution δf , which we use to sample
the EFBlF waieforms from flow = 10 Hz to fhigh = 2048
Hz, i.e.the Nyquist frequency.We attempted to sample
the EFBlF model in Python using the mpmath [73] modl

ule, but sampling the hypergeometric function proied to
be badly coniergent for high frequency ialues,and we
were not able to get a full estimate of the time it would
take to sample the EFBlF model.The data used to genl
erate Fig.4 were generated in Mathematica,where it
took ∼ 3 − 4 hours to complete the sampling, and which
doesn’t coier the full frequency range.
The reason behind the slow eialuation time ofthe

EFBlF model seems to purely be due to its dependence
on the specialized hypergoemetric functions,which are
not easily eialuated numerically forlarge arguments.
There are actually two iariables that are large in the
EFBlF model.The frst is χ = f /Frr . For LIGO sources,
Frr is typically less than 1 Hz, so χ can span oier seieral
orders ofmagnitude.The second is the ratio χ2orb/ζ

3
0,

which is actually a −2.5lPN term, i.e.it scales like v−5.
For smallialues ofthe ielocity,this ratio is large,and
common methods of numerically eialuating the hypergel
ometric functions are poorly coniergent.
Giien these two considerations,it may be possible to

produce analytic approximations to the hypergeometric
functions appearing in Eq.(54) that would be signifl
cantly faster to eialuate.This was attempted in the
course of this work, but the resulting approximates were
not sufciently accurate oier the full range of frequencies
of the LIGO band, so we do not proiide the details here.
This is not to say that these methods are total failures in
speeding up the waieform, only that more work would be
necessary to obtain sufciently accurate waieforms that
are also fast to eialuate.We leaie this to future work.
Due to the excessiie computation cost of eialuating the
EFBlF model, the remainder ofthe numericalanalysis
performed in this section is done only with the EFBlT
model.

B. Faithfulness

In order to construct the EFBlT model, we were forced
to make a few approximations, namely the postlparabolic
approximation for the conseriatiie dynamics, and an apl
proximate model based on Taylor expansions of the radil
ation reaction equations for the dissipatiie dynamics.In
Figs. 1 and 3, we showed the diference between these anl
alytic approximations and numerical calculations.While
this is suitable for checking the accuracy of these approxil
mations, it would also be useful to understand how errors
in these approximations might afect our ability to detect,
and perform parameter estimation on,such signals.To
that end, we study the match between the EFBlT model
and numerical Peters & Mathews waieforms
The match between waieforms hA and hB is defned

as

M = max
tp

(hA |hB )p
(hA |hA )(hB |hB )

, (55)

where (hA |hB ) is the noiselweighted inner product del
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fned as

(hA |hB ) = 4Re
Z

df
h̃A (f )h̃

†
B (f )

Sn(f )
, (56)

with Sn(f ) the noise power spectral density of the detecl
tor being considered.The match in Eq. (55) is maximized
oier the time ofpericenter passage,which amounts to
an arbitrary time shift of the waieform.Physically,the
match proiides an estimate of how biased,or unbiased,
parameter estimation will be if model hB is used to detect
signal hA . In this case, we are using it to determine how
faithful the EFBlT model is compared to the numerical
Peters & Mathews waieforms discussed in the preiious
section.
We consider the match for two LIGO sources,with

m1 = 10M = m2, and m1 = 10M and m2 = 40M .
We compute the match as a function ofthe semillatus
rectum p and eccentricity e of the orbit.For simplicity,
we only compute the match between the plus polarizal
tions of the waieforms.The Fourier domain waieforms
are computed iia the method discussed in Sec. V A. For
Sn(f ), we use the publicly aiailable data for LIGO at del
sign sensitiiity [74].To compute the integral in Eq. (56),
we take the limits ofintegration as flow = 10 Hz and
f high = f Ny . Finally, to maximize oier the time shift
tp, we compute the inierse Fourier transform of the intel
grand in Eq. (56),and fnd its maximum.This giies us
an approximate ialue of tp that maximizes Eq. (55).We
then perform a grid search around this point to fnd the
true ialue.The results of this computation are displayed
in Fig. 5.
For the m1 = 10M = m2 case,the match is always

aboie ∼ 0.98 for allof the cases studied.This is aboie
the threshold of 0.97 that is commonly used as a requirel
ment3 for performing matched fltering searches[75].
Thus, for this low mass case,the EFBlT waieform is
an excellent approximation for the typicalbursts that
might occur within the LIGO band.On the other hand,
the high mass case with m1 = 10M and m2 = 40M
only achieies such high matches for high ialues of eccenl
tricity and/or low ialues of the semillatus rectum.The
reason for this is that the peak frequency ofthe waiel
forms is sensitiie to the total mass of the binary, the ecl
centricity,and the semillatus rectum,which determines
how widely separated the binary is.For higher masses
and higher semillatus recta,the peak frequency can bel
come smaller than 10 Hz, resulting in only the exponenl
tial highlfrequency tail being within the LIGO band, and
lower matches oierall.This is not unexpected, a similar
efect occurs in the quasilcircular case,i.e. higher mass
systems generally merge at lower frequencies,and as a
result, spend less time in the LIGO band.

3 It is worth noting a more stringent requirement could be obtained
by considering the percentage ofeients lost during a search,
which scales as 1 − M3.

C. Robustness to Modeling Error

The calculation in the preiious section proiides a usel
ful measure of errors introduced by the approximations
necessary to create the EFBlT waieforms, and show that
they are a relatiiely faithful representation of the numeril
cal Peters & Mathews waieforms.Howeier, the pericenl
ter ielocity ofbinaries emitting GWs in the detection
band of ground based detectors need not necessarily be
small.One may wonder how accurate the EFBlT waiel
form is compared to a realistic signal.More specifcally,
what is the (modeling) error induced by working to leadl
ing PN order?
We seek to answer this question by comparing to full

NR waieforms of single pericenter passages.We use the
waieforms from [37],which specifcally looked at black
holelneutron star binaries with q = 4.We are primarl
ily interested in the case of binary black holes (BBHs),
and while these simulations may treat one ofthe coml
pact objects as a neutron star, the underlying dynamics
should be an accurate trace of the BBH case since tidal
efects and flmode oscillations are subdominant in the
waieforms [27].For our analysis,we thus choose the
masses to be m1 = 10M and m2 = 40M .
The initialdata for these simulations is set by choosl

ing ielocities corresponding to a Newtonian orbit with
parameters [rp, e]. The time domain data from the NR
simulations is for the Weylscalar Ψ4 = ḧ+ + iḧ× . To
perform a match comparison, we require the Fourier dol
main waieform̃h+(f ), which we compute by using the
properties of Fourier transforms to realize that

h̃+(f) = −
F{Re[Ψ4]}
4π2f 2

, (57)

where F [h]is shorthand for the Fourier transform of h.
For simplicity,we once again only consider the match
between plus polarizations of the NR waieforms and the
EFBlT model.
The NR simulations are discretized with a time step

of δt = 1.5625M ,which corresponds to the sampling
rate of 2586.34 Hz for the masses we haie chosen.The
method for computing the Fourier transform ofRe[Ψ4]
follows the same procedure detailed in Sec. V A for coml
puting the Fourier transform of the EFBlT model.For
the match comparison,the ialues of the Newtonian pal
rameters [rp, e]of the NR simulations need not giie the
best match for the EFBlT waieforms.This is due to the
fact that these Newtonian parameters do not correspond
to the true pericenter and eccentricity ofthe orbit,as
well as the EFBlT model is not an exact representation
of the NR waieform, so its parameters can be biased.We
thus iary these parameters in the EFBlT model, or more
specifcally [p0, e0], to fnd the highest match possible.
The results of this calculation are displayed in Figs. 6l8.
The left panelof Fig. 6 shows the results for the NR

simulation with rp = 10M. The maximum match is
0.927,and is achieied atialuesof p0 = 10.9M and
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FIG. 5. (Left) Faithfulness (match) of the EFBlT waieform to numerical Peters & Mathews waieforms for binaries with total
mass M = 20M and mass ratio q = 1.(Right) Same as the left panel, but with M = 50Mand q = 4.Note that the color
scale is diferent in each plot.

e0 = 0.528 for the EFBlT model.The right panelcoml
pares the “best ft” EFBlT waieform to the NR waiel
form in the time domain.To obtain h+(t) for the NR
simulation, we simply compute the inierse Fourier transl
form of̃h+(f ) using SciPy’s ift module.Both the NR
and EFBlT waieforms are normalized by their peak aml
plitudes.This comparison shows that the two waieforms
haie the same morphology, but difer by their amplitudes,
which is consistent with what was found in [28].
Fig. 7 shows the results of the same comparison,but

for an NR simulation with rp = 8.75M . In this case,
the maximum match is 0.945,and is achieied at EFBl
T parameters p0 = 8.56M and e0 = 0.541. The NR
waieform displays an asymmetry around its peak aml
plitude, due to the binary exhibiting whirlllike behaiior
around closest approach [28].This efect is not captured
by the EFBlT model. Finally, Fig. 8 giies the results
for the NR simulation with rp = 8.125M , with the maxl
imum match of 0.754 at EFBlT parameters p0 = 6.99M
and e0 = 0.541.The NR waieform displays more of the
whirlllike behaiior than the preiious waieform, and as a
result, the match is signifcantly lower.
The results ofthis analysis show two things.First,

the EFBlT waieforms are relatiiely robust to modeling
error, but only to a point.As the pericenter distance bel
comes smaller,the EFBlT waieform becomes less accul
rate compared to NR waieforms.This is not unexpected,
since the EFBlT modelis constructed from leading PN
order dynamics, while the Newtonian pericenter ielocity
is vp = 0.46c for the case with rp = 8.125M ,where c is
the speed of light.Relatiiistic efects not captured by the
EFBlT model become important at such high ielocities.

Second,the EFBlT waieform can capture these bursts,
but the parameters of the modelwill be biased relatiie
to the true parameters of the binary.It is difcult to tell
how much the parameters are biased in this case,since
the true parameters of the binary aren’t actually known
from the simulations.Both of these considerations nel
cessitate the creation of more accurate waieform models
to coier binaries with small pericenter distances.

D. Multi-burst Sequences

The preiioussectionsshow thatthe EFBlT model
proiides an accurate description ofthe GWs produced
during a single pericenter passage, proiided the pericenl
ter distance is sufciently large that relatiiistic efects
can be neglected.Howeier,binary systems willgenerl
ally go through multiple pericenter passages as they pass
through,and ultimately merge in the LIGO band.The
usefulness ofhaiing a waieform that accurately coiers
only one pericenterpassage seemssomewhatlimiting.
We here show how multiple EFBlT waieforms can be
combined to recoier a sequence of bursts from an eccenl
tric system.
To begin, we generate a sequence of bursts by numerl

ically integrating Eqs.(36)l(37) with the initialcondil
tions p(` = 0) = 60M and e(` = 0) = 0.9, where
` = 0 corresponds to the frst pericenter passage.We
further choose the masses to be m1 = 10M = m2.
We numerically integrate these equations oier the range
t ∈ [−Torb,0/2, 30sec],where Torb,0 = 2π/n0. This rel
sults in a sequence of ten pericenter passages.We could



14

6 8 10 12 14 16 18
p/M

0.2

0.3

0.4

0.5

0.6

0.7

lo
g
1
0
(1

e
2
)

0.42

0.48

0.54

0.60

0.66

0.72

0.78

0.84

0.90

0.04 0.02 0.00 0.02 0.04
t [sec]

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

h
+
(t
)

NR

EFBlT
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and e0 = 0.75, and masses m1 = 10M and m2 = 40M . The maximum match, displayed by the cross symbol, is 0.927, and
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waieform to the NR waieform.Both waieforms haie been normalized so thatĥ+ = 1 at the peak amplitude.
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FIG. 7. The same as Fig.6, but with an NR waieform with input Newtonian ialues ofrp = 8.75M and e0 = 0.75. The
maximum match is 0.945, and is achieied at p0 = 8.56M and e0 = 0.541, which corresponds to rp,0 = 5.55M.

extend this to more, but this sufces for our purposes.
To generate a multilburst EFBlT waieform,we start

by generating a single waieform using the method del
scribed in Sec. V A with ¯p0 = 60 and e0 = 0.9.To generl
ate the next burst,we must know what the parameters
[p1, e1] at the next pericenter passage willbe. Fortul
nately,such a modelwas deieloped in [25].We follow

a similar procedure here.As an example,the change in
the eccentricity e from one pericenter passage to another
is giien by

eI+1 = eI +
de
dt pI ,eI

Torb,I
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FIG. 8. The same as Fig.6, but with an NR waieform with input Newtonian ialues ofrp = 8.125M and e0 = 0.75. The
maximum match is 0.754, and is achieied at p0 = 6.99M and e0 = 0.541, which corresponds to rp,0 = 4.54M.

= eI −
604π
15

ηeI

p̄5/2
I

1 +
121
304

e2I , (58)

where we haie used Eq. (36) to obtain the second equall
ity. The same procedure can be used for the semillatus
rectum and time of pericenter passage to obtain

pI+1 = pI

"

1 −
128π
5

η

p̄5/2
I

1 +
7
8
e2I

#

, (59)

tp,I+1 − tp,I = 2πM
p̄I

1 − e2I

3/2
"

1

−
96π
5

η

p̄5/2
I

1 +73
24e

2
I +

37
96e

4
I

1 − e2I

#

, (60)

respectiiely.There are two slight diferences in this timl
ing modelcompared to that of[25],namely,we do not
expand about eI  1 and we include the radiation reacl
tion efect on the orbital period in Eq. (60).These are to
ensure the model is accurate oier a wider range of orbital
parameters.
The aboie equations constitute a timing model to prel

dict when the subsequentburst will occur,and what
the orbitalparameters willbe during that closest apl
proach.From [p0, e0, tp,0], we can obtain allfuture iall
ues.The initial burst is characterized by an EFBlT waiel
form in the interial[−tπ,0 , tπ,0], where tπ,0 is described
in Sec.V A. To generate the second burst,we calculate
[p1, e1, tp,1] from the initialialues,and we sample the
new EFBlT waieform with these parameters in the range
[tπ,0 , Torb,0+tπ,1]. The change in the sample interial is to
ensure that the sampling interialof the totalwaieform

is continuous,and we do not haie to perform padding
in between each EFBlT waieform.Generating all subsel
quent EFBlT waieforms follows the same procedure.
We compute the match between the numericalten

burst sequence and the multilburstEFBlT model in
Fig. 9 (squares),as a function ofthe number ofEFBl
T waieforms used.The match is initially iery low,but
increases with the number ofwaieforms and reaches a
maximum of 0.993 at ten bursts.This is well aboie the
ialue of 0.97 used for matched fltering searches, which is
indicated by the horizontal line.Thus, a simple method
of combining multiple EFBlT waieforms can be used to
capture sequences of bursts from eccentric systems.
There is one caieat to this analysis.We haie here iml

plicitly used the results of Peters & Mathews throughout
the analysis, namely to generate the numerical waieform,
the EFBlT waieforms, and the timing model.Thus, the
timing model of Eqs. (58)l(60) will only be accurate for
sufciently widely separated binaries where the PN exl
pansion is ialid.For sources of groundlbased detectors,
this may not be accurate enough to perform a matched
fltered search using a multilburst EFBlT waieform.To
show this,we induce an error into the timing modelby
multiplying the radiation reaction terms,i.e. those prol
portional to ¯p−5/2

I in Eqs. (58)l(60), by 1 + , where  all
lows us to control the leiel of the mislmodeling error.We
repeat the aboie match calculation with  = 0.01,thus
introducing a 1% error in the radiation reaction efects.
The results are giien by the circles in Fig. 9.The match
no longer peaks at the correct number of bursts, and no
longer reaches the threshold for matched fltering.One
thus needs a highly accurate timing modelto perform
match fltering searches using these EFBlT waieforms.



16

2 4 6 8 10 12 14
Number of Waieforms

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M
a
tc
h

FIG. 9. Match between a multilburst EFBlT waieform to a
numericalten burst sequence generated by numerically intel
grating Eqs. (36)l(37) with p0 = 60M and e0 = 0.9, oier the
time interial t = [−1.75, 30] seconds.We compute the match
as a function ofthe number ofEFBlT waieforms used,up
to ffteen.The square sequence is the match with the timing
model giien by Eqs. (58)l(60), while the circles haie a 1% misl
modeling error introduced in the timing model.The match
is plotted as a function of the number of EFBlT waieforms,
with the horizontal line corresponding to 0.97.

VI. DISCUSSION

We haie deieloped here the frst analytic waieforms
designed to describe the burst of graiitational radiation
from highly eccentric binaries.This wasachieied by
applying a relsummation procedure to commonly used
Fourier series representations of quantities at leading PN
order.By comparing to NR waieforms, we showed that
the EFBlT model is an accurate representation ofthe
bursts from eccentric systems where the pericenter disl
tance is large enough to neglect relatiiistic efects.Yet,
there are stillmany open questions from the analyses
carried out here.
First, how does one construct a more accurate model

compared to NR simulations? The EFBlT model is rell
atiiely accurate to the NR waieformsused here,but
there is signifcant room for improiement.The most dil
rect way of improiing the model would be to repeat the
analysis carried out here to higher PN order.Fourier
series representations ofthe PN twolbody problem are
currently known to 3PN order [76].The relsummation
procedure carried out here should stillbe applicable to
higher PN order. A more indirect approach would be
to construct an analytic kludge modelalong the lines
of [38].The conseriatiie dynamics of such a modelare

described by geodesic motion on an efectiie Kerr backl
ground.While this might be appealing due to its accul
racy, relsummations of the type carried out here may not
be possible in this case due to the complicated geodesic
motion.
Second,how would one go aboutusing the EFBlT

model to search for eccentric binaries? The analysis carl
ried out in Sec. V D shows that one needs a iery accurate
timing modelin order to string multiple EFBlT waiel
formstogetherto perform matched fltering searches.
Timing modelsconstructed in the PN approximation
may not be accurate enough for full inspirals.An alterl
natiie strategy would be to search for correlated bursts
within the detector.If multiple bursts are emitted by the
same system, then the parameters of each burst will not
be independent of one another.For example, the sky lol
cation,inclination angle,and component masses should
all be the same (to within some error) among the bursts.
Further,the peak times and frequencies ofthe bursts
should be correlated in the typical chirping fashion.One
may be able to use these correlations to search for full
eccentric signals without the need for a timing model.
Third, what can we learn from detecting these signals

with the models deieloped here? The most cited applil
cation ofdetecting eccentricity within inspiraling binal
ries is that it acts as a tracer for formation channels.
If the binary has a measurable amount ofeccentricity,
it would haie had to form relatiiely close to merger,
pointing to dynamicalformation.Furthermore,eccenl
tric binaries also present themselies as unique systems
for placing constraints on the NS equation of state due
to the importance of tidal efects and flmode oscillations.
With pericenter ielocities potentially being large,these
systems may also be unique laboratories for performing
tests of GR.The models deieloped here are a frst step
toward performing such studies.
Finally, the analyses carried outhere haie only fol

cused on sources for groundlbased detectors.Howeier,
population synthesis studies haie shown that there are
many more eccentric sources in the detection bands of
spacelbased detectors such as LISA and DECIGO, some
of which will be highly eccentric.Within our galaxy
alone,there are ∼ 150 globular clusters,which could
contain ∼ 20 sources emitting within the LISA detecl
tion band [77].If these sources are highly eccentric, the
waieform models deieloped here should be excellent canl
didates for detecting and characterizing the parameters
of these systems.
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Appendix A: The Parabolic Limit

We here show that the relsummation procedure del
scribed in Sec. III A reproduces a parabolic trajectory in
the limit e → 1.We begin by reiiewing the Newtonian
two body problem for parabolic trajectories.The discusl
sion of Keplerian orbits in Sec. II A is completely general,
and ialid for all ialues of e.Taking e = 1 in Eq. (5) giies
us

r =
p

1 + cos V
=

p
2

1 + tan2
V
2

, (A1)

where the second equality followsfrom trigonometric
identities.From the conseriation of the orbitalangular
momentum h = r2φ̇, we obtain

V̇ = 4
M
p3

1/2

1 + tan2
V
2

−2

. (A2)

In analogy to Kepler’s equation,this can be directly inl
tegrated to obtain Barker’s equation

2 B̀ = 3U + U3 , (A3)

where U = tan(V /2) and `B = 3(M/p3)1/2 (t − tp), with
tp the time ofclosest approach.Unlike Kepler’s equal
tion,Barker’s equation can be solied in closed form by
making the replacement U = z − (1/z).This results in

the solution

tan
V
2

= B̀ +
q

2̀
B + 1

1/3

− B̀ +
q

2̀
B + 1

−1/3

.

(A4)
The question is now whether the relsummation prol

cedure ofSec. III A reproducesthis expression.The
analytic expressionsfor cos V and sin V are giien in
Eqs. (33)l(34). Taking the limit  = 0, a simple eiall
uation reieals

tan
V
2

=
sin V

1 + cos V
,

∼ ψ +
p

ψ2+ 1
1/3

− ψ +
p

ψ2+ 1
−1/3

+ O() , (A5)

where we haie expanded ch(ψ, n) and sh(ψ, n) (see footl
note 2). When performing the expansion about   1
in Sec.III A, we held ψ fxed.To obtain the appropril
ate limit, we must now consider the behaiior of ψ when
e → 1. Recall that

ψ =
3`

2ζ3/2
=

3n
2ζ3/2

(t − tp) (A6)

where n and ζ are giien by Eqs.(40) and (26),respecl
tiiely. Expanding this expression about   1 reieals
ψ ∼ B̀ + O(), and we thus obtain the correct limit.

Appendix B: Time Domain Waveform Functions

We here proiide explicit forms for the C(k,n) and S(k,n) functions appearing in Eq.(45). The nonlzero functions
are as follows, where (sθ, cθ) = (sin θ, cos θ), and ψ is giien by Eq. (46).

C(0,0)
+ =

8ψ
1 + ψ2

cβsβ 3 + c2ι − s2ι (B1)

C(0,1)
+ =

1
20

9c2β(3 + c2ι − s2ι ) − 9 1 + c2ι (−1 + s2β) + s2ι − s2β(−3 + s2ι ) +
16cβsβ(3 + c2ι − s2ι )ψ

1 + ψ2
(B2)

C(0,2)
+ =

1
2800

−9c2ι (3 + 265s2β) + 2385c2β(3 + c2ι − s2ι ) + 2385s2β(−3 + s2ι ) + 27(1 + s2ι ) +
3392cβsβ(3 + c2ι − s2ι )ψ

1 + ψ2

(B3)

C(1,0)
+ =

1
(1 + ψ2)3/2

1 − 15s2β + s2ι + 5s2βs2ι + ψ2+ 3s2βψ2+ s2ι ψ2 − s2βs2ι ψ2 − c2β(3 + c2ι − s2ι )(−5 + ψ2)

+c2ι −1 − ψ2+ s2β(−5 + ψ2) (B4)

C(1,1)
+ = −

3
10(1 + ψ2)3/2

1 − 15s2β + s2ι + 5s2βs2ι + ψ2 − 21s2βψ2+ s2ι ψ2+ 7s2βs2ι ψ
2+ c2β(3 + c2ι − s2ι )(5 + 7ψ2)

−c2ι 1 + ψ2+ s2β(5 + 7ψ2) (B5)

C(1,2)
+ =

1
1400(1 + ψ2)3/2

−111 + 3585s2
β − 111s2ι − 1195s2βs2ι − 111ψ2+ 6915s2βψ2 − 111s2ι ψ2 − 2305s2βs2ι ψ2

−5c2β(3 + c2ι − s2ι )(239 + 461ψ2) + c2ι 111(1 + ψ2) + 5s2β(239 + 461ψ2) (B6)
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C(2,0)
+ = −

2
1 + ψ2

c2β − s2β 3 + c2ι − s2ι (B7)

C(2,1)
+ = −

1
5(1 + ψ2)

c2β − s2β 3 + c2ι − s2ι (B8)

C(2,2)
+ =

1
140(1 + ψ2)

1 + 96s2β + s2ι − 32s2βs2ι + ψ2+ 3s2βψ2+ s2ι ψ2 − s2βs2ι ψ2 − c2β(3 + c2ι − s2ι )(32 + ψ2)

+c2ι (−1 − ψ2+ s2β(32 + ψ2)) (B9)

C(4,2)
+ =

3
70(1 + ψ2)

c2β − s2β 3 + c2ι − s2ι (B10)

S(1,0)
+ =

8
1 + ψ2

cβsβ 3 + c2ι − s2ι (B11)

S(1,1)
+ = −

8
5(1 + ψ2)

cβsβ 3 + c2ι − s2ι (B12)

S(1,2)
+ =

4
175(1 + ψ2)

cβsβ 3 + c2ι − s2ι −179 + 26ψ2 (B13)

S(2,0)
+ =

12
(1 + ψ2)3/2

cβsβ 3 + c2ι − s2ι (B14)

S(2,1)
+ = −

2
5(1 + ψ2)3/2

cβsβ 3 + c2ι − s2ι 19 + 22ψ2 (B15)

S(2,2)
+ = −

1
350(1 + ψ2)3/2

cβsβ 3 + c2ι − s2ι 2251 + 2026ψ2 (B16)

S(4,2)
+ =

78
35(1 + ψ2)3/2

cβsβ 3 + c2ι − s2ι (B17)

S(5,1)
+ =

12
5(1 + ψ2)

cβsβ 3 + c2ι − s2ι (B18)

S(5,2)
+ =

36
25(1 + ψ2)

cβsβ 3 + c2ι − s2ι (B19)

S(6,0)
+ = −

4
(1 + ψ2)3/2

cβsβ 3 + c2ι − s2ι (B20)

S(6,1)
+ = −

2
5(1 + ψ2)3/2

cβsβ 3 + c2ι − s2ι (B21)

S(6,2)
+ = −

37
70(1 + ψ2)3/2

cβsβ 3 + c2ι − s2ι (B22)

C(0,0)
× =

16ψ
1 + ψ2

cι c2β − s2β (B23)

C(0,1)
× = −

2
5(1 + ψ2)

cι −4c2βψ + 4s2βψ + 9cβsβ(1 + ψ2) (B24)

C(0,2)
× = −

53
350(1 + ψ2)

cι −16c2βψ + 16s2βψ + 45cβsβ(1 + ψ2) (B25)

C(1,0)
× =

1
35(1 + ψ2)3/2

cβsβcι −1400 + 280ψ2 (B26)

C(1,1)
× =

1
35(1 + ψ2)3/2

cβsβcι 420 + 588ψ2 (B27)

C(1,2)
× =

1
35(1 + ψ2)3/2

cβsβcι 239 + 461ψ2 (B28)

C(2,0)
× =

16
1 + ψ2

cβsβcι (B29)

C(2,1)
× =

8
5(1 + ψ2)

cβsβcι (B30)
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C(2,2)
× =

2
35(1 + ψ2)

cβsβcι 32 + ψ2 (B31)

C(4,2)
× = −

12
35(1 + ψ2)

cβsβcι (B32)

S(1,0)
× =

16
1 + ψ2

cι c2β − s2β (B33)

S(1,1)
× = −

16
5(1 + ψ2)

cι c2β − s2β (B34)

S(1,2)
× =

8
175(1 + ψ2)

cι c2β − s2β −179 + 26ψ2 (B35)

S(2,0)
× =

24
(1 + ψ2)3/2

cι c2β − s2β (B36)

S(2,1)
× = −

4
5(1 + ψ2)3/2

cι c2β − s2β 19 + 22ψ2 (B37)

S(2,2)
× = −

1
175(1 + ψ2)3/2

cι c2β − s2β 2251 + 2026ψ2 (B38)

S(4,2)
× =

156
35(1 + ψ2)3/2

cι c2β − s2β (B39)

S(5,1)
× =

24
5(1 + ψ2)

cι c2β − s2β (B40)

S(5,2)
× =

72
25(1 + ψ2)

cι c2β − s2β (B41)

S(6,0)
× = −

8
(1 + ψ2)3/2

cι c2β − s2β (B42)

S(6,1)
× = −

4
5(1 + ψ2)3/2

cι c2β − s2β (B43)

S(6,2)
× = −

37
35(1 + ψ2)3/2

cι c2β − s2β (B44)

Appendix C: Fourier Domain Waveform Functions

We here proiide expressions for the functions Al1,l2 ,s appearing in Eq. (54).The nonlzero functions are

A+
10,8,1/2 = −

r
2
π
(1 + i)3iχ/2 (1 + cos2 ι)(1 − e20)

5/4 sin(2β)ζ
3
4 (−5+2iχ)
0 [9(3i + χ)χ2orb + 2iζ30]Γ(3 −3iχ

2 )

(5i + 3χ)(7i + 3χ)χorbΓ(1 − iχ
2 )

, (C1)

A+
10,8,−1/2 = −

(1 + i)3iχ/2 (1 + cos2 ι)(1 − e20)
5/4 sin(2β)ζ

3
4 (−5+2iχ)
0 (9χ2orb + 4ζ30)Γ(3 − 3iχ

2 )
√
2π(−5 + 3iχ)(7i + 3χ)χorbΓ(1 − iχ

2 )
(C2)

A+
2,4,1/2 =

(1 − i)3iχ/2
q

2
π [cos(2β)(1 + cos2 ι)(−2 + e20) + e20 sin

2 ι]ζ
− 3

4+
3iχ
2

0 Γ(3 −3iχ
2 )

(1 − e20)1/4 (−8 + 18iχ + 9χ2)Γ(1 − iχ
2 )

(C3)

A+
4,8,1/2 =

(12 +
i
2)3

3
2 −iχ (1 + cos2 ι)(1 − e20)

1/4ζ
− 9

4+
3iχ
2

0 Γ( 23 − iχ
2 )Γ(

4
3 − iχ

2 )√
2π3/2 (i + 3χ)(5i + 3χ)χorb

n
cos(2β)(−1 + e20)(5i + 18χ − 9iχ2)χorb

+ 2
q
1 − e20 sin(2β) 9(2i + χ)χ2orb + 2iζ30

o
(C4)

A+
4,8,−1/2 =

(12 +
i
2)3

3
2 −iχ (1 + cos2 ι)(1 − e20)

3/4 sin(2β)ζ
− 9

4+
3iχ
2

0 (9χ2orb + 4ζ30)Γ(
2
3 − iχ

2 )Γ(
4
3 − iχ

2 )√
2π3/2 (−5 + 3iχ)(i + 3χ)χorb

(C5)

A+
1,5,1/2 =

(12 +
i
2)3

1
2 −iχ (1 + cos2 ι)(1 − e20)

3/4 sin(2β)ζ
− 3

4+
3iχ
2

0 Γ( 16 − iχ
2 )Γ(

5
6 − iχ

2 )√
2π3/2

(C6)
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A+
5,7,1/2 =

(14 +
i
4)3

1
2 −iχ (1 − 3iχ)ζ

− 9
4+

3iχ
2

0 Γ( 16 − iχ
2 )Γ(

5
6 − iχ

2 )√
2(1 − e20)1/4π3/2 (2i + 3χ)(4i + 3χ)χorb

n
− (1 + cos2 ι)(1 − e20)

3/2 sin(2β)(−8 + 18iχ + 9χ2)χorb

+ i[cos(2β)(1 + cos2 ι)(−2 + e20) + e20 sin
2 ι][9(2i + χ)χ2orb + 2iζ30]

o
, (C7)

A+
5,7,−1/2 =

(18 +
i
8)3

1
2 −iχ [cos(2β)(1 + cos2 ι)(−2 + e20) + e20 sin

2 ι](1 − 3iχ)ζ
− 9

4+
3iχ
2

0 (9χ2orb + 4ζ30)Γ(
1
6 − iχ

2 )Γ(
5
6 − iχ

2 )√
2(1 − e20)1/4π3/2 (2i + 3χ)(4i + 3χ)χorb

,

(C8)

A+
7,11,1/2 =

(14 − i
4)3

1
2 −iχ cos(2β)(1 + cos2 ι)(1 − e20)

5/4 (−5 + 18iχ + 9χ2)ζ
3
4 (−5+2iχ) [9(3i + χ)χ2orb + 2iζ30]√

2π3/2 (4i + 3χ)(8i + 3χ)χorb

× Γ
1
6

−
iχ
2

Γ
5
6

−
iχ
2

(C9)

A+
7,11,−1/2 = −

(18 +
i
8)3

1
2 −iχ cos(2β)(1 + cos2 ι)(1 − e20)

5/4 (−5 + 18iχ + 9χ2)ζ
3
4 (−5+2iχ)
0 (9χ2orb + 4ζ30)Γ(

1
6 − iχ

2 )Γ(
5
6 − iχ

2 )√
2π3/2 (4i + 3χ)(8i + 3χ)χorb

(C10)

A×
10,8,1/2 = −

(2 + 2i)3iχ/2 cos(2β) cos ι(1 − e2
0)
5/4

q
2
π ζ

3
4 (−5+2iχ)
0 [9(3i + χ)χ2orb + 2iζ30]Γ(3 −3iχ

2 )

(5i + 3χ)(7i + 3χ)χorbΓ(1 − iχ
2 )

(C11)

A×
10,8,−1/2 = −

(1 + i)3iχ/2 cos(2β) cos ι(1 − e2
0)
5/4

q
2
π ζ

3
4 (−5+2iχ)
0 (9χ2orb + 4ζ30)Γ(3 − 3iχ

2 )

(−5 + 3iχ)(7i + 3χ)χorbΓ(1 − iχ
2 )

(C12)

A×
2,4,1/2 = −

r
2
π
(2 − 2i)3iχ/2 cos ι(−2 + e20) sin(2β)ζ

− 3
4+

3iχ
2

0 Γ(3 − 3iχ
2 )

(1 − e20)1/4 (−8 + 18iχ + 9χ2)Γ(1 − iχ
2 )

(C13)

A×
4,8,1/2 =

(1 + i)3
3
2−iχ cos ι(1 − e20)

1/4ζ
− 9

4+
3iχ
2

0 Γ( 23 − iχ
2 )Γ(

4
3 − iχ

2 )√
2π3/2 (i + 3χ)(5i + 3χ)χorb

n
i(−1 + e20) sin(2β)(−5 + 18iχ + 9χ2)χorb

+ 2 cos(2β)
q
1 − e20[9(2i + χ)χ2orb + 2iζ30]

o
(C14)

A×
4,8,−1/2 =

(1 + i)3
3
2−iχ cos(2β) cos ι(1 − e2

0)
3/4ζ

− 9
4+

3iχ
2

0 (9χ2orb + 4ζ30)Γ(
2
3 − iχ

2 )Γ(
4
3 − iχ

2 )√
2π3/2 (−5 + 3iχ)(i + 3χ)χorb

(C15)

A×
1,5,1/2 =

(1 + i)3
1
2−iχ cos(2β) cos ι(1 − e2

0)
3/4ζ

− 3
4+

3iχ
2

0 Γ( 16 − iχ
2 )Γ(

5
6 − iχ

2 )√
2π3/2

(C16)

A×
5,7,1/2 =

(12 +
i
2)3

1
2 −iχ cos ι(1 − 3iχ)ζ

− 9
4+

3iχ
2

0 Γ( 16 − iχ
2 )Γ(

5
6 − iχ

2 )√
2(1 − e20)1/4π3/2 (2i + 3χ)(4i + 3χ)χorb

n
− cos(2β)(1 − e20)

3/2 (−8 + 18iχ + 9χ2)χorb

+ (−2 + e20) sin(2β)[9(2 − iχ)χ2orb + 2ζ30]
o

(C17)

A×
5,7,−1/2 = −

(14 − i
4)3

1
2 −iχ cos ι(−2 + e20) sin(2β)(i + 3χ)ζ

− 9
4+

3iχ
2

0 (9χ2orb + 4ζ30)Γ(
1
6 − iχ

2 )Γ(
5
6 − iχ

2 )√
2(1 − e20)1/4π3/2 (2i + 3χ)(4i + 3χ)χorb

(C18)

A×
7,11,1/2 = −

(12 +
i
2)3

1
2 −iχ cos ι(1 − e20)

5/4 sin(2β)(−5 + 18iχ + 9χ2)ζ
3
4 (−5+2iχ) [9(3 − iχ)χ2orb + 2ζ30]Γ(

1
6 − iχ

2 )Γ(
5
6 − iχ

2 )√
2π3/2 (4i + 3χ)(8i + 3χ)χorb

(C19)

A×
7,11,−1/2 =

(14 +
i
4)3

1
2 −iχ cos ι(1 − e20)

5/4 sin(2β)(−5 + 18iχ + 9χ2)ζ
3
4 (−5+2iχ)
0 (9χ2orb + 4ζ30)Γ(

1
6 − iχ

2 )Γ(
5
6 − iχ

2 )√
2π3/2 (4i + 3χ)(8i + 3χ)χorb

(C20)
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