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Abstract

For several decades, the resampling based bootstrap has been widely used for com-

puting confidence intervals (CIs) for applications where no exact method is available.

However, there are many applications where the resampling bootstrap method can not

be used. These include situations where the data are heavily censored due to the success

response being a rare event, situations where there is insufficient mixing of successes and

failures across the explanatory variable(s), and designed experiments where the number

of parameters is close to the number of observations. These three situations all have

in common that there may be a substantial proportion of the resamples where it is not

possible to estimate all of the parameters in the model. This paper reviews the fractional-

random-weight bootstrap method and demonstrates how it can be used to avoid these

problems and construct CIs in a way that is accessible to statistical practitioners. The

fractional-random-weight bootstrap method is easy to use and has advantages over the

resampling method in many challenging applications.

Key Words: Bayesian bootstrap, Censored data, Confidence interval, Prediction

interval, Random weighted bootstrap, Variable selection.
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1 Introduction

1.1 Bootstrap Background

The bootstrap is a popular statistical tool used to obtain inferences, such as approximate con-

fidence intervals (CIs) and approximate prediction intervals that have coverage probabilities

close to the nominal confidence level. Bootstrapping is a set of procedures for sampling from

the distribution of an estimator, employing various data generation and augmentation proce-

dures to create new datasets from which new individual values of the estimator are computed.

These estimated distributions of the estimators can then be used for many purposes, including

creating approximate confidence and prediction intervals that have more desirable inferential

properties than their more commonly used deterministic counterparts. With modern comput-

ing technology (hardware and software) bootstrap methods are easy to implement and can be

applied even in situations where classical theory offers little or no guidance on how to compute

CIs. Generally, there are only minimal regularity conditions (such as a finite variance and a

certain degree of smoothness) needed to make bootstrap methods work well. Technical details

of bootstrap methods can be found in classical references such as Hall (1992), Lo (1993), Efron

and Tibshirani (1993), Shao and Tu (1995), and Davison and Hinkley (1997).

There are many different types of bootstrap procedures which can be broadly partitioned

into two categories: nonparametric and parametric. Nonparametric bootstrap procedures

require no assumptions about the shape of the underlying data-generating probability distri-

bution. The most common approach is to generate a sequence of new datasets by sampling

the rows of the original data with replacement. Bootstrap samples can also be generated by

assuming a particular parametric distribution and simulating from that distribution.

In applications where censoring or truncation is involved, censoring and truncation in the

new datasets must be done in a manner that mimics the original data-generating process. For

example, if censoring is random, then a model for the censoring variable needs to be used in

the parametric simulation. Often details about how data were censored are either unknown or

are too complicated. In such situations, the nonparametric resampling method is much easier

to implement.

After each bootstrap dataset is generated, the statistical procedure (e.g., model fitting,

computation of point estimates and in some cases standard errors) is applied to the bootstrap

dataset and results are stored. This bootstrap-sample generation/estimation procedure is

repeated a number of times (e.g., 2,000 times) and then the saved results are processed to

make inferences (e.g., construct CIs). There are many different ways to use bootstrap samples

to compute a CI (e.g., simple percentile, bias-corrected (BC) percentile, BC and accelerated,

percentile-t intervals). In Jeng and Meeker (1999), there are detailed descriptions for these
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bootstrap CI constructions.

1.2 The Idea of Data Weights

In many data analysis applications, it is convenient to put weights on observations. Weights are

also referred to as frequencies or counts in some cases. In this paper, the weights we consider

need not sum to one. There are many examples of counts and weights in different areas.

Binary data such as 0010001000100010001 are usually replaced with counts of the number of

zeros and ones. Weights are frequently used in life test data, which typically consist of failure

times (all having weight 1 except in the case of ties). For those units censored at the same

time, the censored data can be summarized into one row by provided the censoring time and

the counts of the censored units. Weights are also used when data are binned, where the

weights indicate the number of observations in each bin (e.g., as displayed in a histogram).

In survey sampling, weights are used to make data more representative of a population, and

in causal modeling using propensity methods, weights are used to make the distribution of

control observations more similar to the distribution of treatment observations.

The resampling bootstrap method can also be viewed as resampling data with random

integer weights (e.g., Efron 1982). That is, each observation has a weight indicating the

number of times it was drawn in the resampling. Rubin (1981) introduces the Bayesian

bootstrap, which uses all original observations, with non-integer weights on the observations,

which is an example of a fractional-random-weight (FRW) bootstrap. We give an explicit

example of this in the next section.

Many statistical estimation methods allow the use of weights or frequencies. For example,

consider a data vector (y1, y2, . . . , yn)′ with corresponding weights (w1, w2, . . . , wn)′. Then

estimates of the mean (µ) and variance (σ2) can be computed from

µ̂ =
1∑n
i=1wi

n∑
i=1

wiyi, and σ̂2 =
1∑n
i=1wi

n∑
i=1

wi(yi − µ̂)2.

More generally, suppose we have a data matrix D = (x′1, x
′
2, . . . , x

′
n)′ with corresponding

weights w = (w1, w2, . . . , wn)′, where each xi is a row in the data matrix, which may contain

information such as a response, explanatory variables, and censoring or truncation indicators

for observation i. Then the weighted likelihood is

L(θ;D,w) = C
n∏
i=1

[Li(θ;xi)]
wi . (1)

Here, θ in (1) is a general notation for the unknown parameters, C is a constant unrelated to

θ, and Li(θ;xi) is the likelihood contribution from observation i.
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In general, we can see that the data weight idea is common in statistical methods and it

provides an easy way for computational implementations. It also provides an alternative way

to understand bootstrap methods. The objective of this paper is to review the FRW bootstrap

method and demonstrate, in a way that is highly accessible to statistical practitioners, how to

apply it to applications in which the resampling (integer weights) bootstrap methods tend not

to work well. These applications include heavily censored data, logistic regression when the

success response is a rare event or where there is insufficient mixing of successes and failures

across the explanatory variable(s), and designed experiments where the number of parameters

is close to the number of observations. An important advantage of the FRW is not having

to worry about estimability in these applications, allowing for many new applications for the

method.

1.3 Literature Review

Much has been written about the bootstrap methods since their introduction in the late 1970s.

For example, the textbooks by Efron and Tibshirani (1993), and Davison and Hinkley (1997)

describe bootstrap theory and methods. The books by Hall (1992) and Shao and Tu (1995)

focus on the theory behind bootstrap methods. Another notable reference, aimed at teaching

bootstrap methods, is Hesterberg (2015), which also compares the small-sample coverage

properties of different bootstrap methods.

As there are only a handful of articles devoted to the FRW bootstrap sampling method and

it appears to be under-appreciated in spite of its usefulness. We believe the FRW bootstrap

method could serve a much larger role in the toolkit of the applied statistician. The FRW or

Bayesian bootstrap is also known as: the random-weight bootstrap, the weighted likelihood

bootstrap, the weighted bootstrap, and the perturbation bootstrap (e.g., Rubin 1981, Newton

and Raftery 1994, Jin, Ying, and Wei 2001).

The FRW bootstrap was first suggested by Rubin (1981), who called it the Bayesian

bootstrap because, as shown in the paper, estimates computed from the FRW bootstrap

samples are draws from a posterior distribution under a particular relatively diffuse prior

distribution. Newton and Raftery (1994) generalize Rubin’s ideas and introduced the weighted

likelihood bootstrap, which is easy to implement. Newton and Raftery (1994) also show that

the weighted likelihood bootstrap is first-order accurate. Barbe and Bertail (1995) provide

a highly technical presentation of the asymptotic theory of various random-weight methods

for generating bootstrap estimates. They show how to choose the distribution of the random

weights by using Edgeworth expansions.

Jin, Ying, and Wei (2001) show that FRW bootstrap estimators have good properties if

positive, independent and identically distributed (iid) weights are generated from a contin-
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uous distribution that has a mean and standard deviation being equal (e.g., an exponential

distribution with mean one). Chatterjee and Bose (2005) present a generalized bootstrap

for which the traditional resampling and various weighted likelihood and other weighted es-

timating equation methods are special cases. Chiang et al. (2005) apply the FRW bootstrap

methods to a recurrent events application with informative censoring in a semi-parametric

model. Hong, Meeker, and McCalley (2009) apply FRW bootstrap methods to a prediction

interval application involving complicated censoring and truncation. Xu, Hong, and Meeker

(2015) use the FRW bootstrap in a prediction application to assess the risk of future failures.

1.4 Overview

The remainder of this paper is organized as follows. Section 2 introduces the concept of inte-

ger and FRW bootstrap methods and gives some theoretical properties of the FRW bootstrap

method. Section 3 provides applications of the FRW bootstrap in CI constructions using

heavily censored field-failure data, prediction intervals using data with complicated censor-

ing, finding an appropriate model for a designed experiment, and logistic regression with rare

events. Section 4 shows the results of a simulation study for bootstrap success probability and

coverage probability. Section 5 provides some concluding remarks and areas for further re-

search. Technical proofs and additional example details are given in the online supplementary

material. All the computing codes are also included in the online supplementary material.

2 Integer and Fractional-Random-Weight Bootstrap

2.1 Integer-weight Bootstrap

Under the idea of data weights, the commonly-used resampling bootstrap procedure is equiva-

lent to choosing the weights from a multinomial distribution with uniform probability 1/n for

each of the original observations in the sample, where n is the number of observations. That

is, the weights (w1, . . . , wn)′ follow a multinomial distribution with equal event probability

1/n.

As an illustration, the first column of Table 1 gives tree volume for 15 loblolly pine trees

in units of cubic meters. The data are a subsample of the data analyzed in Chapter 13 of

Meeker, Hahn, and Escobar (2017). The other three columns give the results of resampling

with replacement from the sample of size 15, indicating the number of times that each tree

was selected for each of the three resamples (j = 1, 2, 3). As described in Section 1, in an

actual application of the bootstrap the resampling would be done B times, usually on the

order of thousands. Then a weighted estimation method could be applied to each bootstrap
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Table 1: Three integer-weight and FRW bootstrap samples.

Tree Volume

Uniform Uniform
Multinomial Distribution Dirichlet Distribution

Integer Weights Continuous Weights
j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

0.149 1 1 1 0.203 0.485 1.451
0.086 2 0 0 0.065 1.328 2.062
0.149 3 0 0 0.629 1.737 0.676
0.194 0 0 1 0.505 0.953 0.590
0.044 1 1 0 0.735 1.510 0.580
0.104 1 1 1 2.543 0.320 2.512
0.156 0 2 1 2.650 0.714 1.320
0.122 1 0 1 0.690 2.072 0.650
0.117 0 3 2 1.095 0.017 0.901
0.079 3 0 2 2.075 1.344 0.792
0.179 0 0 1 0.020 2.368 0.061
0.307 0 7 0 1.947 0.116 1.917
0.049 0 0 1 1.433 0.633 0.982
0.165 1 0 2 0.131 1.137 0.212
0.043 2 0 2 0.279 0.265 0.294
Sum 15 15 15 15 15 15

resample to obtain the B bootstrap estimates.

2.2 Fractional-Random-Weight Bootstrap Samples

Extending the idea of integer weights, the FRW is introduced with continuous weights. In

this case, the weight vector (w1, . . . , wn)′ is generated from a uniform Dirichlet distribution,

multiplied by n. The probability density function (pdf) of the Dirichlet distribution of order

n with parameters α1, . . . , αn is given by

f(w1, . . . , wn;α1, . . . , αn) =
1

B(α1, . . . , αn)

n∏
i=1

wαi−1
i ,

n∑
i=1

wi = 1, wi ≥ 0, (2)

and B(α1, . . . , αn) is the normalizing factor. The uniform Dirichlet distribution is a special case

where αi = 1, i = 1, . . . , n. The continuous weights, like the integer multinomial resampling

weights, sum to n, and have expectation 1 and variance (n − 1)/(n + 1). As an illustration,

the last three columns of Table 1 shows the random fractional weights drawn from a uniform

Dirichlet distribution, multiplied by n.

Although FRW bootstrap methods were developed within a nonparametric Bayesian frame-

work, they also apply to non-Bayesian and parametric inference problems. There are statis-
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tically valid alternative methods to generate the random fractional weights (e.g., Jin, Ying,

and Wei 2001). Operationally, the FRW bootstrap samples are used in the same way as the

resampling bootstrap samples. Like resampling, the method is nonparametric. There are,

however, important advantages of using the FRW bootstrap in certain common parametric

or semi-parametric applications. The advantages arise because all of the original observations

remain in all of the bootstrap samples. In situations where dropping certain observations from

a dataset will cause estimation problems, the resampling bootstrap approach will often give

poor results or fail altogether. For example, in regression where one of the predictors is a fac-

tor variable with a rare level, excluding those observations makes a parameter non-estimable.

Generally, when using the FRW bootstrap, because all of the original observations remain in

the sample, estimation difficulties do not arise.

2.3 Bias-corrected Confidence Interval

In this section we describe the procedure to obtain a bias-corrected percentile bootstrap con-

fidence interval (BCCI) with bootstrap estimates. Let θ be the parameter of interest and θ̂

be the estimate of θ. Let θ̂(1), θ̂(2), · · · , θ̂(B) be the sorted bootstrap estimates in an increasing

order, where B is a large number (i.e., B = 2000). The approximate 100(1 − α)% BCCI for

θ is [
θ̂(l), θ̂(u)

]
,

where l = Rnd(BΦnorm(2zq + zα/2)) and u = Rnd(BΦnorm(2zq + z1−α/2)). Here, zp = Φ−1norm(p)

is the p quantile of the standard normal distribution, Φnorm(·) is the cumulative distribu-

tion function (cdf) of standard normal distribution, q is the proportion of the B bootstraps

estimates of θ that are less than θ̂, and Rnd( · ) rounds to the nearest integer.

2.4 Theoretical Results

In this section, we present some new theoretical results that are specific to the likelihood

inference for lifetime data with censoring, which provide the basis for the statistical inference

for lifetime data using the FRW bootstrap.

For likelihood-based inference, the fractional weights generated from the uniform Dirichlet

distribution are equivalent to generating standardized random weights from an exponential

distribution with mean one. Let Zi, i = 1, . . . , n be iid exponential distribution with mean

one. Then the random vector(
Z1∑n
i=1 Zi

, . . . ,
Zi∑n
i=1 Zi

, . . . ,
Zn∑n
i=1 Zi

)′
(3)
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has a uniform Dirichlet distribution. For convenience we will use the weights from the expo-

nential distribution with mean one going forward.

Let X1, X2, . . . , Xn be n random iid observations and Xn a general notation for the col-

lection of the n random observations. The averaged loglikelihood function is

l̄(θ) =
1

n

n∑
i=1

li(θ;Xi),

where li(θ;Xi) is the contribution for observation i and θ is a general notation for the vector

of unknown parameters. The maximum likelihood (ML) estimate θ̂ is the solution to the first

derivative l̄′(θ) = ∂l̄(θ)/∂θ = 0. The random weighted loglikelihood is

l̄∗(θ) =
1

n

n∑
i=1

Zili(θ;Xi).

Note that the term
∑n

i=1 Zi in (3) is ignored because it will not affect the solution. The FRW

version of the ML estimate θ̂
∗

is the solution to l̄∗′(θ) = ∂l̄∗(θ)/∂θ = 0. The following three

results give some properties of θ̂
∗

and their proofs are given in the online supplement.

Result 1 The FRW ML estimator θ̂
∗
is consistent for θ if θ̂ is consistent for θ. That is if

θ̂ → θ, then θ̂
∗
→ θ, as n→∞.

Note that the ML estimator θ̂ is consistent and asymptotically unbiased under some mild

conditions (e.g., pages 309-310 of Cox and Hinkley 1974). Result 1 shows that the FRW

bootstrap estimator is also consistent, and thus it is also asymptotically unbiased (page 136

of Shao 2003). The asymptotic normality is related to the distribution of
√
n(θ̂

∗
− θ̂)|Xn,

which is also a function of Xn.

Result 2 The distribution of
√
n(θ̂

∗
− θ̂)|Xn goes to N [0, I(θ)−1] as n → ∞. Here I(θ) is

the Fisher information matrix for θ.

Note that the ML estimator θ̂ asymptotically has a N[θ, I(θ)−1/n] distribution, under some

mild conditions. Result 2 shows that the distributions of (θ̂ − θ) and (θ̂
∗
− θ̂) are asymp-

totically the same when n goes to ∞. Thus, one can use the distribution of (θ̂
∗
− θ̂) to

approximate the distribution of (θ̂ − θ).

Under mild conditions, the ML estimates exist for the FRW samples for the log-location-

scale family of distributions with right censoring. Specifically, consider data (ti, δi), i = 1, . . . , n

where ti is the time to event, δi is the censoring indicator, and n is the number of data points.

The parameters are denoted by θ = (µ, σ)′ where µ is the location parameter and σ is the scale

parameter. The loglikelihood can be re-written as l(θ) =
∑n

i=1 li(θ), where li(θ) is the log

likelihood contribution from observation i. The weighted loglikelihood is l∗(θ) =
∑n

i=1wili(θ)

(here, the normalized weights wi are used for convenience).
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Result 3 For data with right censoring generated from commonly used log-location-scale fam-

ily of distributions (e.g., the lognormal and Weibull), the minimum condition for the ML es-

timate to exist for l∗(θ), is either (i) two distinct failure times t1 and t2, or (ii) one failure

time t1 and a right-censored observation t2 with t2 > t1.

Because of the continuous weights (i.e., all wi’s are positive), a failure will always make a

contribution to the likelihood in the FRW samples. Result 3 indicates that the requirement

for the existence of the ML estimate is mild.

3 Applications

3.1 Applications to Confidence Intervals

In this section, we use three examples to illustrate the applications of FRW in the construction

of CIs for parameters. We present the details here for the analysis of the Bearing Cage field

failure data and briefly mention the analyses of the ball bearing failure time data and rocker

motor field failure data.

3.1.1 Background of Bearing Cage Field Failure Data

The data consist of 1703 aircraft engines put into service over time, as shown in the event plot

in Figure 1(a). There were 6 failures and 1697 right-censored observations. These data were

originally given in Abernethy et al. (1983) and were re-analyzed in Chapter 8 of Meeker and

Escobar (1998).

3.1.2 Weibull Analysis

We use the Weibull distribution with cdf

F (t; η, β) = Pr(T ≤ t) = 1− exp

[
−
(
t

η

)β]
, t > 0,

as a parametric model for these data, where T is the time to failure, η = exp(µ) is the

scale parameter, and β = 1/σ is the shape parameter, while µ and σ are location and scale

parameters respectively for log(T ). Figure 1(b) is a Weibull probability plot of the field-

failure data. Table 2 summarizes the numerical results of the estimation. For this example,

we will focus on the estimation of the Weibull shape parameter β. The ML estimate is 2.03.

The upper endpoint of the Wald 95% CI is 5.67 and the likelihood upper endpoint is 3.58.

Another alternative for computing CIs is the bootstrap. Care is needed, however, when using

the resampling bootstrap method with heavy censoring. If the expected number failing is
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(a) Event Plot (b) Probability Plot

Figure 1: Event plot and Weibull probability plot for the bearing cage field-failure data. The

numbers on right column of (a) show the number of censored units at the same time.

Table 2: ML estimates for the Weibull analysis of the ball bearing life test data.

Parameter Estimate Std Error
95% Wald CI

Lower Upper
η 11792.17 9848.12 2294.67 60599.21
β 2.03 0.66 1.24 5.67

too small there could be bootstrap samples with only 0 or 1 failures, possibly causing the

ML algorithm to fail. In this case, some software such as JMP-PRO will assign a large value

to the estimate (e.g., 10,000). As described in Result 3 of Section 2.4, there is a unique

maximum of the likelihood if there is at least one failure, as long as there is at least one

censored observation greater than that failure. It is, however, possible that the maximization

algorithm will fail in such cases because the shape of the likelihood can be poorly behaved. For

the bearing cage example, the probability of obtaining a bootstrap sample with 0 or 1 failures

using the resampling method is 0.017 based on a simple binomial distribution computation.

Using the FRW method, the probability is zero.

10



Resampling

Weibull Beta

Fr
eq

ue
nc

y

0 2 4 6 8
0

10
0

20
0

FRW

Weibull Beta

Fr
eq

ue
nc

y

0 2 4 6 8

0
50

10
0

15
0 Estimated

95% CI
90% CI
80% CI

Figure 2: Histograms of the resampling and FRW bootstrap estimates with BCCIs for the

Weibull shape parameter for the bearing cage field-failure data. Note that large values are

truncated at 8 for better visualization.

3.1.3 Bootstrap Results

Figure 2 shows results from the resampling and the FRW bootstrap for the Weibull shape

parameter β. Table 3 gives BCCIs for β. The histogram on the top shows that there were

36 samples that resulted in a wild estimate of β which were caused by having resamples

with 0 failures. The upper endpoint of the 95% BCCI is larger than that provided by the

Wald method. The histogram on the bottom, based on the FRW bootstrap method is better

behaved and the upper endpoint is 4.4. This is consistent with common experience with fatigue

failures in the field. Interestingly (but not surprisingly) the FRW method runs somewhat

faster than the resampling method for this example. This is because with the FRW method

the optimization algorithm is not faced with bootstrap samples that result in poorly behaved

likelihoods which require extra time trying to find a maximum that does not exist.
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Table 3: Resampling and FRW bootstrap results for the Weibull shape parameter for the

bearing cage field-failure data.

Resampling FRW
Bootstrap Confidence Limits Bootstrap Confidence Limits

Confidence Level BC Lower BC Upper Confidence Level BC Lower BC Upper
0.95 1.04 6.54 0.95 1.19 4.40
0.90 1.15 4.87 0.90 1.27 3.90
0.80 1.30 3.75 0.80 1.38 3.34
0.50 1.57 2.67 0.50 1.63 2.64

3.1.4 Other Challenging Applications

Here we describe two more applications on the construction of CIs using FRW. The details of

these two examples are available in Section 1 of the Supplement.

The failure analysis of the rocker motor field-failure data is particularly challenging due

to heavy censoring in the data. The data first appeared in Olwell and Sorell (2001) and were

reanalyzed in Chapters 14 and 18 of Meeker, Hahn, and Escobar (2017). The data consist of

1,940 rockets put into service over a period of 18 years. Among those, 1,937 of these motors

performed satisfactorily (1,937 right-censored observations). There were three catastrophic

launch failures but the exact failure times were unknown (yielding 3 left-censored observa-

tions). Due to heavy censoring, the resampling bootstrap method does not work properly but

the FRW can be used without estimability issues in generating bootstrap estimates.

For another example, Meeker and Escobar (1998) and Lawless (2003) fit the generalized

gamma distribution to ball bearing life test data that were originally reported in Lieblein and

Zelen (1956). The generalized gamma distribution is interesting in that, depending on the

value of the shape parameter λ, the Weibull (λ = 1), lognormal (λ = 0), and Fréchet (λ = −1)

distributions are special cases. Thus, we are interested in the construction of a CI for λ. When

the sample size is not large, the λ parameter in the generalized gamma distribution can be

difficult to estimate. With the resampling method, there were ML estimate convergence

problems with a substantial number of the bootstrap samples. The FRW method performed

much better and provides a feasible method for computing CIs for λ.

3.2 An Application to Prediction Intervals

In this section, we illustrate the use of FRW in the construction of prediction intervals.
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Figure 3: Event plot for the power transformer field-failure data.

3.2.1 Background

Extending the previous work of Escobar and Meeker (1999) and Lawless and Fredette (2005),

Hong, Meeker, and McCalley (2009) describe the use of the FRW bootstrap to generate

prediction intervals for the number of power transformers that will need to be replaced in

future years. The dataset contained information on 710 power transformers with 62 units

having failed. Units still in service at the data freeze date in March 2008 are right censored.

Some units that were still in service were more than 60 years old. One difficulty with the

data is that records of transformers removed from service before 1980 were not available.

Thus, units installed before 1980 which were still in service are observations from a truncated

distribution. Figure 3 is an event plot of a representative subset of the data.

There are several categorical covariates, including manufacturer and cooling method, that

have an effect on the life distribution. Even after adjustment for the other covariates, there was

an important difference between the failure-time distributions of transformers manufactured

before and after the mid-1980s. Transformers manufactured before the mid-1980s tend to have

longer lifetimes, due to the fact that those transformers were designed to be more robust.
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3.2.2 Modeling and Maximum Likelihood Estimation

We do stratification based on whether units were manufactured before or after 1987 and fit

separate Weibull models to each stratum. The likelihood function is L(θ|DATA) =
∏n

i=1 Li(θ),

where

Li(θ) = f(ti;θ)δiνi ·
[

f(ti;θ)

1− F (τLi ;θ)

]δi(1−νi)
· [1− F (ti;θ)](1−δi)νi ·

[
1− F (ti;θ)

1− F (τLi ;θ)

](1−δi)(1−νi)
.

Here ti is the failure or censoring time, τLi is the lower truncation time, and δi and νi are

censoring and truncation indicators respectively for transformer i. We use θ to represent the

vector of parameters, and f(t;θ) and F (t;θ) the pdf and cdf of the Weibull distribution,

respectively. The weighted log-likelihood function can be constructed as
∑n

i=1wi log[Li(θ)].

A general prediction problem can be described as follows. Suppose one wants to predict a

random quantity Y . One can determine endpoints (L,U) with the probability that Y will fall

within L and U with probability 1− α. The simple “plug-in” prediction interval is obtained

by taking the lower and upper quantiles of the estimated distribution of Y , which generally

have poor coverage probabilities (page 294 of Meeker and Escobar 1998). Thus calibration

of the simple plug-in prediction interval is needed. The basic idea of calibration is to find a

nominal coverage probability 1 − αc such that the actual coverage probability is 1 − α. The

bootstrap estimates are used to estimate the actual coverage probability. More details are

available in Hong, Meeker, and McCalley (2009).

For the transformer application, Hong, Meeker, and McCalley (2009) used B sets of boot-

strap estimates to calibrate the plug-in intervals. An important question was how to generate

bootstrap samples to do the calibration. The commonly-used parametric bootstrap would be

complicated to implement because it would require a model for the censoring and truncation

processes. The resampling method would also have difficulties because of the categorical co-

variates (i.e., manufacturer and cooling method) and the small number of failures in some of

the categories. The FRW bootstrap offered an attractive, easy-to-implement alternative.

3.2.3 Prediction Results

Figure 4 shows point predictions (i.e., the estimated mean number of failures) and 90% pre-

diction intervals for the cumulative number of transformer failures for the next ten years,

starting in 2008. The 90% confidence level is often used in prediction setting because 95%

level prediction intervals tend to be wide. The prediction is made for transformers that were

installed before 1987 and the number of units in the risk set is 449. For a subset of the trans-

formers that were still in operation at the time the predictions were made, Figure 5 shows the

age of the transformer and a prediction interval quantifying the information available about
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Figure 4: Power transformer fleet predictions based on the FRW bootstrap. The number of

units in the risk set is 449.

the distribution of remaining life for individual transformers. Although some of the upper

endpoints of the prediction intervals are likely overly optimistic (probably because they rely

on extrapolation), the lower endpoints allow a useful ranking of which transformers were at

highest risk for failure in the short term.

3.3 An Application in Design of Experiments

3.3.1 Background

Design of experiments is a common approach to problem-solving in science and industry.

Designed experiments are specially structured to obtain as much information in as few samples

as possible. They often lack substantial redundancy, so that removing even small numbers

of observations can induce model singularities that fundamentally change the meaning of the

estimated parameters in unpredictable ways. For this reason, the resampling bootstrap is

generally avoided in the analysis of designed experiments. An often-stated goal is to obtain

as much information as possible about the relationship between the experimental factors (x)

and the response variable (y). Usually, a designed experiment uses a specially constructed

combination of x values that optimize information gained in a small number of runs. After

the data become available, then there is a need to decide on the appropriate statistical model

to describe the relationship between x and y.
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Figure 5: Power transformer individual predictions based on the FRW bootstrap.

3.3.2 Using the Bootstrap in Model Selection

The bootstrap is a useful tool for identifying the subset of the x variables (as well as possible

interaction and quadratic effects) that best explain the variation in y. The resampling boot-

strap, however, can encounter problems because the removal of observations can drastically

change which parameters can be estimated. There are two well-known alternatives to resam-

pling: using a parametric bootstrap (simulating data from a given model), and resampling

residuals from a fitted model. The problem with these two methods is that they require spec-

ifying a model, which is what we are trying to determine. The FRW bootstrap can keep all

observations during the modeling process, and is thus suitable for model-building applications

with data from a designed experiment.

3.3.3 Nitrogen Oxides Example

Nitrogen Oxides (NOx) are toxic greenhouse gases that are common by-products of burning

organic compounds. An experiment was done on an industrial burner to study the amount

of NOx it created. A 32 run (i.e., n = 32) I-Optimal response surface model design was

created with 7 continuous factors: Hydrogen Fraction in primary fuel, Air/Fuel Ratio, Lance

Position X, Lance Position Y , Secondary Fuel Fraction, Dispersant, and Ethanol Percentage

in primary fuel. This design would allow estimation of all main effects, two-factor interactions,
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Table 4: Results from using forward stepwise selection to choose a model, showing the pa-

rameter estimates for the original predictors.

Term Estimate
Std Wald Prob > 95% CI

Error ChiSquare ChiSquare Lower Upper
Intercept 30.31 0.43 4939.20 <0.0001 29.46 31.150
Hydrogen Fraction 2.45 0.34 51.72 <0.0001 1.79 3.12
Air/Fuel Ratio −2.30 0.34 44.86 <0.0001 −2.98 −1.63
Lance Position X 0.85 0.31 7.80 <0.01 0.25 1.45
Lance Position Y 0 0 0 1 0 0
Sec. Fuel Fraction −1.10 0.26 17.82 <0.0001 −1.61 −0.59
Dispersant 0 0 0 1 0 0
Ethanol 0 0 0 1.00 0 0
Hydrogen ∗ Hydrogen 0 0 0 1 0 0

and quadratic effects. We want to assess the importance of the input variables (including the

two-factor interactions and quadratic terms).

3.3.4 Using Forward Selection

First, we apply a forward stepwise procedure that selects a model using the AIC criterion.

Because the computing of the effective degrees of freedom in the bootstrap samples is compli-

cated, we use the sample size n as the degrees of freedom. The results are shown in Table 4. To

better understand the stability of this model choice and to explore the possibility that other

variables might make an important contribution, it is possible to apply the FRW bootstrap

method to the model-building procedure. Then the results of such a bootstrap can be used

to obtain selection probabilities for the different model terms.

3.3.5 Bootstrapping the Forward Selection Procedure

We use the FRW approach to bootstrap the forward selection procedure. One thousand FRW

bootstrap datasets were generated. For each FRW bootstrap dataset, the forward selection

procedure is applied and the corresponding row in the table gives the values of the regression

coefficients. The zeros in the table indicate that the variable was not included in the model

for that bootstrap sample.

Supplementary Table 6 shows partial results for the first 16 FRW bootstrap datasets (i.e.,

for selected regression coefficients). Figure 6 shows the histograms that summarize the FRW

bootstrap modeling results. The spikes at 0 in some of the histograms indicate the number

of times that the corresponding variable did not enter the model (e.g., frequently for Lance
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Figure 6: Histograms that summarize the FRW Bootstrap modeling results.

Position Y and never for Hydrogen Fraction). Table 5 gives the proportion of times across

the 1000 bootstrap samples that each variable was chosen to be in the model. One could then

use a cutoff point (such as 0.50) to decide whether or not to include model terms.

3.4 Logistic Regression for Rare Events

3.4.1 Background

In this section, we illustrate the use of the FRW bootstrap in logistic regression for rare

events. Yuan et al. (2018) use survival analysis techniques to predict the time to default for

companies. For illustration, we use a subset of the data from Yuan et al. (2018) and model

the probability that a company will default in a specific period of time after the financial crisis

in 2008 (i.e., the response variable is binary). In our dataset, we include 5,509 companies that

were still in business at the start of August 2007. Of these companies, 49 defaulted in the

time period between August 2007 and March 2008. The overall default rate is less than 1%.

The continuous explanatory variables are Distance to Default (DTD, a widely used market-

based measure of corporate default risk) and Trailing Return (returns for past specific periods).

The nominal explanatory variable is company category with eight levels: Construction (1/80),

Finance (2/964), Manufacturing (17/2353), Mining (2/232), Retail Trade (12/349), Services

(10/859), Transportation (3/423), Wholesale Trade (2/249). The numbers in parenthesis show

the proportion of defaults within each category.
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Table 5: The proportion of times across the 1000 FRW bootstrap samples that each variable

was chosen to be in the model.

Term Proportion Selected
Hydrogen Fraction 1.00
Air/Fuel Ratio 1.00
Secondary Fuel Fraction 0.98
Air/Fuel Ratio ∗ Air/Fuel Ratio 0.95
Lance Position X 0.90
Lance Position X ∗ Secondary Fuel Fraction 0.85
Hydrogen Fraction ∗ Secondary Fuel Fraction 0.73
Lance Position 0.59
Dispersant 0.55
Secondary Fuel Fraction ∗ Secondary Fuel Fraction 0.48
Lance Position Y ∗ Lance Position Y 0.29
Hydrogen Fraction ∗ Lance Position Y 0.22
Hydrogen Fraction ∗ Hydrogen Fraction 0.20
Lance Position Y ∗ Dispersant 0.19
Hydrogen Fraction ∗ Lance Position X 0.18
Air/Fuel Ratio ∗ Lance Position Y 0.18
Air/Fuel Ratio ∗ Dispersant 0.16
Ethanol 0.11
Hydrogen Fraction ∗ Air/Fuel Ratio 0.10
Lance Position X ∗ Lance Position X 0.08
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Table 6: ML estimates for the logistic regression analysis of the default data.

Parameter Estimate Std Error
95% Wald CI
Lower Upper

Intercept −3.96 0.33 −4.70 −3.38
Trailing Return −0.25 0.56 −1.50 0.69
Distance to Default −1.43 0.19 −1.83 −1.05
Category – Construction −0.32 0.95 −2.90 1.18
Category – Finance −1.44 0.66 −3.06 −0.33
Category – Manufacturing 0.35 0.32 −0.27 0.99
Category – Mining −0.07 0.68 −1.71 1.09
Category – Retail Trade 1.33 0.36 0.61 2.04
Category – Services 0.24 0.36 −0.49 0.96
Category – Transportation 0.35 0.57 −0.95 1.37

3.4.2 Logistic Regression and Bootstrap Results

We fit a logistic regression model to describe the default outcome using the DTD, Trailing

Return, and company category as explanatory variables. The Wholesale Trade level is treated

as the baseline. Table 6 shows the ML estimates for the logistic regression analysis of the

default data. The DTD, category-finance, and category-retail trade are statistically at the

95% level according to the Wald CI.

We compare the resampling and FRW bootstrap results for the regression coefficients for

DTD and category-construction to illustrate the benefit of FRW CI construction with respect

to estimating the probability of rare events. Figure 7 shows histograms of the resampling and

FRW bootstrap estimates with BCCIs for the regression coefficient of DTD. Figure 8 shows

similar results for the coefficient of category-construction. The detailed numbers are given in

Tables 7 and 8, respectively. The histograms and BCCIs of other covariates are available in

Supplementary Section 4.

For the continuous variables in the logistic regression, the resampling and FRW bootstrap

behave similarly. However, for the categorical covariate, the FRW bootstrap estimates are

much more stable. Resampling bootstrap produces many extremely small estimates compared

to the result estimated with the original data. The reason is that, in each resampling, it

is possible that the bootstrap sample has no default event within the company category-

construction, because a default is a rare event and less than 1% of total companies defaulted.

Thus, the resampling procedure can suffer from an estimability issue, which can be easily

avoided by using the FRW bootstrap procedure.
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Figure 7: Histograms of resampling and FRW bootstrap estimates with BCCIs for the regres-

sion coefficient of DTD for the default data.
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Table 7: Resampling and FRW bootstrap results for the regression coefficient of DTD for the

default data.

Resampling FRW
Bootstrap Confidence Limits Bootstrap Confidence Limits

Coverage BC Lower BC Upper Coverage BC Lower BC Upper
0.95 −1.82 −1.09 0.95 −1.81 −1.09
0.90 −1.74 −1.14 0.90 −1.73 −1.16
0.80 −1.67 −1.19 0.80 −1.67 −1.21
0.50 −1.55 −1.30 0.50 −1.55 −1.32

Table 8: Resampling and FRW bootstrap results for the regression coefficient of category-

construction for the default data.

Resampling FRW
Bootstrap Confidence Limits Bootstrap Confidence Limits

Coverage BC Lower BC Upper Coverage BC Lower BC Upper
0.95 −12.67 3.33 0.95 −2.90 1.69
0.90 −12.50 2.49 0.90 −2.36 1.46
0.80 −12.30 1.83 0.80 −1.76 1.14
0.50 −11.85 0.73 0.50 −0.91 0.60
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4 Simulation Study

In this section, we conduct a small scale simulation study to compare the estimability and CI

coverage property of the resampling and FRW bootstrap methods.

4.1 Simulation Design

We use a simulation setting that is similar to Jeng and Meeker (1999). The data are simulated

from the Weibull distribution with time (Type I) censoring. In the study, we also consider

the following two factors: pf , the probability of failure of each sample, and E(r), the expected

number of failures in each sample. The values for pf and E(r) are given in Table 9. In total,

there are 8 × 11 = 88 combinations. Following Jeng and Meeker (1999), we only keep those

datasets that can generate ML estimates and then we do the bootstrap.

We first investigate the estimability of parameters based on bootstrap samples. The suc-

cess proportion provides an estimate for the probability that each single bootstrap sample

can estimate the Weibull parameters. From the theoretical results in Section 2.4, the FRW

method can guarantee estimability as long as the original dataset can generate ML estimates.

Because we only do the bootstrap for those datasets that can generate ML estimates, the

FRW bootstrap method will always generate ML estimates in our simulation study. For the

resampling method, it is possible that re-sampled data do not result in ML estimates. That

is, the bootstrap sample will not succeed in estimating parameters, causing an estimability

problem.

We also investigate the coverage probability (CP) of CIs constructed by using estimates

from both bootstrap methods. Both the resampling and FRW bootstrap methods are used to

construct two-sided CI and one-sided confidence bounds for the Weibull parameters β and η.

In the paper, we present the CP results for one-sided confidence bounds, as one can deduce

the two-sided CP from those results. The results for two-sided CIs are available on the online

supplement.

We simulated 10000 datasets for each pf and E(r) combination. For each dataset, we do

resampling and FRW bootstrap 2000 times. The BCCI and one-sided confidence bounds are

computed. The CP for one simulation setting is the proportion of trials for which the BCCI

contains the true parameter. We also record the number of bootstrap samples for which

ML estimates could not be computed. Those bootstrap samples that can not generate ML

estimates are excluded from the CI computation.
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Table 9: The values for parameters pf and E(r).

Parameter Levels
pf 0.01, 0.03, 0.05, 0.1, 0.2, 0.5, 0.7, 0.9

E(r) 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

4.2 Results and Discussions

Figure 9 is a heat map for the success probability for the resampling bootstrap for various

combinations of pf and E(r). From the figure, we can see that the resampling bootstrap

can have a significant number of bootstraps fail when E(r) is small. The FRW bootstrap,

however, is robust and does not have an estimation problem (i.e., the probability is 1 for all

combinations). From this result, we observe that the resampling bootstrap is likely to fail

when the sample size is small, resulting in estimability and interpretation problems. The

FRW does not suffer these estimability problems, makes it more useful in certain practical

applications (as illustrated in our numerical examples in Section 3).

Figure 10 plots the CP versus E(r) for the Weibull β parameter using resampling and

FRW bootstrap estimates for various pf . The left and right panels show the results for the

95% one-sided lower and upper confidence bounds, respectively. The results for 90% BCCI

for β, and BCCI and one-sided confidence bounds for η are available in Section 5 of the

Supplement. For the one-sided lower confidence bound, both methods have CP close to the

nominal 95%, even when E(r) is around 5. The CP for both methods, however, are quite close

to each other, though the FRW method has slightly better results. For the one-sided upper

confidence bound, both bootstrap methods have CP close to 95% when E(r) is greater than

20. When E(r) ≤ 10, both methods have CP values that are smaller than the nominal level

0.95. The pf value does not have significant effect on the CP. Comparing the two bootstrap

methods, the difference in CP is small, especially when E(r) is large.

Overall, the FRW method outperforms the resampling method in term of estimability,

while both have comparable performance in terms of CP. We note that the CP tends to be s-

mall, which is always a challenging problem when one needs to deal with small samples. Small

sample techniques such as generalized pivotal quantities (e.g., Chapter 14 of Meeker, Hah-

n, and Escobar 2017), the Bartlett-corrected likelihood procedure, and bootstrap-calibrated

likelihood-ratio procedures (e.g., Jeng and Meeker 1999) can be used to improve the CP when

E(r) is small.
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5 Conclusions and Areas for Future Research

5.1 Concluding Remarks

With vastly improved computing capabilities and bootstrap theory that has been developed

over the past 40 years, bootstrapping provides an important useful tool for obtaining CIs, pre-

diction intervals, and better regression models. The FRW bootstrap tremendously expands

the potential areas of application of the bootstrap to applications involving heavy censor-

ing and/or truncation, categorical explanatory variables, and designed experiments where

dropping certain combinations of the original observations can cause estimability problems.

As illustrated in our examples, the FRW bootstrap has far fewer problems with estimability

than the resampling bootstrap when dealing with censoring and/or truncation and categorical

explanatory variables, which are common in practical applications.

Overall, we observe that the FRW bootstrap is as easy to implement as the resampling

bootstrap and it has similar desirable properties in situations where the resampling bootstrap

works well. The FRW bootstrap also retains desirable properties even when the resampling

bootstrap breaks down. Through the examples in this paper, we have sought to present the

FRW bootstrap as a safer, more broadly applicable, alternative to the resampling bootstrap.

The software we use for analysis in this paper is JMP-PRO and R. We use JMP-PRO for

survival analysis for the real datasets in Section 3. For the simulation study in Section 4, we

used R to do the bootstrap and obtain the ML estimates.

5.2 Areas for Future Research

There are a number of areas that could be investigated to provide further insight into when

and how the FRW bootstrap methods should be used. There are different, asymptotically

equivalent ways to choose the random weights for bootstrapping (including resampling). This

leaves open the question about differences in the properties of bootstrap procedures in finite

samples. For example, if weights are chosen to have a mean and variance of one, what would

be the effect on the performance of varying the third or higher moments?

We have demonstrated a clear advantage for the FRW bootstrap in situations where estima-

bility problems occur when certain combinations of observations are dropped. In situations

where there will be no estimability problems it is possible that the FRW approach has other

advantages. It would be useful to compare different nonparametric and parametric methods

for generating bootstrap estimates when using a parametric model to describe one’s data. In

particular, it would be interesting to compare resampling methods, a fully parametric boot-

strap simulation (e.g., where the censoring distribution is modeled), and FRW bootstrap to

see if there are important differences in bootstrap performance. It also would be useful to have
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FRW analogs of second-order correct CIs such as the bias-corrected and accelerated (BCa)

and bootstrap-t methods.

Generalized fiducial inference (GFI) has proven to be a powerful tool for defining CI proce-

dures for non-standard models (see Hannig, Iyer, and Patterson 2006, Majumder and Hannig

2016, and Hannig et al. 2016). Implementing GFI methods generally requires computing a

large set of simulated parameter estimates, in a manner similar to the parametric bootstrap.

In situations involving heavy censoring, even the parametric bootstrap sampling will have

estimability problems. Use of FRW instead should allow GFI methods to be used in a wider

range of applications.

Supplementary Materials

The following supplementary material is available online.

Additional details: Technical details, additional results for applications, and graphs on ad-

ditional simulation results (pdf file).

Code and data: Datasets, JMP and R code for simulations and data analysis. (zip file).
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