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Abstract—The Compressive Sensing (CS) framework has
demonstrated improved acquisition efficiency on a variety of
clinical applications. Of interest to this work is Reflectance
Confocal Microscopy (RCM), where CS can influence a drastic
reduction in instrumentation complexity and image acquisition
times. However, CS introduces the disadvantage of requiring a
time consuming and computationally intensive process for image
recovery. To mitigate this, the current document details our
preliminary work on expanding a Deep-Learning architecture
for the acquisition and fast recovery of RCM images using
CS. We show preliminary recoveries of RCM images of both
a synthetic target and heterogeneous skin tissue using a state-
of-the-art network architecture from compressive measurements
at various undersampling rates. In addition, we propose an
application-specific addition to an established network architec-
ture, and evaluate its ability to further increase the accuracy
of recovered CS RCM images and remove visual artifacts. Our
initial results show that it is possible to recover compressively
sampled images at near-real time rates with comparable quality
to established computationally intensive and time-consuming
optimization-based methods common in CS applications.

Index Terms—compressive sensing, deep learning, reflectance
confocal microscopy, skin imaging

I. INTRODUCTION

Reflectance Confocal Microscopy (RCM) is an optical

imaging technique that possesses the ability to perform non-

invasive, in vivo and/or ex-vivo analysis of cell morphology

across several optically-sectioned layers of highly heteroge-

neous tissue [1] [2]. It has found important uses in clinical en-

vironments, where it allows time-efficient and non-destructive

inspection of basal cells in the dermoepidermal junction

region, which facilitates early detection of the presence of

cutaneous melanoma [3]. The non-invasiveness of this imaging

technique provides advantages for both physicians and patients

over traditional invasive procedures, such as Mohs surgery

[4]. RCM technology has matured to the point of providing

imaging resolution comparable to that of traditional histology,
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(a) USAF Target RCM Image (b) Skin Slice RCM Image

Fig. 1: Left: RCM image of U.S. Air Force Test Chart (USAF-

1951) target. Right: Slice 40 of a skin stack captured with an

RCM, showing a layer of basal cells. Outlined in red are the

regions of Interest for qualitative results in both considered

RCM images.

which involves the analysis of 5 µm thin sections of tissue [5].

However, the process of capturing the large areas required for

effective clinical evaluation is time-consuming and requires

the allocation of time-sensitive computational resources.

Previous work on the applied use of the properties of

the Compressive Sensing (CS) framework to increase ac-

quisition efficiency of RCM images for devices in the field

has been previously studied [6]. Regarding instrumentation

design, several approaches incorporate differing methods of

acquiring optically-sectioned random projections through ar-

rays of spatially-distributed pinholes to acquire the linear

combinations of the data points of an image required for

recovery of CS samples [7]–[9]. By imaging 2D tissue slices

(or sections thereof), scanning span, and therefore acquisition

time, is considerably reduced. However, does not address issue

of the computationally intensive process of recovering the

compressively sampled RCM images, which can take between

1 and >20 minutes for a single image recovery operation.

Recent advances have been made in successfully devel-

oping Deep-Learning-based approaches for accurate recovery

of images from CS measurements [10], [11]. These works

present alternative network architectures for the recovery of

compressively sampled images into their corresponding 2D

images. These architectures allow recovering CS images with
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(a) Sample image from the natural
image training dataset.

(b) Sample image from the skin
slice image training dataset.

Fig. 2: Samples from the natural image and skin slice image

training datasets, and their respective initial approximations

x0.

acceptable quality and execution times, and show that it is

possible to exploit the advantages of both CS and CNNs in

conjunction to perform close to real-time CS imaging.

This paper presents the preliminary results of using CS to

manage the current shortcomings of RCM devices (acquisition

speeds limited by raster scanning), while using Deep Learning

to manage the shortcomings of the CS framework (time-

consuming optimization-based recovery of images). Specif-

ically, we employ the ISTA-Net [11] architecture for the

specific case of recovering RCM images from CS samples

at various parameter combinations. In addition, we propose

an alternative architecture for the denoising of ISTA-Net

recovered RCM images.

II. RELATED WORK

A. Optimization-Based Recovery

The pioneer work of Candès, Romberg and Tao [12]

proposed the use of ℓ1-minimization for solving the un-

derdetermined system given by the CS acquisition process.

Common algorithms for recovering CS images using the ℓ1-

minimization approach include the ℓ1-magic [13] and TVAL3

[14]. Additionally, ISTA has been used to approximate the

nonlinear deconvolution operator for image recovery from CS

samples [15]. While these methods provide acceptable image

recovery performance, they require long computation times,

limiting the applications of CS to non-realtime imaging. In

this work, we employ the use of an ℓ1-magic based, block

CS algorithm for the acquisition and recovery of images

for evaluating of the proposed architecture to an established,

optimization-based method.

B. Network-Based Recovery

There have been several neural network architectures pro-

posed for the problem of CS-acquired image recovery. Most

relevant to the current study, are Kulkarni’s ReconNet [10],

and Zhang’s ISTA-Net [11]. Both of these approaches propose

different network architectures for the successful recovery of

CS measurements into their corresponding 2D images. Among

these architectures, Zhang’s approach consistently more ac-

curate recovery of images (28.50 PSNR vs 26.46 PSNR), at

the expense of image recovery rate (25.6 FPS vs 62.5 FPS).

However, the fact that the state-of-the-art makes it possible to

state the image recovery rates in FPS implies that it is possible

to exploit the advantages of both CS and CNNs in conjunction

to perform an approximation of real-time CS-based imaging.

Additionally Chang . has proposed the Deep Residual Convo-

lutional Neural Network-based Compressive Sensing Recon-

struction (DRCNN-CSR) framework [16] in the context of

microscopy, which makes use of the Residual Neural Network

(RNN) architecture for recovery [17] of CS images. However,

their acquisition procedure does not take into account recent

integrations of the CS framework for sampling efficiency

[7], [8]. The recovery of compressively sampled images is

currently produced by three different architectures: ReconNet’s

approach is based on traditional CNNs, ISTA-Net is based

on a truncated form of ISTA, and DRCNN-CSR is based

on the concept of Residual Neural Networks [17], which

are more resistant to the vanishing gradient problem during

training, and allow for a distribution of weights that more

efficiently make use of the available processing layers. For

final post-processing, ReconNet employs an "off-shelf" de-

noiser. That is, a direct implementation of Dabov ’s BM3D

algorithm [18], which, on a blockwise manner, utilizes the

sparse representation of similar blocks across the image as

reference in order to preserve common features and discard

noise. However, this iterative, adaptive algorithm must be

executed for every recovered image, and can be detrimental

in applications requiring near-real-time imaging rates. ISTA-

Net, does not incorporate a post-processing step in its design,

and DRCNN-CSR uses another Residual Neural Network for

post-processing, with the only difference compared to its CS

recovery step being a smaller amount of residual blocks.

This architecture reuse can have the possible side effect of

overfitting, and/or failing to generalize certain features better

suited for other architectures.

III. ISTA-NET+RCMDD

In order to further improve the performance of recovered

images without the need of an iterative algorithm, such as the

BM3D algorithm used in [10] which might impose additional

computational strain on a mobile/embedded platform, we

propose the separate training of a simple secondary denoiser

network, called RCM Deep Denoiser (RCMDD). This network

is proposed with a convolutional autoencoder architecture,

which has established use in literature for medical image

denoising [19]. The RCMDD is placed at the output of the

final ISTA-Block, taking the ISTA-Net output as input. The

RCMDD architecture consists of five layers: two convolutional

layers decreasing in dimensionality (64, 32 feature maps),

an arbitrary maximum compression layer (coding stage), and

two convolutional layers increasing in dimensionality (32, 64

feature maps) to recover the target image from its encoded

representation (decoding stage). A diagram for the entire CS

RCM image recovery network and the proposed RCMDD

network is presented in Figure 3.
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(a) Proposed RCM image recovery framework, with the proposed RCMDD block highlighted in gray.
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(b) Detailed view of the architecture for the proposed RCM Deep Denoiser network.

Fig. 3: Proposed framework for the accurate recovery of RCM CS images, showing the overall system architecture, and the

architecture for the proposed RCMDD

Fig. 4: Sample 33×33 SBHE pattern (Hadamard block size =

16) used to simulate CS acquisition of RCM images.

A. CS Acquisition of RCM Images

With the objective of being consistent with the constraints

of CS-based RCM imaging devices in literature, the sam-

pling matrix A is generated to display Scrambled Hadamard

Block Ensemble Patterns (SHBE), according to the findings

of Wu [8]. These constraints state that the patterns must

be binary, and that activated pixels are to be surrounded as

much as possible by inactive pixels. In this approach, images

are compressively sampled across the en-face plane. These

considerations are focused on ensuring the optical sectioning

capability of the CS-RCM device. A sample pattern used to

simulate the CS acquisition of RCM images is presented in

Figure 4.

In order to perform recovery of CS images, ISTA-Net

requires an initial approximation of equal dimensionality to

the target recovered image as its input, given by

x0 = AT y. (1)

While the initial approximation x0 describes abysmal image

quality when compared to the original image x, it provides

the image reconstruction network with enough information for

recovery due to containing spatially contextual information of

both the projections of the pixels in the original image x, and

the patterns in A that dictate said projections.

Our training procedure for the ISTA-Net network is as follows:

we selected to section images in 33 px ×33 px blocks (in

terms of CS, this makes our individual vectorized signals

of length N = 1089px for each block). Consequently, the

considered sampling rates of 10%, 25% and 50% yield a total

of M ={1089*0.1, 1089*0.25, 1089*0.5} ≈ {109, 272, 545}
sampling operations, respectively, after performing CS acqui-

sition using the SBHE patterns corresponding to each training

data set. For consistency, the SBHE patterns for CS were

randomly generated once, then saved for use in all applicable

cases.

B. ISTA-Net Recovery Parametrization

In order to adequately gauge the resolution of the recovered

images (which is a very significant concern for clinical use

of RCM skin images) using the ISTA-Net architecture and

the USAF target image, we trained an individual network on

natural images for each of six considered ISTA blocks in the

network architecture: 1, 3, 5, 7, 9 and 11 blocks.

Our analysis brought to our attention the presence of obvious

blocking artifacts on RCM images recovered from CS mea-

surements using the ISTA-Net architecture. Figure 8 illustrates

an example of this phenomenon.

Additionally, while [11] suggests that a single ISTA-Net

network is capable of recovering CS images sampled under

a variety of undersampling rates, an initial test resulted in

drastically reduced performance when undersampling rates

were significally different from those used during network

training. For this reason, the presented analysis will include

a study of the influence of the undersampling rates on the

recovery performance of CS RCM images. In total, our study

compares the performance of the following six networks:

• 3 networks for Natural data: 10%, 25% and 50% sam-

pling rates.

• 3 networks for Skin data: 10%, 25% and 50% sampling

rates.

For training these networks, we used Adam optimization with

a learning rate of 0.0001 over 80 epochs, and a batch size of

128.
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(a) Influence of the number of ISTA blocks on PSNR of recovered
images.

(b) Influence of the number of ISTA blocks on SSIM of recovered
images.

Fig. 5: Image recovery performance for the proposed archi-

tecture.

(a) Intensity profile for USAF Target, 1 ISTA block.

(b) Intensity profile for USAF Target, 11 ISTA blocks.

Fig. 6: Intensity profiles of recovered images for resolution

assessment.

In summary, the training process is performed in two

stages: First, the ISTA-Net network is trained with initial

approximations (given by Equation 1) from CS measurements

as input data, and the original RCM images as target output

data. Once trained, the ISTA-Net output is used as training

inputs for the RCMDD, with the original RCM images as

target output data.

A diagram for the proposed architecture is presented in

Figure 3. Figure 3a shows the complete network architecture,

incorporating ISTA-Net for initial recovery, and RCMDD for

denoising. The convolutional autoencoder architecture used for

RCMDD is presented in Figure 3b.

All accuracy results will be presented using the average

Peak-Signal-to-Noise-Ratio (PSNR), as well as the Structural

Similarity Index (SSIM). We provide a qualitative analysis in

the form of edge profiles for the considered RCM images.

Figure 1 shows the spatial context of the regions of interest

and profiles that will be presented. For a fuller comparison, we

compare our results to those obtained using an optimization-

based recovery approach (using ℓ1-magic) for RCM images,

which are contextually illustrated in Figures 7 and 8.

IV. EXPERIMENTAL SETUP

A. Data Sets

1) Training Data: In order to accurately evaluate the recov-

ery performance of the ISTA-Net framework of these RCM

images, we trained independent networks separately on both

RCM skin data and the natural image dataset used in [10].

Single images from the skin image and natural image training

datasets are presented in Figure 2. In order to adequately

train the proposed network architecture on the widest range of

morphological features present in highly heterogeneous skin

tissue, we use 17 different skin stacks for training, which

contain a total of 910 optically-sectioned single-channel slices,

each containing 961 33px ×33px blocks. In summary, we

generate a total of 874,510 blocks from this data for training.

Due to computational constraints and to maintain reasonable

training times, a subset of 500,000 blocks were randomly

selected for training our RCM ISTA-Net network.

2) Testing Data: In order to objectively evaluate the perfor-

mance of CS images recovered by the proposed architecture,

we perform preliminary testing on a copy of the U.S. Air

Force Test Chart (USAF-1951) target, used commonly in

image equipment resolution assessment. The test chart was

captured using a a clinical confocal microscope [Vivascope

1500, Caliber Imaging and Diagnostics (formerly, Lucid Inc.,

Rochester)], with 830nm illumination and a 30x, 0.9 numerical

aperture, gel immersion objective lens. The optical sectioning

thickness is 2 µm for each slice, and lateral resolution 0.5

m. The field of view is 0.5 mm. The single-channel acquired

images have a size of is 1000× 1000 pixels.

Further, for the purposes of evaluating the reconstruction

performance of the algorithm on real skin data, we used a

skin stack captured in vivo at a size of 1000 × 1000 pixels

using the same RCM device. The captured USAF-1951 target

and skin stack slice images used for this analysis are shown

on Figure 1.

V. RESULTS

A. ISTA-block count influence on recovery performance

In this section, we will present the summarized results of

our analysis on both RCM image types. The influence of the

number of ISTA-blocks in the recovery network for recovery

of the USAF image is presented in Figure 5. Further, sample

intensity profiles for the extreme cases of 1 and 11 ISTA-

blocks are presented in Figure 6. Numerical results of the

influence of ISTA-blocks on recovery performance, in the form

of PSNR and SSIM values, are summarized in Table I. It is

important to highlight that the presented values for skin images

on Table I do not correspond to a single slice, but are average
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(a) USAF Target reference image
used for testing

(b) Recovered USAF Target image
using ℓ1-minimization

(c) Recovered USAF Target image
using ISTA-Net

(d) Recovered USAF Target image
using RCMDD

Fig. 7: Reference and recovered USAF Target images using

the considered methods using a 10% sampling rate.

PSNR (dB) SSIM

# ISTA-Blocks Data Type ISTA-Net RCMDD ISTA-Net RCMDD

1 Natural 30.3614 30.9498 0.8570 0.9039
3 Natural 31.3731 31.8496 0.8753 0.9243
5 Natural 32.2402 32.3799 0.8852 0.9377
7 Natural 32.3027 32.4563 0.8797 0.9288
9 Natural 32.3629 32.5328 0.8773 0.9244

11 Natural 32.6008 32.5612 0.8869 0.9391

1 Skin 23.6025 23.7053 0.4994 0.5013
3 Skin 23.6459 23.7461 0.5013 0.5029
5 Skin 23.7163 23.8091 0.5025 0.5039
7 Skin 23.6871 23.7757 0.4987 0.5003
9 Skin 23.7642 23.8528 0.5052 0.5062

11 Skin 23.7282 23.8111 0.5017 0.5025

TABLE I: Numerical image recovery results for different

ISTA-block sizes for both natural and skin RCM CS images.

values for all images in a test 45-slice RCM skin stack.

The intensity profiles presented in Figure 6 indicate that both

of the considered approaches have a practically equal capacity

of edge preservation in recovered images, and surpass that of

the previously established optimization-based approach. This

is highlighted due to the importance of morphological features

in skin RCM images for diagnostic purposes. Further, the

results presented in Figure 5 indicate that, when taking into

account the benefits of a fast, lightweight recovery network

for recovery of RCM images, there is a case of diminishing

returns on the quality of recovery images when using a

recovery network with more than 5 ISTA-blocks. This is

further confirmed for the case of skin images by inspecting

the results in Table I. For this reason, our experiments for the

rest of the document will set the ISTA block number in the

recovery networks to 5. The average slice recovery times from

its CS samples for ISTA-Net, ISTA-Net+RCMDD, and the ℓ1-

minimization based recovery method are 0.0851s (11.75 FPS),

0.1005s (9.95 FPS), and 917.7353 (<1 FPS), respectively.

B. Sampling rate influence on recovery performance

Table II presents the numerical results from our study on

the influence of sampling rate on the performance of recovered

images using ISTA-Net, RCMDD and the method utilized in

[6]. In addition to this, visual results for qualitative analysis

comparing the target image and its recoveries from CS mea-

surements at 10% sampling rate using the considered methods

is presented in Figure 7. Naturally, higher sampling rates

produce higher quality results. In addition to this, the proposed

RCMDD architecture shows an increase in the performance of

recovered images for both of the considered data types. Finally,

we present sample recovered images from CS measurements

in Figure 8 for qualitative evaluation at a sampling rate of

10%.

VI. CONCLUSIONS AND FUTURE WORK

Deep Learning approaches are continuously proving their
capacity for a variety of image processing and transformation
tasks. We have proposed an architecture that further improves
the capacity of the ISTA-Net architecture for recovering CS
images acquired using an RCM device. For the purposes
of increasing the quality of the recovered images, we have
performed a comparative study of the parametrization of
the proposed architecture with state-of-the-art methods. Our
results conclude that, for the purposes of balancing image
quality, network complexity and acquisition times, a total of
5 ISTA blocks is an appropriate architecture design parameter
for the recovery network. On the subject of sampling rates, as
intuition would suggest, higher sampling rates produce higher
quality results. However, in addition to concerns about optical
bleaching of tissues due to light exposure common in skin
RCM imaging, there exists a trade-off between the selected CS
sampling rate and imaging rates. The presented preliminary
quantitative and qualitative results suggest that, upon fine
adjustment of the involved acquisition system and proposed re-
covery architecture parameters, it is possible to recover images
from CS measurements with higher performance levels for a
given sampling rate. By bypassing the requirement for solving
a computationally costly optimization problem for recovering
an image from its CS measurements, a CS-based, efficient, and
real-time RCM imaging system becomes possible. However,
this comes at the cost of the introduction of data-specific
biases into the recovery network behavior, which is highlights
the importance of sourcing and adequately constraining the
application-specific training data to the relevant applications.
Future work on this matter includes performing a more
thorough analysis over a wider range of architecture design
parameters, consulting experienced clinical personnel in order
to gain firsthand insights about the clinical usability of the
recovered images, and evaluate potential modifications to the
RCMDD network architecture.
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