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ABSTRACT

Compressive Sensing enables improvement of acquisition of
a variety of signals in various applications with little to no dis-
cernible loss in terms of recovered image quality. The current
work proposes a signal processing framework for the acqui-
sition and fast reconstruction of compressively sampled hy-
perspectral images using an artificial neural network architec-
ture. This ANN-based approach is capable of performing a
fast reconstruction by avoiding the requirement of solving a
computationally intensive image-specific optimization prob-
lem. The proposed framework contributes to advance single-
pixel hyperspectral imaging device methodologies, which en-
able a significant reduction in device mechanical complexity,
imaging rate, and cost.

Our experiments demonstrate that a hyperspectral image
can be reconstructed using only 10% of the samples without
compromising classification performance. Specifically, the
results show that classification performance of the compres-
sively sampled hyperspectral image recovered using artificial
neural networks is equal or higher to that of those obtained
using current scanning hyperspectral imaging platforms.

Index Terms— hyperspectral imaging, compressive sens-
ing, deep learning, remote sensing

1. INTRODUCTION

The Compressive Sensing (CS) framework has been used to
significantly improve Hyperspectral Image (HSI) acquisition
device design, describing improvements in acquisition speed,
system complexity and cost [1, 2, 3]. In these approaches, the
HST acquisition system shares a similar design philosophy to
the single-pixel camera [4], with the difference that a single
measurement operation does not exclusively provide a scalar
intensity measurement, but a spectrally resolved linear com-
bination of the target. However, while CS-based approaches
provide valuable improvements for acquisition speed and sys-
tem complexity, they introduce the requirement of finding the
computationally expensive solution to an optimization prob-
lem. Currently, various algorithms have been proposed for

solving this optimization problem, focused on the specific
context of recovering compressively sampled signals [5, 6].
This is a computationally complex and time-consuming oper-
ation due to the need of finding optimal, even data-adaptive
[7] bases that adequately sparsify specific types of signals,
in addition to a variety of method-specific tuning parameters.
With optimization-based methods, the process of recovering
an image from its compressive measurements can take over
10 minutes for a single frame [8].

In order to mitigate the problem of image recovery times, sev-
eral ANN-based approaches have been proposed for recovery
of images from compressive measurements [9, 10]. These
approaches describe similar performance, with small relative
differences in recovery quality and execution time behaviors,
and show that it is possible to exploit the advantages of both
CS and ANNSs in conjunction to perform close to real-time
CS imaging. While there exists the concern that ANNs re-
quire a computationally intensive training process, the reader
is reminded that once the training process is complete and its
individual weights are determined, ANNs are capable of oper-
ating on new data in a negligible amount of time. This prop-
erty makes ANNs very appealing for computationally com-
plex transformation tasks, such as the case at hand of pro-
ducing an approximation of spatial signals of interest directly
from its compressive samples.

This paper presents a framework for the compressive acqui-
sition and recovery of HSIs. The framework utilizes the CS
framework in order to simplify system design and increase
HST acquisition speed, and a trained ANN in order to elimi-
nate the requirement of solving Equation 2 for image recov-
ery. The proposed ANN for image recovery from compres-
sive samples consists of two stages. The first stage, referred
to as the Initial Approximation Network (IAN), is based on
the ISTA-Net [10] architecture. This stage provides an initial,
noisy approximation of the recovered image from compres-
sive samples. The second stage, referred to as the Deep De-
noising Network (DDN), removes visual artifacts and further
improves image recovery performance. The proposed DDN
is based on a residual merge-and-run architecture [11]. Due
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Fig. 1: Proposed framework for fast acquisition and recovery of compressively sampled hyperspectral images. (a) Overall
system architecture. (b) Architecture for the proposed Deep Denoiser Network, based on a Merge-and-Run architecture.

to the additive nature of the artifacts introduced by the TAN,
we consider this a promising architecture for fine-tuning im-
ages. This framework can further enable the development of
fully-integrated mobile hyperspectral imaging platforms with
reduced constraints on payload size, weight, power and/or on-
board computational capabilities.

2. AFRAMEWORK FOR FAST HSI ACQUISITION
AND RECOVERY

2.1. Compressive Acquisition of Hyperspectral Images

The CS framework states that a small collection of linear
measurements taken from a signal z € R”, having a sparse
representation in some domain given by a transform operator
T € RV*V, contains enough information for its accurate re-
covery [12, 13]. CS theory states that, if the signal x is sparse,
it can be recovered with a high degree of accuracy by taking
M < N random measurements of = using a known sampling
operator matrix A € RM>*¥ | Thus, the array of compressive
samples, y € RM, is obtained through the operation

y=ATzx. (D)

The compressive measurement signal y can be used, in con-
junction with the sampling matrix A to recover an approxi-
mation & from its compressive measurements by solving the
optimization problem:

y = ATzx. 2)

The proposed framework is based on the foundations pro-
vided by previous work on single-pixel hyperspectral cam-

T =argmin|jz|; st

eras. These devices operate in a manner similar to established
single-pixel cameras common in CS literature [4], with the
important distinction of employing a point spectral measure-
ment device for B wavelengths as a single-pixel sensor [1, 2].
Mathematically, this separates the CS sampling operation pre-
sented in Equation 1 into B independent recovery operations,
one for each band. This is because each sampling operation
that produces a single value of the y vector from linear combi-
nations of the elements of = produces B separate linear com-
binations using a spectral measurement device. Thus, a high
dimensional image xy = {z1,%2,...,£3} can be compres-
sively sampled in its full dimensionality into a high dimen-
sional compressive sample vector y; = {y1,¥%2,...,ys} in
a simultaneous manner. This process mirrors the acquisition
process outlined in Equation 1 for each spectral band. An ap-
proximation of the original high dimensional signal Xz can
thus be recovered by solving B optimization problems in par-
allel, as given by Equation 3:

2 argminl||zil]; sty = ATz,
o | | argminlza|; sty = ATz, 3)
B argmin||zgll, st yp=ATzp

2.2. ANN-Based Recovery of Compressively Sampled Im-
ages

The problem for recovering HSIs from compressive samples
in a bandwise manner presented in Equation 3 is paralleliz-
able, and can be distributed among various computing plat-
forms for increased HSI recovery speed. However, solving
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Fig. 2: Images produced at different framework stages with their respective classification maps. Columns from left to right:
(a) Reference image, (b) IAN output, (c) DDN output. Rows, from top to bottom: HSI image sample image, cd-LSRC+MD

classification maps, CNN-based classifier classification map.

each individual optimization problem is a computationally
taxing and time-intensive problem.

In literature, several Artificial Neural Network (ANN)
architectures have been proposed for executing fast, non-
adaptive image recovery from compressive samples. Most
relevant to the current study, are Kulkarni’s ReconNet [9],
and Zhang’s ISTA-Net [10]. Both of these approaches intro-
duce different network architectures for the accurate recovery
of CS measurements into their corresponding 2D images.
Among these architectures, Zhang’s approach consistently
more accurate recovery of images (28.50 PSNR vs 26.46
PSNR), at the expense of image recovery rate (25.6 FPS vs
62.5 FPS). Regardless, the fact that the state-of-the-art in-
troduces the possibility to recover individual frames in <lIs
indicates that it is possible to take advantage of the individual
benefits introduced by both CS and ANNs in conjunction
to perform approximate real-time CS-based imaging. Due
to its scalable, blockwise operation and nonlinear learning
qualities, we choose the ISTA-Net architecture, an ANN im-
plementation inspired on the data flow in the ISTA algorithm
[6], as the basis for the Initial Approximation Network (IAN)
in the current work.

2.3. Hyperspectral Deep Denoiser Architecture

Preliminary work has found that initial recovery of CS im-
ages using ISTA-net produces blocking artifacts in recovered
images. These can be observed in Figure 2b. In order to
compensate for this, we propose the architecture presented
in Figure 1, which includes a secondary post-processing net-
work, which is referred to as the Deep Denoising Network
(DDN). This post-processing network, presented in Figure
1b, is based on Merge-and-Run architectures [11], which have
demonstrated superior abstraction capabilities than traditional
Residual Neural Networks (RNN). The purpose of this net-
work, in addition of removing the blocking artifacts intro-
duced by the initial estimation network by performing addi-
tive, data-driven corrections to individual block edges, is to
further increase the recovery performance of the central re-
gion of image blocks recovered from compressive samples.

3. EXPERIMENTAL SETUP

The proposed framework for recovery of HSI data from
compressive samples is presented in Figure 1. The train-
ing procedure for the recovery framework is performed in
two stages. The first stage involves training the IAN, which
produces an initial noisy approximation from compressive
samples as shown in Figure la. The IAN is trained with the
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c¢dLSRC + MD CNN
Class | Original TAN DDN Original TIAN DDN

1| 5435% 97.83% 100.00% 95.65% 100.00%  100.00%

2| 7031% 9573%  99.30% | 98.60% 93.56% 97.27%
3| 6422% 94.10%  99.52% 97.23%  98.07%  98.92%

4| 5654% 91.98% 100.00% | 100.00% 100.00% 100.00%

5| 9441% 97.52%  98.34% 99.79%  96.48%  100.00%

6| 98.08% 98.90% 100.00% 9521%  98.63%  99.73%

7| 7500% 7857%  85.71% | 100.00% 100.00% 100.00%

8| 9874% 99.79% 100.00% | 100.00% 99.79%  100.00 %

9 | 40.00% 60.00%  70.00% | 100.00% 100.00% 100.00%
10 | 74.07% 94.24%  99.69% 90.74%  97.22%  98.46%
11 | 92.10% 98.45%  99.59% 95.97%  92.42%  96.70%
12 | 58.68% 94.10%  98.15% 97.30%  96.63%  98.99%
13 | 96.10% 95.61%  99.51% | 100.00% 98.05%  100.00%
14 | 97.23% 98.50% 100.00% 95.02%  99.13% 98.81%
15 | 59.84% 94.82%  99.48% | 100.00% 99.22%  99.22%
16 | 9247% 98.92% 100.00% 97.85%  98.92% 97.85%
AA | 7638% 93.07%  96.83% 97.71%  98.01%  99.12%
OA | 9141% 98.19%  99.42% 96.58%  96.21%  98.36%

Table 1: Class-specific classification performance results for
two classifiers on the original Indian Pines HSI, the initial ap-
proximation from the ISTA-Net Initial Approximation Net-
work (IAN), and the post-processed output from the Deep
Denoiser Network (DDN). As additional information, the av-
erage class accuracy (AA) and overall pixel accuracy (OA)
are presented.

initial guess for the CS samples given by A”y as inputs, and
the original images as outputs. The architecture used to the
current work is based on ISTA-Net and is comprised of five
ISTA blocks. Following this, the DDN is trained with the
TAN outputs as input data, and the original images as output
data. Both the IAN and the DDN were trained on a random
selection of 300,000 33pxx33px blocks extracted from all
220 samples. The networks were trained for 150 epochs us-
ing Adam optimization, a learning rate of 0.0001 and a batch
size of 128.

Following the image recovery process, the three relevant HSIs
(original, IAN output and DDN output) were independently
classified using two classifiers: the class-dependent linearized
sparse representation classifier with Manhattan Distance in-
formation (cdLSRC + MD) [14], and a CNN-based HSI
classifier [15].

3.1. Experimental Data

In order to confirm the validity of the proposed method
for HSI recovery, we used the 614px x2678px North-South
AVIRIS flight line 220-band Hyperspectral image for training
the TAN and the DNN networks [16]. For testing recov-
ery and classification performance, we used the 220-band
145px x 145px, 16-class Indian Pines dataset. For train-
ing purposes, the subset corresponding to the Indian Pines
HSI was excluded from the selected training samples. The
recovered HSIs presented are recovered from compressive
measurements with a 10% undersampling rate.

3.2. Results and Discussion

Our analysis produced the classification performance results
summarized in Table 1, which presents classification perfor-
mance on the original Indian Pines HSI, and the recoveries
at the IAN and DDN framework stages. These results indi-
cate that both considered HSI classifiers performed better on
the DDN network output than the IAN network alone for all
classes using the cdLSRC+MD classifier, and most classes
using the CNN classifier. Recovered bands from each stage
are presented in Figure 2 for illustrative purposes. While a
visual inspection of Figure 2 indicates that there exists some
degradation of texture information and finer details at 10%
undersampling levels, the classification results presented in
Table 1 indicate that the information recovered from the ac-
quired compressive samples is sufficient to provide accurate
landcover classification of the studied scene.

In addition, Figure 2¢ confirms the ability of the DDN for
improving the quality of the IAN output. Furthermore, the
recovered images display higher classification performance
in the majority of classes for both classifiers considered. This
can be explained due to the spatially contextual low-pass fil-
tering effect introduced by the undersampling operation, and
is consistent with results of previous CS applications for HSI
classification [17]. We have found that while this process
introduces some localized spatial degradation of individual
bands, Table 1 indicated that the recovered spectral behavior
of pixel regions is sufficient to provide accurate classification
results.

4. CONCLUSION

This work presented a signal processing framework based
on Compressive Sensing for acquisition, and Artificial Neu-
ral Networks for recovery with the objective of improving
acquisition and recovery speed of hyperspectral images. In
order to evaluate the real-world usability of recovered im-
ages, we compared the classification performance of the In-
dian Pines HSI with its respective approximation from com-
pressive samples. The results obtained indicate that the HSIs
recovered using the proposed framework with a 10% sam-
pling rate demonstrate classification performance comparable
with HSIs obtained using conventional scanning hyperspec-
tral cameras.

Future work on this subject includes further experimenta-
tion with the IAN and DDN architectures to further improve
spatial recovery performance of individual bands, as well as
work on development of an adaptive scheme that reduces the
need for blockwise framework operation. This has the dual
benefit of decreasing image handling computation times, and
minimizing the introduction of additional noise in recovered
images in the form of blocking artifacts.
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