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ABSTRACT

Pixel-level fusion of satellite images coming from multi-

ple sensors allows for an improvement in the quality of the

acquired data both spatially and spectrally. In particular, mul-

tispectral and hyperspectral images have been fused to gen-

erate images with a high spatial and spectral resolution. In

literature, there are several approaches for this task, nonethe-

less, those techniques still present a loss of relevant spatial

information during the fusion process. This work presents

a multi scale deep learning model to fuse multispectral and

hyperspectral data, each with high-spatial-and-low-spectral

resolution (HSaLS) and low-spatial-and-high-spectral resolu-

tion (LSaHS) respectively. As a result of the fusion scheme,

a high-spatial-and-spectral resolution image (HSaHS) can

be obtained. In order of accomplishing this result, we have

developed a new scalable high spatial resolution process in

which the model learns how to transition from low spatial

resolution to an intermediate spatial resolution level and

finally to the high spatial-spectral resolution image. This

step-by-step process reduces significantly the loss of spatial

information. The results of our approach show better perfor-

mance in terms of both the structural similarity index and the

signal to noise ratio.

Index Terms— Data Fusion, Long Short Term Memory,

Pixel level, Super resolution, hyperspectral image, multispec-

tral image.

1. INTRODUCTION

The availability of data captured by different remote sens-

ing instruments has been increasing, opening possibilities to

create new processing approaches for classification, enhance-

ment, and tracking of features of any captured signal. Cur-

rently, the fusion of satellite images coming from multiple

sensors has gain relevant attention, particularly in the devel-

opment of new techniques aiming to improve spatial features

by generating high-resolution images [1]. Image fusion is
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typically divided into three different levels of details; pixel

level fusion, feature level fusion and decision level fusion

[2], particularly pixel level fusion has gained substantial in-

terest for multispectral (MS) and hyperspectral (HS) images.

In recent studies, sparse representation methods have been

proposed in order to generate optimum spatial-spectral res-

olution. Such a problem has been formulated as an inverse

problem whose solution is the target image, represented by

atoms of dictionaries [3] or using sparse matrix factorization

schemes [4].

Machine learning algorithms have been successfully used for

the analysis of remote sensing data in different applications.

For example, neural network models have been proposed

for super-resolution [5] and support vector machines in Pan-

sharpening methods [6]. Moreover, deep learning has been

adopted for super-resolution [7, 8] with excellent results.

These approaches create an end-to-end mapping between

low-resolution and high-resolution images. However, this

mapping generates a loss of information (spatial features)

when they generate high-resolution images. In this work, we

propose a scalable-fusion model in order to reduce the loss of

information, this approach learns how to transition from low

resolution to an intermediate resolution stage and finally to a

high resolution result.

Our computational approach called scaled-fusion, fuses two

types of data; 1. Multispectral image with high-spatial res-

olution and low-spectral resolution (HSaLS), and 2. Hyper-

spectral images with low-spatial resolution and high-spectral

resolution (LSaHS). As a result, the model provides a HSaHS

image. Moreover, this model will cover the loss of informa-

tion during the process of getting an HSaHS image by scal-

able learning. This means that if an image has 8m of spatial

resolution and the enhancement target is 1m data, our model

learns how to go from 8m to 4m and finally from 4m to 1m.

This model is based on the best characteristic of long short

term memory (LSTM) networks, which is to learn from past

observations.

The separability of spectral and spatial information into the

fusion of multispectral and hyperspectral images allows for
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the analysis for feature space and reduction along the spec-

tral dimension. Different methods have been proposed, such

as component substitution, which consists of transforming

the spectral information into another feature space. Conse-

quently, separate spatial and spectral informations can be ob-

tained. Typical principal components analysis, singular value

decomposition (SVD), and GramSchmidt orthonormalization

[9] are well known for separability of spectral and spatial in-

formation. For the purpose of minimizing the loss of infor-

mation, as a result from the dimension reduction process, our

approach performs an SVD transformation [9]. The rest of the

paper is organized as follows. Section 2 discuses the fusion

problem and the new approach within the proposed frame-

work. Section 3 discusses simulation results using different

metrics, and the conclusions are reported in section 4.

2. THEORETICAL FRAMEWORK OF SVD & LSTM

The efficiency of our approach lies in the implementation of

the LSTM model for spatial enhancement preserving spatial

content, the following section briefly describes the SVD and

LSTM methods and how they are employed in our proposed

model.

2.1. Singular Value Decomposition

Hyperspectral sensors capture hundreds of spectral bands,

this fact hinders the removal of redundant information that

does not represent an improve to the analysis to scene of

study. In our approach we need to reduce the spectral di-

mensionality of the hyperspectral images in order to remove

redundant spectral bands and keep only the bands that rep-

resent the majority of information of the scene. For this

purpose, we use the SVD as a technique that allows us sepa-

rate the spatial and spectral information. Moreover, the SVD

let us discriminate those bands with low information. Given

a hyperspectral image A ∈ R
p×b where b is the number of

bands and p is the number of pixels. The SVD applied to A,

gives the following factorization:

A = USV T

where the matrix U ∈ R
p×p is an orthogonal matrix, whose

columns are eigenvectors of pixels, S ∈ R
p×b is a diagonal

matrix of which elements are the singular values that repre-

sent the energy of each pixel by bands. In this decomposition

the matrix Γ = US represents the spatial information and V

contain the spectral information contents.

2.2. Long Short Term Memory Network

Our proposed fusion scheme relies on LSTM networks [10].

The idea behind LSTM networks is the inclusion of a self-

loop that helps the gradient flow for each layer, resulting in

the capability of remembering information for long periods of

time. The weight of each self-loop is controlled by a hidden

layer. This method requires more parameters and a system

that controls the flow of information (cell stage), regulated

by structures called gates. Lets us define each of the gates

that compound a LSTM. The forget gate defines which char-

acteristic of the past information we will keep for the actual

prediction, this gate is defined as follows for a time t ∈ R:
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where x(t) is the actual input vector, the output of the LSTM

at the current hidden layer is h(t), and b(f), U(f), W(t) are

biases, input weights, and recurrent weights respectively. The

next state decides the new information that will be stored in

the cell state ct. For this purpose, we need to find values that

update i
(t)
i as well as create a vector of new candidate values

ĉt. The computation of i
(t)
i and ĉt is given by the following

equations:

i
(t)
i = σ

(

bi +
∑

j

Ui,jx
(t)
j +

∑

j

Wi,jh
t−1
j

)

(2)

and

ĉ
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where b(c), b, U(c), U, W(c), W are biases, input weights, and

recurrent weight. The new cell state ct is calculated using the

information computed at this point.

c
(t)
i = f

(t)
i × c

(t−1)
i + i

(t)
i × ĉ
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In equation (4) there is a piece-wise operation. The output

of the actual hidden layer h(t) is based on the cell state c
(t)
i ,

but it can be filtered or turned off by the output gate oti. Both

formulas are described bellow.
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h(t) = tanh(cti)o
t
i (6)

where b(o), U(o), W(o) are biases, input weights, and recur-

rent weight. LSTM have proven to learn long-term dependen-

cies. With this architecture we will retain information from

low resolution to intermediate resolution in order to get a high

resolution. Figure 1 presents the proposed model for high spa-

tial resolution images based in LSTM.

The complete training procedure is illustrated in Algorithm

1. The LSTM has the capability of remembering past events.

Using this advantage we can learn how to go from low spa-

tial resolution to high spatial resolution using an intermediate

resolution. Consequently, the information loss between low

resolution and high resolution can be minimized.
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