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ABSTRACT

Compressive Sensing enables improvement of acquisition of

a variety of signals in various applications with little to no dis-

cernible loss in terms of recovered image quality. The current

work proposes a signal processing framework for the acqui-

sition and fast reconstruction of compressively sampled hy-

perspectral images using an artificial neural network architec-

ture. This ANN-based approach is capable of performing a

fast reconstruction by avoiding the requirement of solving a

computationally intensive image-specific optimization prob-

lem. The proposed framework contributes to advance single-

pixel hyperspectral imaging device methodologies, which en-

able a significant reduction in device mechanical complexity,

imaging rate, and cost.

Our experiments demonstrate that a hyperspectral image

can be reconstructed using only 10% of the samples without

compromising classification performance. Specifically, the

results show that classification performance of the compres-

sively sampled hyperspectral image recovered using artificial

neural networks is equal or higher to that of those obtained

using current scanning hyperspectral imaging platforms.

Index Terms— hyperspectral imaging, compressive sens-

ing, deep learning, remote sensing

1. INTRODUCTION

The Compressive Sensing (CS) framework has been used to

significantly improve Hyperspectral Image (HSI) acquisition

device design, describing improvements in acquisition speed,

system complexity and cost [1, 2, 3]. In these approaches, the

HSI acquisition system shares a similar design philosophy to

the single-pixel camera [4], with the difference that a single

measurement operation does not exclusively provide a scalar

intensity measurement, but a spectrally resolved linear com-

bination of the target. However, while CS-based approaches

provide valuable improvements for acquisition speed and sys-

tem complexity, they introduce the requirement of finding the

computationally expensive solution to an optimization prob-

lem. Currently, various algorithms have been proposed for

solving this optimization problem, focused on the specific

context of recovering compressively sampled signals [5, 6].

This is a computationally complex and time-consuming oper-

ation due to the need of finding optimal, even data-adaptive

[7] bases that adequately sparsify specific types of signals,

in addition to a variety of method-specific tuning parameters.

With optimization-based methods, the process of recovering

an image from its compressive measurements can take over

10 minutes for a single frame [8].

In order to mitigate the problem of image recovery times, sev-

eral ANN-based approaches have been proposed for recovery

of images from compressive measurements [9, 10]. These

approaches describe similar performance, with small relative

differences in recovery quality and execution time behaviors,

and show that it is possible to exploit the advantages of both

CS and ANNs in conjunction to perform close to real-time

CS imaging. While there exists the concern that ANNs re-

quire a computationally intensive training process, the reader

is reminded that once the training process is complete and its

individual weights are determined, ANNs are capable of oper-

ating on new data in a negligible amount of time. This prop-

erty makes ANNs very appealing for computationally com-

plex transformation tasks, such as the case at hand of pro-

ducing an approximation of spatial signals of interest directly

from its compressive samples.

This paper presents a framework for the compressive acqui-

sition and recovery of HSIs. The framework utilizes the CS

framework in order to simplify system design and increase

HSI acquisition speed, and a trained ANN in order to elimi-

nate the requirement of solving Equation 2 for image recov-

ery. The proposed ANN for image recovery from compres-

sive samples consists of two stages. The first stage, referred

to as the Initial Approximation Network (IAN), is based on

the ISTA-Net [10] architecture. This stage provides an initial,

noisy approximation of the recovered image from compres-

sive samples. The second stage, referred to as the Deep De-

noising Network (DDN), removes visual artifacts and further

improves image recovery performance. The proposed DDN

is based on a residual merge-and-run architecture [11]. Due
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Fig. 1: Proposed framework for fast acquisition and recovery of compressively sampled hyperspectral images. (a) Overall

system architecture. (b) Architecture for the proposed Deep Denoiser Network, based on a Merge-and-Run architecture.

to the additive nature of the artifacts introduced by the IAN,

we consider this a promising architecture for fine-tuning im-

ages. This framework can further enable the development of

fully-integrated mobile hyperspectral imaging platforms with

reduced constraints on payload size, weight, power and/or on-

board computational capabilities.

2. A FRAMEWORK FOR FAST HSI ACQUISITION

AND RECOVERY

2.1. Compressive Acquisition of Hyperspectral Images

The CS framework states that a small collection of linear

measurements taken from a signal x ∈ RN , having a sparse

representation in some domain given by a transform operator

T ∈ RN×N , contains enough information for its accurate re-

covery [12, 13]. CS theory states that, if the signal x is sparse,

it can be recovered with a high degree of accuracy by taking

M ≪ N random measurements of x using a known sampling

operator matrix A ∈ RM×N . Thus, the array of compressive

samples, y ∈ RM , is obtained through the operation

y = ATx. (1)

The compressive measurement signal y can be used, in con-

junction with the sampling matrix A to recover an approxi-

mation x̂ from its compressive measurements by solving the

optimization problem:

x̂ = argmin ‖x‖
1

s.t. y = ATx. (2)

The proposed framework is based on the foundations pro-

vided by previous work on single-pixel hyperspectral cam-

eras. These devices operate in a manner similar to established

single-pixel cameras common in CS literature [4], with the

important distinction of employing a point spectral measure-

ment device for B wavelengths as a single-pixel sensor [1, 2].

Mathematically, this separates the CS sampling operation pre-

sented in Equation 1 into B independent recovery operations,

one for each band. This is because each sampling operation

that produces a single value of the y vector from linear combi-

nations of the elements of x produces B separate linear com-

binations using a spectral measurement device. Thus, a high

dimensional image xH = {x1, x2, ..., xB} can be compres-

sively sampled in its full dimensionality into a high dimen-

sional compressive sample vector y
H

= {y1, y2, ..., yB} in

a simultaneous manner. This process mirrors the acquisition

process outlined in Equation 1 for each spectral band. An ap-

proximation of the original high dimensional signal x̂H can

thus be recovered by solving B optimization problems in par-

allel, as given by Equation 3:









x̂1

x̂2

· · ·
x̂B









=









argmin ‖x1‖1 s.t. y1 = ATx1

argmin ‖x2‖1 s.t. y2 = ATx2

· · ·
argmin ‖xB‖1 s.t. yB = ATxB









. (3)

2.2. ANN-Based Recovery of Compressively Sampled Im-

ages

The problem for recovering HSIs from compressive samples

in a bandwise manner presented in Equation 3 is paralleliz-

able, and can be distributed among various computing plat-

forms for increased HSI recovery speed. However, solving
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Fig. 2: Images produced at different framework stages with their respective classification maps. Columns from left to right:

(a) Reference image, (b) IAN output, (c) DDN output. Rows, from top to bottom: HSI image sample image, cd-LSRC+MD

classification maps, CNN-based classifier classification map.

each individual optimization problem is a computationally

taxing and time-intensive problem.

In literature, several Artificial Neural Network (ANN)

architectures have been proposed for executing fast, non-

adaptive image recovery from compressive samples. Most

relevant to the current study, are Kulkarni’s ReconNet [9],

and Zhang’s ISTA-Net [10]. Both of these approaches intro-

duce different network architectures for the accurate recovery

of CS measurements into their corresponding 2D images.

Among these architectures, Zhang’s approach consistently

more accurate recovery of images (28.50 PSNR vs 26.46

PSNR), at the expense of image recovery rate (25.6 FPS vs

62.5 FPS). Regardless, the fact that the state-of-the-art in-

troduces the possibility to recover individual frames in <1s

indicates that it is possible to take advantage of the individual

benefits introduced by both CS and ANNs in conjunction

to perform approximate real-time CS-based imaging. Due

to its scalable, blockwise operation and nonlinear learning

qualities, we choose the ISTA-Net architecture, an ANN im-

plementation inspired on the data flow in the ISTA algorithm

[6], as the basis for the Initial Approximation Network (IAN)

in the current work.

2.3. Hyperspectral Deep Denoiser Architecture

Preliminary work has found that initial recovery of CS im-

ages using ISTA-net produces blocking artifacts in recovered

images. These can be observed in Figure 2b. In order to

compensate for this, we propose the architecture presented

in Figure 1, which includes a secondary post-processing net-

work, which is referred to as the Deep Denoising Network

(DDN). This post-processing network, presented in Figure

1b, is based on Merge-and-Run architectures [11], which have

demonstrated superior abstraction capabilities than traditional

Residual Neural Networks (RNN). The purpose of this net-

work, in addition of removing the blocking artifacts intro-

duced by the initial estimation network by performing addi-

tive, data-driven corrections to individual block edges, is to

further increase the recovery performance of the central re-

gion of image blocks recovered from compressive samples.

3. EXPERIMENTAL SETUP

The proposed framework for recovery of HSI data from

compressive samples is presented in Figure 1. The train-

ing procedure for the recovery framework is performed in

two stages. The first stage involves training the IAN, which

produces an initial noisy approximation from compressive

samples as shown in Figure 1a. The IAN is trained with the
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cdLSRC + MD CNN

Class Original IAN DDN Original IAN DDN

1 54.35% 97.83% 100.00% 95.65% 100.00% 100.00%

2 70.31% 95.73% 99.30% 98.60% 93.56% 97.27%

3 64.22% 94.10% 99.52% 97.23% 98.07% 98.92%

4 56.54% 91.98% 100.00% 100.00% 100.00% 100.00%

5 94.41% 97.52% 98.34% 99.79% 96.48% 100.00%

6 98.08% 98.90% 100.00% 95.21% 98.63% 99.73%

7 75.00% 78.57% 85.71% 100.00% 100.00% 100.00%

8 98.74% 99.79% 100.00% 100.00% 99.79% 100.00%

9 40.00% 60.00% 70.00% 100.00% 100.00% 100.00%

10 74.07% 94.24% 99.69% 90.74% 97.22% 98.46%

11 92.10% 98.45% 99.59% 95.97% 92.42% 96.70%

12 58.68% 94.10% 98.15% 97.30% 96.63% 98.99%

13 96.10% 95.61% 99.51% 100.00% 98.05% 100.00%

14 97.23% 98.50% 100.00% 95.02% 99.13% 98.81%

15 59.84% 94.82% 99.48% 100.00% 99.22% 99.22%

16 92.47% 98.92% 100.00% 97.85% 98.92% 97.85%

AA 76.38% 93.07% 96.83% 97.71% 98.01% 99.12%

OA 91.41% 98.19% 99.42% 96.58% 96.21% 98.36%

Table 1: Class-specific classification performance results for

two classifiers on the original Indian Pines HSI, the initial ap-

proximation from the ISTA-Net Initial Approximation Net-

work (IAN), and the post-processed output from the Deep

Denoiser Network (DDN). As additional information, the av-

erage class accuracy (AA) and overall pixel accuracy (OA)

are presented.

initial guess for the CS samples given by AT y as inputs, and

the original images as outputs. The architecture used to the

current work is based on ISTA-Net and is comprised of five

ISTA blocks. Following this, the DDN is trained with the

IAN outputs as input data, and the original images as output

data. Both the IAN and the DDN were trained on a random

selection of 300,000 33px×33px blocks extracted from all

220 samples. The networks were trained for 150 epochs us-

ing Adam optimization, a learning rate of 0.0001 and a batch

size of 128.

Following the image recovery process, the three relevant HSIs

(original, IAN output and DDN output) were independently

classified using two classifiers: the class-dependent linearized

sparse representation classifier with Manhattan Distance in-

formation (cdLSRC + MD) [14], and a CNN-based HSI

classifier [15].

3.1. Experimental Data

In order to confirm the validity of the proposed method

for HSI recovery, we used the 614px×2678px North-South

AVIRIS flight line 220-band Hyperspectral image for training

the IAN and the DNN networks [16]. For testing recov-

ery and classification performance, we used the 220-band

145px×145px, 16-class Indian Pines dataset. For train-

ing purposes, the subset corresponding to the Indian Pines

HSI was excluded from the selected training samples. The

recovered HSIs presented are recovered from compressive

measurements with a 10% undersampling rate.

3.2. Results and Discussion

Our analysis produced the classification performance results

summarized in Table 1, which presents classification perfor-

mance on the original Indian Pines HSI, and the recoveries

at the IAN and DDN framework stages. These results indi-

cate that both considered HSI classifiers performed better on

the DDN network output than the IAN network alone for all

classes using the cdLSRC+MD classifier, and most classes

using the CNN classifier. Recovered bands from each stage

are presented in Figure 2 for illustrative purposes. While a

visual inspection of Figure 2 indicates that there exists some

degradation of texture information and finer details at 10%

undersampling levels, the classification results presented in

Table 1 indicate that the information recovered from the ac-

quired compressive samples is sufficient to provide accurate

landcover classification of the studied scene.

In addition, Figure 2c confirms the ability of the DDN for

improving the quality of the IAN output. Furthermore, the

recovered images display higher classification performance

in the majority of classes for both classifiers considered. This

can be explained due to the spatially contextual low-pass fil-

tering effect introduced by the undersampling operation, and

is consistent with results of previous CS applications for HSI

classification [17]. We have found that while this process

introduces some localized spatial degradation of individual

bands, Table 1 indicated that the recovered spectral behavior

of pixel regions is sufficient to provide accurate classification

results.

4. CONCLUSION

This work presented a signal processing framework based

on Compressive Sensing for acquisition, and Artificial Neu-

ral Networks for recovery with the objective of improving

acquisition and recovery speed of hyperspectral images. In

order to evaluate the real-world usability of recovered im-

ages, we compared the classification performance of the In-

dian Pines HSI with its respective approximation from com-

pressive samples. The results obtained indicate that the HSIs

recovered using the proposed framework with a 10% sam-

pling rate demonstrate classification performance comparable

with HSIs obtained using conventional scanning hyperspec-

tral cameras.

Future work on this subject includes further experimenta-

tion with the IAN and DDN architectures to further improve

spatial recovery performance of individual bands, as well as

work on development of an adaptive scheme that reduces the

need for blockwise framework operation. This has the dual

benefit of decreasing image handling computation times, and

minimizing the introduction of additional noise in recovered

images in the form of blocking artifacts.
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