


Introduction
Many biomedical research applications employ pipelines to systematically analyze the gene content in a genome. 

Due to the explosion in transcriptomic data available, these pipelines routinely involve processing enormous 

amounts of data, and therefore require efficient bioinformatics tools that can handle multiple annotation and 

sequence files in order to speed up the genomic analysis. Such tools usually exchange and employ information 

about genes, transcripts or other genomic features in a tab-delimited text file format commonly known as GFF 

(General Feature Format). This format describes the exact coordinates and attributes of genes, transcripts, and other 

features such as start and stop codons, coding sequences etc. GFF has many versions, including its latest version 

GFF31 and the older GTF (Gene Transfer Format), sometimes also referred to as GTF22. While the older GTF for-

mat is limited to the representation of gene and transcript locations and their structures, the newer GFF3 format can 

represent many more genomic features and annotations in a hierarchical fashion. Some transcript data or genome 

annotation is available from the source in only one of these formats, but an application may require the other format 

as input. The GffRead and GffCompare utilities can automatically recognize and work with both these file 

formats seamlessly, extract and select transcript features from rich GFF3 annotation files, perform conversions 

from one from to another, and even convert files from and to other formats such as BED3 or FASTA4.

Annotation data from different sources may use different naming conventions for chromosomes and contigs, 

and GffRead can help with mapping such genomic sequence names and thus converting annotation from one 

reference naming convention to another. Gene prediction programs and transcript (RNA-Seq) assembly programs 

usually output their results in GTF or GFF3 format, and in such cases there is often a need to assess the accuracy 

of the predicted/assembled transcripts. GffCompare is designed to systematically compare one or more sets of 

transcript predictions to a reference annotation at different levels of granularity (base level, exon level, transcript 

level etc.), and in the process to provide a way to “annotate” such transcript predictions based on their overlaps or 

proximity to reference annotation transcripts. When multiple transcript files (samples) are provided, GffCompare 

generates a non-redundant combined set of transcripts, tracking structurally equivalent transcripts across multiple 

samples and classifying them according to their relationship to reference transcripts.

Due to their efficiency and user-friendly nature, both GffRead and GffCompare have already been used in 

many bioinformatics projects as integral parts of pipelines for genome annotation5–7, novel gene discoveries and 

characterizations8–18, gene structure reconstruction accuracy19–21, and gene annotation comparisons22–25 among 

others. In this paper we provide detailed descriptions of the specific functions provided by our GFF utilities.

Methods
Implementation
Both our utilities share a code base built around a C++ class called GffObj that implements many of the common 

GFF parsing and indexing functions. Because the GFF format has no requirements for grouping and sorting of 

hierarchically linked genomic features (e.g. a transcript feature can have one of its exons at the beginning of the 

file and another at the end of the file), the parser has to keep transcript data in memory until the whole file is 

parsed. Feature identifiers (like transcript IDs) are kept in string hashes for fast identification of hierarchical 

relationship between features. Reference sequence names and GFF attribute names are also stored in global string 

hashes with numeric IDs associated, while pointers to the genomic feature objects (GffObj) are stored in dynamic 

arrays sorted by the genomic location such that a binary search can be used for quick overlap verification. The 

code shared by these utilities also implements functions to test and classify the structural similarities and 

overlaps between transcripts in the same location on the genome.

GffRead. We initially implemented the GffRead utility as a fast tool for verification, filtering and conversion of 

the most popular annotation file formats, GTF and GFF3, and for quick extraction of transcript sequences from the 

genome sequence. With its many features added over time, GffRead is now a complex and versatile tool that 

can sort, filter, remap and even cluster transcripts into loci (based on exon overlaps) while optionally discarding 

“redundant” transcripts from an input GFF data. Different examples for the command lines used to perform all 

these functions are offered in the Use Cases section below.

GffRead parses the input records given in GTF, GFF3 or BED format, and stores them into an internal 

collection of GffObj data structures that can be easily sorted and filtered according to different criteria. For 

instance, GffRead can output only the subset of the input transcripts that are multi-exonic, or do not belong to 

pseudogenes (see Table 1 for a complete set of filtering options). Besides conversions between different GFF 
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Table 1. GffRead options controlling the filtering of the input GFF3 data (transcripts).

-i <maxintron> discard transcripts having an intron larger than <maxintron>

-l <minlen> discard transcripts shorter than <minlen> bases

-r <chr>:<start>-<end>[<strand>] only show transcripts overlapping coordinate range <start>..<end> 
on reference sequence <chr> (on strand <strand >if provided)

-R for -r option discard all transcripts that are not fully contained within 
the given range

-U discard single-exon transcripts

-C coding only: discard transcripts that do not have CDS features

--nc non-coding only: discard transcripts that have CDS features

-V discard any coding transcripts having in-frame stop codons 
(requires -g)

-N discard multi-exon mRNAs that have any intron with a non-canonical 
splice site consensus (i.e. not GT-AG, GC-AG or AT-AC)

-J discard any transcripts that either lack initial START codon or the 
terminal STOP codon, or have an in-frame stop codon (i.e. only print 
mRNAs with a complete, valid CDS)

--no-pseudo discard genes and their transcripts having features or attributes 
indicating a ‘pseudogene’

-M/--merge cluster the input transcripts into loci, discarding 
“duplicated” transcripts (those with the same exact introns and fully 
contained or equal boundaries)

-K for -M option: also discard as redundant the shorter, fully contained 
transcripts (intron chains matching a part of the container)

-Q for -M option, no longer require boundary containment when 
assessing redundancy (can be combined with -K); only introns have 
to match for multi-exon transcripts, and >=80% overlap for single-
exon transcripts

formats, GffRead has many additional output options (see Table 2). Among these is a user-defined tab-delimited 

format, with a line for each transcript and the columns defined by a custom list of some of the GFF columns 

and attributes in the input annotation file. If a genome sequence is provided, GffRead can also generate multiple 

additional sequence data files in FASTA format such as: (1) a file with the transcript sequences produced by 

extracting and concatenating all of the exon sequences of each transcript; (2) a file with all the protein-coding 

sequences in each transcript; or (3) a file with the amino-acid translations of the coding sequence of each tran-

script. If a FASTA index file (such as the one created by the samtools utility26) is not present in the same directory 

with the genomic sequence, GffRead will first create one in order to accelerate the retrieval of the specific tran-

script sequences. If the transcripts in the annotation file have coding sequences (represented as CDS features in 

the file), GffRead can check their validity and add specific annotations to the output file, indicating if either 

the START or the STOP codons are missing in these transcripts or if there are in-frame STOP codons.

The transcript clustering functions of GffRead can group each set of input transcripts into a locus, where all 

transcripts in a locus are on the same strand, and any two transcripts in that locus have at least one exonic interval 

overlap. When clustering is enabled, the GFF output will have a new ‘locus’ feature for each cluster with attributes 

listing all the transcript IDs (and gene IDs, if available) that belong to that cluster. Optionally, GffRead can 

identify transcripts that are structurally “matching” or “equivalent”, defined as transcripts that share all their introns, 

or have more than 80% of their length overlap in the case of single exon transcripts. GffRead can also discard 

redundant transcripts (either matching or contained within other transcripts) from the output, providing the user 

with the ability to choose among merging strategies with different levels of stringency when assessing redundancy 

in such cases.
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Table 2. GffRead output options; default output consists of transcripts only, shown as GFF records with only 
the basic attributes kept (ID, Parent, geneID and gene_name if found).

-F preserve all original GFF attributes (for non-exon features); repetitive/redundant 
exon/CDS attributes are merged into the parent transcript attributes

--keep-exon-attrs for -F option, do not attempt to reduce redundant 
exon/CDS attributes

--keep-genes in transcript-only mode (default), also preserve gene records

-P add transcript level GFF attributes about the coding status of each transcript, 
including partialness or in-frame stop codons (requires -g)

--force-exons make sure that output transcripts have “exon” features generated when they were 
not explicitly given in the input (e.g. CDS-only transcripts)

--gene2exon for single-line genes not parenting any transcripts, add an exon feature spanning 
the entire gene (treat it as a transcript)

-Z merge very close exons into a single exon (when intron size<4)

-w write a fasta file with spliced exons for each transcript

-x write a fasta file with spliced CDS for each GFF transcript

-y write a protein fasta file with the translation of CDS for each record

-T main output is GTF instead of GFF3

--bed main output is in BED format instead of GFF3

--table output a simple tab delimited format instead of GFF, with columns having the 
values of GFF attributes given in <attrlist>; special pseudo-attributes (prefixed by 
@) are recognized: 
@id, @geneid, @chr, @start, @end, @strand, @numexons, @exons,@cds, @covlen, 
@cdslen 
If any of -w/-y/-x output files are enabled, the same fields (excluding @id) are 
appended to the definition line of corresponding FASTA records

Output sorting options (by default the output is sorted by feature coordinates per reference sequence, with 
reference sequences shown in the order they were first encountered in the input):

--sort-alpha reference sequences are sorted alphabetically

--sort-by <refseq.lst> sort the reference sequences by the order their names are given in the <refseq.
lst> file

GffCompare. GffCompare is a generic, standalone tool for merging and tracking transcript structures across 

multiple samples and comparing them to a reference annotation. Initially written based on the CuffCompare 

utility program included with the Cufflinks suite27, GffCompare has the following main functions: 

1)   merge structurally equivalent transcripts and transcript fragments (transfrags) across multiple samples;

2)    assess the accuracy of the assembled transcripts from an RNA-seq sample by comparing it to known 

annotation; and

3)   track, annotate, and report all structurally distinct transfrags across multiple samples.

The last two purposes require the user to provide a known reference annotation file that GffCompare then uses to 

classify all the transcripts in the input samples according to the reference transcript that they most closely 

overlap (Figure 1). To assess the accuracy of transcriptome assemblies, GffCompare reports several accuracy 

metrics previously employed for gene prediction evaluation28. These metrics include sensitivity and precision 

as well as the number of novel or missed features, and the metrics are computed at various levels (base, exon, 

intron chain, transcript, or locus). More details about how to obtain the different reports provided by GffCompare 

can be found in the Use Cases section.

Some pipelines can produce a very large number of transcripts that need to be evaluated; e.g. when merging 

the transcript assemblies from tens or hundreds of RNA-seq experiments. Because GffCompare always loads 

the entire transcript data into memory for clustering, running GffCompare on such large GTF/GFF files could be 

slow and memory intensive. One may be interested only in how these transcripts overlap the reference 
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Figure 1. Transcript classification codes based on their relationship to reference transcripts, as generated by 
GffCompare. Reference exons and transcripts are shown in black, transcripts to be classified are shown in blue, and 
hashed regions represent repeated regions in the genome. For example, the transcript in blue on the uppermost left 
panel is labeled “=” because all of its introns precisely match the annotation in black.

annotation, and then only wish to further analyze those transcripts that have specific types of overlaps with the refer-

ence annotation transcripts. GffCompare also only produces the best match of a transcript to a reference annotation, 

but for each transcript we might want to know all possible reference matches. In order to address these needs, we 

built TrMap (“Transcript vs. reference Mapping”), a program that we distribute along with GffCompare and 

that was designed to avoid using a large amount of memory by streaming the input transcript data. TrMap first loads 

the reference annotation into an interval tree data structure29, and then for each query transcript it reports all the 

reference transcripts that overlap it, along with their overlap classification codes. These are the same 

classification codes described in Figure 1, with the exception of codes p, r, and u which are reserved for transcripts 

that do not overlap reference transcripts and represent transcripts that are single exon and nearby genes (p), 

repeats outside of genes (r), and intergenic (u).

Operation
This software can be built on a Linux or MacOS system with no other library dependencies. A GNU C++ 

compiler (g++) is required for compilation (on Linux at least g++ version 4.5 is required). The release pack-

ages on Github include precompiled binaries for Linux and MacOS that can be used directly instead of having to 

build the programs from source. Linux compatibility goes back as far as RedHat Enterprise Linux 5, while on 

MacOS the programs can run on systems as old as OS X 10.7 (Lion). We also provide the gffread, 

gffcompare and trmap executables. These are supposed to be used as command line programs, in a Linux/ 

Unix shell, in a terminal or a script. All programs take GFF3, GTF or BED files as their (main) input files. 

Both packages require the shared code provided in GCLib (https://github.com/gpertea/gclib30).
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Use cases
The following sections illustrate different use cases for our utilities. All the files used in the examples below 

as well as their output are included in the gffread and gffcompare Github release packages (https:// 

github.com/gpertea/gffread31, https://github.com/gpertea/gffcompare32) so that the interested user can try these 

examples for themselves.

Basic usage examples of the GffRead utility
The program GffRead can be used to validate, filter, convert and perform various other operations on GFF files 

(see Table 1 and Table 2 for the full list of usage options). For instance, GffRead can be used to simply read an 

annotation file in a GFF format, and print it in either GFF3 (default) or GTF2 format (with the -T option), while 

optionally discarding any non-essential attributes, and fixing some potential issues with the input file. The 

command line for such a quick cleanup and a quick visual inspection of a given GFF file would be:

gffread -E annotation.gff -o ann_simple.gff

This will show the minimalist GFF3 re-formatting of the transcript records found in the input file 

(annotation.gff in this example) which could be given in either GFF3 or GTF2 format. The -E option 

directs GffRead to “expose” (display warnings about) any potential issues encountered while parsing the input file.

In order to obtain the GTF2 version of the same transcripts, the -T option should be added:

gffread annotation.gff -T -o annotation.gtf

GffRead can be used to generate a FASTA file with the DNA sequences for all transcripts in a GFF file. For this 

operation a fasta file with the genomic sequences have to be provided as well. This can be accomplished with 

a command line like this:

gffread -w transcripts.fa -g genome.fa annotation.gff

The file genome.fa in this example would be a multi-fasta file with the chromosome/contig sequences of 

the target genome. This also requires that every contig or chromosome name found in the 1st column of the input 

GFF file (annotation.gtf in this example) must have a corresponding sequence entry in the genome.fa 

file.

Basic usage example of the GffCompare utility
The program GffCompare can be used to compare, merge, annotate and estimate accuracy of one or more 

GFF files (the “query” files), when compared with a reference annotation (also provided as GFF). A basic 

command line to compare a list of GTF files to a reference annotation file is:

gffcompare -r annotation.gff transcripts.gtf

The reference annotation is specified in the annotation.gff file and transcripts.gtf represents the 

query file (more than one query file can be provided). Unless the -o option was provided, the output will be 

found in multiple files with the prefix “gffcmp.”. A list of the more important options for the GffCompare 

utility is provided in Table 3.

Transcript accuracy estimation with GffCompare
GffCompare can be used to assess the accuracy of transcriptome assemblies produced by programs like 

StringTie19 in respect to a known reference annotation. To this end, GffCompare reports various statistics related 

to the accuracy of the input transcripts compared to the reference annotation in the <outprefix>.stats file. 

Among these statistics are sensitivity and precision values computed at various levels (base, exon, intron 

chain, transcript, locus), which are calculated as: 

                                                             Sensitivity = TP/(TP+FN)

                                                            Precision = TP/(TP+FP)

where TP stands for “true positives”, or query features (bases, exons, introns, transcripts, etc.) that agree with 

the corresponding reference annotation features; FN means “false negatives”, i.e. features that are found in the 

reference annotation but are not present in the input data; FP (“false positives”) are features present in the input 
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Table 3. GffCompare options.

-i <input_gtf_list> provide a text file with a list of (query) GTF files to process instead of expecting them 
as command line arguments (useful when a large number of GTF files should be 
processed)

-r <reference.gff> provides reference annotation file (GTF/GFF)

-R for -r option, consider only the reference transcripts that overlap any of the input 
transfrags (Sensitivity correction)

-Q for -r option, consider only the input transcripts that overlap any of the reference 
transcripts (Precision correction); this will discard all novel loci

-M discard (ignore) single-exon transfrags and reference transcripts

-N discard (ignore) single-exon reference transcripts

-D discard “duplicate” query transfrags (i.e. those with the same intron chain) within a 
single sample

-S like -D, but stricter duplicate checking: only discard matching query or reference 
transcripts (same intron chain) if their boundaries are fully contained within other, larger 
or identical transfrags

--no-merge disable close-exon merging (default: merge exons separated by “introns” shorter than 
5 bases)

-s <genome_file> path to genome sequences (optional); this can be either a multi-FASTA file or a directory 
containing single-fasta files (one for each contig); repeats must be soft-masked (lower 
case) in order to be able to classify transfrags as repeats

-T do not generate .tmap and .refmap files for each input file

-e max. distance (range) allowed from free ends of terminal exons of reference transcripts 
when assessing exon accuracy (default: 100)

-d max. distance (range) for grouping transcript start sites (default: 100)

-V verbose processing mode (also shows GFF parser warnings)

--chr-stats the .stats file will show summary and accuracy data for each reference contig/
chromosome separately

-p <cprefix> the name prefix to use for consensus transcripts in the <outprefix>.combined.gtf 
file (default: 'TCONS')

--debug enables -V and generates additional files: <outprefix>.Q_discarded.lst, 
<outprefix>.missed_introns.gff, <outprefix>.R_missed.lst

Options for the combined GTF output file:

-o <outprefix> provides a prefix for all output files

-C discard matching and “contained” transfrags in the GTF output (i.e. collapse intron-
redundant transfrags across all query files)

-A like -C but does not discard intron-redundant transfrags if they start with a different 5’ 
exon (keep alternate TSS)

-X like -C but also discard contained transfrags if transfrag ends stick out within the 
container’s introns

-K for -C/-A/-X, do NOT discard any redundant transfrag matching a reference

data but not confirmed by any reference annotation data. Notice that FP+TP amounts to the whole input set of 

query features in the input file. If multiple query GTF/GFF files are given as input, these metrics are computed 

separately for each sample.

Sensitivity and Precision values are estimated at various levels, which are largely an increasingly stringent 

way of evaluating the accuracy/correctness of a set of predicted transcripts (transfrags), when compared to the 
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reference annotation provided with the -r option. The six different levels that GffCompare uses are described 

below: 

1) Base level. At the base level, TP represents the number of exon bases that are reported at the same coordinate 

on both the query transcripts and any reference transcript, FN is the number of bases in reference data exons 

that are not covered at all by any of the query exons, and FP is the number of bases which are covered by 

predicted transcripts’ exons but not covered by any reference transcript exons.

2) Exon level. We define the TP, FN, and FP values at the exon level similar to the base level, but now 

the unit of comparison is the exon interval on the genome, i.e. if an exon of the predicted transcript overlaps 

and matches the boundaries of a reference transcript exon, then it is counted as a TP.

3) Intron Level. Intron intervals are the units that are matched at the intron level, therefore each intron of 

the predicted transcript is checked against any introns of the reference transcripts in the same region and if 

there is one with the same exact start-end coordinates, it is counted as a TP.

4) Intron chain level. At this level we count as a TP any query transcript for which all of its introns can be 

found, with the same exact intron coordinates as in a reference transcript that has the same number of introns. 

Matching all the introns at this level implies that all the internal exons also match, but this might not be true 

for the external boundaries of the terminal exons.

5) Transcript level. Note that intron chain level values are calculated only by looking at multi-exon transcripts, 

so it completely ignores the single-exon transcripts, which can be quite numerous in a RNA-Seq experiment 

(possibly due to a lot of transcriptional and alignment noise). The transcript level considers single-exons 

as well. A TP at this level is defined as a full exon chain match between the predicted transcript and a reference 

transcript, where all internal exons match and the outer boundaries of the terminal query exons can only slightly 

differ from the reference exons (with at most 100 bases by default). Also GffCompare considers single-exon 

transcripts as matching an overlapping single-exon reference transcript if there is a significant overlap between 

the two (more than 80% of the longer transcript by default).

6) Locus level. At this level GffCompare considers that an observed locus, defined as a cluster of exon- 

overlapping transcripts, matches a similarly built reference locus if at least one predicted transcript has a transcript 

level match with a reference transcript in the corresponding reference locus.

Other statistics reported by GffCompare are the number of missed or novel exons, missed or novel introns and 

missed or novel loci. Note that in order to properly evaluate precision and sensitivity when comparing two sets 

of transcripts, special care must be taken for duplicated (or redundant) entries within each set. GffCompare uses 

different levels of stringency of what to consider duplicated transcripts, depending on the option given in its input 

(see options -D, -S, -C, -A, -X in Table 3).

Merging structurally equivalent transcripts with GffCompare
When multiple input GTF/GFF files are provided, GffCompare reports a GTF file named 

<outprefix>.combined.gtf containing the union of all transfrags in each sample. If a transfrag with the 

same exact intron chain is present in both samples, it is thus reported only once in the output file.

The “super-locus” concept

A super-locus is a region of the genome where predicted transcripts and reference transcripts get clustered 

together by exon overlaps. When multiple GFF files with are provided as input to GffCompare, this cluster-

ing is performed across all the input files. Due to the transitive nature of this clustering, these super-loci can 

occasionally get very large, sometimes merging a few distinct reference gene regions together, especially if 

there is a lot of transcription or alignment noise around the individual gene regions. For each super-locus, 

GffCompare assigns a unique identifier with the XLOC_ prefix.

Annotating transcripts with GffCompare
One can run GffCompare on a single GTF/GFF input file using with the -r option (which provides a reference 

annotation), and without any specific options to remove redundant transfrags (such as the -D, -S, -C, -A, -X 

options) to produce an GTF file called <outprefix>.annotated.gtf that contains all the input transcripts 

annotated with several additional attributes: xloc, tss_id, cmp_ref, and class_code. The xloc attribute 

specifies the super-locus a specific transcript belongs to. The tss_id attribute uniquely identifies the tran-

scription start for that transcipt, and using this value the user can quickly see which transcripts use the same 

transcription start, or how many different transcription starts are present in a locus. The cmp_ref gives the closest 

reference transcript (where applicable), while the relationship to this reference transcripts is given by the 

class_code attribute. The possible values for the class_code attribute are listed in Table 4.
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Table 4. Transcript classification codes (listed in decreasing order of priority).

Code Relationship to reference transcript

= complete, exact intron chain match

c contained in reference transcript (intron compatible)

k contains reference transcript (reverse containment)

m retained intron(s) compared to reference, full intron chain match everywhere 
else

n completely overlaps intron from reference transcript, partial or no intron 
chain match everywhere else

j multi-exon with at least one junction match

e single exon that partially covers an intron from reference

o other same strand overlap with reference exons

s intron match on the opposite strand (likely a mapping error)

x exonic overlap on the opposite strand

i fully contained within a reference intron

y contains a reference within its intron(s)

p possible polymerase run-on (close to reference but no overlap)

r repeat (at least 50% bases are soft-masked)

u none of the above (unknown, intergenic)

Tracking transcripts with GffCompare
GffCompare can also be used to track all transcripts that are structurally equivalent among the different input 

files. GffCompare considers transcripts matching (or structurally equivalent) if all their introns are identical. Note 

that matching transcripts are allowed to differ on the length of the first and last exons, since these lengths can usually 

vary across samples for the same biological transcript. A list of all matching transcripts is reported in a file called 

<outprefix>.tracking in which each row represents a transcript. The first column in this file represents 

a unique id assigned to that transcripts. The second file represents the super-locus that contains that transcript. 

If GffCompare was run with the -r option, the 3rd and 4th columns contain the reference annotation transcript 

that was found to be closest to the transcript and the classification code (as specified by Table 4) that specifies 

the relationship between these two transcripts, respectively. The rest of the columns show the corresponding 

transcript from each input file in order. An example and a brief description for each column are given in 

Table 5.

In order to quickly see which reference transcripts match which transcripts from a sample file, two other files, 

called <outprefix>.<input_file>.refmap and <outprefix>.<input_file>.tmap are also 

created for each query <input_file>. The <outprefix>.<input_file>.refmap file is a tab-delimited file 

that has a row for each reference transcript that either fully or partially matches a transcript from the given input 

file. Its columns are described in Table 6. Conversely, the <outprefix>.<input_file>.tmap file has a 

row for each input transcript, while the columns in this file (as detailed in Table 7) describe the most closely 

matching reference transcript for that transcript.

Overlap classification for a large set of transcripts with TrMap
The utility TrMap was designed for large scale overlap analysis of streaming transcript prediction data 

(millions of transcripts) with a reference annotation data set. Particularly, TrMap performs detection and 

classification of all the overlaps found between the streamed transcripts and the reference annotation transcripts.
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Table 5. Description of the columns in the <outprefix>.tracking generated by GffCompare when run on 
N≥1 input files.

Column 
number

Column name Example Description

1 Query transfrag id TCONS_00403479 A unique internal id for the transfrag

2 Query locus id XLOC_006534 A unique internal id for the super-locus 
containing these transcripts across all 
samples and the reference annotation

3 Reference gene id 
and transcript id

TCEA3|rna-XM_006710864.2 The gene name and transcript ID of the 
reference record associated to this transcript 
(separated by ‘|’), or ‘-’ if no such reference 
transcript is available

4 Class code j The type of overlap or relationship between 
the reference transcripts and the transcript 
structure represented by this row

5..N Corresponding 
transcript in input 
file n

q1:STRG.377|STRG.377.2|10|
0.304785|0.760185|2.205239
|2767

qn:<gene_id>|<transcript_id>|<num_exons>
|<FPKM>|<TPM>|<cov>|<len>

Table 6. Description of the columns in the <outprefix>.<input_file>.refmap file.

Column 
number

Column 
name

Example Description

1 Reference 
gene name

Myog The gene_name attribute of the reference GTF 
record for this transcript, if present. Otherwise 
gene_id is used.

2 Reference 
transcript id

uc007crl.1 The transcript_id attribute of the reference GTF 
record for this transcript.

3 Class code c The type of match between the query 
transcripts in column 4 and the reference 
transcript. One of either ‘c’ for partial match, or 
‘=’ for full match.

4 Matches STRG.223|STRG.223.1,STRG.224|
STRG.224.1

A comma separated list of transcripts 
matching the reference transcript.

Table 7. Description of the columns in the <outprefix>.<input_file>.tmap file.

Column 
number

Column name Example Description

1 Reference gene 
name

Myog The gene_name attribute of the reference GTF record for this 
transcript, if present. Otherwise gene_id is used.

2 Reference 
transcript id

uc007crl.1 The transcript_id attribute of the reference GTF record for this 
transcript

3 Class code c The type of relationship between the query transcripts in column 
4 and the reference transcript (as described in the Class Codes 
section below)

4 Query gene id STRG.23567 The query (e.g., Stringtie) internal gene id

5 Query transcript 
id

STRG.23567.0 The query internal transcript id

6 Number of exons 7 The number of exons in the query transcript

7 FPKM 1.4567 The expression of this transcript expressed in FPKM

8 TPM 0.000000 the estimated TPM for the transcript, if found in the query input 
file

9 Coverage 3.2687 The estimated average depth of read coverage across the 
transcript.

10 Length 1426 The length of the transcript

11 Major isoform ID STRG.23567.0 The query ID of the gene’s major isoform

12 Reference match 
length

4370 The length of the longest overlap with a reference, ‘-’ if there is no 
such exonic overlap
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The program trmap is distributed with GffCompare and a basic usage for it is shown below:

trmap [-S] [-o ] <ref_gff> <query_gff>

Positional arguments:

  <ref_gff>    reference annotation file name (GFF/BED format)

  <query_gff>  query file name (GFF/BED format) or "-" for stdin
Options:

  -o <outfile> write output to <outfile> instead of stdout

  -S           report only simple reference overlap percentages, without

               classification (one line per query)

The default output is a pseudo-FASTA format showing a record for each query transcript that had at least one 

reference overlap. The query transcript is shown in the header of the record, with space delimited fields show-

ing the genomic location and strand. Each reference overlap follows, as a line with tab delimited fields, starting 

with the “classification code” for the overlap and then providing the genomic location of the transcript 

(chromosome, strand, transcript-start, transcript-end, reference_transcriptID, exons).

The exons for both query and reference transcripts are shown as comma delimited lists of intervals. These are 

all 1-based coordinates like in the GTF/GFF format (even when input is BED).

Conclusions
GffRead and GffCompare provide comprehensive features for converting, filtering, manipulating, clustering, 

combining and classifying transcript data from GFF files. Due to their ability to process hundreds or even thousands 

of transcript files at the same time, they can be used for large scale genome data analysis by many 

bioinformatics analysis pipelines.

Data availability
Underlying data
All data underlying the results are available as part of the article and no additional source data are required.

Software availability
The source packages for the latest release, with precompiled binaries and online manuals, are available at http:// 

ccb.jhu.edu/software/stringtie/gff.shtml.

Source code available from: https://github.com/gpertea/gffread

Archived source code at time of publication: http://doi.org/10.5281/zenodo.375568631

License: MIT

Source code available from: https://github.com/gpertea/gffcompare

Archived source code at time of publication: http://doi.org/10.5281/zenodo.375571532

License: MIT

Source code available from: https://github.com/gpertea/gclib

Archived source code at time of publication: http://doi.org/10.5281/zenodo.375874130

License: Artistic License 2.0
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