A PIXEL LEVEL SCALED FUSION MODEL TO PROVIDE HIGH SPATIAL-SPECTRAL
RESOLUTION FOR SATELLITE IMAGES USING LSTM NETWORKS

Carlos A. Theran2, Michael A. A/lvarezl"g, Emmanuel Arzuagal’Q’?’, Heidy Sierra'

2

1. Laboratory for Applied Remote Sensing, Imaging and Photonics
2. Department of Computer science & Engineering
3. Department of Electrical and Computer Engineering
University of Puerto Rico Mayaguez

ABSTRACT

Pixel-level fusion of satellite images coming from multi-
ple sensors allows for an improvement in the quality of the
acquired data both spatially and spectrally. In particular, mul-
tispectral and hyperspectral images have been fused to gen-
erate images with a high spatial and spectral resolution. In
literature, there are several approaches for this task, nonethe-
less, those techniques still present a loss of relevant spatial
information during the fusion process. This work presents
a multi scale deep learning model to fuse multispectral and
hyperspectral data, each with high-spatial-and-low-spectral
resolution (HSaLS) and low-spatial-and-high-spectral resolu-
tion (LSaHS) respectively. As a result of the fusion scheme,
a high-spatial-and-spectral resolution image (HSaHS) can
be obtained. In order of accomplishing this result, we have
developed a new scalable high spatial resolution process in
which the model learns how to transition from low spatial
resolution to an intermediate spatial resolution level and
finally to the high spatial-spectral resolution image. This
step-by-step process reduces significantly the loss of spatial
information. The results of our approach show better perfor-
mance in terms of both the structural similarity index and the
signal to noise ratio.

Index Terms— Data Fusion, Long Short Term Memory,
Pixel level, Super resolution, hyperspectral image, multispec-
tral image.

1. INTRODUCTION

The availability of data captured by different remote sens-
ing instruments has been increasing, opening possibilities to
create new processing approaches for classification, enhance-
ment, and tracking of features of any captured signal. Cur-
rently, the fusion of satellite images coming from multiple
sensors has gain relevant attention, particularly in the devel-
opment of new techniques aiming to improve spatial features
by generating high-resolution images [1]. Image fusion is
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typically divided into three different levels of details; pixel
level fusion, feature level fusion and decision level fusion
[2], particularly pixel level fusion has gained substantial in-
terest for multispectral (MS) and hyperspectral (HS) images.
In recent studies, sparse representation methods have been
proposed in order to generate optimum spatial-spectral res-
olution. Such a problem has been formulated as an inverse
problem whose solution is the target image, represented by
atoms of dictionaries [3] or using sparse matrix factorization
schemes [4].

Machine learning algorithms have been successfully used for
the analysis of remote sensing data in different applications.
For example, neural network models have been proposed
for super-resolution [5] and support vector machines in Pan-
sharpening methods [6]. Moreover, deep learning has been
adopted for super-resolution [7, 8] with excellent results.
These approaches create an end-to-end mapping between
low-resolution and high-resolution images. However, this
mapping generates a loss of information (spatial features)
when they generate high-resolution images. In this work, we
propose a scalable-fusion model in order to reduce the loss of
information, this approach learns how to transition from low
resolution to an intermediate resolution stage and finally to a
high resolution result.

Our computational approach called scaled-fusion, fuses two
types of data; 1. Multispectral image with high-spatial res-
olution and low-spectral resolution (HSaLS), and 2. Hyper-
spectral images with low-spatial resolution and high-spectral
resolution (LSaHS). As a result, the model provides a HSaHS
image. Moreover, this model will cover the loss of informa-
tion during the process of getting an HSaHS image by scal-
able learning. This means that if an image has 8m of spatial
resolution and the enhancement target is Im data, our model
learns how to go from 8m to 4m and finally from 4m to 1m.
This model is based on the best characteristic of long short
term memory (LSTM) networks, which is to learn from past
observations.

The separability of spectral and spatial information into the
fusion of multispectral and hyperspectral images allows for

Authorized licensed use limited to: University of Puerto Rico - Mayaguez. Downloaded on May 23,2020 at 05:49:34 UTC from IEEE Xplore. Restrictions apply.



the analysis for feature space and reduction along the spec-
tral dimension. Different methods have been proposed, such
as component substitution, which consists of transforming
the spectral information into another feature space. Conse-
quently, separate spatial and spectral informations can be ob-
tained. Typical principal components analysis, singular value
decomposition (SVD), and GramSchmidt orthonormalization
[9] are well known for separability of spectral and spatial in-
formation. For the purpose of minimizing the loss of infor-
mation, as a result from the dimension reduction process, our
approach performs an SVD transformation [9]. The rest of the
paper is organized as follows. Section 2 discuses the fusion
problem and the new approach within the proposed frame-
work. Section 3 discusses simulation results using different
metrics, and the conclusions are reported in section 4.

2. THEORETICAL FRAMEWORK OF SVD & LSTM

The efficiency of our approach lies in the implementation of
the LSTM model for spatial enhancement preserving spatial
content, the following section briefly describes the SVD and
LSTM methods and how they are employed in our proposed
model.

2.1. Singular Value Decomposition

Hyperspectral sensors capture hundreds of spectral bands,
this fact hinders the removal of redundant information that
does not represent an improve to the analysis to scene of
study. In our approach we need to reduce the spectral di-
mensionality of the hyperspectral images in order to remove
redundant spectral bands and keep only the bands that rep-
resent the majority of information of the scene. For this
purpose, we use the SVD as a technique that allows us sepa-
rate the spatial and spectral information. Moreover, the SVD
let us discriminate those bands with low information. Given
a hyperspectral image A € RP*? where b is the number of
bands and p is the number of pixels. The SVD applied to A,
gives the following factorization:

A=USVT

where the matrix U € RP*? is an orthogonal matrix, whose
columns are eigenvectors of pixels, S € RP*? is a diagonal
matrix of which elements are the singular values that repre-
sent the energy of each pixel by bands. In this decomposition
the matrix I' = U S represents the spatial information and V'
contain the spectral information contents.

2.2. Long Short Term Memory Network

Our proposed fusion scheme relies on LSTM networks [10].
The idea behind LSTM networks is the inclusion of a self-
loop that helps the gradient flow for each layer, resulting in
the capability of remembering information for long periods of

time. The weight of each self-loop is controlled by a hidden
layer. This method requires more parameters and a system
that controls the flow of information (cell stage), regulated
by structures called gates. Lets us define each of the gates
that compound a LSTM. The forget gate defines which char-
acteristic of the past information we will keep for the actual
prediction, this gate is defined as follows for a time ¢ € R:

f“—a(bHZ L+ Zwﬂh; ) M

where z(*) is the actual input vector, the output of the LSTM
at the current hidden layer is h(t), and b(f), U(f), WO are
biases, input weights, and recurrent weights respectively. The
next state decides the new information that will be stored in

the cell state c;. For this purpose, we need to find values that

(1)

update ¢; " as well as create a vector of new candidate values

¢¢. The computation of igt)
equations:

i =0 (bz- +> Ui+ Y Wi,jh§1> @)
J J

and ¢; is given by the following

and

&" = tanh (bC+Z el + ZWth§ 1) (3)

where b9, b, U9, U, W(®), W are biases, input weights, and
recurrent weight. The new cell state c¢; is calculated using the
information computed at this point.

I IO @

In equation (4) there is a piece-wise operation. The output
of the actual hidden layer (") is based on the cell state c(t)
but it can be filtered or turned off by the output gate of. Both
formulas are described bellow.

) (t) o pt—1
of a(b +Z ZWth ) )

h® = tanh(ct)ol (6)

where b(®, U, W(°) are biases, input weights, and recur-
rent weight. LSTM have proven to learn long-term dependen-
cies. With this architecture we will retain information from
low resolution to intermediate resolution in order to get a high
resolution. Figure 1 presents the proposed model for high spa-
tial resolution images based in LSTM.

The complete training procedure is illustrated in Algorithm
1. The LSTM has the capability of remembering past events.
Using this advantage we can learn how to go from low spa-
tial resolution to high spatial resolution using an intermediate
resolution. Consequently, the information loss between low
resolution and high resolution can be minimized.
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Fig. 1. LSTM architecture for high spatial resolution images
Algorithm 1: SVD & LSTM training program

Input : A trainig matrices: My € RP1*P: HSaLS, H; € RP2%X4,
Hs € RP3%4; LSaHS
st.p3 <p2 <p1,b<gq

Compute for each H;c[q o)
Define: F,L = Ul . Sl
forr € [6101520] & ¢ = [12] do
Lir=T(,1:7)
Reshape I'1 7, I'a7 to 3D format, and apply low pass filter:
T';rd = lowFilter{T';r}
Decimation in Multi-Spectral data M fr:
Mpy; = decimationFilter{ M , size{T';rd}}
Create input for training LSTM network:
Xirain{i} = cat{ Mp; , Tird}
Create target for training LSTM network:
Ftrain{i} =TIyr
net{r} = LSTM_Train{ X¢rain » 'train}

Ui, Si, Vi] = svd(H;)

end
Output: A set of neural networks trained: net

3. EXPERIMENTAL EVALUATION

3.1. Datasets

The sets of data used in this work consist of 3 different hyper-
spectral images: Salinas, Indian Pines and Enrique Reef.The
Salinas hyperspectral image has a resolution of 3.7m, 204
bands and was collected by the AVIRIS sensor. It consists of
512 x 217 pixels. There are 16 classes: Brocoli green weeds
1, Brocoli green weeds 2, Fallow, Fallow rough plow, Fal-
low smooth, Stubble, Celery, Grapes untrained, Soil vineyard
develop, Corn senesced green weeds, Lettuce romaine 4wk,
Lettuce romaine Swk, Lettuce romaine 6wk, Lettuce romaine
7wk, Vineyard untrained, and Vineyard vertical trellis.

The Indian Pines hyperspectral image was gathered by the
AVIRIS sensor, consisting of 145 x 145 pixels and 224 spec-
tral bands in the wavelength range 400 to 2500 nm. The num-
ber of bands were reduced to 200 by removing high water ab-
sorption bands. This scene has 16 classes: Alfalfa, Corn-notil,
Corn-mintil, Corn, Grass-pasture, Grass-trees, Grass-pasture-
mowed, Hay-windrowed, Oats, Soybean-notill, Soybean-

mintill, Soybean-clean, Wheat, Woods, Buildings-Grass-
Trees-Drives, and Stone-Steel-Towers.

There are two image groups from the Enrique Reef dataset.
The first group consists of one high spatial resolution image
taken from the multispectral sensor of IKONOS, such image
was acquired in 2005. The image contains four layers: red,
blue, green and near infrared, the spatial resolution of this
datais 1m. There are 6 classes: Mangrove, Deep water, Coral,
Sand, Sea grass, and Flat reef. The second group of images
consist of images taken from the AISA Eagle sensor with a
spatial resolution of 1, 2, 4, and 8m. The images were cap-
tured by the Galileo group in 2007. The number of bands for
the images taken by the AISA Eagle sensor is 128. For our
tests we used the high resolution hyperspectral image (1m),
and the low resolution hyperspectral image (8m).

3.2. Metrics

In order to evaluate the performance of our method for fu-
sion, two metrics were selected. The structural similarity in-
dex (SSIM)[11] given in the equation (7), power signal noise
ratio (PSNR)[12] given in the equation (8).

2z py + 1) (0ay + €2)
p2 + p2 + 2

SSIM (z,y) = & ™

where /1, and i, are the average of = and y respectively. o2
and 05 are the variance of = and y respectively, and ¢; =
(k1,L)?, o = (ko, L)? where k; = 0.01,ky = 0.03 and L
the dynamic range of the pixel-values. Now the PSNR mod-
eled by

2

RASE)

where RMSE is the well known Root mean square error for-
mula and here R is the maximum fluctuation in the input im-
age. A high SSIM when compared to a high resolution ref-
erence image in our case means that a better HSaHS image
was obtained. By other hand, PSNR compares the level of a
desired signal to the level of background noise. Thus a higher
PSNR a means that there is more useful content in the ob-
tained data.

PSNR = 10log ( )

3.3. Results and Discussion

In this section we present the results obtained applying the
proposed model. Using the metrics mentioned in section 3.2,
we show in the tables 1, 2 and 3 the performance of two dif-
ferent deep leaning models: the first one is our LSTM model
described in section 2.2 and the second is CNN proposed by
Palsson [8]. For CNN we create two cases: CNN 4-1 and
CNN 8-1. CNN 4-1 is a trained model to generate a HSaHS
image from the input-pair (HSaLS LSaHS) where LSaHS is
scaled 1/4. Similar to CNN 4-1, CNN 8-1 is a trained model,
but the LSaHS image is scaled 1/8.
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The datasets of Salinas and Indian Pines are augmented by
the construction of one HSaLS and two LSaHS images; the
HSaLS image is obtained by average of the bands in the wave-
lengt range blue (445 to 516 nm), green (506 to 595 nm), red
(632 to 698 nm) and near IR (757 to 853 nm), the LSaHS im-
ages are generated using bicubic decimation process for two
scaled factors, 1/4 and 1/8, w.r.t. the inititial resolution that is
3.7 meter.

A sample of the resultant dataset is shown in Fig. 2(a,b,c,d)
and Fig. 3(a,b,c,d), for Salinas and Indian Pines respectively.
To reach 80% of the information with randomly chosen sam-
ples we select 3800, 750, and 8200 patches for Salinas, Indian
Pines and Enrique, respectively. To control the sequence of
patches and make repeatable the tests a normally distributed
random number generator is used. The test is performed 4
times in each model, and the average value is shown in each
case:

e Table 1 shows the performance of the methods using
the augmented Salinas dataset. A sample of the recon-
struction of LSTM and CNN 4-1 is shown in Fig. 2(e)
and (f), respectively.

e Table 2 shows the performance of the methods using
the augmented Indian dataset. A sample of the recon-
struction of LSTM and CNN 4-1 is shown in Fig. 3(e)
and (f), respectively.

e Table 3 shows for the performance using the Enrique
dataset. A sample of the reconstruction of LSTM and
CNN 4-1 is shown in Fig. 4(e) and (f), respectively.

e Table 4 shows for the performance using the HSaLS
image of Enrique dataset and generated LSaHS image
from the HSaHS image of Enrique dataset.

Fig. 2. Experiment with Salinas dataset, (a) LSaHS image
of scale 1/8. (b) LSaHS image of scale 1/4. (c) Reference
LSaHS data, resolution 3.7[m]. (d) HSaLS image. (e) re-
construction HSaHS performed with the LSTM model. (f)
reconstruction HSaHS performed with the CNN model.

As can be observed from the tables, the LSTM approach
showed the higher SSIM, PSNR and lower RMSE values for
all experiments in all image datasets. These results provide

# bands 6 10 15 20

LST™M 0.958 0.958 0.959 0.959

SSIM CNN4-1 0.957 0.957 0.957 0.957
CNN 8-1 | 09288 0.9301 09309 0.9321

LST™M 0.012 0.012 0.012 0.012

RMSE  CNN 4-1 0.017 0.017 0.017 0.017
CNN 8-1 | 0.0202 0.0199 0.0197 0.0196

LST™M 35.98 36.04 36.06 36.08

PSNR  CNN4-1 33.34 33.34 33.37 33.38
CNN 8-1 31.80 31.93 32.01 32.04

Table 1. Performance of LSTM and CNN models w.r.t. bands
number for Salinas dataset.

() LSaKS scale 118

(c)HSaHS _Roference 3.7(m)

m o0 @ o®m oW wm w

(0 HSeHS CNN 41

Fig. 3. Experiment with Indian Pines dataset, (a) LSaHS im-
age of scale 1/8. (b) LSaHS image of scale 1/4. (c) Reference
LSaHS resolution 3.7[m]. (d) HSaLS image. (e) reconstruc-
tion HSaHS performed with the LSTM model. (f) reconstruc-
tion HSaHS performed with the CNN model

# bands 6 10 15 20

LST™M 0910 0.903 0901 0.901

SSIM  CNN4-1 | 0.823 0815 0.810 0.812
CNN8-1 | 0.691 0.693 0.687 0.694

LST™M 0.020 0.020 0.020 0.020

RMSE CNN4-1 | 0.079 0.087 0.093 0.091
CNN&-1 | 0.166 0.159 0.162 0.153

LST™M 31.81  31.76  31.69 31.73

PSNR  CNN4-1 | 1944 1855 18.00 18.19
CNN&8-1 | 13.03 1344 1323 13.76

Table 2. Performance of LSTM and CNN models w.r.t. bands
number for Indian Pines dataset.

# bands 6 10 15 20
SSIM LST™M 0.817 0.817 0817 0.817
CNN4-1 | 0.730 0.730 0.729  0.729
RMSE LST™M 0.024  0.023  0.023 0.023
CNN4-1 | 0.059 0.059 0.059 0.059
PSNR LST™M 3251 3257 3256 3255
CNN4-1 | 2425 2424 2424 2423

Table 3. Performance of LSTM and CNN models w.r.t. bands
number for Enrique Reef dataset.

confidence that the approach is capable of preserving better
spatial features, producing a higher spatial resolution image.
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Fig. 4. Experiment with Enrique Reef dataset, (a) HS image
of resolution 8m. (b) HS image of resolution 4m. (c) Ref-
erence LSaHS resolution 1m. (d) HSaLS image of 1m. (e)
reconstruction HSaHS performed with the LSTM model. (f)
reconstruction HSaHS performed with the CNN model

# bands 6 10 15 20
SSTM LSTM 0972 0974 0973 0973
CNN4-1 | 0956 0.955 0955 0.955
RMSE LSTM 0.009 0.009 0.009 0.009
CNN4-1 | 0.031 0.031 0.031 0.031
PSNR LSTM 40.56  40.81 40.77  40.77
CNN4-1 | 2997 2992 2990 29.89

Table 4. Performance of LSTM and CNN models w.r.t. bands
number for simulated Enrique Reef dataset.

4. CONCLUSION

The proposed model has shown better results using a scalable
learning approach for four different data set and metrics, as
can be seen in the tables presented in section 3.3. Also, we
have proof numerically that the LSTM is a useful architec-
ture to generate HSaHS images compared with other architec-
ture in literature. The numerical result with a few bands has
achieved good reconstruction. Particularly, the higher SSIM
were reached in band 6, 20 and 10 for Indian Pines, Sali-
nas and Enrique Reef respectively. As well as, the values of
the PSNR obtained by the LSTM are greater than given for a
CNN architecture.

On another side, the data of Enrique reef, Salinas and Indian
Pines present a large set of homogeneous pixels over images.
In future work, we propose to use images with a large set of
heterogeneous pixels as well as evaluating the impact that this
reconstruction approach has on image classification.
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