2019 IEEE International Conference on E-health Networking, Application & Services (HealthCom)

RCMDD: A Denoising Architecture for Improved
Recovery of Reflectance Confocal Microscopy
Images of Skin from Compressive Samples

Fernando X. Arias*T, Heidy Sierra** and Emmanuel Arzuaga*f*
*Laboratory for Applied Remote Sensing, Imaging and Photonics
Department of Electrical and Computer Engineering
IDepartment of Computer Science and Engineering
University of Puerto Rico Mayaguez
Email: {fernando.arias, heidy.sierral, emmanuel.arzuaga} @upr.edu

Abstract—The Compressive Sensing (CS) framework has
demonstrated improved acquisition efficiency on a variety of
clinical applications. Of interest to this work is Reflectance
Confocal Microscopy (RCM), where CS can influence a drastic
reduction in instrumentation complexity and image acquisition
times. However, CS introduces the disadvantage of requiring a
time consuming and computationally intensive process for image
recovery. To mitigate this, the current document details our
preliminary work on expanding a Deep-Learning architecture
for the acquisition and fast recovery of RCM images using
CS. We show preliminary recoveries of RCM images of both
a synthetic target and heterogeneous skin tissue using a state-
of-the-art network architecture from compressive measurements
at various undersampling rates. In addition, we propose an
application-specific addition to an established network architec-
ture, and evaluate its ability to further increase the accuracy
of recovered CS RCM images and remove visual artifacts. Qur
initial results show that it is possible to recover compressively
sampled images at near-real time rates with comparable quality
to established computationally intensive and time-consuming
optimization-based methods common in CS applications.

Index Terms—compressive sensing, deep learning, reflectance
confocal microscopy, skin imaging

I. INTRODUCTION

Reflectance Confocal Microscopy (RCM) is an optical
imaging technique that possesses the ability to perform non-
invasive, in vivo and/or ex-vivo analysis of cell morphology
across several optically-sectioned layers of highly heteroge-
neous tissue [1] [2]. It has found important uses in clinical en-
vironments, where it allows time-efficient and non-destructive
inspection of basal cells in the dermoepidermal junction
region, which facilitates early detection of the presence of
cutaneous melanoma [3]. The non-invasiveness of this imaging
technique provides advantages for both physicians and patients
over traditional invasive procedures, such as Mohs surgery
[4]. RCM technology has matured to the point of providing
imaging resolution comparable to that of traditional histology,
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(a) USAF Target RCM Image

Fig. 1: Left: RCM image of U.S. Air Force Test Chart (USAF-
1951) target. Right: Slice 40 of a skin stack captured with an
RCM, showing a layer of basal cells. Outlined in red are the
regions of Interest for qualitative results in both considered
RCM images.

(b) Skin Slice RCM Image

which involves the analysis of 5 pm thin sections of tissue [5].
However, the process of capturing the large areas required for
effective clinical evaluation is time-consuming and requires
the allocation of time-sensitive computational resources.
Previous work on the applied use of the properties of
the Compressive Sensing (CS) framework to increase ac-
quisition efficiency of RCM images for devices in the field
has been previously studied [6]. Regarding instrumentation
design, several approaches incorporate differing methods of
acquiring optically-sectioned random projections through ar-
rays of spatially-distributed pinholes to acquire the linear
combinations of the data points of an image required for
recovery of CS samples [7]-[9]. By imaging 2D tissue slices
(or sections thereof), scanning span, and therefore acquisition
time, is considerably reduced. However, does not address issue
of the computationally intensive process of recovering the
compressively sampled RCM images, which can take between
1 and >20 minutes for a single image recovery operation.
Recent advances have been made in successfully devel-
oping Deep-Learning-based approaches for accurate recovery
of images from CS measurements [10], [11]. These works
present alternative network architectures for the recovery of
compressively sampled images into their corresponding 2D
images. These architectures allow recovering CS images with
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(a) Sample image from the natural (b) Sample image from the skin
image training dataset. slice image training dataset.
Fig. 2: Samples from the natural image and skin slice image
training datasets, and their respective initial approximations
Zo.

acceptable quality and execution times, and show that it is
possible to exploit the advantages of both CS and CNNs in
conjunction to perform close to real-time CS imaging.

This paper presents the preliminary results of using CS to
manage the current shortcomings of RCM devices (acquisition
speeds limited by raster scanning), while using Deep Learning
to manage the shortcomings of the CS framework (time-
consuming optimization-based recovery of images). Specif-
ically, we employ the ISTA-Net [11] architecture for the
specific case of recovering RCM images from CS samples
at various parameter combinations. In addition, we propose
an alternative architecture for the denoising of ISTA-Net
recovered RCM images.

II. RELATED WORK
A. Optimization-Based Recovery

The pioneer work of Candeés, Romberg and Tao [12]
proposed the use of /¢;-minimization for solving the un-
derdetermined system given by the CS acquisition process.
Common algorithms for recovering CS images using the /;-
minimization approach include the ¢;-magic [13] and TVAL3
[14]. Additionally, ISTA has been used to approximate the
nonlinear deconvolution operator for image recovery from CS
samples [15]. While these methods provide acceptable image
recovery performance, they require long computation times,
limiting the applications of CS to non-realtime imaging. In
this work, we employ the use of an ¢;-magic based, block
CS algorithm for the acquisition and recovery of images
for evaluating of the proposed architecture to an established,
optimization-based method.

B. Network-Based Recovery

There have been several neural network architectures pro-
posed for the problem of CS-acquired image recovery. Most
relevant to the current study, are Kulkarni’s ReconNet [10],
and Zhang’s ISTA-Net [11]. Both of these approaches propose
different network architectures for the successful recovery of
CS measurements into their corresponding 2D images. Among
these architectures, Zhang’s approach consistently more ac-
curate recovery of images (28.50 PSNR vs 26.46 PSNR), at
the expense of image recovery rate (25.6 FPS vs 62.5 FPS).
However, the fact that the state-of-the-art makes it possible to

state the image recovery rates in FPS implies that it is possible
to exploit the advantages of both CS and CNNs in conjunction
to perform an approximation of real-time CS-based imaging.
Additionally Chang . has proposed the Deep Residual Convo-
lutional Neural Network-based Compressive Sensing Recon-
struction (DRCNN-CSR) framework [16] in the context of
microscopy, which makes use of the Residual Neural Network
(RNN) architecture for recovery [17] of CS images. However,
their acquisition procedure does not take into account recent
integrations of the CS framework for sampling efficiency
[7], [8]. The recovery of compressively sampled images is
currently produced by three different architectures: ReconNet’s
approach is based on traditional CNNs, ISTA-Net is based
on a truncated form of ISTA, and DRCNN-CSR is based
on the concept of Residual Neural Networks [17], which
are more resistant to the vanishing gradient problem during
training, and allow for a distribution of weights that more
efficiently make use of the available processing layers. For
final post-processing, ReconNet employs an "off-shelf" de-
noiser. That is, a direct implementation of Dabov ’s BM3D
algorithm [18], which, on a blockwise manner, utilizes the
sparse representation of similar blocks across the image as
reference in order to preserve common features and discard
noise. However, this iterative, adaptive algorithm must be
executed for every recovered image, and can be detrimental
in applications requiring near-real-time imaging rates. ISTA-
Net, does not incorporate a post-processing step in its design,
and DRCNN-CSR uses another Residual Neural Network for
post-processing, with the only difference compared to its CS
recovery step being a smaller amount of residual blocks.
This architecture reuse can have the possible side effect of
overfitting, and/or failing to generalize certain features better
suited for other architectures.

III. ISTA-NET+RCMDD

In order to further improve the performance of recovered
images without the need of an iterative algorithm, such as the
BM3D algorithm used in [10] which might impose additional
computational strain on a mobile/embedded platform, we
propose the separate training of a simple secondary denoiser
network, called RCM Deep Denoiser (RCMDD). This network
is proposed with a convolutional autoencoder architecture,
which has established use in literature for medical image
denoising [19]. The RCMDD is placed at the output of the
final ISTA-Block, taking the ISTA-Net output as input. The
RCMDD architecture consists of five layers: two convolutional
layers decreasing in dimensionality (64, 32 feature maps),
an arbitrary maximum compression layer (coding stage), and
two convolutional layers increasing in dimensionality (32, 64
feature maps) to recover the target image from its encoded
representation (decoding stage). A diagram for the entire CS
RCM image recovery network and the proposed RCMDD
network is presented in Figure 3.
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(b) Detailed view of the architecture for the proposed RCM Deep Denoiser network.

Fig. 3: Proposed framework for the accurate recovery of RCM CS images, showing the overall system architecture, and the

architecture for the proposed RCMDD

Fig. 4: Sample 33x33 SBHE pattern (Hadamard block size =
16) used to simulate CS acquisition of RCM images.

A. CS Acquisition of RCM Images

With the objective of being consistent with the constraints
of CS-based RCM imaging devices in literature, the sam-
pling matrix A is generated to display Scrambled Hadamard
Block Ensemble Patterns (SHBE), according to the findings
of Wu [8]. These constraints state that the patterns must
be binary, and that activated pixels are to be surrounded as
much as possible by inactive pixels. In this approach, images
are compressively sampled across the en-face plane. These
considerations are focused on ensuring the optical sectioning
capability of the CS-RCM device. A sample pattern used to
simulate the CS acquisition of RCM images is presented in
Figure 4.

In order to perform recovery of CS images, ISTA-Net
requires an initial approximation of equal dimensionality to
the target recovered image as its input, given by

xo = ATy. (1)
While the initial approximation x describes abysmal image
quality when compared to the original image z, it provides
the image reconstruction network with enough information for
recovery due to containing spatially contextual information of
both the projections of the pixels in the original image x, and
the patterns in A that dictate said projections.
Our training procedure for the ISTA-Net network is as follows:
we selected to section images in 33 px %33 px blocks (in
terms of CS, this makes our individual vectorized signals

of length N = 1089px for each block). Consequently, the
considered sampling rates of 10%, 25% and 50% yield a total
of M ={1089*0.1, 1089*0.25, 1089*0.5} =~ {109, 272,545}
sampling operations, respectively, after performing CS acqui-
sition using the SBHE patterns corresponding to each training
data set. For consistency, the SBHE patterns for CS were
randomly generated once, then saved for use in all applicable
cases.

B. ISTA-Net Recovery Parametrization

In order to adequately gauge the resolution of the recovered

images (which is a very significant concern for clinical use
of RCM skin images) using the ISTA-Net architecture and
the USAF target image, we trained an individual network on
natural images for each of six considered ISTA blocks in the
network architecture: 1, 3, 5, 7, 9 and 11 blocks.
Our analysis brought to our attention the presence of obvious
blocking artifacts on RCM images recovered from CS mea-
surements using the ISTA-Net architecture. Figure 8 illustrates
an example of this phenomenon.

Additionally, while [11] suggests that a single ISTA-Net
network is capable of recovering CS images sampled under
a variety of undersampling rates, an initial test resulted in
drastically reduced performance when undersampling rates
were significally different from those used during network
training. For this reason, the presented analysis will include
a study of the influence of the undersampling rates on the
recovery performance of CS RCM images. In total, our study
compares the performance of the following six networks:

¢ 3 networks for Natural data: 10%, 25% and 50% sam-

pling rates.

e 3 networks for Skin data: 10%, 25% and 50% sampling

rates.
For training these networks, we used Adam optimization with
a learning rate of 0.0001 over 80 epochs, and a batch size of
128.
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Fig. 5: Image recovery performance for the proposed archi-
tecture.
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(a) Intensity profile for USAF Target, 1 ISTA block.
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(b) Intensity profile for USAF Target, 11 ISTA blocks.

Fig. 6: Intensity profiles of recovered images for resolution
assessment.

In summary, the training process is performed in two

stages: First, the ISTA-Net network is trained with initial
approximations (given by Equation 1) from CS measurements
as input data, and the original RCM images as target output
data. Once trained, the ISTA-Net output is used as training
inputs for the RCMDD, with the original RCM images as
target output data.
A diagram for the proposed architecture is presented in
Figure 3. Figure 3a shows the complete network architecture,
incorporating ISTA-Net for initial recovery, and RCMDD for
denoising. The convolutional autoencoder architecture used for
RCMDD is presented in Figure 3b.

All accuracy results will be presented using the average
Peak-Signal-to-Noise-Ratio (PSNR), as well as the Structural

Similarity Index (SSIM). We provide a qualitative analysis in
the form of edge profiles for the considered RCM images.
Figure 1 shows the spatial context of the regions of interest
and profiles that will be presented. For a fuller comparison, we
compare our results to those obtained using an optimization-
based recovery approach (using ¢;-magic) for RCM images,
which are contextually illustrated in Figures 7 and 8.

IV. EXPERIMENTAL SETUP
A. Data Sets

1) Training Data: In order to accurately evaluate the recov-
ery performance of the ISTA-Net framework of these RCM
images, we trained independent networks separately on both
RCM skin data and the natural image dataset used in [10].
Single images from the skin image and natural image training
datasets are presented in Figure 2. In order to adequately
train the proposed network architecture on the widest range of
morphological features present in highly heterogeneous skin
tissue, we use 17 different skin stacks for training, which
contain a total of 910 optically-sectioned single-channel slices,
each containing 961 33px x33px blocks. In summary, we
generate a total of 874,510 blocks from this data for training.
Due to computational constraints and to maintain reasonable
training times, a subset of 500,000 blocks were randomly
selected for training our RCM ISTA-Net network.

2) Testing Data: In order to objectively evaluate the perfor-

mance of CS images recovered by the proposed architecture,
we perform preliminary testing on a copy of the U.S. Air
Force Test Chart (USAF-1951) target, used commonly in
image equipment resolution assessment. The test chart was
captured using a a clinical confocal microscope [Vivascope
1500, Caliber Imaging and Diagnostics (formerly, Lucid Inc.,
Rochester)], with 830nm illumination and a 30x, 0.9 numerical
aperture, gel immersion objective lens. The optical sectioning
thickness is 2um for each slice, and lateral resolution 0.5
m. The field of view is 0.5 mm. The single-channel acquired
images have a size of is 1000 x 1000 pixels.
Further, for the purposes of evaluating the reconstruction
performance of the algorithm on real skin data, we used a
skin stack captured in vivo at a size of 1000 x 1000 pixels
using the same RCM device. The captured USAF-1951 target
and skin stack slice images used for this analysis are shown
on Figure 1.

V. RESULTS
A. ISTA-block count influence on recovery performance

In this section, we will present the summarized results of
our analysis on both RCM image types. The influence of the
number of ISTA-blocks in the recovery network for recovery
of the USAF image is presented in Figure 5. Further, sample
intensity profiles for the extreme cases of 1 and 11 ISTA-
blocks are presented in Figure 6. Numerical results of the
influence of ISTA-blocks on recovery performance, in the form
of PSNR and SSIM values, are summarized in Table 1. It is
important to highlight that the presented values for skin images
on Table I do not correspond to a single slice, but are average
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(a) USAF Target reference image (b) Recovered USAF Target image
used for testing using ¢1-minimization

(c) Recovered USAF Target image (d) Recovered USAF Target image
using ISTA-Net using RCMDD

Fig. 7: Reference and recovered USAF Target images using
the considered methods using a 10% sampling rate.

PSNR (dB) SSIM
# ISTA-Blocks ~ Data Type | ISTA-Net RCMDD | ISTA-Net RCMDD
1 Natural 303614 30.9498 0.8570 0.9039
3 Natural 313731 31.8496 0.8753 0.9243
5 Natural 322402 323799 0.8852 0.9377
7 Natural 323027 32.4563 0.8797 0.9288
9 Natural 323629  32.5328 0.8773 0.9244
11 Natural 32,6008  32.5612 0.8869 0.9391
1 Skin 23.6025  23.7053 0.4994 0.5013
3 Skin 23.6459  23.7461 0.5013 0.5029
5 Skin 23.7163  23.8091 0.5025 0.5039
7 Skin 23.6871  23.7757 0.4987 0.5003
9 Skin 23.7642  23.8528 0.5052 0.5062
11 Skin 23.7282 238111 0.5017 0.5025

TABLE I: Numerical image recovery results for different
ISTA-block sizes for both natural and skin RCM CS images.

values for all images in a test 45-slice RCM skin stack.

The intensity profiles presented in Figure 6 indicate that both
of the considered approaches have a practically equal capacity
of edge preservation in recovered images, and surpass that of
the previously established optimization-based approach. This
is highlighted due to the importance of morphological features
in skin RCM images for diagnostic purposes. Further, the
results presented in Figure 5 indicate that, when taking into
account the benefits of a fast, lightweight recovery network
for recovery of RCM images, there is a case of diminishing
returns on the quality of recovery images when using a
recovery network with more than 5 ISTA-blocks. This is
further confirmed for the case of skin images by inspecting
the results in Table I. For this reason, our experiments for the
rest of the document will set the ISTA block number in the
recovery networks to 5. The average slice recovery times from
its CS samples for ISTA-Net, ISTA-Net+RCMDD, and the ¢; -
minimization based recovery method are 0.0851s (11.75 FPS),
0.1005s (9.95 FPS), and 917.7353 (<1 FPS), respectively.

B. Sampling rate influence on recovery performance

Table II presents the numerical results from our study on
the influence of sampling rate on the performance of recovered
images using ISTA-Net, RCMDD and the method utilized in
[6]. In addition to this, visual results for qualitative analysis
comparing the target image and its recoveries from CS mea-
surements at 10% sampling rate using the considered methods
is presented in Figure 7. Naturally, higher sampling rates
produce higher quality results. In addition to this, the proposed
RCMDD architecture shows an increase in the performance of
recovered images for both of the considered data types. Finally,
we present sample recovered images from CS measurements
in Figure 8 for qualitative evaluation at a sampling rate of
10%.

VI. CONCLUSIONS AND FUTURE WORK

Deep Learning approaches are continuously proving their
capacity for a variety of image processing and transformation
tasks. We have proposed an architecture that further improves
the capacity of the ISTA-Net architecture for recovering CS
images acquired using an RCM device. For the purposes
of increasing the quality of the recovered images, we have
performed a comparative study of the parametrization of
the proposed architecture with state-of-the-art methods. Our
results conclude that, for the purposes of balancing image
quality, network complexity and acquisition times, a total of
5 ISTA blocks is an appropriate architecture design parameter
for the recovery network. On the subject of sampling rates, as
intuition would suggest, higher sampling rates produce higher
quality results. However, in addition to concerns about optical
bleaching of tissues due to light exposure common in skin
RCM imaging, there exists a trade-off between the selected CS
sampling rate and imaging rates. The presented preliminary
quantitative and qualitative results suggest that, upon fine
adjustment of the involved acquisition system and proposed re-
covery architecture parameters, it is possible to recover images
from CS measurements with higher performance levels for a
given sampling rate. By bypassing the requirement for solving
a computationally costly optimization problem for recovering
an image from its CS measurements, a CS-based, efficient, and
real-time RCM imaging system becomes possible. However,
this comes at the cost of the introduction of data-specific
biases into the recovery network behavior, which is highlights
the importance of sourcing and adequately constraining the
application-specific training data to the relevant applications.
Future work on this matter includes performing a more
thorough analysis over a wider range of architecture design
parameters, consulting experienced clinical personnel in order
to gain firsthand insights about the clinical usability of the
recovered images, and evaluate potential modifications to the
RCMDD network architecture.
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