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We here present the first analytic effective fly-by (EFB) waveforms designed to accurately capture
the burst of gravitational radiation from the closest approach of highly eccentric compact binaries.
The waveforms are constructed by performing a re-summation procedure on the well-known Fourier
series representation tife two-body problem at leading post-Newtonian ord€&nis procedure
results in two modelsone in the time-domairgand one in the Fourier domainyvhich makes use
of the stationary phase approximatioWe discuss the computationefificiency othese models,
and find that the time-domain model is roughly twice as fast as a numerical quadrupole waveform.
We compare the time-domain model to both numerical, leading post-Newtonian order, quadrupole
waveforms and numerical relativity fly-by waveforms using the match st#tikkithe match is
typically > 0.97 when compared to the quadrupole wavefariasnuch lower when comparing
to the numerical relativity fly-by waveforms, due to neglecting relativistic effects within the model.
We further show how to use these individual waveforms to detect a repeated burst source.

I. INTRODUCTION would allow us to probe this regime during each closest
approach of the binary in the inspiral phase of the coales-

A tantalizing problem currently exists in the field ofe€nce [25[f. matter is present in the binary components,
gravitationalvave (GW) modeling and data analysis: finite size and tidal effects will become important in each
how best to modednd detect binary systems with ec-Pericenter passage [26, Bdither, if one of the binary
centricity close to uniBuch systems may be formed ifOmponents is a neutron star (Nspodes on the NS
the cores of dense stellar environments, where dynaftic@ce and other oscillation modes can be excited, which
friction forces black holes into the gravitatiorenter Would generate an observable GW signature and allow for
of the systemincreasing the probability of twihee- better constraints on the_NS equatlon_o_f state [28-34].

, and four-body interactions [1-1Bhese mechanisms However, the large pericenter velocities present a tough
are capable of creating black hole (BH) binaries with Rroblem in terms of modeling, as typical post-Newtonain
wide range of eccentricities, but a subset are formed(Rn 35, 36]treatments afhe two-body problem may

high eccentricitylose to the unbound limitin glob-  not be sufficiently accurate to model such systuens.

ular clustersyesonant interactions force these systensdly, one would wantto start by considering the full

into three distinct categorieamely:ejected inspirals, Numericabolution ofthe Einstein field equationfor
in-cluster mergerand GW capturesEjected inspirals Such systems, but even this presents computation difficul-
and in-cluster mergers generally form with GW frequés. The timescale associated with closest approach can
cies f. 10~ [14-16]making them possible candidateBe severabrders of magnitude smaller than the orbital

for detection by the Laser Interferometer Space Antdifigscale. Any numericalrelativity (NR) simulations
(LISA) [17] and the Decihertz Interferometer Gravita-Would have to resolve these disparate time scales, which
tionalwave Observatory (DECIGO) [18Qn the other is currently too computationally expensive to produce
hand, GW captures generally form binaries with#  accurate simulations of more than a few orbit3728,

10°! Hz, a subset of which form within the Laser InteKludge waveforms like those in [38] have been shown to
ferometer Gravitational-wave Observatory (LIGO) [1d2e more accurate than PN waveforms for single bursts,
21] detection band with high (e ~ 1) eccentricity [6],Pafgvithout having fuNR simulations to compare to,

with estimated event rates of T2Gpc=3 in the local there is no way of knowing whether this misdatcu-
universe [22]. rate enough to describe the full inspiral-merger-ringdown

Highly eccentric sourcef®r ground-based detectors signal. S
constitute some of the most relativistic signals possibldhe lack of accurate models poses significant problems
with pericenter velocities reaching greater than ten plephe wants to detect such signals, regardless of the de-
cent the speed ofight. These systemsthus, present tec’gor being considered [.6)91].3 method is to search for
themselves as unique laboratories for studying gravitg§gions of excess power in time-frequency space, and add
tionalphysics and astrophysics in the so-called dynaP the power over multiple burststh the totalSNR
ical, strong field regime of gravishere the spacetime Scaling as N where N is the number obursts [40].
curvature |S |arge and rap|d|y Varying“ﬁéhccuracy The b|gge5t concern with such a detect|0n Strategy is that
of generarelativity (GR) within this regime has only ground-based detectors often pick up regions of anoma-
been tested with the currently detected quasi-circuldPus excespowerknown asglitches/41-43]some of
LIGO sources [24]where the velocities ahe compo- Which resemble the GW bursts from highly eccentric bi-
nent objects are only large in the late inspiral and m&gjégs.Fortunatelyif one knows where an initialrst
Gravitational wave bursts from highly eccentric syst&fgurs in time-frequency space and its morphology,
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can predict the location and morphologyalf subse- through integrationyhich results in closed forrana-

quent bursts in time-frequency spacegien a radia- lytic expressions of Keplerian quantities for highly eccen-
tion reaction modélhese burst models provide a priotric binariesThis procedure destroys the periodic behav-
on the bursts that would help us distinguish them fraor the trajectory, effectively describing the dynamics of
glitches in the detectorSuch a modelcurrently only the binary as a single fly-by.

exists within the PN approximation [25, 44]. We develop two waveform modelsing thisproce-

An alternative approacthat has proven to be both dure.In the first, which we refer to as the EFB-T model,
fast and robust to modeling error, would be to use nevgglerform the re-summation in the time donaaid,
networks to detect such signals [45kbHis method, employ a Taylor series radiation reaction modehe
deep learning networks are trained on sample data, wikeform polarizations are given by &%), with the
an injected waveform model(she trained networks necessary functions given in AppendixThe EFB-T
can then be run on detector data in té&ale,with de- modelhas the benefitof being fasterto sample than
tection sensitivity comparable to, but still less than, fadtnumericalleading PN order waveformslhe sec-
of matched filtering [52, 53] and parameter estimationdanodel, referred to as the EFB-F model, utilizes the
sults comparable to Bayesian inferencéHis4hethod stationary phase approximation to compute the analytic
has the added benefit dfeing fast,allowing for rapid Fourier transform of the Newtonian order waveforms for
follow-up for electromagnetic counterpartS635Al- eccentric binarieand is constructed by performing the
though promising, limitations of neural networks hindersummation in the Fouriedomain. The waveform
their ability to make statistically significant detectiorgolarizations are given by Eq$4) and expressions in
at the moment, but are still a powerful tool for generAppendix C,and depends on hypergeometric functions.
ing triggers [57 1A study ofthe detectability dfighly  This makes sampling the EFB-F model computationally
eccentric binaries using this method is currently beirexpensiveWe validate the EFB-T modadgainst both
considered [58]. numericaleading PN order waveformand NR wave-

Despite the strengths dhese search strategiédbe forms, using the match statidtie.show that the EFB-
gold standard for detecting GWs is, at this point in timeyaveform is highly accurate to leading PN waveforms,
matched filteringyhereby an accurate waveform temwith matches > 0.98 for a (10, 10bWhary.
plate is used to extract the GW signafrom detector While the EFB waveforms are a faithful representation
noise [59, 60The trouble with this method is the needf the numerical Newtonian order waveforms, it is impor-
for accurate templates, since small phase errors cant@asutb quantify their robustness to modelindfeirer.
in the search missing the sigmealtirely [61]Yet, this  pericenter distance becomes sufficiently small, non-linear
method has shown extreme success in detecting quagiong field effects will play an important role in the dy-
circularspin-aligned binaries [43, 62, 634, to exten- namics of the binary, which are not modeled in the EFB
sive modeling efforts [3Bl]. The biggest challenge to waveformslo study how important these extreme grav-
applying this search strategy to highly eccentric binaty effects are, we compute the match between the EFB-T
ries is the requirements of phase accuracy across mutifpleland NR fly-by waveformw,ith the results given
bursts.For lower mass systems that form on the edgéro$ec. V C. For the binary studied, the match is > 0.92
the LIGO band, there can be hundreds of pericenter paspericenter distances » 8.75M . The match does,
sages during the inspirahd any modekould have to howeverdrop off sharply as y decreasespecifically,
be phase accurate over all of these to achieve detectiommatch is 0.75 fog = 8.125M Thus, the modeling

In this article, we take the first steps toward achievihgxtreme gravity effects wi! criticalfor developing
a matched filtering search for highly eccentric binarieaveforms that cover small pericenter distances.

We construct the first analytic waveforms specifically dénally, while the EFB waveforms only cover a single
signed to accurately capture the burst of radiation frborst, we show how multiple EFB waveforms can be com-
an eccentric binaryWe work to leading order within bined to create a multi-burst m&deh EFB waveform

the PN formalism [35], where the conservative dynansicharacterized by three parameters that evolve in time,
of the binary are described by the Kepler probdevth, namely the semi-latus rectuanbitaleccentricityand

the dissipative dynamics are described by the quadrtipoéeof pericenter passa@¢hile the latter of these ef-
approximation,e. Newtonian gravity plus quadrupolefectively describes an overall time-shift of the waveform,
order radiation.Working within the PN formalism al- this is not independent of the previous time of pericenter
lows us to write all relevant quantities in a Fourier sepi@ssage and orbit@larameters when the burst is part

on harmonics of the orbital period, which follow direaifya full inspiral sequendésing the methods described
from Kepler’'s equation. in [44], we develop a timing model that accurately tracks

The problem with this Fourier decomposition is thathe evolution of these quantitagsplying a Newtonian
when the eccentricity dihe binary approachesnity, plus quadrupole radiation approximatite compute
the series become badly converdiataddress this is- the match between a multi-burst EFB waveform com-
sue using the re-summation procedure in [65, 66], whiared with the timing model, and a numerical Newtonian
the Bessefunctions appearing in the Fourier series arerder waveform which covers ten pericenter p¥$sages.
asymptotically expanda@the series are then re-summeshow that the multi-burst EFB modailhieves a match
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> 0.97 for the correct number efaveforms usedge. We may obtain a more explicit solution to the Kepler
one EFB-T waveform for each pericenter passtoye. problem by returning to E¢l). Writing w = 1/r and
ever, we further show that small errors, due to relaticisaiaging variables from t to ¢, we obtain the equation

effects for example, in the timing model can throw off de-
tection. Pw M

This paper is organized as follo®sc. Il reviews the d¢? tw T h (4)
Newtonian order two-body problesnd the necessary __ . , . ,
ingredients for the remainderttfe analysis.Sec.lll ~ T1his equation may be directly solved to obtain
presents the re-summation procedure in the time-domain p
and the construction othe EFB-T waveform model, r= 1+ ecos(p — w) (5)
while Sec. IV presents the SPA, re-summation procedure
in the Fourier domain, and the EFB-F mottebec. V, where p = A/m is the semi-latus rectum ¢he orbit,
we discuss the computation efficiencyhaf waveform e js the orbital eccentricity, and w is an integration con-
modelsand validate the EFB-T modelgainst numeri- stant known as the longitude of peric@otehtain the
cal waveformginally, in Sec. VI, we discuss the futuresvolution of ¢, we use the definition of h, which gives
prospects of such moddlkroughout this work, we use

units where G = ¢ = 1. . M V2
9= —5 [1+ecos(p—1w) (6)
P
Il.  BINARY INSPIRALS AT NEWTONIAN The trajectory of the binary is now uniquely parameter-
ORDER ized by the azimuthangle ¢,or alternativelyby the

true anomaly V = ¢ — «I'’he evolution equation for V
We shallbegin with a briefreview ofthe dynamics is still given by Eq. (6) since w is a constasta final
of binary systems at leading PN orderd some of the point, Eq. (5) can be inserted into Eq. (3) to obtain the

difficulties that arise in the problem. mapping between orbital energy and eccentricity, specif-
ically
A. The Kepler Problem 2h2 V2

To begin, we review the common parameterizations of
the two-body problem in Newtonian gravibgpmonly While the parameterization in termof the true
called the Kepler problemtore specifically, the Kepleranomaly V is complete, there is the problem of obtaining
problem reduces to solving the effective one-body edu#), which involves integrating Eq.Ti&hnically, the
tions ofmotion ~a = —(M?y~mwhere ~a is the relativéntegralcan be done to obtain t(V hut the resulting
acceleration of the binary, M =tmm, is the total mass function is too complicated to be inverted analytically.
of the binary with A, the component massess the  Instead,we rely on a new parameterization in terms of
relative radial separation of the two bodies, and ~n #he ggcentric anomaly wijth the mapping between V
with ~x the trajectoBestricting the motion of the bi- and u given by
nary to the xy-plane, and writing ~n = [cos ¢, sin ¢, 0], the PRV
equation of motion can be split into two equations, cogy =S¥ —€ o, (1 —-&7 sinu

M 1 - ecos'u l-ecosu’

. '2 —

R (1) The time evolution of may be obtained by applying
d . these equations to Eq. (Bfter integrating, we obtain
— r’g =0, (2)
dt 1_23 "

governing the radial and azimuthal motion, respectively, = = nm’? (t—¢)=u-—esinu,(9)

and where the overdot corresponds to derivatives with p

respect to timéhe latter of these admits one constanjhere " is the mean anomabnd t, is an integration
of motmn,spgqﬁca_lly the reduced orbitalgular mo-  constant. This equation known as Kepler’s equation,
mentum h =“p. Using this to replagein Eq. (1), this does not admit a closed-form solution for u(t) due to it
equation can be directly integrated by multiplyimg byheing transcendental.
to obtain Generallypne must solve Kepler’s equation numeri-
1, R M cally.However, it does lay the ground work for obtaining
rr=fg—+—, (3)

2 2rr r
with € the reduced orbital enefdne existence of these
two constants of motion has now reduced the problefnrtgeneral, this is not true when considering perturbations of the
quadratures_ Kepler problem.
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a Fourier series representation for the solution to theéKike quadrupole momentum of the binaith, x; the
pler problemilo see this, consider cos V given by Eq. 8hary’s trajectory, u the reduced mass of the binary, and
which may be written as a Fourier series of the form <> corresponds to the symmetric trace free part of the

7 . tensor.
cos V = X ek a = i i CoOsS U — €e_j» To find the observable part of the metric perturbation,
- e kT _,2ml-ecosu ~  we projectinto the transverse traceless yéegeefine
k=—e (10) the line of sight vector
The coefficientsacan be found explicitly by changing N = [sin t cos’Bsin t sinBcos (] (16)

variables in the integrfabm ° to u,and making use of

the integral definition of Bessel functions of the first ié‘.HSre Lis the inclination angle of the binary (the angle

betweefifand the binary’s orbital angular momentum),

Z ., and B is an arbitrary polarization and\e further de-
Jn(x) = zi du dnu-xsinu) (11) fine two vectors,
M —n ® = [cos t co$ gos t siff,B- sin (] (17)
with the end result being @ = [— sinBcos B 0] (18)
2 X . which define the transverse sub-space orthompokral
CosV=—e "é 1-8 . 11 k(ke) cos(k’) . (12) The GW polarizations are then defined by the projections
= 1 .. o
Similarly h, =5 0'¢ - BV hy, (19)
1 .. o
X hy == 0'® + d0 h; . (20)
sinV=2(1-2"2" J9%ke)sink’), (13) T2 !
k=1 Using the results dfte previous sectiond)ese reduce
to [61
where the prime corresponds to differentiation with re-[ ]
spect to the argumefihe entire Kepler problem is now [, _ M ’n h2 cos(2V — 2B) 3 cos(V — 2B)
determined as a function of time. i pD; j—e
While the solution to the Kepler problem is now com- e :

_ 2
plete, the Fourier series representation does have a draw-+icos(3v 2B) +€o0s(2B) 1 + cds

back. As the eccentricity increasemoretermsare +ecosV+esirtt (21)
needed in the sums of Egs. (12)-(13) to obtain sufficient 5

phase accuracy [67]For high eccentricitie® ~ 1), hy = 0 cos [4 sin(2V — 2B) + 5e sin(V — 2B)
the series converge slowgnd one may need to keep pD,

severahundred terms in the sums [65]his presents +e sin(3V — 2B) —2xn(2B) , (22)

a problem for developing waveform models using thesﬁere B = B~ w.Finally, these waveform polarizations

Fourier series, namely, while they may be fast and agv . ; . . . §
rate for moderate eccentricities, they need not nece é;fjh?xlternatlvelybg written In a Fourier series on har
monics of the orbital period [68],

be so for highly eccentric systernmsthe next section,
we present a method for developing analytic waveform mn 2 ) . y .

models for eccentric gravitatiowalve bursts that cir- f+x = _pﬁ(l -8 c¥ cos(k) + 8, sin(k) .
cumvents this issue. k=1 (23)

where [(.‘f)>< Sﬂf’x] are given by Eqs(9a)-(9d) in [69].

B. Gravitational Waves This completes our review.

The discussion of the preceding section deals with only
the conservative dynamics of the biflaeybinary also 1. TIME DOMAIN WAVEFORMS
inspirals due to the emission@#/s, which to leading

PN order are described by the quadrupole approxima- Now that we havereviewed theparameterizations

tion [35], of the Kepler problem,we may begin to considere-
2 . summingthese parameterization® obtain analytic
hj = D—I,,- , (14) waveforms for eccentric binaYieswill begin by focus-
L

ing on the re-summation of quantities in the time domain,
where h is the metric perturbation,i®the luminosity Where re-summation can be directly applied to cos V and
distance, sin V We will also consider the construction of a simpli-
fied radiation reaction modw®l,capture the inspiraling
lj = UX<iXj> (15) nature of the binary under the emission of GWs.
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A. Re-summations of the Kepler Problem & the If ki, = 1, the above integrals do not admit a closed-
Post-Parabolic Approximation form solutionput do if kmin = 0. Hence,we extend
the lower limit othe sums to address thisSecond is
We here present a method for re-summing the serié¥ matching to the exact answer at pericentd@he
appearing in Eq412)-(13).The method was originally procedure produces asymptotic series that resemble the
developed in [65dr re-summing similar series expresexact solutiorhut are often offset by a constant value.
sions appearing in the GW tails fluxesThe method This may be fixed by matching to the known value of
generally followshree steps:1) replace any instance the exact solution at pericentehich can be found by
of J k(ke) and J2(ke) with their uniform asymptotic ex- -taking u = 0 in Eqg. (8). Finally, the definition ofp,
pansions?2) replace summatioren the harmonic in- and the action of holding it fixed when expanding in
dex k with integralsand 3) expand the functions ob- 1, helps to ensure that the resulting expressions remain
tained after integration about high eccentriGgimely Phase accurate compared to an exact answer.
=1-¢€ 1. This method produced highly accurate Considerthe Fourier seriesrepresentation ofos V
representations ahe tail enhancement factors to the given in Eq. (12)The summation that we must re-sum
current limit of the PN expansion for eccentric binariés.

We will here adapt it for the Fourier series representatlo;@, ¥
of the Kepler problem. _ . J «(ke) cos(k’) = =1 + Jx(ke) cos(k’), (28)
A detailed description @gfie uniform asymptotic ex-  ,_; k=0

pansion may be found in [Fid&X]our purposes, it suffices _ '
to consider the first two terms in this expansion, spetifiere we have extended the sum to include k = 0 in the

cally equality After replacingd(ke) with its asymptotic ex-
( r pansion in Eqg. (24), and replacing the summations with
1/4 57 i i i
1 2 2 integrals, we are left with the problem of evaluating
J k(ke) ~ 1 E 2 P §CK1/3 §C3/2/( zZ. 5
177 5 22+% 1 2 ) h= Kz 307k cos(k), (29)
Yo 6 pF -7 i< ¥k Ze k2
I, = —K,3 =0k cos(k’). (30)
( (24) o k 3
r_
0 1-& Y ¢ 2 . The first of these can be directly evaluated as is, with the
] 2ke) ~ o 3Kz 307K end result being
4 en 3
7 4-18 1 2 321 ch(y, 1/3)
¢, 1 4 4—18e 1. 2oy [, = =72 31
2ane® 02 T -7 ke 3¢ SRS TTLe wrr (31)
(25)
' where ch(y, n) = cosh[narcsini{@h the other hand,
with |2 appears to be divergent when k Wémay circum-
(" v I #)2s vent this by realizing that cos(k*)/k = —d" sin(k’).
_ 3 | 1+ 1-2¢ p 1_2 26 Applying this,integrating over kand then integrating
¢= 3> N e - - - (26)  Gyer * results in
. , . 312
The re-summation procedure we will use is as fallows: I, = _T" ch(y, 2/3). (32)

extend the summations to include k = 0, (2) replace the
Besselfunctions with their uniform asymptotic expanThe practical problem of evaluating the integrals is now
sions, (3) convert the sum to an integral over k and ewiNed.

uate, (4) match the solution to the exact answer at perkpplying the remainder of the procedure, we obtain

center, (5) define a “phase” variable ¢y = (32} " #
make the replacement ' »and (6) define =1 —% 2 ch(y, 1/3) 2 ch(y, 1/3)
and expand in 1, holding y fixed. cosV~ -1 i+g 5 —1+p 1+9
There are a few extra steps that we have added here " #
compared to the procedure for re-summing theail > 107, 51ch(y, 1/3) h
hancement factors in [6bikst, extending the sums to +t 7 73507 178 149 BT, (y, 2/3)

include k = 0 is necessary when arriving at stegn(3).
erally, this procedure requires one to evaluate integrals of _
the form
Z . 2
cos(k’) It is worth noting th@t this function can also be written as

dk Kp, g(3ﬁk ) . (27) ch(x, n) = (1/2)(x + +%)" + (n-> —n), by the proper-
Ko 3 sin(k ) ties of hyperbolic funct|ons
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+0(3). (33) As such, these expressions are only valid over one orbit,
with * € [—n, nhnd constitute a post-parabolic formal-
Similarly, for sin V we obtain ism. Waveforms generated in this formalism thilis,

" # only be accurate for one pericenter passage, and we shall

2 sh(y, 2/3) 2 sh(y, 2/3) refer to them as effective fly-by (EFB) waveforms.
-

sinV ~ + 5 —sh(y, 1/3) +p—— In Fig. 1, we provide comparisons tifiese analytic
L1+ e #1 + ¢ expressions to numerisalutions of Eq(6), for a sys-
51 sh(y, 2/3) tem with e = 0.99The analytic expressions above are

+ 2 —zlSSh(lll, 1/3) HosP—0a o(?3) given by the dashed lines in the top pafi@ach plot,
1+¢ while the numerical solutions are given by the solid lines.
(34)  The bottom panels display the difference between the nu-
mericalnd analyticasolutions.From this we see that
where sh(y, n) = sinh[narcsinh(yote that we have the analytic solutions are highly accurate near pericen-
truncated the series expansion at second ordleera . ter (* = 0),while the difference is ~1Gor cos V and
is no mathematicalifficulty causing us to stop at this ~ 2 x 1 for sin V at apocenter (* = *m).
order. We are only interested in the high eccentricity As a final point, we note that the waveform for an
regime ( 1). If one desired more accuracy at moderateentric binary doesn’t just contain power in the sec-
eccentricities, one could simply carry the series to high@marmonic ofV , but also the firstand third har-
order. monics. In theory, one can obtain Fourier series rep-

An important note about these expressions is that thegntations for [cos(2V ), cos(3V ), sin(2V ), sam@V )]
are actually non-oscillatowhich runs contrary to the perform the re-summation procedure presented here to
notion ofa closed ellipticadrbit. Mathematicallythis  obtain asymptotic representatimfsthese harmonics.
results from the fact that the integrand in EQ9) is Indeed,one could even go one step further and write
effectively an exponentially damped sinusoid in k, whiosdull waveform in a Fourierseriesof orbital har-
integral is not an oscillatory funcioom a more phys- monicsas is donein Eq. (23), and perform there-
ical perspectivat can be shown that these expressionsummation procedure directly on the detector response
reproduce a parabolic trajectory when = 0(e 3W#). h(t). For simplicitywe do not consider this herand
show this explicitly in Appendix A. In this way, the primstead rely on the usuatelationship among trigono-
cedure actually acts to modmi ellipticalsystem as a metric functions to obtain the asymptotic expressions of
deformation of a parabola, rather than a deformatiofads(2V ), cos(3V ), sin(2V ), sinfBWMJEQqs.(33)-(34).

a circle as is done in the post-circular formalism [67]For example,

" #
_ 1 _8¢ch(y 1/3) 8 Ky, 13), 8 | _3¢chly 1/3) 2 cB(y, 1/3)
"1+ ¢ 1+¢ 5 "1+ ¢ 1+¢

h

2

i
- — 3

As we will show in Sec. V B, the waveforms obtained tées & Mathews [71Who found that in the quadrupole
this shortcut are stilhighly accurate compared to nu-approximation, the secular evolution of the Keplerian ec-
merical waveforms, and thus, we do not consider furteertricity e and semi-latus rectum p of the orbit evolve

re-summations of time domain quantities. according to
de  304en M * 32 121
B. Radiation Reaction Model Gt="1sm p L& ltggf - 30
3
In the previous sectiome held the Keplerian eccen- @= —%n M 1-27 1 +ze2 . (37)
tricity e fixed when performing our re-summation procgt 5 P 8

dure. Howeverijf the binary system is inspiraling dueT
to the emission of GWSs, then this parameter will evol
in time. What we now seek is an analytic modé&br
this evolutionThis problem was first considered by P

hese evolution equations constitute the adiabatic ap-

Hleoximationwhere secular changes are snoakr any
iven orbit.Thus, if we are only considering the evolu-

‘ion ofa binary system over one orbite can approx-
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FIG. 1. Comparison of the asymptotic representation of cos V (left) and sin V (right) to their nureviaéion found by
solving Eq. (6).The analytic asymptotic expressions are displayed as dashed lines and are given by Egs. wdB)e(B4e,
numerical solutions are represented by solid Tthesbottom panels of each plot shows the difference between the numerical

solutions and the asymptotic expressions.

imate the evolution dg, p) by a simple Taylor series, where
specifically

L 1 — é 3/2
Nn=M—+ —= , 42
e =e( =0 +5¢ w0+ 00 ° o 42)
=0 96 n 12 73 37
Fr=a—-—0" 1- 1+&+ e . (43
_ 31054352 1 +%}F% () + 0(2), (38) ™7 10nM & ¢ 2450 T g6 - (43)
0 ap The above expression constitutes a differeqfualion
p(t) =p(* =0) + T (t) + O(3) for “(t), which can be immediately solved with the re-
" ‘=0 # quirement that *(t 5)t= 0 to obtain
= _64 n 7 \ ? n
=h l-g5n 14gs (0 +00) , (39) (0 =52 fexp [27F(t— )] - 1} . (44)
Po 21F

wherep'= p/M, p(* = 0) =pp and e(" = 0) =aare the In Fig. 2, we compare the analytic approximations
values at pericentdlote that the terms proportional tgf Egs. (38)-(39) and (44) to the numericaVolutions
" are actually 2.5PN corrections,they are suppressedf Egs. (36)-(37)and (40), for a binary system with
by v* ~ (m/po)>?. Thus, the Taylor series expansiont, = 0, @ = 0.99,and g = 20M. For this evolution,
also constitutes a PN expansion. . the binary becomes unbound at finite * = —2.57, but in-
Why are the above Taylor series in terms of * and figfitely far in the past t = —.The bottom panels of
t? Naively, one might expect there to be a linear mapRiéW plot display the error in the analytic approximation
(t) given by Eq(9). Howeverpnce radiation reaction compared to the numerical evolutiBhe.analytic ap-
is includedthis mapping no longer holds and we musproximations of(*) and p(") are accurate to . 18%
consider the more general mapping specified by  over the fulbrbit. Meanwhilethe de-phasing between
. 32 the analytic *(t) and its numerical evolution is typically
a _ M-l 1 — é n. (40) less than one radian near apocenter, but approaches dou-
dat p ble precision near pericenter (t =Thus, the analytic

To solve, this we insert Eqgs. (38)-(39) and perform a gRlproximation provides an accurate representation of the
' ' evolution of the binary over the given orbit.

expansion to obtain

d .
= o+ 2mh + 0(3), (41)
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FIG. 2. (Top) Comparison of the analytic approximations E@8)-(39) and (44) (dashed lines) to numeriablutions of
Egs. (36)-(37) and (40) (solid lines)(Bottom) The bottom panels othe left and center plots show the error between the
numerical evolutions of e and p and their analytic representdtimbottom panel of the right plots shows the de-phasing
(difference) between the numerical evolution of ™ and its analytic approximation.

C. Waveform Polarizations waveform polarizationtn generalthe plus and cross
polarizations are given by Eq&1)-(22) for an eccen-
tric binary.The harmonics of the true anomaly can be

Now that we have a suitable radiation reaction modeplaced with their asymptotic expansions described in
we may combine all of the pieces together to compufeth#l A. After expanding in 1, we obtain

MZr) X6 X2

RG] n RN 4 Bl ch{wl ()], k/3} BL51(8); 1, Bl sh{wl (D)1, k/3# O(3), (45)

h+,>< (t) =
k=0n=0

where the functions [C("; t, B), S(*; t, B)] are listed indfypmerical waveforffihe bottom panel of of Fig. 3 dis-
pendix B, and *(t) is given by Eq. (e dependence plays the relative difference between the two waveforms,
of these functions on ' comes from the now time evolhiah is . 1073 is the region around pericenter passage.
eccentricity e(") given by Eq. (Fixther, the “phase”

variable g no longer has a linear mapping to * for the

same reasomore specifically, IV. FREQUENCY DOMAIN WAVEFORMS
wl ()] = Vi () . (46) So far, our efforts toward creating analytic waveforms
In it _Ll-el®P _ P 1= el (@] have focused on the time donT&i@.EFB-T model has

el’()] one particular drawbackamelythere does not seem

_ ) ) to be a straightforward way ahalytically calculating

We shallrefer to this modebs the time-domain EFB jts Fourier transformThe typicalmethod of using the

(EFB-T) model. stationary phase approximation (SPA) does not seem to
In Fig. 3, we compare the EFB-T model to a numeriwork in this case due to the complexity dhe wave-

cally generatedkading PN order waveforffthe wave-  forms,as wellas the lack of a readily identifiable wave-

form is obtained by numerically integrating Egs. (6),{6in phaseWe here present an alternative model which

(37), and (40), wity = 20 and e= 0.99.The numeri- {oes allow for the Fourier transform to be computed an-

cal solution is then combined with Eq. (21)-(22) to geflytically We shall refer to this new model as the EFB-F

erate the wavefornfior simplicitywe take t =0 =, model.

and we only plot the plus polarizatiowhere we have  jyst like the EFB-T model, we willalso follow a re-

normalized the waveforms such hh&@) = —1 for the



to solving an integral of the form

zZ,

//\ S (F) = dtA(t) expli¥(t, F)],  (48)
7 where W (t, f) = 2nft + k' (t)and for which the SPA
Fr is applicableThe stationary point is found by requiring

6| that d\./dt = 0, which results in

P pmene 1 2nf

--- EFBT * — =<
,1_2: ; ; ; ; ; ; tj,i §) + 727_[,__” In +kn0 (49)

Note that the stationary point of ¥ only real valued
for negative values of the frequency, while tfois \Bc-
curs at positive frequencigsice we are only interested
in the signals observed by GW detectons drop the
contribution to the Fourier transform framaildce it is
only dominant for negative frequendibe remainder

200 T 1000 of the SPA procedure may be carried out to obtain
. X [1-e 2 =i
hex(f) = h [(Q%”ﬂ%@J Koro
FIG. 3. (Top) Comparison ofthe plus polarization ofthe k p ¢:- X
EFB-T model (dashed line) to a numerically generated wave- explilky — x, — /4 + 2nf)]
form (solid line) with pp = 20 and e; = 0.99. (Bottom) X F Vo , (50)
Relative difference between the analytic and numerical wave- " X
forms.

where x = f/Frr, Xorb = No/(2nF ), and t corresponds
to complex conjugation.

summation procedure for the Fourier domain waveform

presented hereThe procedure is as follow(1) start-

ing from Eqg.(23) with the radiation reaction moaél

Sec.lll B, evaluate the Fourier transform gf.husing

the SPA, (2) replace the Bessé@linctions appearing in . . )

[Cgf)x: 5(+k,)x] with their uniform asymptotic expansion}?ﬁAfter applying the SPA, we are still left with a wave-
i

B. Re-summations in the Fourier Domain and
Waveform Polarizations

in £qs. (24)-(25), (3) replace the summations on k w rm that .involves.an infinite summation over har'monics.
an intégrabnd e\'/aluateWe willexplain the reasoning e question now is Wheyher a similar re-summation pro-
and some of the difficulties that arise from this proc % dlére to the t.'me d,)omlam waveforms can be carried out
in the following sections é“Ve.The functions E,x involve the exact same Bessel

' functions,so we may replace them with their asymp-
totic expansions given in Eq24)-(25).Further,there

is nothing preventing us from replacing the infinite sum-
mations with integralsThe only practicalproblem is

, , ._whether these integrals can be evaluated in closed form.
We desire the frequency domain waveform polarizgy,o integrals generally take the form

tionshy x (f). To do so,we consider the waveform po-

A. Stationary Phase Approximation

larizations given by Eq23). The Fourier transform is Z o ivea 2, ok )
then, schematically Ja= i dk Kx+a g, 3kC(te ) explikx, 1,
. X 2o 1_ B (51)
hy x(f) =h dt = exp(2nif t) where a = 1 and b € {1/3, 2/3jere are two problems
hok p(t) o associated with trying to evaluate tAike first arises
() R from the stationary point dependencelindepends
X ELx(t) explik ()] + c.c. (47) on the stationary point through e(t) given by (B&),

which after evaluating produces
where h =M 2n/(2D,), EX, =c ¥, —is®,, and
c.c. stands for complex conjugatdlere, (p, e, *) are & =ef_)= Q)+£4@ 1 +£}lez
still time dependent through Egs. (38)-(39) and (44), and - 15 pg/z 304°
Eﬁ{?x depend on time through the eccentricityTae (52)
problem of calculating the Fourier transform now redlUresiependence on k in the modified Bdssedtion is
thus complicate@nd in generalhe integratoes not

Xorb — %
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have a closed form solutiBartunately, we may realize The second issue arises when &unllar to the time
that the k dependence jn ds suppressed }pg/} and domain re-summatiothese integrals appear to be di-
is thus 2.5PN orderAs a result,we perform a PN ex- vergent when k - Blowever, thigcan be circumvented
pansion of any quantities that depend on the stationB¥yrealizing that® exp(ikyrm) = dXors €XP(ik)erb).-
point { _. For example, Utilizing this, we can reverse the order aftegration,
’ first integrating over k and then overy to evaluate
5 5 Ja when a < 0. We find that these terms are actually
Kp Sk32(tE_) =Ky ,kggfz +0 ,355/2 , (53) subdominant compared to the a =1 and a = 0 terms in
3 ’ 3 the Fourier domain waveform, so we safely neglect them

here.
where €= (). After applying the re-summation procedure, we obtain
- _M2p(1-8 x Yexp@uifg-ix) X X ., h Xl X . 9%
h+,x(f) = poDL e%Frr Xorb Xl/z el s A/L/Z,S(f)zFl 6 IE, 6 I§’ S, ‘4 Cg ’
1,12

where ,F; is the hypergeometridunction, the

functions Ay, ,,s(f) are listed in Appendix C,

(/1, b) are integers that belong to the set Sy ‘ ‘ ‘ ‘ T e
L = {(24),(4,8),(1,5),(5 7),(7,11), (1an8)}, ol o ERRF
s € {—1/2, 1/2} Note that we have not expanded this
expression about =1 % &. In attempting this, we
discovered that this results in a severe losgofiracy
compared to numericavaveforms. As a result, we
simply leave the above expression un-expanded.

We provide a comparison of the EFB-F waveform to
numerically computed one in Fighd.numerical wave-
form is generated by taking the discrete Fourier trans
form (DFT) of the numerical time-domain waveform di
cussed in Sec. lll C. We choose the masses for this cor
parison to be (m m) = (10, 10)M. The time-domain
waveform is sampled at 4096 Hz, and is then padded
that the total length of the waveform compasrits.
The top panel of Fig. 4 displays the plus polarization o " n T
both the EFB-F modeldashed line) and the numerical frz
waveform (solid line), normalized to the peak of the n
merical wavefornihe relative error between these two
wavefor_ms is largest at 10 Hwith Fhe EFB-F wave-  giG. 4. (Top) Comparison ofthe plus polarization ofthe
form being accurate to ~ 10%At higher frequencies, grFB-F model in Eq. (54) (dashed line) to a numerically gen-
the EFB-F waveform is more accuraaehieving ~ 1% erated waveform (solid line) withy™= 20 and & = 0.99.
accuracy at frequencies above thelpaadnciple, this (Bottom) Relative error between the analytic and numerical
can be improved by considering the next order termsvaveforms.
the asymptotic expansion of Bessel funcasngell as
hyperasymptotic techniques [tb23djust the low fre-

quency behaviorThis completes our discussiontbe ~numericalmplementations ohese waveforms models,
EFB-F model. specifically how quickly they may be evaluated.

Relative Error

V. VALIDATION A. Computational Efficiency

Now that we have our waveform models,seek to While it is appealing to have analytic waveforms from
validate them against accurate representations of thE'&@kandpoint of understanding the underlying physics,
bursts from eccentric systaftesshall also discuss som&0m a data analysis perspectivés also necessary for
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these waveforms to be fast to evalualfean analytic ule, but sampling the hypergeometric function proved to
waveform is sufficiently complicatedpay take more be badly convergent for high frequency vahred,we
time to sample the model than it would to simply gemeare not able to get a full estimate of the time it would
ate the waveform numericdtlyhis section, we seek totake to sample the EFB-F mod€&he data used to gen-
quantify the efficiency dfe EFB-T and EFB-F wave- erate Fig.4 were generated in Mathematiaahere it
form models presented in Secs. lll & IV, specifically hmek ~ 3 — 4 hours to complete the sampling, and which
quickly they can be sampled relative to a numerical dae@en’t cover the full frequency range.
form. The reason behind the slow evaluation time tdfe

The benchmark for this wilbe a leading PN order EFB-F model seems to purely be due to its dependence
waveform given by Eq(21), and which is generated on the specialized hypergoemetric functishigh are
by evolving the equations of Peters & Mathewecif- not easily evaluated numerically ftarge arguments.
ically Egs. (36)-(37),and Eqgs. (6) and (40). These There are actually two variables that are large in the
equations are solved in the ranges[ 4, where ¢ = EFB-F model.The first is xy = f/k. For LIGO sources,
/M 2 [m/(1 — €)F/?, to ensure that only one pericenF is typically less than 1 Hz, so x can span over several
ter passage is obtain¥te choosg = 20 andge= 0.9, orders ofmagnitude.The second is the ratio ¥,/3,
with masses m= 10M = m;, and a sampling rate Wwhich is actually a —2.5-PN term, ifescales likeV?.
of 4096 HzThe time domain waveform is padded withor smallvalues othe velocitythis ratio is largeand
zeros untilthe totallength is 2° points,before being common methods of numerically evaluating the hyperge-
Fouriertransformed.The time domain integration is ometric functions are poorly convergent.
performed with SciPy’s ode modulehile the Fourier ~ Given these two consideratidghspay be possible to
transform is computed numerically using the fft modproduce analytic approximations to the hypergeometric
ule. With these parameter values, it takes approximaftengtions appearing in Eq54) that would be signifi-
0.36 seconds to generate the waveform. cantly faster to evaluateThis was attempted in the

To generate the EFB-T waveformafter setting the course of this work, but the resulting approximates were
initial parameters gpg) and masses (mm), we find  not sufficiently accurate over the full range of frequencies
the time t; associated with = m using Eqgs. (44). of the LIGO band, so we do not provide the details here.
We then sample the EFB-T waveform over the inter- This is not to say that these methods are total failures in
val [—t, ;] at a rate of 4096 Hz. The waveform is speeding up the waveform, only that more work would be
then padded to ensure there &®tdtal points. After  necessary to obtain sufficiently accurate waveforms that
paddingthe Fourier transform is then computed usedre also fast to evaluat®/e leave this to future work.
SciPy’s fft routine. For initial parametem = 20 and Due to the excessive computation cost of evaluating the
& = 0.9, and masses m 10M = mp, it takes approx- EFB-F model, the remainder dfhe numericaanalysis
imately 0.14 seconds to generate both waveform pok@rformed in this section is done only with the EFB-T
izations in the EFB-T modéThis is under half the time model.
to generate the numerical Peters & Mathews waveforms.

It is worth noting that this evaluation time increases
significantly asey approachesinity for the sampling B. Faithfulness
method described above: @ = 0.999, it takes approx-
imately 0.56 seconds to generate the EFB-T waveformIn order to construct the EFB-T model, we were forced
For @ = 0.9999, the sampled EFB-T waveform h#s > & make a few approximations, namely the post-parabolic
points,simply due to the fact that tan become large approximation for the conservative dynamics, and an ap-
(i.e. it takes a long time to get from pericenter to apgroximate model based on Taylor expansions of the radi-
enter). For such a casewe pad the EFB-T waveform ation reaction equations for the dissipative dynbmics.
to have a total o2 points, which takes approximatel¥igs. 1 and 3, we showed the difference between these an-
3.6 seconds total to generate the Fourier trar®ficem. alytic approximations and numerical calculatitrile
can be circumvented by simply choosing a smaller wihis is suitable for checking the accuracy of these approxi-
dow over which the sampling is performed,choose mations, it would also be useful to understand how errors
tsample < tz. For such high eccentricitiemmpling to in these approximations might affect our ability to detect,
apocenter (= m) is likely unnecessary since there is and perform parameter estimationsach signalsTo
very little GW emission thefEhe same issue arises forthat end, we study the match between the EFB-T model
the numerical waveform that we are comparing to. and numerical Peters & Mathews waveforms

While the EFB-T model is relatively fastto evalu- The match between waveformsamd fp is defined
ate, the same cannot be said of the EFB-F waveform as
Eq. (54).From the numerical and EFB-T waveforms, we
obtain a frequency resolution 6f, which we use to sample M = ma» (ha|hs) , (55)
the EFB-F waveforms fromu = 10 Hz to figh = 2048 o (ha|ha)(hg|hg)
Hz, i.e.the Nyquist frequendye attempted to sample . ) ) )
the EFB-F model in Python using the mpmath [73] m@dnere (& |hg ) is the noise-weighted inner product de-
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fined as C. Robustness to Modeling Error
Z oz ooy
ha (f )hg (F) S . . .
(halhg) = 4Re df Z——B-— -, (56) The calculation in the previous section provides a use-
Sn(f) ful measure of errors introduced by the approximations

. . . necessary to create the EFB-T waveforms, and show that
with 5,(f) the noise power spectral density of the dejees "o 3 ralatively faithful representation of the numeri-

g?/;k??Lnegtflglgsg%eglﬂtcil\eigftc; s;g thi(CShSLInSw(;E?\)t(_Ic,Téze al Peters & Mathews waveforihswever, the pericen-
an arbitrary time shift of trf)e Wa\?g‘oﬂh sicallythe ter velocity ofbinaries emitting GWs in the detection
Y y y band of ground based detectors need not necessarily be

match provides an estimate of how biasednbiased
; . . . ' ' . small.One may wonder how accurate the EFB-T wave-
parameter estimation will be if mgdelused to detect form is compared to a realistic sightdre specifically,

signal /2. In this case, we are using it to determine h . : . . i
faithful the EFB-T model is compared to the numeric%;rhagl\lls;rdeegm)delmg) error induced by working to lead

Peters & Mathews waveforms discussed in the previou e seek to answer this question by comparing to full

section. . .
. . NR waveforms of single pericenter pass@lgease the
mW_e ggg/lsld_err;hear:gtchio;(g\ll\v/lo ;ISC? sogrzmth waveforms from [3Thich specifically looked at black
1= e m = m = " hole-neutron star binaries with g = W.e are primar-

\rlgitzfnmpt;tfdtzgcré':ttﬁ?itassgg?ﬁ:grrtﬁk;f :ﬁ;ml'il?iius ily interested in the case of binary black holes (BBHSs),
P Y ' PUCILY, " and while these simulations may treat onehefcom-

we only compute the match between the plus polariza: . . .
tions of the waveform§he Fourier domain waveforms%)aaCt objects as a neutron star, the underlying dynamics

are computed via the method discussed in Sec. V A hcr>uld be an accurate trace of the BBH case since tidal

S.(f) Wg use the publicly available data for LIGO at‘ ggects and f-mode oscillations are subdominant in the
n ’ - .

sign sensitivity [74b compute the integral in Eq. (56) veforms [271For our analysis,we thus choose the

o . - fmasses to beyn= 10M and m = 40M .
we take the I|r_n|ts ofntegratllor.\ asigw = 10 HZ and. The initialdata for these simulations is set by choos-
fhigh = fny. Finally, to maximize over the time shift

t,, we compute the inverse Fourier transform of the iir!;%velocities corresponding to a Newtonian orbit with
pr - . '
grand in Eq. (56)and find its maximunThis gives us B ameters ire]. The time domain data from the NR

an approximate value pthtat maximizes Eq. (53)Me simfulations is fohr the Wegtalar Wy = h+. + iax' To ier d
then perform a grid search around this point to find thg/form a match comparison, we require the Fourier do-

true valueThe results of this computation are displayB@in waveforrh, (), which we compute by using the
properties of Fourier transforms to realize that

in Fig. 5.
Forthem = 10M = m; casethe match is always . F{Re[W,]}
above ~ 0.98 for adlf the cases studiedhis is above hi(f) = — 4 (57)

2 ’
the threshold of 0.97 that is commonly used as a require- aref

ment for performing matched filtering searci@S]. \ hare F [his shorthand for the Fourier transform of h.

Thus, for this low mass casethe EFB-T waveformis g1 gimplicity we once again only consider the match

an excellent approximation for the typibairsts that = ,ot\veen plus polarizations of the NR waveforms and the
might occur within the LIGO ban@n the other hand, EEB-T model.

the high mass case withyrs= 10M and m = 40M The NR simulations are discretized with a time step
only achieves such high matches for high values of egegp-— 1 5625Mm which corresponds to the sampling
tricity and/or low values of the semi-latus rectlim. .o of 2586.34 Hz for the masses we have chbisen.
reason for this is that the peak frequencyhe wave- | athod for computing the Fourier transforrRe{f}]

forms is sensitive to the total mass of the binary, thega s the same procedure detailed in Sec. V A for com-
centricityand the semi-latus rectumhich determines puting the Fourier transform of the EFB-T modBar

how widely separated the binary For higher masses tho match comparisdime values of the Newtonian pa-
and higher semi-latus redtae peak frequency can be- g maters [ elof the NR simulations need not give the

come smaller than 10 Hz, resulting in only the exponglsy match for the EFB-T waveforffisis is due to the
tial high-frequency tail being within the LIGO band, andt that these Newtonian parameters do not correspond
lower matches overdlhis is not unexpected, a similary, the trye pericenter and eccentricitytioé orbit, as
effect occurs in the quasi-circular casehlghgr Mass  ell as the EFB-T model is not an exact representation
systems generally merge at lower frequeRi€ss a  of the NR waveform, so its parameters can be Wased.
result, spend less time in the LIGO band. thus vary these parameters in the EFB-T model, or more
specifically p @], to find the highest match possible.
The results of this calculation are displayed in Figs. 6-8.
3 It is worth noting a more stringent requirement could be obtaine The left panebf Fig. 6 shows the results for the NR
by considering the percentage ofevents lostduring a search, gimmatlon ,Wlth 5 = 10M. The maximum match is
which scales as 1 — M 0.927,and is achieved atvaluesof py = 10.9M and
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FIG. 5. (Left) Faithfulness (match) of the EFB-T waveform to numerical Peters & Mathews waveforms for binaries with total
mass M = 20M and mass ratio g = {Right) Same as the left panel, but with M = 50Mind g = 4.Note that the color
scale is different in each plot.

e = 0.528 for the EFB-T modelhe right panetom- Secondfhe EFB-T waveform can capture these bursts,
pares the “best fit” EFB-T waveform to the NR wave-but the parameters of the modell be biased relative
form in the time domainTo obtain A (t) for the NR  to the true parameters of the binarg.difficult to tell
simulatjon, we simply compute the inverse Fourier traog- much the parameters are biased in this sas®
form ofh, (f) using SciPy’s ifft module.Both the NR the true parameters of the binary aren’t actually known
and EFB-T waveforms are normalized by their peak afrom the simulationsBoth of these considerations ne-
plitudes.This comparison shows that the two waveforressitate the creation of more accurate waveform models
have the same morphology, but differ by their amplitodasyer binaries with small pericenter distances.
which is consistent with what was found in [28].

Fig. 7 shows the results of the same comparizon,

for an NR simulation with § = 8.75M . In this case, D. Multi-burst Sequences
the maximum match is 0.94%d is achieved at EFB-
T parameters p = 8.56M and & = 0.541. The NR The previoussectionsshow thatthe EFB-T model

waveform displays an asymmetry around its peak amprovides an accurate descriptiortted GWs produced
plitude, due to the binary exhibiting whirl-like behavigiiring a single pericenter passage, provided the pericen-
around closest approach [Z8Bis effect is not captured ter distance is sufficiently large that relativistic effects
by the EFB-T model. Finally, Fig. 8 gives the results can be neglecteddoweverpinary systems wiljener-
for the NR simulation with = 8.125M , with the max- ally go through multiple pericenter passages as they pass
imum match of 0.754 at EFB-T parametegrs 6.99M  throughand ultimately merge in the LIGO banthe
and @ = 0.541The NR waveform displays more of theisefulness dfaving a waveform that accurately covers
whirl-like behavior than the previous waveform, and @819 one pericentepassage seensmewhatimiting.
result, the match is significantly lower. We here show how multiple EFB-T waveforms can be

The results ofthis analysis show two thingstirst, combined to recover a sequence of bursts from an eccen-
the EFB-T waveforms are relatively robust to modelingic system.
error, but only to a poims the pericenter distance be- To begin, we generate a sequence of bursts by numer-
comes smallethe EFB-T waveform becomes less accucally integrating Eq936)-(37) with the initiatondi-
rate compared to NR wavefoifhss is not unexpected, tionsp(* = 0) = 60M and e(’ = 0) = 0.9, where
since the EFB-T modeis constructed from leading PN * = 0 corresponds to the first pericenter passake
order dynamics, while the Newtonian pericenter velofiitgher choose the masses to be;ns 10M = m,.
is v, = 0.46¢ for the case with+ 8.125M where cis We numerically integrate these equations over the range
the speed of liglkelativistic effects not captured by the= [—Torb,0/2, 30secwhere T o = 2m/ng. This re-
EFB-T model become important at such high velocitiegits in a sequence of ten pericenter passigeuld
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FIG. 6. (Left) Match (color) between the EFB-T waveform model and an NR waveform with input Newtonign=va0/ds r
and @ = 0.75, and massesirs 10M and m = 40M . The maximum match, displayed by the cross symbol, is 0.927, and
is achieved atp= 10.9M and @ = 0.528 which corresponds tg,5 = 7.13M. (Right) Comparison of the best fit EFB-T
waveform to the NR waveforBoth waveforms have been normalized sotthat 1 at the peak amplitude.
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FIG. 7. The same as Fig.6, but with an NR waveform with input Newtonian valuesgf = 8.75M and @ = 0.75. The
maximum match is 0.945, and is achieved &t§&56M and ¢ = 0.541, which corresponds 3@ =~ 5.55M.

extend this to more, but this suffices for our purposea.similar procedure hergs an exampleghe change in
To generate a multi-burst EFB-T wavefomme, start the eccentricity e from one pericenter passage to another
by generating a single waveform using the method de-given by
scribed in Sec. V A widg = 60 ande= 0.9.To gener-
ate the next burstwe must know what the parameters 6.1 =8 + de T
[p, al at the next pericenter passage wik. Fortu- 1 dt , e orb.!
nately,such a modeWwas developed in [25Ve follow
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FIG. 8. The same as Fig6, but with an NR waveform with input Newtonian valuesrgf= 8.125M and @ = 0.75. The
maximum match is 0.754, and is achieved &tg@99M and ¢ = 0.541, which corresponds @ ~ 4.54M.

_604mne 121 (58) s continuousand we do not have to perform padding
15 pl5/2 3047 in between each EFB-T wavefoffenerating all subse-
quent EFB-T waveforms follows the same procedure.
where we have used Eq. (36) to obtain the second equile compute the match between the numeritanh
ity. The same procedure can be used for the semi-latugrst sequence and the multi-bur&FB-T model in

rectum and time of pericenter passage to obtain Fig. 9 (squares)as a function otthe number oEFB-
L # T waveforms used:he match is initially very lowut

1281 n 7 increases with the numberwlveforms and reaches a

p+1=p 1 5 572 1 +§e,2 » (59)  maximum of 0.993 at ten burdtsis is well above the
P value of 0.97 used for matched filtering searches, which is
[ indicated by the horizontal lifiéwus, a simple method
tpe1 = by =21M 2 1 of combining multiple EFB-T waveforms can be used to

# capture sequences of bursts from eccentric systems.

%mn 1 +;—;’{e,2 + g—gej‘ 60 There is one caveat to this analy¥is.have here im-
- Tﬁ?/z 1-¢ . (60) plicitly used the results of Peters & Mathews throughout

the analysis, namely to generate the numerical waveform,

respectivelythere are two slight differences in this tirf?€ EFB-T waveforms, and the timing motiels, the

ing modekompared to that d25],namelywe do not timing model of Egs. (58)-(60) will only be accurate for

expand about el and we include the radiation reac- Sufficiently widely separated binaries where the PN ex-

tion effect on the orbital period in Eq. (B@se are to Pansion is validFor sources of ground-based detectors,

ensure the model is accurate over a wider range of diffj¢dnay not be accurate enough to perform a matched

parameters. filtered _search using a multl-purst EFB.-T _waveﬂﬁun.
The above equations constitute a timing model to pREW thiswe induce an error into the timing mddel

dict when the subsequerurst will occur, and what multiplying tr;/e2 radiation reaction terinesthose pro-

the orbital parameters wilbe during that closest ap- portional tg; ™ in Egs. (58)-(60), by 1 + , where al-

proach.From [@, &, §,0l, we can obtain afluture val- lows us to control the level of the mis-modelin@error.

ues.The initial burst is characterized by an EFB-T wavepeat the above match calculation with = Ot@us

form in the intervdkt;0, &0], Where to is described introducing a 1% error in the radiation reaction effects.

in Sec.V A. To generate the second bumsg calculate The results are given by the circles in Figh8.match

[p, a, t,1] from the initialvalues,and we sample the no longer peaks at the correct number of bursts, and no

new EFB-T waveform with these parameters in the rdagger reaches. the threshold fpr _matched filteDimey .

[tr0, Torbo+tr1]. The change in the sample interval istiaus negds a highly accurate timing motteperform

ensure that the sampling intervfathe totalwaveform match filtering searches using these EFB-T waveforms.
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described by geodesic motion on an effective Kerr back-
ground.While this might be appealing due to its accu-
Lo N racy, re-summations of the type carried out here may not
be possible in this case due to the complicated geodesic
motion.
Second,how would one go aboutising the EFB-T
model to search for eccentric binaries? The analysis car-
ried out in Sec. V D shows that one needs a very accurate
timing modeln order to string multiple EFB-T wave-
formstogetherto perform matched filtering searches.
Timing modelsconstructed in the PN approximation
may not be accurate enough for full inspifeisalter-
native strategy would be to search for correlated bursts
within the detectdf.multiple bursts are emitted by the
same system, then the parameters of each burst will not
be independent of one anotlker.example, the sky lo-
cation,inclination anglegnd component masses should
‘ ‘ : : : . all be the same (to within some error) among the bursts.
’ * “Number of Wavetorms Further, the peak times and frequenciestbfe bursts
should be correlated in the typical chirping fa€hien.
may be able to use these correlations to search for full
FIG. 9. Match between a multi-burst EFB-T waveform to a €Ccentric signals without the need for a timing model.
numericaten burst sequence generated by numerically inte- Third, what can we learn from detecting these signals
grating Egs. (36)-(37) withys= 60M and @ = 0.9, over the With the models developed here? The most cited appli-
time interval t = [-1.75, 30] secovwdscompute the match cation ofdetecting eccentricity within inspiraling bina-
as a function ofthe number ofEFB-T waveforms usedup  ries is that it acts as a tracer for formation channels.
to fifteen.The square sequence is the match with the timing the binary has a measurable amounteatentricity,
model given by Egs. (58)-(60), while the circles have a 1%jmigould have had to form relatively close to merger,
_modeling error intrqduced in the timing modehe match pointing to dynamicadbrmation. Furthermoreeccen-
:ns/iltor:ottrfgdhziizao?tgftlli?]g 22::‘:5”3%?? (t)I) %FQB;T waveformsy - hinaries also present themselves as unique systems
P 9 T for placing constraints on the NS equation of state due
to the importance of tidal effects and f-mode oscillations.
VI. DISCUSSION With pericenter veIocitie_s potentially b_eing ldhgse _
systems may also be unique laboratories for performing

, , tests of GR.The models developed here are a first step
We have developed here the first analytic wavefor%g,vard performing such studies.

designed to describe the burst of gravitational radiatlopina”y the analyses carried outere have only fo-

from highly eccentric binariesThis wasachieved by sed on sources for ground-based detectursever

applying a re-summation procedure to commonly Usgd, ation synthesis studies have shown that there are
Fourier series representations of quantities at leadin a'Ny more eccentric sources in the detection bands of
order.By comparing to NR waveforms, we showed thaf;ce.hased detectors such as LISA and DECIGO, some

the EFB-T model is an accurate representatio_ntbé f which will be highly eccentric.Within our galaxy
bursts from eccentric systems where the pericenter ‘gﬁ)‘ne,there are ~ 150 globular clustersshich could

tance is large enough to neglect relativistic effetts. -qntain ~ 20 sources emitting within the LISA detec-

there are stillmany open questions from the analysegijon pand [77]f these sources are highly eccentric, the
carried out here. veform models developed here should be excellent can-

First, how does one construct a more accurate mo ; Py
' - : - ates for detecting and characterizing the parameters
compared to NR simulations? The EFB-T model is relf these systems. g 9 P

atively accurate to the NR waveformsed here but
there is significant room for improvenidr&.most di-
rect way of improving the model would be to repeat the ACKNOWLEDGMENTS
analysis carried out here to higher PN ordeEourier
series representationstb& PN two-body problem are
currently known to 3PN order [76llhe re-summation
procedure carried out here should s@llapplicable to
higher PN order. A more indirect approach would be
to construct an analytic kludge modalong the lines
of [38].The conservative dynamics of such a marel

Match
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Appendix A: The Parabolic Limit the solution
. V q 13 q -1/3
We here show that the re-summation procedure dagn ~ = 5 + 24+1 - 5+ Z+1
scribed in Sec. lll A reproduces a parabolic trajectory in
the limit e » 1. We begin by reviewing the Newtonian o (A4)
two body problem for parabolic trajectfresdiscus- ~ The question is now whether the re-summation pro-

sion of Keplerian orbits in Sec. Il A is completely gen&ggure ofSec. lll A reproducesthis expression.The
and valid for all values oTaking e = 1 in Eq. (5) givesanalytic expressionf®r cos Vand sin V are given in

us Egs. (33)-(34). Taking the limit = 0, a simple eval-
uation reveals
-_ P _F v ,
"= 1% cosV 2 1+ taft 7 (AL tan Y sin V

2 T 1+cosvV

where the second equality follovisom trigonometric p__ 13 p___ -113
identities.From the conservation of the orba&agular ~ y+ v+l -+ P+l
momentum h =@, we obtain + 00, (A5)
12 -2
vea M 1+tap Y (A2) Where we have expanded ch(y, n) and sh(y, n) (see foot-
Joz 2 ’ note 2). When performing the expansion about 1

in Sec.lll A, we held y fixed.To obtain the appropri-

In analogy to Kepler’s equatighis can be directly in- ate |imit, we must now consider the behavior of ¢ when
tegrated to obtain Barker’s equation e —» 1. Recall that

N 3" 3n

25 =3U+U, (A3) Y= 2072 = 2072 (t—15) (AB)
where U = tan(V /2) ang = 3(M/p3)Y2(t — §), with

t, the time ofclosest approachUnlike Kepler's equa- where n and ¢ are given by Eq4.0) and (26)respec-
tion, Barker’s equation can be solved in closed form bively. Expanding this expression about 1 reveals

making the replacement U = z — (1/Fhis results in @ ~ 5 + O(), and we thus obtain the correct limit.
|

Appendix B: Time Domain Waveform Functions

We here provide explicit forms for th&’Cand S*™ functions appearing in EG45). The non-zero functions
are as follows, where,(g) = (sin 6, cos 68), and y is given by Eq. (46).

o0 _ 1iw$CBSB 34¢-¢ (B1)
V= 0GB +E-D -1 +A-1+H) +$-F(-3+] + 16@5’3‘13:;‘ Ll (82)
02 _ 1 B _ 2y L 33926533 + ¢— Dy

o2 = 5800 9¢(3 + 2659 + 23833 + £ — &) + 238543 + §) + 27(1 +5 + 1+
(B3)
P = rygpn L~ 1+ 4535+ 07+ 3302+ 207 - §507 — GG + E- D=5+ )
+@ -1 -+ $(-5+¢) (B4)
3
) - o e L 15+ § + 5857 + ¢ = 215¢° + SY° + T$S¢° + G(3 + £~ )(5 + 7¢)
-3 1+ ¢+3(5+78) (B5)
12) _ 1 _ _ 2 2 2 _ 2,2
! = 14001 1377 111 + 35855 111%5— 11957 — 1114+ 6915%” — 111%° — 23057y

—5¢(3 + ¢ - §)(239 + 46Fp+ ¢ 111(1 + ) + 55(239 + 461y (B6)
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V=-r 2 G-3 3+¢-9 (87)
2y = ) G-% 3+¢-¢ (B8)
c?? = 7140& . 1+ 966+ F— 32852+ P+ 3$9° + SyY? — $s2p° — G(3 + £ — 9)(32 + )

+G(-1 - ¢+ 532 + @) (B9)
c‘+“'2’=70(13+@ G-% 3+¢-¢ (B10)
S0 - i f(ﬁcﬁsﬁ 3+¢-¢ (B11)
Sh - _ 15_1 Gt 3+E-¢ (B12)
s = m‘llﬂpcﬁs,g 3+¢-2 —179 + 26y (B13)
520 _ mllﬁ)wcﬁsﬁ 342-¢ (B14)
s = —5(1+2$)3/2c353 3+¢-5 19+ 22 (B15)
522 = —wcﬁsg 3+¢—¢ 2251+ 2026y (B16)
s 17+8W2c,35,3 3422 (B17)
s = 5(112@)@5,3 3+¢-¢ (B18)
S5 - 25(5’6@@5,; 34— ¢ (B19)
560 - —Wq;sﬂ 3+¢-¢ (B20)
sel) = —5(1+2$)3/2c,35ﬁ 3+¢-% (B21)
562 —mlf@)wcﬁsﬁ 34— ¢ (B22)
dXO'O) _ 11.?,:3@ Cfs _ 5129 (B23)
cov = —5(12_'_@cl 4Gy + 4%y + 9gsp(1 + §) (B24)
o2 _ _ﬁq —16Gy + 165y + 45gs3(1 + ) (B25)
a0 = wcﬁsﬁq —1400 + 288y (B26)
cHY = “szcﬁsﬁcl 420 + 588y (B27)
c? = Wcﬁsﬁq 239 + 462y (B28)
c2? = 1 _1|_6(Bcﬁs;;cl (B29)
et = LCBSBCL (B30)

5(1 + @)
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Ce? = 35(12_|_a})cﬁsﬁq 32+ ¢ (B31)
e = —ﬁq;sﬁq (B32)
s =1 _1|_6q;q G -3 (B33)
S;l'l) — _5(11_?@)(_.1 Cf; _ % (B34)
s = 175($+%pc‘ G-% -179 + 26y (B35)
S0 = (1+2;)3/2q ¢ -3 (B36)
s = —5(1_|_4$)3/2q G- 19+22y (B37)
S22 = —Wq G —$ 2251+ 2026y (B38)
S = 35(1153%;)3/2‘:‘ G- 3 (B39)
st = 5(lzf$)q G- (B40)
552) = 25(172+ 56 G-2 (B41)
560 _ B +8$)3/2 « G-9 (B42)
SieD) — = +4$)3/2 ¢ &-2 (B43)
562) _ _35(1:17&})3/2 ¢ 2-3 (B44)

Appendix C: Fourier Domain Waveform Functions

We here provide expressions for the functipng Appearing in Eqg. (54The non-zero functions are
r

+ 2(1 + )32 (1 + cda)(1 — @)% sin(2B)G "X [9(3i + x)F, + 20GIN(3 —3X)
Alog12 =~ 3 i ; X ’ (C1)
n (5i + 3x)(7i + 3xbel (1 —%)
. (1+ )37 (1 + cg)(1 - 7 sin(B)F 7 (9)G,, + 4913 -3
Alos-12 =~ Y 2n(=5 + 3ix)(7i + 3xpr(1 —X (c2)
q_ X xber(l —2)
(1- 032 2[cos(2B)(1 + Gd(~2 + @) + @sirt (I 77 (3 -2
At = m 2 (C3)
24,172 (1 — @)4(—8 + 18ix + S (1 —X)
.3 4 ed - gV g - prg - " 1 42H5i + 18 —
Ass1n . ST 3061 + 30 cos(2B)(=1 +3H5i + 18x — IMXorb
+2 1 - 6sin(2B)9(2i + X)Ew + 2i¢ (C4)
e (3 + §)3 X (1 + cdR)(1 - @ sin(B)G (98, + 4T3 - 54 - %) (C5)

48-12 = T 2m2(=5 + 3ix)(i + 3X)¥o

, . . 3, 3 , ,
A+ _ (1 +5)35X (1 + cda)(l — %)3/4 S|n(2B)§“+J?LF(% -0 -%)
15,172 " 2B
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. ) . 9. 3ix . .
_G+H3a -3t rG - nrg -0

+ _ _ 3/2 i _ i
Al = T2(1 — BVAmR (20 + 3x)(4i + 3o 1+ (;88)(1 8)>? sin(2B)(—8 + 18ix + Ixom
+ i[cos(2B)(1 + ca3(—2 + @) + &sirt[9(2i + )%, + iG] , (C7)
A+ (3 + D)3 [cos(2B) 1+c705); 2+ 8 +<%S|r121]1—3/)(§4 9)(§rb+4€’ X)r(z-%)
57,12 = 2(1 — ®VAI32(2i + 3))(4i + 3o '
(C8)
A+ _ (3 - 137X cos(2B)(1 + cbe(1 — §)°4 (=5 + 18ix + KT 5+20 [9(3i + x)§,, + 2i§]
71112 = " 282 (4i + 3x)(8i + 3
1 iy 5 ix
xT 2=5 T 2-%5 (C9)
At _ _(3+ )37 cos(2B)(1 + ch8(1 — @/ (=5 + 18ix + T (9x2,, + 4B)T(E — K )r(2 - X)
7,11,-1/2 282 (4i + 3x)(8i + 3x¥
(C10)
N g 3 »2(—5+2iy) . . 3i
(2 + 2))372 cos(2B) cos (1 ¥ 2{; [9(3i + Y)Fp + 2i§IN(3 —3X)
Ai(osyz= - : - 7 (C11)
(50 + 3))(7i + 3xep(1 —%)
(1 + )32 cos(2B) cos (1 ¥ 2430 (92, + 4@)r(3 —3)
Afos -2 = = - - i (C12)
(=5 + 3ix)(7i + 3xhpl(1 —%)
r_ . 3.3 .
ax __ 2(2-20)87 cos -2 psin(2B)g* T 7 M3 —3&) €13)
24127 (1—%)1/4(—8+18i)(+9)d'1—%
_ (1 +0N37% cos 1 -5 G o - 'X)” ,
A% = 3 -1+ (2B)(=5 + 18ix +
481/2 q 2,.?/2(, + 3X)(5I + 3X)%b é SIn B IX 29Xorb
o]
+ 2 cos(2B)1 — @19(2i + X)X + 2i] (C14)
A, m_(1+/)§“’X cos(2B) CC}SLlﬁ--’é“C_“ (92 + AET(2 - Z)I(4 - X) (C15)
22 (-5 + 31)()(/ + 3X)otb
y (1 + )3~ cos(2B) cos (1 ¥ " Fre—xyre-i)
Alsiz = ]72’13/2 e 2L (C1e)
1, iy3k-i AT 1 _ixyr(5 _ ix\N
y _ 3 +3)3 7% cos (1 — 3ixy¢ Mg =2 E-%)" 32 .
Alsp = 21 - VAR (20 + 3X)(41 + 3x6 cos(2B)(1 ¥ (=8 + 18ix + F)xom
+ (=2 + @ sin(2B)[9(2 — ixdx + 28] (C17)
y _ (3 =1)377% cos (=2 +3sin(2B) (/+3)(}Z (o2, + 42T (:-%)rez-%)
A57 -12 - v (C18)
2(1 — ®V4m32(2i + 3x)(4i + 3
A _ 3+ 5387 cos ((1 =3 sin(2B)(75 + 18ix + YFF5+20[9(3 — ix)F, + 28I7(E — K)M(2 - %)
711,12 = 2r13/2(4l + 3x)(8i + 3xbk
(C19)
A (2 + )3 cos (1 —3 sin(2B)(=5 + 18ix + A% T (92, + 49 (E - K)r(2 - &)
7,11,-12 — T2 (4i + 3x)(8i + 33X
(C20)
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