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Abstract

In degradation tests, the test units are usually divided into several groups, with

each group tested simultaneously in a test rig. Each rig constitutes a rig-layer block

from the perspective of design of experiments. Within each rig, the test units mea-

sured at the same time further form a gauge-layer block. Due to the uncontrollable

factors among test rigs and the common errors incurred for each measurement, the

degradation measurements of the test units may differ among various blocks. On the

other hand, the degradation should be more homogeneous within a block. Motivated

by an application of emerging contaminants (ECs), this study proposes a multivariate

statistical model to account for the two-layer block effects in destructive degradation

tests. A multivariate Wiener process is first used to model the correlation among

different dimensions of degradation. The rig-layer block effect is modeled by a one-

dimensional frailty motivated by the degradation physics, while the gauge-layer block

effect at each measurement epoch is captured by a common additive measurement er-

ror. We develop an Expectation-Maximization (EM) algorithm to obtain the point

estimates of the model parameters and construct confidence intervals for the parame-

ters. A procedure is proposed to test significance of the block effects in the degradation

data. Through a case study on an EC degradation dataset, we show the existence of

the two-layer block effects from the test. By making use of the proposed model, deci-

sion makers can readily make risk assessment of each contaminant and determine the

minimal water treatment time for removal of the contaminants.
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1 Introduction

1.1 Background and Motivating Example

Degradation is a cumulative and irreversible change of a subject’s performance characteristic

over time. Degradation studies are often used to assess reliability of products subject to

degradation-induced failures (Whitmore and Schenkelberg, 1997; Mercier et al., 2012; Rafiee

et al., 2014; Si, 2015; Sun et al., 2019). They are also important tools for risk assessment

in chemical, environmental, and biomedical engineering. For example, Duan et al. (2017)

investigated photodegradation of polymeric materials such as organic paints and coatings

caused by exposure to ultraviolet radiation. Zeng et al. (2016) studied the biodegradation of

scaffold in tissue engineering to aid the replacement decision of the tissues or organs in human

bodies. Xu et al. (2011) used degradation for risk assessment of emerging contaminants

(ECs), a new environmental threat due to the increasing consumption of newly synthesized

compounds. In all these studies, degradation data are essential for the modeling and analysis.

Degradation testing is probably the most important source of degradation data. When

the degradation can be measured in a non-intrusive way, a subject is usually repeatedly

measured over time, leading to repeated measures degradation test data (Bae and Kvam,

2004; Liao and Elsayed, 2006; Weaver et al., 2013; Peng et al., 2018). In many degradation

tests, however, a test subject has to be destroyed in order to measure its degradation (Li

and Doganaksoy, 2014). Implementation of such destructive degradation tests (DDTs) can

be found in measuring the strength of an adhesive bond (Shi et al., 2009), the breakdown

dielectric strength of electrical insulation (Nelson, 1981), a tissue-engineered scaffold (Zeng

et al., 2016), and the concentration of emerging contaminants (Xu et al., 2011). Motivated

by EC applications, we confine our interest to DDT data in this study.
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Since it is common that a test rig is able to accommodate more than one unit, the test

units in a DDT are usually divided into groups with each group assigned to a test rig. At

each of a set of predetermined test times, several units are taken out from a rig and their

degradation is destructively measured. Such an arrangement of the test units and the mea-

surement scheme introduce blocking in the DDT. According to Box et al. (2005, Section 3.3),

the units in a block are “expected to be more homogeneous than the aggregate...... Runs made

close together in time or space are likely to be more similar than runs made further apart and

hence can often provide a basis for blocking.” As an analogy, units tested in the same rig are

the “runs made close together in space”, and they share a common experiment environment.

Within a test rig, units measured at the same time are the “runs made close together in

time”, and they may share a common measurement error during the destructive measure-

ment process. As a result, there are two layers of block effects in a DDT, which are called

the rig-layer and the gauge-layer block effects in this study. Blocking results in incomplete

randomization (Blsgaard and Steinberg, 1997; Ye and Sun, 2019) in the degradation tests,

which complicates data analysis.

Another challenge is the multivariate nature of degradation in many applications. There

are usually multiple criteria to evaluate the performance or condition of a product. For

example, degradation of a railway track is defined in terms of wear in both the longitudinal

and the transversal directions (Mercier et al., 2012). For a multi-component system, each

component has its own degradation characteristic, while degradation of different components

is normally correlated because of the interaction and coordination within the system. For

instance, wear processes of the four tires in a car are positively correlated since the four tires

share a common operating environment. Both scenarios above lead to multivariate degra-

dation that requires joint modeling to capture the correlation among different dimensions.

However, there is scant literature in multivariate degradation analysis (Hong et al., 2018b).

A motivating example of multivariate degradation with two-layer block effects comes

from a DDT for ECs. The purpose of studying EC degradation is twofold. The first is to
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quantify the persistence in the environment for risk assessment of each individual EC, and

the second is to determine a suitable treatment time for removing a bundle of high-risk con-

taminants in water treatment (Hong et al., 2018a). A DDT is used to collect EC degradation

data for the two goals. In the experiment, a test solution of the contaminants of interest is

prepared and distributed to 21 tubes. These tubes are then put in a thermostat, and the ECs

degrade over time. At each of seven predetermined epochs, three tubes are removed from

the test rig, and concentrations of all contaminants in the three tubes are simultaneously

measured by a measurement system called liquid chromatography tandem mass spectrome-

try (LC-MS/MS). The above experiment is replicated six times to ensure reproductivity of

the results. Each replication can be regarded as a rig-layer block, and tubes measured at

the same time constitute a gauge-layer block. The experiment condition is approximately

constant in each replication, but different replications can be slightly different due to the

prepared solution and the experimenter. Similarly, the measurement of contaminant con-

centration can be affected by reagents used for quenching and gauging (Petyuk et al., 2008),

leading to a common measurement error at each measurement time. For illustration, Figure

1 shows the multivariate DDT data for a bundle of three contaminants from two replica-

tions, where the data are masked by a change in time scale. The degradation in the left

panel looks faster than the right, indicating the rig-layer block effects. The pseudo first-order

kinetics (Steinfeld et al., 1989) for the chemical contaminant degradation implies that the

mean degradation path is log-linear, which tallies with the curves in the figures. However,

simultaneous humps and dips are observed in the three curves in each plot, which may be a

result of the common measurement error.

1.2 Related Literature

Most of the literature on degradation analysis focuses on one-dimensional degradation. See

Bae and Kvam (2004); Giorgio et al. (2010); Wang (2010); Rafiee et al. (2014), to name a

few. Because of a lack of data, there are relatively few studies on multivariate degradation
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(a) Rig 1
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(b) Rig 2

Figure 1: EC degradation data from two test rigs. Each test unit is a tube of solution
with three contaminants. There are 21 units on each test rig, and seven predetermined
measurement times are employed. Contaminant concentrations of three tubes are measured
simultaneously at each measurement time. Colors of the points at each measurement time
indicate the degradation characteristics from the same test unit. The lines represent the
empirical mean degradation level of each contaminant.

analysis. Mercier et al. (2012) used the trivariate reduction method to construct correlation

between different dimensions of degradation in a railway track. They showed that negligence

of the correlation between different dimensions may result in an optimistic estimation of the

system residual useful life. An alternative way for multivariate degradation modeling is the

copula-based method. See Wang et al. (2015), Hong et al. (2018b), and Peng et al. (2018) for

some examples. The copula models generally do not retain the infinite divisibility property,

which can lead to model inconsistency in a multivariate degradation setting. The data-driven

nature further makes it difficult to incorporate the block effects from physical mechanism into

the copula models. In this study, we employ the multivariate Wiener degradation process

(Hong et al., 2018a) as a building block to account for block effects. The multivariate Wiener

process preserves the infinite divisibility property, and it is straightforward to include the

two-layer block effects based on the physical information from the EC experiment. As will

be seen in Section 3, the maximum likelihood (ML) estimation can be readily done by an

Expectation-Maximization (EM) algorithm.
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Blocking is commonly observed in reliability experiments. Numerous studies in lifetime

tests have revealed serious biases and efficiency loss in estimating important reliability char-

acteristics when overlooking the block effects. León et al. (2009) found that overlooking

the block effect can lead to a large estimation bias of model parameters. They proposed a

Weibull regression model where the rig-layer block effect is modeled as a lognormal random

variable. The model was further extended by Freeman and Vining (2010); Kensler et al.

(2015); Seo and Pan (2017). Blocking is also common in degradation tests. In a coating

degradation test reported in Duan et al. (2017), for example, four specimens were tested

in the same chamber, and the chamber served as a rig-layer block. However, blocking in

a degradation test is more complicated than that in a life test because of the gauge-layer

block. In one-dimensional degradation modeling, Li and Doganaksoy (2014) used a common

additive term for the gauge-layer block effect, while Zhai and Ye (2018) used a common

stochastic time scale to model the rig-layer block effect. Both studies have found significant

improvements in data fitting when blocking is considered, but they only considered one layer

of block effects. Since both layers of the block effects might exist in a degradation test,

it is more reasonable to take both into account during data analysis. This task becomes

challenging when the degradation is multivariate.

1.3 Overview

The main objective of the study is to develop a multivariate degradation model with two-

layer blocking for DDT data. Motivated by the EC application, the rig-layer block effect

is modeled as a frailty. Within a test rig, the gauge-layer block effect is modeled by a

common measurement error. We develop an EM algorithm for point and interval estimation

of the model parameters. Some hypothesis testing procedures are proposed to examine the

significance of the block effects.

The rest of the paper is organized as follows. Section 2 introduces the settings of our DDT

and proposes a degradation model with the block effects. Section 3 develops an EM algorithm
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to obtain the ML estimates of model parameters and discusses methods for the interval

estimation. Section 4 proposes a procedure to examine the significance of the block effects.

Section 5 evaluates the performance of the proposed methods and illustrates the importance

of considering the block effects through simulations. Section 6 applies the degradation model

to the EC degradation data. Concluding remarks are available in Section 7.

2 DDT and Degradation Model

2.1 DDT Setting and Data

Consider a subject with d-dimensional performance characteristics degrading over time. A

DDT is used to collect its degradation data. Suppose the DDT data consist of n rig-layer

blocks. This includes the scenarios where the DDT is conducted using n rigs simultaneously,

and where the experiment is repeated n times using a single rig. Without loss of generality,

suppose all rigs share a common set of predetermined measurement times {t1, · · · , tm}. Let

[I] ≡ {1, · · · , I} be the set of integer indexes up to I. Consider rig i, i ∈ [n]. At tj, j ∈ [m],

totally K test units are removed from rig i, and their degradation levels are destructively

measured. Let Y ijk ∈ Rd be the corresponding measured degradation level of the kth unit,

k ∈ [K]. The K units from the same rig and measured at the same time form a gauge-layer

block. Therefore, each rig accommodates mK test units, and the total number of test units

is N = nmK. The observed DDT data are denoted as D ≡ {Y ijk; i ∈ [n], j ∈ [m], k ∈ [K]}.

A schematic of the above DDT setting is given in Figure 2.

2.2 Degradation Model with Two-Layer Block Effects

Consider the kth unit measured at tj from rig i, i ∈ [n], j ∈ [m], and k ∈ [K]. Let

{X ijk(t) ∈ Rd, t ≥ 0} be the underlying degradation process, where the subscript “ijk” is

the label for the unit. The value of X ijk(tj) is different from Y ijk due to a measurement

error. We use a multivariate Wiener process to capture the dynamics of the degradation of
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Figure 2: The experiment setting and data scheme of the DDT.

the unit, which is given by

X ijk(t) = υijkt+Σ1/2Bijk(t), i ∈ [n], j ∈ [m], k ∈ [K], (1)

where υijk ∈ Rd is the vector of degradation rates, Σ ∈ Rd×d is the covariance matrix intro-

ducing possible correlation between different dimensions, and Bijk(t) ∈ Rd is the standard

d-dimensional Brownian motions. The ith diagonal element of Σ is σ2
i and the off-diagonal

element is ρijσiσj for the (i, j)th entry, where |ρij| ≤ 1 is the correlation coefficient of degra-

dation between the ith and the jth dimension. Here, t should be understood as a time-scale

transformation (Whitmore and Schenkelberg, 1997); see details in Park and Padgett (2005);

Wang (2010); Ye et al. (2013); Yan et al. (2016), to name a few. In our EC application, the

time scale does not contain unknown parameters since we can linearize the data based on

the physical mechanism as shown in Section 6. Such physical laws exist in many cases, e.g.,

the first-order chemical reaction law for the degradation of printed-circuit boards (Meeker

et al., 1998). In other applications, we can further allow the possibility that each dimension

of degradation has its own time scale transformation function hl(t), l ∈ [d]. When there are

unknown parameters in hl(t), the estimation can still be readily done.

Next, the two layers of block effects are introduced into (1). Within the same rig, the
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degradation is homogeneous and the degradation rate parameters of the units in the same rig

are usually assumed identical (Li and Doganaksoy, 2014). Between rigs, a one-dimensional

frailty is used to model the heterogeneity due to the rig-layer block effects. Specifically, we

model the degradation rate υijk in the ith rig as υijk = ζiµ, where µ = [µ1, · · · , µd]′ is the

mean degradation rate, and ζi, i ∈ [n], are i.i.d. mean-one random variables representing

the block effect. Since ζi is a rig-layer random effect, we follow the common practice of

random-effects modeling for degradation processes (Wang, 2010) and let ζi ∼ N (1, ω2). The

normality assumption to introduce such randomness has been widely used (Bae and Kvam,

2004; Weaver et al., 2013). To model the gauge-layer block effect, we introduce εij for units

from rig i and measured at tj. Assume that εij, i ∈ [n], j ∈ [m], are i.i.d. normal, i.e.,

εij ∼ N (0, κ2), and εij are independent of the degradation process and ζi. Therefore, the

observed degradation levels Y ijk are given by

Y ijk = X ijk(tj) + εij1d = ζiµtj + Σ1/2Bijk(tj) + εij1d, i ∈ [n], j ∈ [m], k ∈ [K], (2)

where 1d is a d-column vector with all ones. The above model formulation is reasonable

when all the d performance characteristics have a similar physical interpretation and are of

the same order of magnitudes. This is the case for our EC motivating example because each

dimension of degradation in Figure 1 corresponds to the concentration of a contaminant.

Such multivariate degradation data are commonly seen in reality, e.g., the degradation of

organic paints measured at different wavenumbers of infrared spectroscopy (Hong et al.,

2018b), the degradation of high-strength steel measured at different selected points on the

material surface (Si et al., 2018), and the degradation of railway track in longitudinal and

transversal directions (Mercier et al., 2012). This formulation saves the number of model

parameters to estimate, and the resulting model is tractable, parsimonious, and flexible.

In the proposed model, the variation in a degradation observation is the synergistic result

of the rig-layer block effect, the gauge-layer block effect, as well as the inherent volatility of
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the degradation process. By letting ω = 0 or κ = 0, the rig-layer or the gauge-layer block

effect is excluded from the model. Hence, the proposed model includes several models as its

special cases, which facilitates the detection of possible block effects in DDTs. For example,

when ω = κ = 0, the proposed model degenerates to the basic multivariate Wiener process

(Liu et al., 2014) commonly used for fitting multivariate degradation data. The rationale

of the above setting can be justified using the degradation of d kinds of contaminants in a

solution. Let Cijk(t) = [C(1)ijk(t), · · · , C
(d)
ijk(t)]

′ be the concentrations of the d contaminants of

the test unit indexed with “ijk” at time t. The pseudo first-order kinetics (Steinfeld et al.,

1989, Chapter 1) suggests log-linear paths for all contaminants under ideal conditions,

dC(l)ijk(t) = −ζ̃irlC(l)ijk(t)dt, l ∈ [d], (3)

where ζ̃i is the concentration of hydroxyl radicals in the ith repetition of the DDT, and

rl is the bimolecular rate constants for the lth contaminant. The above differential equa-

tion gives log
(
C

(l)
ijk(0)/C

(l)
ijk(t)

)
= ζ̃irlt. Let X

(l)
ijk(t) = log[C(l)ijk(0)/C(l)ijk(t)] and X ijk(t) =

[X
(1)
ijk(t), · · · , X(d)

ijk(t)]′. First, we model {X ijk(t), t ≥ 0} as a multivariate Wiener process

X ijk(t) = ζ̃irt + Σ1/2Bijk(t) to account for the increasing uncertainty in X ijk(t) over t,

where r = [r1, · · · , rd]′. Second, the hydroxyl radicals cause all contaminants to degrade,

while preparation of the solution and the ambient temperature may lead to slight difference

of ζ̃i in each repetition. Hence, we treat ζ̃i, i ∈ [n], as realizations of a normal distri-

bution, i.e., ζ̃i ∼ N (ϕ, ω̃2). To make the model identifiable, the model is rewritten as

X ijk(t) = ζiµt + Σ1/2Bijk(t), where µ = ϕr and ζi ∼ N (1, ω2) with ω = ω̃/ϕ. Third,

we add the same chemicals to quench the degradation and then use the same measurement

system (LC-MS/MS) to measure the EC concentration, leading to measurement errors for

the observed degradation levels. This block effect is factored in by adding εij1d for the

measurement taken at time tj. This culminates in the proposed model given by (2).
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3 Maximum Likelihood Estimation

This section uses the observed data D to estimate the unknown model parameters in (2),

denoted as θ ≡ (µ,Σ, ω, κ). For rig i, i ∈ [n], we vectorize the observed degradation

from the mK units as Y i ≡ [Y ′i11, · · · ,Y ′i1K , · · · ,Y ′im1, · · · ,Y ′imK ]′. Conditional on ζi,

X ijk(t) ∼ Nd(ζiµt,Σt) for all j and k, and thus Y i follows an M -dimensional multivariate

normal distribution NM(ζiµY ,ΣY), where M = dmK,

µY = [µ′t1, · · · ,µ′t1︸ ︷︷ ︸
K repetitions

, · · · ,µ′tm, · · · ,µ′tm︸ ︷︷ ︸
K repetitions

]′ = t⊗ 1K ⊗ µ,

and

ΣY = diag(diag(Σt1, · · · ,Σt1︸ ︷︷ ︸
K repetitions

) + κ21dK1′dK , · · · , diag(Σtm, · · · ,Σtm︸ ︷︷ ︸
K repetitions

) + κ21dK1′dK)

= diag(t⊗ 1K)⊗Σ + Im ⊗ (κ21dK1′dK)

is a block diagonal matrix. Here, t = [t1, · · · , tm]′, Im is the identity matrix of size m, and

⊗ denotes the Kronecker product. Conditional on ζi, the corresponding moment generating

function (MGF) of Y i is given by MYi|ζi(z) = exp
(
ζiµ

′
Yz + 1

2
z′ΣYz

)
. Integrating ζi out,

we obtain the unconditional MGF of Y i as

MYi
(z) =

∫ ∞
−∞

exp

(
ζiµ

′
Yz +

1

2
z′ΣYz

)
1√
2πω

exp

[
−(ζi − 1)2

2ω2

]
dζi

= exp

[
µ′Yz +

1

2
z′(ΣY + ω2µYµ

′
Y)z

]
.

The MGF of Y i suggests that Y i ∼ NM(µY ,ΣY + ω2µYµ
′
Y), i ∈ [n]. Hence, the log-

likelihood function (up to a constant) of θ is

`(θ) = −1

2

n∑
i=1

{
ln[det(ΣY + ω2µYµ

′
Y)] + (Y i − µY)′(ΣY + ω2µYµ

′
Y)−1(Y i − µY)

}
. (4)
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Direct maximization of (4) is difficult because the dimension of θ is relatively high, and the

log-likelihood may not be concave in θ. In this section, we use an EM algorithm by treating

the unobserved block effects as missing data.

3.1 The EM Algorithm

There are two layers of block effects. Both the rig-layer and the gauge-layer block effects,

{ζi; i ∈ [n]} and {εij; i ∈ [n], j ∈ [m]}, are unobserved and treated as missing data. With the

complete data Dc = D ∪ {ζi, εij; i ∈ [n], j ∈ [m]}, the Q-function resembles the multivariate

normal log-likelihood, making the maximization straightforward. The log-likelihood function

(up to a constant) based on Dc is `c(θ;D) = `c(µ,Σ) + `c(κ) + `c(ω), where

`c(µ,Σ) = −1

2

n∑
i=1

m∑
j=1

K∑
k=1

{ln[det(Σ)] + (Y ijk− εij1d− ζiµtj)′(Σtj)−1(Y ijk− εij1d− ζiµtj)},

`c(κ) = −nm ln(κ)−
n∑
i=1

m∑
j=1

ε2ij
2κ2

, and `c(ω) = −n ln(ω)−
n∑
i=1

(ζi − 12)

2ω2
.

Let θ(τ) be the EM estimates of θ at the τth iteration. Then at the (τ + 1)st iteration,

we compute the Q-function Q(θ|θ(τ)) ≡ E[`c(θ;D)|θ(τ),D] in the E-step and maximize it

with respect to θ to obtain θ(τ+1) in the M-step. By taking the first-order derivatives of

the Q-function with respect to µ, Σ, κ, and ω, and letting them equal zero, we can update

the estimates of model parameters in the M-step at the (τ + 1)st iteration. The M-step

needs values of some expectations relevant to the missing data. Therefore, we derive the

distribution of missing data in the E-step. Fortunately, our proposed block-effects model

admits closed-form expectations and maximizers in the E- and the M-step, respectively. It

significantly facilitates the application of our model in reality. The details of the E- and the

M-step are provided in Section S.1.1 of the supplement.

We also make two remarks on the numerical computation of the developed EM algorithm.

First, Section S.1.1 of the supplement shows that the E-step needs to invert two matrices of

12



size M ×M . One of them is a diagonal matrix. The inverse is computed by replacing each

diagonal element with its reciprocal. The other matrix is block diagonal with each block of

size d× d. The computational complexity for its inverse is O(Md2) with the singular value

decomposition. It is significantly smaller than the general case where the computational

complexity is of order O(M3). Therefore, the computational burden at each iteration is low,

ensuring a fast implementation of the EM algorithm in reality. Second, when the data size

is large, the likelihood function may have numerous local optima. Therefore, it is important

to start the EM algorithm with an educated guess of the parameters. In Section S.1.2 of the

supplement, we propose a workable procedure to find such an educated guess.

When each dimension of degradation has its own transformed time scale hl(t), l ∈ [d],

and there are unknown parameters in these functions, the EM algorithm is still applicable for

statistical inference. Details of the EM algorithm with a time scale transformation in each

dimension of degradation are provided in Section S.1.3 of the supplement. For the proposed

EM algorithm, we can show that its limit points are stationary points of the incomplete data

log-likelihood ` in (4), because the corresponding Q-function Q(θ|θ(τ)) is continuous in both

θ and θ(τ). To check the performance of the EM algorithm, a commonly adopted strategy

is to compute the biases and mean squared errors numerically through simulations (Pena

et al., 2001; van Ryzin and Vulcano, 2017), which is adopted in Section 5.2.

3.2 Interval Estimation

The Fisher information matrix is needed in interval estimation, when the large-sample normal

approximation or the bootstrap-t is used. Since each observation is multivariate, it is not a

simple task to compute the Fisher information matrix. For notation convenience, we rewrite

the model parameters as θ = [θ1, · · · , θd(d+3)/2+2]
′, where θ1, · · · , θd denote the parameters

in µ, θd+1, · · · , θd(d+3)/2 denote the parameters in Σ, θd(d+3)/2+1 ≡ ω, and θd(d+3)/2+2 ≡ κ.

Based on a similar idea in Besson and Abramovich (2013), we compute the Fisher information
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matrix I(θ) entry-by-entry. The (k, l)th entry is given by

[I(θ)]k,l =
n

2
tr(AkAl) + n

(
∂µY
∂θk

)′
(ΣY + ω2µYµ

′
Y)−1

(
∂µY
∂θl

)
, (5)

for k, l ∈ [d(d + 3)/2 + 2]. The derivation of (5), the expressions of Ak, and the partial

derivatives in (5) are given in Section S.2.1 of the supplement.

In addition to θ, we are usually interested in some population characteristic g(θ) that

is a function of θ. Typical examples include the expected remaining useful life of a machin-

ery system and the bimolecular rate constant of an EC with respect to a specific reactive

intermediate. Its ML estimator is given by g(θ̂). The asymptotic variance of g(θ̂) can be

obtained using the delta method with the Fisher information matrix (5), which is given by

Avar(g(θ̂)) =

[
∂g(θ)

∂θ

]′
I(θ)−1

[
∂g(θ)

∂θ

] ∣∣∣∣
θ=θ̂

. (6)

The large-sample normal approximation can be used to construct a confidence interval for

g(θ). When the sample size is moderate, a confidence interval based on the bootstrap-t

is usually helpful in improving the coverage probability. The procedure is recapitulated in

Section S.2.2 of the supplement.

4 Testing Significance of the Block Effects

This section concerns validation of the block effects using hypothesis testing. To quanti-

tatively detect the block effects, we extend the method of Wilk’s Lambda for multivariate

analysis of variance (MANOVA) (Rencher, 2003, Chapter 6) to accommodate the scenario

of multiple comparisons due to multiple measurement times. Consider the nK degradation

measurements Y ijk, i ∈ [n] and k ∈ [K], at time tj. Let

Hj = K

n∑
i=1

(Ȳ ij. − Ȳ .j.)(Ȳ ij. − Ȳ .j.)
′ and Ej =

n∑
i=1

K∑
k=1

(Y ijk − Ȳ ij.)(Y ijk − Ȳ ij.)
′,
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where Ȳ ij. =
∑K

k=1 Y ijk/K and Ȳ .j. =
∑n

i=1

∑K
k=1 Y ijk/nK. The ratio

Λj =
det(Ej)

det(Ej + Hj)
(7)

is called Wilk’s Lambda. Here, the matrices Hj and Ej measure the variance between and

within the rig-layer blocks, respectively. Under the null hypothesis that both the rig- and

the gauge-layer block effects are negligible at time tj, all the nK multivariate measurements

at time tj should be i.i.d. In this case, Λj follows a Wilk’s Lambda distribution with (d, n−

1, n(K−1)) degrees of freedom (Rencher, 2003, Chapter 6) if the measurements are normally

distributed. If either the rig- or the gauge-layer block effect is significant, det(Ej + Hj)

should be much larger than det(Ej). Hence, we reject the null hypothesis if the test statistic

computed from the DDT data is too small.

Since there are m measurements in each test rig, one possible method to examine the

block effects is to extend the test with Wilk’s Lambda to the scenario of multiple comparisons

problem (Bretz et al., 2016). In this case, the m measurement times give rise to m hypothesis

tests where the jth test is for the block effects at the jth measurement time, j ∈ [m]. The

associated Λj, j ∈ [m], are i.i.d. under the null. To deal with the multiple hypothesis tests,

we may fix the family-wise error rate α and allocate a common significance level 1−(1−α)1/m

to every hypothesis. When any of the m tests rejects its corresponding null, we reject the

null hypothesis that no block effects exist. In our problem, note that all the m tests share

the same null hypothesis. When the block effect is significant, the null for all the tests is

false and all the Λj’s will tend to be small. In this scenario, a more powerful approach to

this multiple comparison problem is to pool the m test statistics as λ =
∑m

j=1 log(Λj), and

base the hypothesis test on λ. Under the null hypothesis, the distribution of λ only depends

on (n,m,K), and is free of the model parameters. The reason to use such a test statistic

is that Λj’s follow independent Wilk’s Lambda distributions under the null. According to

Rencher (2003, Chapter 6), −[n(K−1)−0.5(d−n+2)] log(Λj) is approximately chi-squared
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distributed with d(n − 1) degrees of freedom, i.e., χ2
d(n−1). This motivates us to pool the

Λj’s as
∑m

j=1 log(Λj), so that −[n(K − 1)− 0.5(d− n+ 2)]λ is approximately a chi-squared

random variable with dm(n− 1) degrees of freedom. The distribution of λ can be obtained

through the chi-squared approximation or the simulation. For the latter, we can generate nK

realizations from a d-dimensional standard multivariate normal distribution and compute a

realization of Λj using (7). Use the above routine to generate Λj, j ∈ [m], and obtain a

realization λ =
∑m

j=1 log(Λj). We then repeat the procedure for a large number of times and

use the empirical quantiles to estimate the quantile of λ. If either the rig- or the gauge-layer

block effect is significant, λ should be small. Thus, we reject the null hypothesis if the test

statistic from data is smaller than the αth sample quantile of λ obtained above.

Since the model (2) includes the scenario of no block effect as special cases, it can be used

to double validate the block effects through the likelihood ratio (LR) test. Details of the LR

test are provided in Section S.3 of the supplement. A graph that plots the degradation data

as in Figure 1 can also reveal the block effects. In addition, we can make use of a quantile-

quantile (Q-Q) plot to assess the goodness-of-fit of the proposed model (2). In Section S.3

of the supplement, we also illustrate the details to construct the Q-Q plot. To compare

the proposed model with other models overlooking the block effects, we adopt the Akaike

information criterion (AIC), AIC = 2|θ| − 2`, where |θ| is the number of model parameters

and ` is the corresponding maximum log-likelihood.

5 Simulation Study

5.1 Power of the Hypothesis Test

Section 4 advocated testing the block effect using λ. An alternative is to conduct m hy-

pothesis tests simultaneously, with the size of each hypothesis equal to 1 − (1 − α)1/m. A

comprehensive simulation using the model in (2) is conducted to compare the power of these

two methods. As with the EC example, we consider three-dimensional degradation, i.e.,
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d = 3, and set (n,m,K) = (6, 7, 3). The measurement times are tj = j, j ∈ [m]. In the

simulation, we set µ = [5, 8, 10]′ and (σ2
1, σ

2
2, σ

2
3, ρ12, ρ13, ρ23) = (1, 1.5, 2, 0.5, 0.6, 0.7). For

the parameters ω and κ, we consider four scenarios for the block effects. In the first sce-

nario, we let κ = 0, i.e., no gauge-layer block effect, and change the value of ω. The second

scenario fixes ω = 0 and changes the value of κ. In the other two scenarios, we examine the

power when the two-layer block effects are both significant. We fix κ = 1 and ω = 0.05,

respectively, in the third and the fourth scenario, and plot the corresponding power curve as

a function of ω or κ. In the simulation, the Type-I error is fixed at α = 0.05. The powers

of both methods are obtained based on 10, 000 Monte Carlo replications for each parameter

setting, as shown in Figure 3. The plots reveal that the proposed test procedure based on

λ has a higher power in nearly all parameter settings. This is expected because when the

block effects are significant, all the values of Λj drift towards 0 simultaneously. Aggregation

retains the mean of the drift while decreasing the variance.

5.2 Performance of the EM Algorithm

Next, we evaluate the performance of the EM algorithm. The values of µ and Σ are the

same as in Section 5.1, and we let ω = 0.2, and κ = 0.7. We consider n = 5 and 10, m = 5

and 10, and K = 1 and 5. This leads to eight combinations of the sample size (n,m,K).

The measurement times are tj ∈ [m]. For each simulated dataset, the initial value of the

EM algorithm is obtained from the procedure in Section S.1.2 of the supplement. The

computational time for the EM algorithm to converge ranges from 2 to 13 seconds under

different (n,m,K) on a personal computer with Intel Core i5-6600 CPU 3.30 GHz processor,

which is satisfactory from a practical view point. The biases and root mean square errors

(RMSEs) for θ are computed based on 1, 000 Monte Carlo replications, as displayed in

Tables S.1 and S.2 of the supplement. Generally, the biases and RMSEs decrease with

the increase of sample size. The improvement in estimating µ and ω is significant when

increasing the number of rigs n. It is intuitive since ω characterizes the rig-layer block effect.
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In comparison, the increase of m and K only slightly improves the estimation of µ and ω.

For the parameters in Σ, the increase of K has the most significant effect on improving the

estimation accuracy. It may be attributed to a more accurate estimation of the gauge-layer

block effect parameter κ when K increases. The increase of the measurement times m can

lead to a more accurate estimation of Σ and κ, but the improvement is not as significant as

increasing K. Given a fixed number of the test units N = nmK in a DDT, the simulation

implies that larger values of n and K and a relatively small m can improve the estimation

accuracy. In Section S.4.1 of the supplement, we further provide the simulation result to

show that the proposed EM algorithm also performs well when d increases to 10.

5.3 Consequence of Overlooking the Block Effects

In the proposed model (2), all units in the same rig share an identical ζ to capture the rig-

layer block effect, while all units destructively measured at the same time share an identical

ε to capture the gauge-layer block effect. To understand the consequence of overlooking the

blocking, we consider a pure random-effects model without blocking, where each test unit

has an independent realization of (ζ, ε). We first use this model to fit the simulated data

generated in Section 5.2. The corresponding biases and RMSEs are shown in Section S.4.1

of the supplement. The results show a significant increment in the biases and RMSEs of the

estimated model parameters Σ and κ. We then compare the coverage probabilities of the

two-sided 95% confidence intervals for θ by using the two models when the data are generated

from (2). The confidence interval is obtained from the bootstrap-t with B = 2, 000 bootstrap

replications. Based on 1, 000 Monte Carlo replications, Table S.6 in the supplement shows the

coverage probability of the confidence intervals when (n,m,K) = (5, 10, 5) and (10, 10, 5),

respectively. The bootstrap-t generally works well for the proposed model. When neglecting

the block effects, on the other hand, the coverage probabilities of the confidence intervals

are systematically inaccurate. The coverage probabilities for µ and ω are significantly lower

than the standard level. This implies that overlooking the blocking effects leads to a biased
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Figure 3: Power curves for the two methods of hypothesis testing under the four scenarios.
The powers are estimated using 10,000 Monte Carlo replicates.

estimation of the Fisher information matrix and the asymptotic variance.

Motivated by the application of ECs, we also conduct a simulation to examine the cov-

erage probability of the confidence intervals for two population characteristics, i.e., the ratio

of degradation rates µl1/µl2 , l1 6= l2, and the probability that each dimension of degradation

exceeds a corresponding threshold at time t given by R(t) ≡ P [X(1)(t) > D1, · · · , X(d)(t) >

Dd]. Here, X(l)(t) is the true degradation level of the lth dimension at time t, and Dl is

a predetermined threshold, l ∈ [d]. The detailed relationship between the two population

characteristics and the EC application is elaborated in Section 6.1. Table 1 shows the corre-

sponding empirical coverage probability of the 95% confidence intervals for µ1/µ3 and µ2/µ3
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Table 1: Coverage probability (in %) of the 95% interval estimators for µ1/µ3 and µ2/µ3

based on 1, 000 simulation replications, where (m,K) = (10, 5).

n Candidate model µ1/µ3 µ2/µ3 Candidate model µ1/µ3 µ2/µ3

5
Proposed model 94.3 94.9 Random-effects model 92.5 95.2

Basic Wiener process 92.0 95.5 Linear regression 79.6 81.5
Frank copula 49.2 81.7 Gumbel copula 55.3 78.2

10
Proposed model 95.0 94.7 Random-effects model 92.9 94.6

Basic Wiener process 93.5 94.5 Linear regression 79.6 80.6
Frank copula 21.3 70.6 Gumbel copula 24.6 66.5

obtained from the proposed two-layer block-effects model, the pure random-effects model,

the basic Wiener process without block effect (Liu et al., 2014), the multivariate linear re-

gression (Rencher, 2003, Chapter 10), and two copula-based models with the Frank and

the Gumbel copula functions (Wang et al., 2015), respectively. The copula models here are

without block effects because there is no copula-based model with block effects to the best

of our knowledge, and it remains unknown how to incorporate the block effects into the

copula models. The coverage probabilities are based on 1, 000 simulation replications with

B = 1, 000 bootstrap resamples, and (n,m,K) is set to (5, 10, 5) and (10, 10, 5), respectively.

Meanwhile, Figure 4 shows the corresponding coverage probabilities of the 95% bootstrap

percentile confidence intervals for R(t) at selected time points from the six candidate mod-

els. The thresholds are (D1, D2, D3) = (10, 15, 20) and the results are based on B = 1, 000

resamples. For the degradation rate ratio µl1/µl2 , l1 6= l2, the coverage probability is gen-

erally satisfactory if the model is based on the multivariate Wiener process. On the other

hand, the interval estimator of R(t) is poor for all the models overlooking the block effects in

terms of the significantly lower coverage probabilities. This could lead to inferior decisions

in practice as shown in the water treatment example in Section 6.3. The bad performance of

the benchmarks is because of the biases in estimation of the asymptotic variance of model

parameters when the block effects are incorrectly overlooked.

20



Time
0 1 2 3 4 5 6 7 8 9 10

C
ov

er
ag

e 
pr

ob
ab

ilit
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed model
Pure random-effects Wiener
Basic multivariate Wiener
Multivariate linear regression
Frank copula
Gumbel copula

(a) (n,m,K) = (10, 10, 5)

Time
0 1 2 3 4 5 6 7 8 9 10

C
ov

er
ag

e 
pr

ob
ab

ilit
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed model
Pure random-effects Wiener
Basic multivariate Wiener
Multivariate linear regression
Frank copula
Gumbel copula

(b) (n,m,K) = (20, 10, 5)

Figure 4: The coverage probabilities of the point-wise bootstrap percentile confidence inter-
vals for R(t) in 1, 000 simulation replications.

6 Case Study

6.1 Overview of the EC Degradation Test

The proposed model is applied to degradation of d = 3 contaminants, i.e., Saccharin, Ace-

sulfame, and p-Chlorobenzoic acid (pCBA). There is one test stand available in laboratory.

To conduct the DDT on the test stand (as shown in Figure 5(a)), we first dissolve the

three contaminants and hydrogen peroxide (H2O2) in deionized water, where initial con-

centrations of the three contaminants are all 100 µg/L. The solution of the contaminant

mixture is distributed into 21 test tubes, and these tubes are placed into the test stand for

the DDT. Within the test stand, there is a solar simulator that provides simulated natural

sunlight. The photochemically produced reactive intermediate from H2O2, i.e., hydroxyl

radicals, then induces degradation of the three contaminants during the test. At each of

the m = 7 predetermined measurement times, tj = 0.15, 0.3, · · · , 1.05, we remove K = 3

tubes from the test stand. Degradation is quenched with the addition of tertiary-butanol

into these tubes, and their degradation levels are then simultaneously measured by LC-

MS/MS (as shown in Figure 5(b)). The above experiment is replicated six times, leading to

degradation data from n = 6 rigs. Hence, there are N = nmK = 126 test units for the degra-
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(a) Thermostat (b) LC-MS/MS

Figure 5: The test rig and the measurement system used in the EC degradation test.

dation test. The observed concentrations of Saccharin, Acesulfame, and pCBA are denoted

as Cijk = [C
(1)
ijk , C

(2)
ijk , C

(3)
ijk ]
′, i = 1, · · · , 6, j = 1, · · · , 7, and k = 1, · · · , 3. We have briefly

discussed the possible reasons for the two-layer block effects for our DDT in Section 1, and

Figure 1 has shown the degradation data from two rigs. A detailed physical interpretation

for the block effects and the rest data are included in Section S.4.2 of the supplement. Based

on the pseudo first-order kinetics (3), a logarithmic transformation is applied to Cijk. Since

initial concentrations of all contaminants are 100 µg/L, we let

Y
(l)
ijk = log

(
100/C

(l)
ijk

)
, l = 1, 2, 3, (8)

and fit the data Y ijk = [Y
(1)
ijk , Y

(2)
ijk , Y

(3)
ijk ]′ with the two-layer block-effects model (2).

The (transformed) DDT data Y ijk can be used for risk assessment of the contaminants in

terms of their environmental persistence. A standard measure of persistence is the bimolecu-

lar rate constant (Xu et al., 2011). Let rl and µl be the respective bimolecular rate constant

and the (transformed) mean degradation rate of the lth contaminant. The bimolecular rate

constant rl is defined to be µl divided by the concentration of hydroxyl radicals. Since the

concentration of hydroxyl radicals is difficult to measure, computing rl is not straightforward.

It is customary to use a reference contaminant with known bimolecular rate constant, which
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is pCBA in the above DDT, to facilitate the estimation of rl of the other contaminants (Bux-

ton et al., 1988). For convenience, let the third contaminant be pCBA in the DDT above.

Then the bimolecular rate constants of the other two contaminants can be calculated as

rl =
µl
µ3

r3, l = 1 and 2. (9)

Another purpose of the DDT for ECs is to determine a suitable treatment time in a

waterworks, which is the shortest time for achieving satisfactory removal of harmful con-

taminants. The DDT above is for estimating rl. Nevertheless, a DDT for determining the

treatment time is almost the same as the DDT above. The only difference is the types of ECs

and their initial concentrations. Thus, we also use the data to demonstrate the estimation

of treatment times by assuming that the purpose is to remove the three contaminants. The

minimal treatment time tmin depends on the emission standards of the three contaminants

and the required probability p with which the quality of the treated water meets the emission

standard. Let X(l)(t) be the transformed concentration of the lth contaminant after t time

units of degradation treatment, and Dl be the corresponding transformed emission thresh-

old, l = 1, 2, 3. With a treatment time t, the probability of meeting the emission standard

is R(t) ≡ P [X(1)(t) > D1, X
(2)(t) > D2, X

(3)(t) > D3]. In reality, the concentration of hy-

droxyl radicals for each replication of the water treatment can be different. Since the DDT

is replicated n times, this variation can be captured by the rig-layer block effect. Hence,

R(t) can be expressed as a function of the model parameters µ, Σ, and ω as

R(t) =

∫ ∞
0

1√
2πω

exp

[
−(ζ − 1)2

2ω2

](∫ ∞
L1

∫ ∞
L2

∫ ∞
L3

φΣ(z1, z2, z3)dz3dz2dz1

)
dζ, (10)

where Ll = (Dl − ζµlt)/
√
t, l = 1, 2, 3, and φΣ is the probability density function of the

three-dimensional normal distribution N3(0,Σ). Given p, the water treatment time can be

obtained as tmin = R−1(p). Here, R−1(·) is the inverse function of R(·), which exists since

R(t) is strictly monotone increasing in t.
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Table 2: AIC values for the model selection.
Candidate models Log-likelihood # of parameters AIC

Multivariate linear regression 234.003 9 −450.007
Multivariate Wiener process without block effects 236.691 9 −455.382

Pure random-effects model 259.555 11 −497.110
Block-effects model 325.360 11 −628.720

Block-effects model (time scale transformation) 326.282 14 −624.565
Frank copula 200.295 7 −386.59

Gumbel copula 213.877 7 −413.754

6.2 Data Analysis and Risk Assessment

The raw data after transformation using (8) are shown in Figure S.1 of the supplement.

The aggregate Wilk’s Lambda λ, as developed in Section 4, is employed to examine the

significance of the block effects. Based on 100, 000 Monte Carlo replications, the critical value

given α = 0.05 is −10.58. The test statistic computed from the DDT data is −21.96 with

a p-value smaller than 1× 10−5. As discussed in Section 4, Rencher (2003, Chapter 6) also

suggested that the statistic −[n(K − 1)− 0.5(d− n+ 2)]λ = −12.5λ approximately follows

a chi-squared distribution with dm(n − 1) = 105 degrees of freedom. The corresponding

critical value is −10.39 for α = 0.05, and the p-value from our data is 0. The test results

indicate statistically significant block effects in the DDT data. The likelihood ratio tests

based on the proposed model (2) are further used to examine the two layers of block effects.

The tests for both H0 : κ = 0 and H0 : ω = 0 lead to p-values near 0. The results reveal that

both layers are significant in our DDT data, which validates our discussion in Section 1.

The proposed model (2) is then applied to fit the EC degradation data. The ML estimates

of the model parameters are µ̂ = [1.658, 2.892, 2.874]′,

Σ̂ =


0.0425 0.0784 0.0718

0.152 0.142

Symmetric 0.145

 ,

ω̂ = 0.139, and κ̂ = 0.123. The computational time for the EM algorithm to converge is
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χ

Figure 6: The χ2
9 Q-Q plot for the proposed model using the EC degradation data.

around two seconds with starting points from Section S.1.2 of the supplement. For compar-

ison, the DDT data are also fitted by the candidate models used in Section 5.3. Meanwhile,

we also fit the data with a time scale transformation hl(t) = tql , l = 1, 2, 3. The resulting AIC

values are given in Table 2. The AIC favors the proposed model, again indicating the signifi-

cance of the block effects in the data. It is worth mentioning that when we use the proposed

model with a time scale transformation in each dimension to fit the data, the ML estimates

for the parameters in hl(t) are (q̂1, q̂2, q̂3) = (1.06, 1.04, 1.04). It implies that the linearization

based on the pseudo first-order kinetics (3) is satisfactory. To examine the goodness-of-fit,

we construct the χ2
dK Q-Q plot as introduced in Section 4 with dK = 3× 3 = 9. The result

is shown in Figure 6. There is no obvious departure of the proposed model to the data, as

the empirical quantiles scatter around the straight line.

Risk assessment of the contaminants is made based on μ and r = [r1, r2, r3]
′. As intro-

duced in Section 6.1, the bimolecular rate constant of the reference contaminant pCBA with

respect to the hydroxyl radical is known to be r3 = 5× 109 M−1 · s−1 (Buxton et al., 1988).

From (9), we can readily obtain the ML estimates of r1 and r2. The results are shown in
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Table 3: The ML estimates and the 95% confidence intervals/bounds of the degradation
rate, the bimolecular rate constant, and the correlation coefficient between the contaminants’
degradation in the DDT. Index of the contaminants: 1–Saccharin; 2–Acesulfame; 3–pCBA.

ML estimate Standard error Upper-tailed Lower-tailed Two-sided Length

µ1 1.658 0.100 (1.441, ∞) (−∞, 1.859) (1.388, 1.903) 0.516
µ2 2.892 0.171 (2.504, ∞) (−∞, 3.237) (2.416, 3.321) 0.905
µ3 2.874 0.170 (2.491, ∞) (−∞, 3.219) (2.405, 3.302) 0.897

r1(×10−9) 2.884 0.0271 (2.842, ∞) (−∞, 2.929) (2.834, 2.937) 0.103
r2(×10−9) 5.031 0.0220 (4.997, ∞) (−∞, 5.066) (4.990, 5.072) 0.082

ρ12 0.975 5.05×10−3 (0.967, ∞) (−∞, 0.983) (0.965, 0.984) 0.019
ρ13 0.915 0.0250 (0.889, ∞) (−∞, 0.940) (0.883, 0.946) 0.063
ρ23 0.959 7.31×10−3 (0.946, ∞) (−∞, 0.969) (0.944, 0.971) 0.027

Table 3. For interval estimations, we run a bootstrap-t with 2, 000 bootstrap replications.

The two-sided 95% confidence intervals, the upper-, and the lower-tailed confidence bounds

of µl and rl are also shown in Table 3. Based on these estimates, we can rank the potential

environmental persistence of the three contaminants in an ascending order as Acesulfame,

pCBA, and Saccharin, where a longer persistence implies a higher risk. As a byproduct, the

correlation coefficients between different contaminants of degradation can also be estimated.

We can see from Table 3 that degradation of the three contaminants has a strong positive

correlation, which justifies the needs for a multivariate degradation model. One possible

reason for such positive correlation is that all the three contaminants react with the same

reactive intermediate, i.e., hydroxyl radicals, in the test solution (cf. Equation (3)). As a re-

sult, their degradation processes during the experiment are all affected by the concentration

of hydroxyl radicals in the solution, leading to our estimation result.

6.3 Determination of Water Treatment Time

For illustration, we set the transformed degradation emission thresholds of Saccharin, Ace-

sulfame, and pCBA as (D1, D2, D3) = (2, 3, 3). The minimal water treatment time tmin in

(10) is a function of the required probability p that the treated water meets the emission

standard, where a large value of p is usually set to ensure a complete removal of the po-

tentially harmful contaminants. We examine p ∈ (0.9, 1) and compute the corresponding
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tmin based on the ML estimates in Section 6.2. The result is shown in Figure 7. For com-

parison, we also show the minimal water treatment time obtained separately from the basic

multivariate Wiener process model without block effects and the pure random-effects model

in Section 5.3. The corresponding 95% point-wise upper confidence bounds using the para-

metric percentile bootstrap with 2, 000 bootstrap replications are also shown in Figure 7.

We can see that the basic multivariate Wiener process model without block effects tends to

give a short treatment time, which might lead to an incomplete removal of contaminants in

water. By contrast, the water treatment time obtained from the pure random-effects model

may not be cost-effective because it could be unnecessarily long. The above results could

be attributed to the fact that tmin can be interpreted as the pth quantile of the time at

which degradation level of each contaminant has exceeded a respective (transformed) emis-

sion standard. The basic multivariate Wiener process incorrectly overlooks the block effect,

so that it underestimates the variation of degradation in real applications. As a result, we

could underestimate the corresponding pth quantile of the treatment time. On the other side,

simulation result in Section S.4.1 of the supplement suggests that the pure random-effects

model tends to overestimate the inherent degradation volatility when the data are from a

DDT with two-layer blocking. It may explain the possibly unnecessarily long treatment

time from this model. The proposed model correctly captures the variation of degradation

by considering both the heterogeneity among blocks and the homogeneity within a block.

Consequently, the resulting treatment time is in between of the two extreme cases.

7 Conclusions and Discussions

Blocking in a DDT introduces undesired incomplete randomization in the experiment. This

study has successfully proposed a multivariate statistical model for block effects in DDTs.

Under the proposed model, the variation of each degradation observation is a synergistic

result of the rig-layer block effect, the gauge-layer block effect, and the inherent degra-
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Figure 7: The minimal water treatment time tmin as a function of the required probabil-
ity p that the treated water meets the emission standard. The dot-dashed curves are the
corresponding 95% point-wise upper confidence bounds of the three models.

dation volatility of the test unit. The block effects are examined through the aggregate

MANOVA that aggregates information from all measurement times. Comprehensive simula-

tions showed that this test procedure is more powerful than traditional methods in multiple

comparison problems. If blocking is incorrectly overlooked, the resulting estimates may have

large estimation errors for point estimation and inaccurate coverage probabilities for interval

estimation. We demonstrated the proposed model with two-layer block effects using an EC

degradation dataset. The inference results were used for risk assessment of the contaminants

in terms of their potential environmental persistence and for determining the minimal water

treatment time for a waterworks to remove the contaminants. The statistical model in this

study was developed based on the experiment setting that the measurement times for all

rigs/replications are the same. Such an experiment setting is common in practice since it is

easy to check the reproducibility of the experiment result. Nevertheless, our proposed esti-

mation method is still workable when the measurement time for each rig layer is different.

Despite that the test based on Wilk’s Lambda may not be applicable in this case, we can

still use the LR test to examine the significance of the two-layer block effects.

A common εij was added in (2) for all the d performance characteristics of degradation at
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tj for the gauge-layer block effect. We have verified the assumption when all the performance

characteristics have a similar physical interpretation and are of the same order of magnitude.

In case that the order of magnitude for each dimension of degradation varies significantly

from each other, we may suggest introducing a common multiplicative measurement error at

tj by multiplying εij to X ijk(tj). This model could be more difficult for parameter estima-

tion, and we may investigate its inference procedure as a possible future research topic. The

simulation study in Section 5.2 showed that, with a fixed number of test units N , we may

allocate a larger value on n and K, and a relative small value on m to improve the statis-

tical estimation accuracy. Further consideration may be possible to investigate the optimal

allocation for the DDT with blocking. In addition, the experimental conditions, such as the

illumination strength and the concentration of H2O2, were fixed in our test. We may change

the experimental conditions in each replication of the test to accelerate the degradation,

which is known as the accelerated degradation tests (Feiveson and Kulkarni, 2000; Tseng

and Wen, 2000). The statistical inference and the development of the optimal testing plan

in accelerated destructive degradation tests with blocking are also worth investigation.

Supplementary Materials

The PDF file includes details of the EM algorithm, the interval estimation, the goodness-of-fit

test, and the LR test; additional simulation results in Section 5.3; and graphical illustrations

of the linearized data used in Section 6. The zipped package includes data and codes to

implement the EM algorithm and to compute the Fisher information matrix.

Acknowledgment

The authors would like to thank the Editor, the Associate Editor, and three anonymous

reviewers for their constructive comments which have led to a substantial improvement to

an earlier version of the paper. Sun and Ye were supported by Singapore MOE AcRF Tier

29



2 under Grant R-266-000-125-112 and the National Science Foundation of Jiangsu Province

under Grant BK20180232. Hong was partially supported by the National Science Foundation

under sub-award CMMI-1904165 to Virginia Tech.

References

Bae, S. J. and Kvam, P. H. (2004), “A nonlinear random-coefficients model for degradation

testing,” Technometrics, 46(4), 460–469.

Besson, O. and Abramovich, Y. I. (2013), “On the Fisher information matrix for multivariate

elliptically contoured distributions,” IEEE Signal Processing Letters, 20(11), 1130–1133.

Blsgaard, S. and Steinberg, D. M. (1997), “The design and analysis of 2k−p × s prototype

experiments,” Technometrics, 39(1), 52–62.

Box, G. E., Hunter, W. G., and Hunter, J. S. (2005), Statistics for Experimenters: an

Introduction to Design, Data Analysis, and Model Building, Wiley, 2nd ed.

Bretz, F., Westfall, P., and Hothorn, T. (2016), Multiple Comparisons Using R, Chapman

and Hall/CRC.

Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross, A. B. (1988), “Critical review of

rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals

(·OH/·O−) in aqueous solution,” Journal of Physical and Chemical Reference Data, 17(2),

513–886.

Duan, Y., Hong, Y., Meeker, W. Q., Stanley, D. L., and Gu, X. (2017), “Photodegrada-

tion modeling based on laboratory accelerated test data and predictions under outdoor

weathering for polymeric materials,” The Annals of Applied Statistics, 11(4), 2052–2079.

Feiveson, A. H. and Kulkarni, P. M. (2000), “Reliability of space-shuttle pressure vessels

with random batch effects,” Technometrics, 42(4), 332–344.

30



Freeman, L. J. and Vining, G. G. (2010), “Reliability data analysis for life test experiments

with subsampling,” Journal of Quality Technology, 42(3), 233–241.

Giorgio, M., Guida, M., and Pulcini, G. (2010), “A state-dependent wear model with an

application to marine engine cylinder liners,” Technometrics, 52(2), 172–187.

Hong, L., Ye, Z.-S., and Ling, R. (2018a), “Environmental risk assessment of emerging con-

taminants using degradation data,” Journal of Agricultural, Biological, and Environmental

Statistics, 23(3), 390–409.

Hong, Y., Zhang, M., and Meeker, W. Q. (2018b), “Big data and reliability applications:

The complexity dimension,” Journal of Quality Technology, 50(2), 135–149.

Kensler, J. L., Freeman, L. J., and Vining, G. G. (2015), “Analysis of reliability experiments

with random blocks and subsampling,” Journal of Quality Technology, 47(3), 235–251.

León, R. V., Li, Y., Guess, F. M., and Sawhney, R. S. (2009), “Effect of not having homoge-

neous test units in accelerated life tests,” Journal of Quality Technology, 41(3), 241–246.

Li, M. and Doganaksoy, N. (2014), “Batch variability in accelerated-degradation testing,”

Journal of Quality Technology, 46(2), 171–180.

Liao, H. and Elsayed, E. A. (2006), “Reliability inference for field conditions from accelerated

degradation testing,” Naval Research Logistics, 53(6), 576–587.

Liu, X., Al-Khalifa, K. N., Elsayed, E. A., Coit, D. W., and Hamouda, A. S. (2014), “Crit-

icality measures for components with multi-dimensional degradation,” IIE Transactions,

46(10), 987–998.

Meeker, W. Q., Escobar, L. A., and Lu, C. J. (1998), “Accelerated degradation tests: mod-

eling and analysis,” Technometrics, 40(2), 89–99.

31



Mercier, S., Meier-Hirmer, C., and Roussignol, M. (2012), “Bivariate Gamma wear processes

for track geometry modelling, with application to intervention scheduling,” Structure and

Infrastructure Engineering, 8(4), 357–366.

Nelson, W. (1981), “Analysis of performance-degradation data from accelerated tests,” IEEE

Transactions on Reliability, 30(2), 149–155.

Park, C. and Padgett, W. J. (2005), “New cumulative damage models for failure using

stochastic processes as initial damage,” IEEE Transactions on Reliability, 54(3), 530–540.

Pena, E. A., Strawderman, R. L., and Hollander, M. (2001), “Nonparametric estimation with

recurrent event data,” Journal of the American Statistical Association, 96(456), 1299–1315.

Peng, W., Ye, Z.-S., and Chen, N. (2018), “Joint online RUL prediction for multivariate

deteriorating systems,” IEEE Transactions on Industrial Informatics, 15(5), 2870–2878.

Petyuk, V. A., Jaitly, N., Moore, R. J., Ding, J., Metz, T. O., Tang, K., Monroe, M. E.,

Tolmachev, A. V., Adkins, J. N., Belov, M. E., et al. (2008), “Elimination of systematic

mass measurement errors in liquid chromatography-mass spectrometry based proteomics

using regression models and a priori partial knowledge of the sample content,” Analytical

Chemistry, 80(3), 693–706.

Rafiee, K., Feng, Q., and Coit, D. W. (2014), “Reliability modeling for dependent competing

failure processes with changing degradation rate,” IIE Transactions, 46(5), 483–496.

Rencher, A. C. (2003), Methods of Multivariate Analysis, John Wiley & Sons.

Seo, K. and Pan, R. (2017), “Data analysis of step-stress accelerated life tests with hetero-

geneous group effects,” IISE Transactions, 49(9), 885–898.

Shi, Y., Escobar, L. A., and Meeker, W. Q. (2009), “Accelerated destructive degradation

test planning,” Technometrics, 51(1), 1–13.

32



Si, W., Yang, Q., Wu, X., and Chen, Y. (2018), “Reliability analysis considering dynamic

material local deformation,” Journal of Quality Technology, 50(2), 183–197.

Si, X.-S. (2015), “An adaptive prognostic approach via nonlinear degradation modeling:

Application to battery data,” IEEE Transactions on Industrial Electronics, 62(8), 5082–

5096.

Steinfeld, J. I., Francisco, J. S., and Hase, W. L. (1989), Chemical Kinetics and Dynamics,

vol. 3, Prentice Hall: Englewood Cliffs, New Jersey.

Sun, Q., Ye, Z.-S., Revie, M., and Walls, L. (2019), “Reliability modelling of infrastructure

load-sharing systems with workload adjustment,” IEEE Transactions on Reliability, to

appear.

Tseng, S.-T. and Wen, Z.-C. (2000), “Step-stress accelerated degradation analysis for highly

reliable products,” Journal of Quality Technology, 32(3), 209–216.

van Ryzin, G. and Vulcano, G. (2017), “An expectation-maximization method to estimate

a rank-based choice model of demand,” Operations Research, 65(2), 396–407.

Wang, X. (2010), “Wiener processes with random effects for degradation data,” Journal of

Multivariate Analysis, 101(2), 340–351.

Wang, X., Balakrishnan, N., Guo, B., and Jiang, P. (2015), “Residual life estimation based on

bivariate non-stationary gamma degradation process,” Journal of Statistical Computation

and Simulation, 85(2), 405–421.

Weaver, B. P., Meeker, W. Q., Escobar, L. A., and Wendelberger, J. (2013), “Methods for

planning repeated measures degradation studies,” Technometrics, 55(2), 122–134.

Whitmore, G. and Schenkelberg, F. (1997), “Modelling accelerated degradation data using

Wiener diffusion with a time scale transformation,” Lifetime Data Analysis, 3(1), 27–45.

33



Xu, Y., Nguyen, T. V., Reinhard, M., and Gin, K. Y.-H. (2011), “Photodegradation kinetics

of p-tert-octylphenol, 4-tert-octylphenoxy-acetic acid and ibuprofen under simulated solar

conditions in surface water,” Chemosphere, 85(5), 790–796.

Yan, H., Liu, K., Zhang, X., and Shi, J. (2016), “Multiple sensor data fusion for degradation

modeling and prognostics under multiple operational conditions,” IEEE Transactions on

Reliability, 65(3), 1416–1426.

Ye, Z.-S. and Sun, Q. (2019), “Discussion on ‘Challenges and new methods for designing

reliability experiments’,” Quality Engineering, 31(1), 125–128.

Ye, Z.-S., Wang, Y., Tsui, K.-L., and Pecht, M. (2013), “Degradation data analysis using

Wiener processes with measurement errors,” IEEE Transactions on Reliability, 62(4), 772–

780.

Zeng, L., Deng, X., and Yang, J. (2016), “Constrained hierarchical modeling of degradation

data in tissue-engineered scaffold fabrication,” IIE Transactions, 48(1), 16–33.

Zhai, Q. and Ye, Z.-S. (2018), “Degradation in common dynamic environments,” Techno-

metrics, 60(4), 461–471.

34


	Introduction
	Background and Motivating Example
	Related Literature
	Overview

	DDT and Degradation Model
	DDT Setting and Data
	Degradation Model with Two-Layer Block Effects

	Maximum Likelihood Estimation
	The EM Algorithm
	Interval Estimation

	Testing Significance of the Block Effects
	Simulation Study
	Power of the Hypothesis Test
	Performance of the EM Algorithm
	Consequence of Overlooking the Block Effects

	Case Study
	Overview of the EC Degradation Test
	Data Analysis and Risk Assessment
	Determination of Water Treatment Time

	Conclusions and Discussions

