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Abstract

For several decades, the resampling based bootstrap has been widely used for com-
puting confidence intervals (CIs) for applications where no exact method is available.
However, there are many applications where the resampling bootstrap method can not
be used. These include situations where the data are heavily censored due to the success
response being a rare event, situations where there is insufficient mixing of successes and
failures across the explanatory variable(s), and designed experiments where the number
of parameters is close to the number of observations. These three situations all have
in common that there may be a substantial proportion of the resamples where it is not
possible to estimate all of the parameters in the model. This paper reviews the fractional-
random-weight bootstrap method and demonstrates how it can be used to avoid these
problems and construct Cls in a way that is accessible to statistical practitioners. The
fractional-random-weight bootstrap method is easy to use and has advantages over the
resampling method in many challenging applications.
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interval, Random weighted bootstrap, Variable selection.



1 Introduction

1.1 Bootstrap Background

The bootstrap is a popular statistical tool used to obtain inferences, such as approximate con-
fidence intervals (CIs) and approximate prediction intervals that have coverage probabilities
close to the nominal confidence level. Bootstrapping is a set of procedures for sampling from
the distribution of an estimator, employing various data generation and augmentation proce-
dures to create new datasets from which new individual values of the estimator are computed.
These estimated distributions of the estimators can then be used for many purposes, including
creating approximate confidence and prediction intervals that have more desirable inferential
properties than their more commonly used deterministic counterparts. With modern comput-
ing technology (hardware and software) bootstrap methods are easy to implement and can be
applied even in situations where classical theory offers little or no guidance on how to compute
CIs. Generally, there are only minimal regularity conditions (such as a finite variance and a
certain degree of smoothness) needed to make bootstrap methods work well. Technical details
of bootstrap methods can be found in classical references such as Hall (1992), Lo (1993), Efron
and Tibshirani (1993), Shao and Tu (1995), and Davison and Hinkley (1997).

There are many different types of bootstrap procedures which can be broadly partitioned
into two categories: nonparametric and parametric. Nonparametric bootstrap procedures
require no assumptions about the shape of the underlying data-generating probability distri-
bution. The most common approach is to generate a sequence of new datasets by sampling
the rows of the original data with replacement. Bootstrap samples can also be generated by
assuming a particular parametric distribution and simulating from that distribution.

In applications where censoring or truncation is involved, censoring and truncation in the
new datasets must be done in a manner that mimics the original data-generating process. For
example, if censoring is random, then a model for the censoring variable needs to be used in
the parametric simulation. Often details about how data were censored are either unknown or
are too complicated. In such situations, the nonparametric resampling method is much easier
to implement.

After each bootstrap dataset is generated, the statistical procedure (e.g., model fitting,
computation of point estimates and in some cases standard errors) is applied to the bootstrap
dataset and results are stored. This bootstrap-sample generation/estimation procedure is
repeated a number of times (e.g., 2,000 times) and then the saved results are processed to
make inferences (e.g., construct ClIs). There are many different ways to use bootstrap samples
to compute a CI (e.g., simple percentile, bias-corrected (BC) percentile, BC and accelerated,

percentile-t intervals). In Jeng and Meeker (1999), there are detailed descriptions for these



bootstrap CI constructions.

1.2 The Idea of Data Weights

In many data analysis applications, it is convenient to put weights on observations. Weights are
also referred to as frequencies or counts in some cases. In this paper, the weights we consider
need not sum to one. There are many examples of counts and weights in different areas.
Binary data such as 0010001000100010001 are usually replaced with counts of the number of
zeros and ones. Weights are frequently used in life test data, which typically consist of failure
times (all having weight 1 except in the case of ties). For those units censored at the same
time, the censored data can be summarized into one row by provided the censoring time and
the counts of the censored units. Weights are also used when data are binned, where the
weights indicate the number of observations in each bin (e.g., as displayed in a histogram).
In survey sampling, weights are used to make data more representative of a population, and
in causal modeling using propensity methods, weights are used to make the distribution of
control observations more similar to the distribution of treatment observations.

The resampling bootstrap method can also be viewed as resampling data with random
integer weights (e.g., Efron 1982). That is, each observation has a weight indicating the
number of times it was drawn in the resampling. Rubin (1981) introduces the Bayesian
bootstrap, which uses all original observations, with non-integer weights on the observations,
which is an example of a fractional-random-weight (FRW) bootstrap. We give an explicit
example of this in the next section.

Many statistical estimation methods allow the use of weights or frequencies. For example,
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consider a data vector (y1,¥ys,...,y,) with corresponding weights (w,ws, ..., w,)". Then

estimates of the mean (i) and variance (0?) can be computed from
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More generally, suppose we have a data matrix D = (&}, @, ..., @)’ with corresponding

n
weights w = (wq, we, ..., w,)’, where each x; is a row in the data matrix, which may contain
information such as a response, explanatory variables, and censoring or truncation indicators

for observation 7. Then the weighted likelihood is

L(6; D,w) = C [ [L:(6;2:)]"". (1)
i=1
Here, 0 in (1) is a general notation for the unknown parameters, C is a constant unrelated to

0, and L,;(0;x;) is the likelihood contribution from observation i.



In general, we can see that the data weight idea is common in statistical methods and it
provides an easy way for computational implementations. It also provides an alternative way
to understand bootstrap methods. The objective of this paper is to review the FRW bootstrap
method and demonstrate, in a way that is highly accessible to statistical practitioners, how to
apply it to applications in which the resampling (integer weights) bootstrap methods tend not
to work well. These applications include heavily censored data, logistic regression when the
success response is a rare event or where there is insufficient mixing of successes and failures
across the explanatory variable(s), and designed experiments where the number of parameters
is close to the number of observations. An important advantage of the FRW is not having
to worry about estimability in these applications, allowing for many new applications for the
method.

1.3 Literature Review

Much has been written about the bootstrap methods since their introduction in the late 1970s.
For example, the textbooks by Efron and Tibshirani (1993), and Davison and Hinkley (1997)
describe bootstrap theory and methods. The books by Hall (1992) and Shao and Tu (1995)
focus on the theory behind bootstrap methods. Another notable reference, aimed at teaching
bootstrap methods, is Hesterberg (2015), which also compares the small-sample coverage
properties of different bootstrap methods.

As there are only a handful of articles devoted to the FRW bootstrap sampling method and
it appears to be under-appreciated in spite of its usefulness. We believe the FRW bootstrap
method could serve a much larger role in the toolkit of the applied statistician. The FRW or
Bayesian bootstrap is also known as: the random-weight bootstrap, the weighted likelihood
bootstrap, the weighted bootstrap, and the perturbation bootstrap (e.g., Rubin 1981, Newton
and Raftery 1994, Jin, Ying, and Wei 2001).

The FRW bootstrap was first suggested by Rubin (1981), who called it the Bayesian
bootstrap because, as shown in the paper, estimates computed from the FRW bootstrap
samples are draws from a posterior distribution under a particular relatively diffuse prior
distribution. Newton and Raftery (1994) generalize Rubin’s ideas and introduced the weighted
likelihood bootstrap, which is easy to implement. Newton and Raftery (1994) also show that
the weighted likelihood bootstrap is first-order accurate. Barbe and Bertail (1995) provide
a highly technical presentation of the asymptotic theory of various random-weight methods
for generating bootstrap estimates. They show how to choose the distribution of the random
weights by using Edgeworth expansions.

Jin, Ying, and Wei (2001) show that FRW bootstrap estimators have good properties if

positive, independent and identically distributed (iid) weights are generated from a contin-



uous distribution that has a mean and standard deviation being equal (e.g., an exponential
distribution with mean one). Chatterjee and Bose (2005) present a generalized bootstrap
for which the traditional resampling and various weighted likelihood and other weighted es-
timating equation methods are special cases. Chiang et al. (2005) apply the FRW bootstrap
methods to a recurrent events application with informative censoring in a semi-parametric
model. Hong, Meeker, and McCalley (2009) apply FRW bootstrap methods to a prediction
interval application involving complicated censoring and truncation. Xu, Hong, and Meeker

(2015) use the FRW bootstrap in a prediction application to assess the risk of future failures.

1.4 Overview

The remainder of this paper is organized as follows. Section 2 introduces the concept of inte-
ger and FRW bootstrap methods and gives some theoretical properties of the FRW bootstrap
method. Section 3 provides applications of the FRW bootstrap in CI constructions using
heavily censored field-failure data, prediction intervals using data with complicated censor-
ing, finding an appropriate model for a designed experiment, and logistic regression with rare
events. Section 4 shows the results of a simulation study for bootstrap success probability and
coverage probability. Section 5 provides some concluding remarks and areas for further re-
search. Technical proofs and additional example details are given in the online supplementary

material. All the computing codes are also included in the online supplementary material.

2 Integer and Fractional-Random-Weight Bootstrap

2.1 Integer-weight Bootstrap

Under the idea of data weights, the commonly-used resampling bootstrap procedure is equiva-
lent to choosing the weights from a multinomial distribution with uniform probability 1/n for
each of the original observations in the sample, where n is the number of observations. That
is, the weights (wy,...,w,)" follow a multinomial distribution with equal event probability
1/n.

As an illustration, the first column of Table 1 gives tree volume for 15 loblolly pine trees
in units of cubic meters. The data are a subsample of the data analyzed in Chapter 13 of
Meeker, Hahn, and Escobar (2017). The other three columns give the results of resampling
with replacement from the sample of size 15, indicating the number of times that each tree
was selected for each of the three resamples (j = 1,2,3). As described in Section 1, in an
actual application of the bootstrap the resampling would be done B times, usually on the

order of thousands. Then a weighted estimation method could be applied to each bootstrap



Table 1: Three integer-weight and FRW bootstrap samples.

Uniform Uniform

Multinomial Distribution Dirichlet Distribution
. Integer Weights Continuous Weights
j=1 =2 j=3 j=1 =2 j=3
0.149 1 1 1 0.203 0.485 1.451
0.086 2 0 0 0.065 1.328 2.062
0.149 3 0 0 0.629 1.737 0.676
0.194 0 0 1 0.505 0.953 0.590
0.044 1 1 0 0.735 1.510 0.580
0.104 1 1 1 2.543 0.320 2.512
0.156 0 2 1 2.650 0.714 1.320
0.122 1 0 1 0.690 2.072 0.650
0.117 0 3 2 1.095 0.017 0.901
0.079 3 0 2 2.075 1.344 0.792
0.179 0 0 1 0.020 2.368 0.061
0.307 0 7 0 1.947 0.116 1.917
0.049 0 0 1 1.433 0.633 0.982
0.165 1 0 2 0.131 1.137 0.212
0.043 2 0 2 0.279 0.265 0.294

Sum 15 15 15 15 15 15

resample to obtain the B bootstrap estimates.

2.2 Fractional-Random-Weight Bootstrap Samples

Extending the idea of integer weights, the FRW is introduced with continuous weights. In
this case, the weight vector (wy,...,w,)" is generated from a uniform Dirichlet distribution,
multiplied by n. The probability density function (pdf) of the Dirichlet distribution of order
n with parameters aq, ..., a, is given by

n
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i=1
and B(ay, ..., a,) is the normalizing factor. The uniform Dirichlet distribution is a special case
where a; = 1,7 = 1,...,n. The continuous weights, like the integer multinomial resampling
weights, sum to n, and have expectation 1 and variance (n — 1)/(n + 1). As an illustration,
the last three columns of Table 1 shows the random fractional weights drawn from a uniform
Dirichlet distribution, multiplied by n.

Although FRW bootstrap methods were developed within a nonparametric Bayesian frame-

work, they also apply to non-Bayesian and parametric inference problems. There are statis-
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tically valid alternative methods to generate the random fractional weights (e.g., Jin, Ying,
and Wei 2001). Operationally, the FRW bootstrap samples are used in the same way as the
resampling bootstrap samples. Like resampling, the method is nonparametric. There are,
however, important advantages of using the FRW bootstrap in certain common parametric
or semi-parametric applications. The advantages arise because all of the original observations
remain in all of the bootstrap samples. In situations where dropping certain observations from
a dataset will cause estimation problems, the resampling bootstrap approach will often give
poor results or fail altogether. For example, in regression where one of the predictors is a fac-
tor variable with a rare level, excluding those observations makes a parameter non-estimable.
Generally, when using the FRW bootstrap, because all of the original observations remain in

the sample, estimation difficulties do not arise.

2.3 Bias-corrected Confidence Interval

In this section we describe the procedure to obtain a bias-corrected percentile bootstrap con-
fidence interval (BCCI) with bootstrap estimates. Let 6 be the parameter of interest and 6
be the estimate of 6. Let 5(1), 5(2), e ,5(3) be the sorted bootstrap estimates in an increasing
order, where B is a large number (i.e., B = 2000). The approximate 100(1 — «)% BCCI for
0 is

[@m’ §<u>] 7

where | = Rnd(B®Ppomm (224 + 24/2)) and u = Rnd(B®yorm (224 + 21-a/2)). Here, z, = &, (p)
is the p quantile of the standard normal distribution, @y, (¢) is the cumulative distribu-
tion function (cdf) of standard normal distribution, ¢ is the proportion of the B bootstraps

estimates of 0 that are less than 5, and Rnd(-) rounds to the nearest integer.

2.4 Theoretical Results

In this section, we present some new theoretical results that are specific to the likelihood
inference for lifetime data with censoring, which provide the basis for the statistical inference
for lifetime data using the FRW bootstrap.

For likelihood-based inference, the fractional weights generated from the uniform Dirichlet
distribution are equivalent to generating standardized random weights from an exponential
distribution with mean one. Let Z;,2 = 1,...,n be iid exponential distribution with mean

one. Then the random vector

Z Z Z, ! )
Y Zi Uz Y



has a uniform Dirichlet distribution. For convenience we will use the weights from the expo-
nential distribution with mean one going forward.
Let X1, Xs,...,X,, be n random iid observations and X, a general notation for the col-

lection of the n random observations. The averaged loglikelihood function is
_ ] &
(0) = Ui

where [;(6; X;) is the contribution for observation i and 8 is a general notation for the vector
of unknown parameters. The maximum likelihood (ML) estimate 6 is the solution to the first
derivative I'(8) = 91(8)/06 = 0. The random weighted loglikelihood is

_ 1 <&
o) =~ > Zil:(0; X))
=1

Note that the term > | Z; in (3) is ignored because it will not affect the solution. The FRW
version of the ML estimate 8 is the solution to [*'(8) = 01*(8)/06 = 0. The following three

results give some properties of 0 and their proofs are given in the online supplement.

Result 1 The FRW ML estimator O is consistent for 6 zf/é 18 consistent for 6. That is if
5—>0, then?—)@, as n — 0o.

Note that the ML estimator 8 is consistent and asymptotically unbiased under some mild
conditions (e.g., pages 309-310 of Cox and Hinkley 1974). Result 1 shows that the FRW
bootstrap estimator is also consistent, and thus it is also asymptotically unbiased (page 136
of Shao 2003). The asymptotic normality is related to the distribution of \/ﬁ(é* —9)|X,,

which is also a function of X ,,.

Result 2 The distribution of \/ﬁ(ﬁ* — g)an goes to N[0,1(0)7'] as n — oo. Here 1(0) is

the Fisher information matrix for 6.

Note that the ML estimator 8 asymptotically has a N[0, I(0)~' /n] distribution, under some
mild conditions. Result 2 shows that the distributions of (5 —0) and (5* - 5) are asymp-
totically the same when n goes to co. Thus, one can use the distribution of (5* — 5) to
approximate the distribution of (5 —0).

Under mild conditions, the ML estimates exist for the FRW samples for the log-location-
scale family of distributions with right censoring. Specifically, consider data (¢;,9;),i =1,...,n
where t; is the time to event, ¢; is the censoring indicator, and n is the number of data points.
The parameters are denoted by @ = (u, o)’ where p is the location parameter and o is the scale
parameter. The loglikelihood can be re-written as 1(8) = Y, 1;(@), where [;(0) is the log
likelihood contribution from observation i. The weighted loglikelihood is I*(0) = Y7 | w;l;(0)

(here, the normalized weights w; are used for convenience).
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Result 3 For data with right censoring generated from commonly used log-location-scale fam-
ily of distributions (e.g., the lognormal and Weibull), the minimum condition for the ML es-
timate to exist for 1*(0), is either (1) two distinct failure times t1; and ty, or (ii) one failure

time t1 and a right-censored observation ty with to > t;.

Because of the continuous weights (i.e., all w;’s are positive), a failure will always make a
contribution to the likelihood in the FRW samples. Result 3 indicates that the requirement

for the existence of the ML estimate is mild.

3 Applications

3.1 Applications to Confidence Intervals

In this section, we use three examples to illustrate the applications of FRW in the construction
of CIs for parameters. We present the details here for the analysis of the Bearing Cage field
failure data and briefly mention the analyses of the ball bearing failure time data and rocker

motor field failure data.

3.1.1 Background of Bearing Cage Field Failure Data

The data consist of 1703 aircraft engines put into service over time, as shown in the event plot
in Figure 1(a). There were 6 failures and 1697 right-censored observations. These data were
originally given in Abernethy et al. (1983) and were re-analyzed in Chapter 8 of Meeker and
Escobar (1998).

3.1.2 Weibull Analysis
We use the Weibull distribution with cdf

F(t;n,8) =Pr(T <t)=1—exp [— (%)B] , >0,

as a parametric model for these data, where T is the time to failure, n = exp(p) is the
scale parameter, and § = 1/0 is the shape parameter, while © and o are location and scale
parameters respectively for log(7"). Figure 1(b) is a Weibull probability plot of the field-
failure data. Table 2 summarizes the numerical results of the estimation. For this example,
we will focus on the estimation of the Weibull shape parameter 5. The ML estimate is 2.03.
The upper endpoint of the Wald 95% CI is 5.67 and the likelihood upper endpoint is 3.58.
Another alternative for computing CIs is the bootstrap. Care is needed, however, when using

the resampling bootstrap method with heavy censoring. If the expected number failing is
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Figure 1: Event plot and Weibull probability plot for the bearing cage field-failure data. The

numbers on right column of (a) show the number of censored units at the same time.

Table 2: ML estimates for the Weibull analysis of the ball bearing life test data.

95% Wald CI
Lower Upper
n 11792.17 9848.12 2294.67 60599.21
153 2.03 0.66 1.24 5.67

Parameter Estimate Std Error

too small there could be bootstrap samples with only 0 or 1 failures, possibly causing the
ML algorithm to fail. In this case, some software such as JMP-PRO will assign a large value
to the estimate (e.g., 10,000). As described in Result 3 of Section 2.4, there is a unique
maximum of the likelihood if there is at least one failure, as long as there is at least one
censored observation greater than that failure. It is, however, possible that the maximization
algorithm will fail in such cases because the shape of the likelihood can be poorly behaved. For
the bearing cage example, the probability of obtaining a bootstrap sample with 0 or 1 failures
using the resampling method is 0.017 based on a simple binomial distribution computation.
Using the FRW method, the probability is zero.
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Figure 2: Histograms of the resampling and FRW bootstrap estimates with BCCIs for the
Weibull shape parameter for the bearing cage field-failure data. Note that large values are

truncated at 8 for better visualization.

3.1.3 Bootstrap Results

Figure 2 shows results from the resampling and the FRW bootstrap for the Weibull shape
parameter 3. Table 3 gives BCCIs for 5. The histogram on the top shows that there were
36 samples that resulted in a wild estimate of S which were caused by having resamples
with 0 failures. The upper endpoint of the 95% BCCI is larger than that provided by the
Wald method. The histogram on the bottom, based on the FRW bootstrap method is better
behaved and the upper endpoint is 4.4. This is consistent with common experience with fatigue
failures in the field. Interestingly (but not surprisingly) the FRW method runs somewhat
faster than the resampling method for this example. This is because with the FRW method
the optimization algorithm is not faced with bootstrap samples that result in poorly behaved

likelihoods which require extra time trying to find a maximum that does not exist.
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Table 3: Resampling and FRW bootstrap results for the Weibull shape parameter for the

bearing cage field-failure data.

Resampling FRW
Bootstrap Confidence Limits Bootstrap Confidence Limits
Confidence Level BC Lower BC Upper | Confidence Level BC Lower BC Upper
0.95 1.04 6.54 0.95 1.19 4.40
0.90 1.15 4.87 0.90 1.27 3.90
0.80 1.30 3.75 0.80 1.38 3.34
0.50 1.57 2.67 0.50 1.63 2.64

3.1.4 Other Challenging Applications

Here we describe two more applications on the construction of CIs using FRW. The details of
these two examples are available in Section 1 of the Supplement.

The failure analysis of the rocker motor field-failure data is particularly challenging due
to heavy censoring in the data. The data first appeared in Olwell and Sorell (2001) and were
reanalyzed in Chapters 14 and 18 of Meeker, Hahn, and Escobar (2017). The data consist of
1,940 rockets put into service over a period of 18 years. Among those, 1,937 of these motors
performed satisfactorily (1,937 right-censored observations). There were three catastrophic
launch failures but the exact failure times were unknown (yielding 3 left-censored observa-
tions). Due to heavy censoring, the resampling bootstrap method does not work properly but
the FRW can be used without estimability issues in generating bootstrap estimates.

For another example, Meeker and Escobar (1998) and Lawless (2003) fit the generalized
gamma distribution to ball bearing life test data that were originally reported in Lieblein and
Zelen (1956). The generalized gamma distribution is interesting in that, depending on the
value of the shape parameter A, the Weibull (A = 1), lognormal (A = 0), and Fréchet (A = —1)
distributions are special cases. Thus, we are interested in the construction of a CI for \. When
the sample size is not large, the A\ parameter in the generalized gamma distribution can be
difficult to estimate. With the resampling method, there were ML estimate convergence
problems with a substantial number of the bootstrap samples. The FRW method performed

much better and provides a feasible method for computing CIs for \.

3.2 An Application to Prediction Intervals

In this section, we illustrate the use of FRW in the construction of prediction intervals.
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Figure 3: Event plot for the power transformer field-failure data.

3.2.1 Background

Extending the previous work of Escobar and Meeker (1999) and Lawless and Fredette (2005),
Hong, Meeker, and McCalley (2009) describe the use of the FRW bootstrap to generate
prediction intervals for the number of power transformers that will need to be replaced in
future years. The dataset contained information on 710 power transformers with 62 units
having failed. Units still in service at the data freeze date in March 2008 are right censored.
Some units that were still in service were more than 60 years old. One difficulty with the
data is that records of transformers removed from service before 1980 were not available.
Thus, units installed before 1980 which were still in service are observations from a truncated
distribution. Figure 3 is an event plot of a representative subset of the data.

There are several categorical covariates, including manufacturer and cooling method, that
have an effect on the life distribution. Even after adjustment for the other covariates, there was
an important difference between the failure-time distributions of transformers manufactured
before and after the mid-1980s. Transformers manufactured before the mid-1980s tend to have

longer lifetimes, due to the fact that those transformers were designed to be more robust.
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3.2.2 Modeling and Maximum Likelihood Estimation

We do stratification based on whether units were manufactured before or after 1987 and fit
separate Weibull models to each stratum. The likelihood function is L(@|DATA) = []'_, L:(8),

where

. 8;(1—vy) _ . (1-6;)(1—1)
f(t:9) } 1 F(t;:0)) 0 [1 F<t“9)1 .

R e 1= F(r:0)

Here t; is the failure or censoring time, 7/ is the lower truncation time, and d¢; and v; are
censoring and truncation indicators respectively for transformer i. We use 0 to represent the
vector of parameters, and f(¢t;0) and F(t;0) the pdf and cdf of the Weibull distribution,
respectively. The weighted log-likelihood function can be constructed as >, w; log[L;(0)].

A general prediction problem can be described as follows. Suppose one wants to predict a
random quantity Y. One can determine endpoints (L, U) with the probability that Y will fall
within L and U with probability 1 — a. The simple “plug-in” prediction interval is obtained
by taking the lower and upper quantiles of the estimated distribution of Y, which generally
have poor coverage probabilities (page 294 of Meeker and Escobar 1998). Thus calibration
of the simple plug-in prediction interval is needed. The basic idea of calibration is to find a
nominal coverage probability 1 — a, such that the actual coverage probability is 1 — a. The
bootstrap estimates are used to estimate the actual coverage probability. More details are
available in Hong, Meeker, and McCalley (2009).

For the transformer application, Hong, Meeker, and McCalley (2009) used B sets of boot-
strap estimates to calibrate the plug-in intervals. An important question was how to generate
bootstrap samples to do the calibration. The commonly-used parametric bootstrap would be
complicated to implement because it would require a model for the censoring and truncation
processes. The resampling method would also have difficulties because of the categorical co-
variates (i.e., manufacturer and cooling method) and the small number of failures in some of

the categories. The FRW bootstrap offered an attractive, easy-to-implement alternative.

3.2.3 Prediction Results

Figure 4 shows point predictions (i.e., the estimated mean number of failures) and 90% pre-
diction intervals for the cumulative number of transformer failures for the next ten years,
starting in 2008. The 90% confidence level is often used in prediction setting because 95%
level prediction intervals tend to be wide. The prediction is made for transformers that were
installed before 1987 and the number of units in the risk set is 449. For a subset of the trans-
formers that were still in operation at the time the predictions were made, Figure 5 shows the

age of the transformer and a prediction interval quantifying the information available about
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Figure 4: Power transformer fleet predictions based on the FRW bootstrap. The number of
units in the risk set is 449.

the distribution of remaining life for individual transformers. Although some of the upper
endpoints of the prediction intervals are likely overly optimistic (probably because they rely
on extrapolation), the lower endpoints allow a useful ranking of which transformers were at

highest risk for failure in the short term.

3.3 An Application in Design of Experiments
3.3.1 Background

Design of experiments is a common approach to problem-solving in science and industry.
Designed experiments are specially structured to obtain as much information in as few samples
as possible. They often lack substantial redundancy, so that removing even small numbers
of observations can induce model singularities that fundamentally change the meaning of the
estimated parameters in unpredictable ways. For this reason, the resampling bootstrap is
generally avoided in the analysis of designed experiments. An often-stated goal is to obtain
as much information as possible about the relationship between the experimental factors ()
and the response variable (y). Usually, a designed experiment uses a specially constructed
combination of x values that optimize information gained in a small number of runs. After
the data become available, then there is a need to decide on the appropriate statistical model

to describe the relationship between x and y.
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Figure 5: Power transformer individual predictions based on the FRW bootstrap.

3.3.2 Using the Bootstrap in Model Selection

The bootstrap is a useful tool for identifying the subset of the = variables (as well as possible
interaction and quadratic effects) that best explain the variation in y. The resampling boot-
strap, however, can encounter problems because the removal of observations can drastically
change which parameters can be estimated. There are two well-known alternatives to resam-
pling: using a parametric bootstrap (simulating data from a given model), and resampling
residuals from a fitted model. The problem with these two methods is that they require spec-
ifying a model, which is what we are trying to determine. The FRW bootstrap can keep all
observations during the modeling process, and is thus suitable for model-building applications

with data from a designed experiment.

3.3.3 Nitrogen Oxides Example

Nitrogen Oxides (NOx) are toxic greenhouse gases that are common by-products of burning
organic compounds. An experiment was done on an industrial burner to study the amount
of NOx it created. A 32 run (i.e., n = 32) [-Optimal response surface model design was
created with 7 continuous factors: Hydrogen Fraction in primary fuel, Air/Fuel Ratio, Lance
Position X, Lance Position Y, Secondary Fuel Fraction, Dispersant, and Ethanol Percentage

in primary fuel. This design would allow estimation of all main effects, two-factor interactions,
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Table 4: Results from using forward stepwise selection to choose a model, showing the pa-

rameter estimates for the original predictors.

Term Estimate Std Wald Prob > 95% CI
Error ChiSquare ChiSquare Lower Upper
Intercept 30.31 043 4939.20 <0.0001  29.46 31.150
Hydrogen Fraction 245  0.34 51.72 <0.0001 1.79 3.12
Air/Fuel Ratio —-2.30 0.34 44.86 <0.0001 —-2.98 —1.63
Lance Position X 0.85 0.31 7.80 <0.01 0.25 1.45
Lance Position Y 0 0 0 1 0 0
Sec. Fuel Fraction —1.10  0.26 17.82 <0.0001 —-1.61 —0.59
Dispersant, 0 0 0 1 0 0
Ethanol 0 0 0 1.00 0 0
Hydrogen * Hydrogen 0 0 0 1 0 0

and quadratic effects. We want to assess the importance of the input variables (including the

two-factor interactions and quadratic terms).

3.3.4 Using Forward Selection

First, we apply a forward stepwise procedure that selects a model using the AIC criterion.
Because the computing of the effective degrees of freedom in the bootstrap samples is compli-
cated, we use the sample size n as the degrees of freedom. The results are shown in Table 4. To
better understand the stability of this model choice and to explore the possibility that other
variables might make an important contribution, it is possible to apply the FRW bootstrap
method to the model-building procedure. Then the results of such a bootstrap can be used

to obtain selection probabilities for the different model terms.

3.3.5 Bootstrapping the Forward Selection Procedure

We use the FRW approach to bootstrap the forward selection procedure. One thousand FRW
bootstrap datasets were generated. For each FRW bootstrap dataset, the forward selection
procedure is applied and the corresponding row in the table gives the values of the regression
coefficients. The zeros in the table indicate that the variable was not included in the model
for that bootstrap sample.

Supplementary Table 6 shows partial results for the first 16 FRW bootstrap datasets (i.e.,
for selected regression coefficients). Figure 6 shows the histograms that summarize the FRW
bootstrap modeling results. The spikes at 0 in some of the histograms indicate the number

of times that the corresponding variable did not enter the model (e.g., frequently for Lance
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Figure 6: Histograms that summarize the FRW Bootstrap modeling results.

Position Y and never for Hydrogen Fraction). Table 5 gives the proportion of times across
the 1000 bootstrap samples that each variable was chosen to be in the model. One could then

use a cutoff point (such as 0.50) to decide whether or not to include model terms.

3.4 Logistic Regression for Rare Events
3.4.1 Background

In this section, we illustrate the use of the FRW bootstrap in logistic regression for rare
events. Yuan et al. (2018) use survival analysis techniques to predict the time to default for
companies. For illustration, we use a subset of the data from Yuan et al. (2018) and model
the probability that a company will default in a specific period of time after the financial crisis
in 2008 (i.e., the response variable is binary). In our dataset, we include 5,509 companies that
were still in business at the start of August 2007. Of these companies, 49 defaulted in the
time period between August 2007 and March 2008. The overall default rate is less than 1%.
The continuous explanatory variables are Distance to Default (DTD, a widely used market-
based measure of corporate default risk) and Trailing Return (returns for past specific periods).
The nominal explanatory variable is company category with eight levels: Construction (1/80),
Finance (2/964), Manufacturing (17/2353), Mining (2/232), Retail Trade (12/349), Services
(10/859), Transportation (3/423), Wholesale Trade (2/249). The numbers in parenthesis show

the proportion of defaults within each category.
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Table 5: The proportion of times across the 1000 FRW bootstrap samples that each variable

was chosen to be in the model.

Term Proportion Selected
Hydrogen Fraction 1.00
Air/Fuel Ratio 1.00
Secondary Fuel Fraction 0.98
Air/Fuel Ratio * Air/Fuel Ratio 0.95
Lance Position X 0.90
Lance Position X % Secondary Fuel Fraction 0.85
Hydrogen Fraction * Secondary Fuel Fraction 0.73
Lance Position 0.59
Dispersant 0.55
Secondary Fuel Fraction * Secondary Fuel Fraction 0.48
Lance Position Y * Lance Position Y 0.29
Hydrogen Fraction * Lance Position Y 0.22
Hydrogen Fraction * Hydrogen Fraction 0.20
Lance Position Y * Dispersant 0.19
Hydrogen Fraction * Lance Position X 0.18
Air/Fuel Ratio x Lance Position Y 0.18
Air/Fuel Ratio * Dispersant 0.16
Ethanol 0.11
Hydrogen Fraction % Air/Fuel Ratio 0.10
Lance Position X % Lance Position X 0.08
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Table 6: ML estimates for the logistic regression analysis of the default data.

95% Wald CI

Parameter Estimate Std Error

Lower Upper
Intercept —3.96 0.33 —4.70 —-3.38
Trailing Return —0.25 0.56 —1.50 0.69
Distance to Default —1.43 0.19 —1.83 —1.05
Category — Construction —0.32 0.95 —2.90 1.18
Category — Finance —1.44 0.66 —3.06 —0.33
Category — Manufacturing 0.35 0.32 —0.27 0.99
Category — Mining —0.07 0.68 —1.71 1.09
Category — Retail Trade 1.33 0.36 0.61 2.04
Category — Services 0.24 0.36 —0.49 0.96
Category — Transportation 0.35 0.57 —0.95 1.37

3.4.2 Logistic Regression and Bootstrap Results

We fit a logistic regression model to describe the default outcome using the DTD, Trailing
Return, and company category as explanatory variables. The Wholesale Trade level is treated
as the baseline. Table 6 shows the ML estimates for the logistic regression analysis of the
default data. The DTD, category-finance, and category-retail trade are statistically at the
95% level according to the Wald CI.

We compare the resampling and FRW bootstrap results for the regression coefficients for
DTD and category-construction to illustrate the benefit of FRW CI construction with respect
to estimating the probability of rare events. Figure 7 shows histograms of the resampling and
FRW bootstrap estimates with BCClIs for the regression coefficient of DTD. Figure 8 shows
similar results for the coefficient of category-construction. The detailed numbers are given in
Tables 7 and 8, respectively. The histograms and BCCIs of other covariates are available in
Supplementary Section 4.

For the continuous variables in the logistic regression, the resampling and FRW bootstrap
behave similarly. However, for the categorical covariate, the FRW bootstrap estimates are
much more stable. Resampling bootstrap produces many extremely small estimates compared
to the result estimated with the original data. The reason is that, in each resampling, it
is possible that the bootstrap sample has no default event within the company category-
construction, because a default is a rare event and less than 1% of total companies defaulted.
Thus, the resampling procedure can suffer from an estimability issue, which can be easily

avoided by using the FRW bootstrap procedure.
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Table 7: Resampling and FRW bootstrap results for the regression coefficient of DTD for the
default data.

Resampling FRW
Bootstrap Confidence Limits Bootstrap Confidence Limits
Coverage BC Lower BC Upper | Coverage BC Lower BC Upper
0.95 —1.82 —1.09 0.95 —1.81 —1.09
0.90 —1.74 —1.14 0.90 —-1.73 —1.16
0.80 —1.67 —1.19 0.80 —1.67 —1.21
0.50 —1.55 —1.30 0.50 —1.55 —1.32

Table 8: Resampling and FRW bootstrap results for the regression coefficient of category-

construction for the default data.

Resampling FRW
Bootstrap Confidence Limits Bootstrap Confidence Limits
Coverage BC Lower BC Upper | Coverage BC Lower BC Upper
0.95 —12.67 3.33 0.95 —2.90 1.69
0.90 —12.50 2.49 0.90 —2.36 1.46
0.80 —12.30 1.83 0.80 —1.76 1.14
0.50 —11.85 0.73 0.50 —0.91 0.60
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4 Simulation Study

In this section, we conduct a small scale simulation study to compare the estimability and CI

coverage property of the resampling and FRW bootstrap methods.

4.1 Simulation Design

We use a simulation setting that is similar to Jeng and Meeker (1999). The data are simulated
from the Weibull distribution with time (Type I) censoring. In the study, we also consider
the following two factors: py, the probability of failure of each sample, and E(r), the expected
number of failures in each sample. The values for p; and E(r) are given in Table 9. In total,
there are 8 x 11 = 88 combinations. Following Jeng and Meeker (1999), we only keep those
datasets that can generate ML estimates and then we do the bootstrap.

We first investigate the estimability of parameters based on bootstrap samples. The suc-
cess proportion provides an estimate for the probability that each single bootstrap sample
can estimate the Weibull parameters. From the theoretical results in Section 2.4, the FRW
method can guarantee estimability as long as the original dataset can generate ML estimates.
Because we only do the bootstrap for those datasets that can generate ML estimates, the
FRW bootstrap method will always generate ML estimates in our simulation study. For the
resampling method, it is possible that re-sampled data do not result in ML estimates. That
is, the bootstrap sample will not succeed in estimating parameters, causing an estimability
problem.

We also investigate the coverage probability (CP) of Cls constructed by using estimates
from both bootstrap methods. Both the resampling and FRW bootstrap methods are used to
construct two-sided CI and one-sided confidence bounds for the Weibull parameters g and 7.
In the paper, we present the CP results for one-sided confidence bounds, as one can deduce
the two-sided CP from those results. The results for two-sided Cls are available on the online
supplement.

We simulated 10000 datasets for each py and E(r) combination. For each dataset, we do
resampling and FRW bootstrap 2000 times. The BCCI and one-sided confidence bounds are
computed. The CP for one simulation setting is the proportion of trials for which the BCCI
contains the true parameter. We also record the number of bootstrap samples for which
ML estimates could not be computed. Those bootstrap samples that can not generate ML

estimates are excluded from the CI computation.
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Table 9: The values for parameters py and E(r).

Parameter Levels
Df 0.01,0.03,0.05,0.1,0.2,0.5,0.7,0.9
E(r) 5,10, 20, 30, 40, 50, 60, 70, 80, 90, 100

4.2 Results and Discussions

Figure 9 is a heat map for the success probability for the resampling bootstrap for various
combinations of p; and E(r). From the figure, we can see that the resampling bootstrap
can have a significant number of bootstraps fail when E(r) is small. The FRW bootstrap,
however, is robust and does not have an estimation problem (i.e., the probability is 1 for all
combinations). From this result, we observe that the resampling bootstrap is likely to fail
when the sample size is small, resulting in estimability and interpretation problems. The
FRW does not suffer these estimability problems, makes it more useful in certain practical
applications (as illustrated in our numerical examples in Section 3).

Figure 10 plots the CP versus E(r) for the Weibull 5 parameter using resampling and
FRW bootstrap estimates for various p;. The left and right panels show the results for the
95% one-sided lower and upper confidence bounds, respectively. The results for 90% BCCI
for 5, and BCCI and one-sided confidence bounds for 7 are available in Section 5 of the
Supplement. For the one-sided lower confidence bound, both methods have CP close to the
nominal 95%, even when E(r) is around 5. The CP for both methods, however, are quite close
to each other, though the FRW method has slightly better results. For the one-sided upper
confidence bound, both bootstrap methods have CP close to 95% when E(r) is greater than
20. When E(r) < 10, both methods have CP values that are smaller than the nominal level
0.95. The py value does not have significant effect on the CP. Comparing the two bootstrap
methods, the difference in CP is small, especially when E(r) is large.

Overall, the FRW method outperforms the resampling method in term of estimability,
while both have comparable performance in terms of CP. We note that the CP tends to be s-
mall, which is always a challenging problem when one needs to deal with small samples. Small
sample techniques such as generalized pivotal quantities (e.g., Chapter 14 of Meeker, Hah-
n, and Escobar 2017), the Bartlett-corrected likelihood procedure, and bootstrap-calibrated
likelihood-ratio procedures (e.g., Jeng and Meeker 1999) can be used to improve the CP when
E(r) is small.
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Figure 9: Heat map for the probability of success estimation for the resampling bootstrap
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5 Conclusions and Areas for Future Research

5.1 Concluding Remarks

With vastly improved computing capabilities and bootstrap theory that has been developed
over the past 40 years, bootstrapping provides an important useful tool for obtaining CIs, pre-
diction intervals, and better regression models. The FRW bootstrap tremendously expands
the potential areas of application of the bootstrap to applications involving heavy censor-
ing and/or truncation, categorical explanatory variables, and designed experiments where
dropping certain combinations of the original observations can cause estimability problems.
As illustrated in our examples, the FRW bootstrap has far fewer problems with estimability
than the resampling bootstrap when dealing with censoring and/or truncation and categorical
explanatory variables, which are common in practical applications.

Overall, we observe that the FRW bootstrap is as easy to implement as the resampling
bootstrap and it has similar desirable properties in situations where the resampling bootstrap
works well. The FRW bootstrap also retains desirable properties even when the resampling
bootstrap breaks down. Through the examples in this paper, we have sought to present the
FRW bootstrap as a safer, more broadly applicable, alternative to the resampling bootstrap.

The software we use for analysis in this paper is JMP-PRO and R. We use JMP-PRO for
survival analysis for the real datasets in Section 3. For the simulation study in Section 4, we
used R to do the bootstrap and obtain the ML estimates.

5.2 Areas for Future Research

There are a number of areas that could be investigated to provide further insight into when
and how the FRW bootstrap methods should be used. There are different, asymptotically
equivalent ways to choose the random weights for bootstrapping (including resampling). This
leaves open the question about differences in the properties of bootstrap procedures in finite
samples. For example, if weights are chosen to have a mean and variance of one, what would
be the effect on the performance of varying the third or higher moments?

We have demonstrated a clear advantage for the FRW bootstrap in situations where estima-
bility problems occur when certain combinations of observations are dropped. In situations
where there will be no estimability problems it is possible that the FRW approach has other
advantages. It would be useful to compare different nonparametric and parametric methods
for generating bootstrap estimates when using a parametric model to describe one’s data. In
particular, it would be interesting to compare resampling methods, a fully parametric boot-
strap simulation (e.g., where the censoring distribution is modeled), and FRW bootstrap to

see if there are important differences in bootstrap performance. It also would be useful to have
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FRW analogs of second-order correct Cls such as the bias-corrected and accelerated (BCa)
and bootstrap-t methods.

Generalized fiducial inference (GFI) has proven to be a powerful tool for defining CI proce-
dures for non-standard models (see Hannig, Iyer, and Patterson 2006, Majumder and Hannig
2016, and Hannig et al. 2016). Implementing GFI methods generally requires computing a
large set of simulated parameter estimates, in a manner similar to the parametric bootstrap.
In situations involving heavy censoring, even the parametric bootstrap sampling will have
estimability problems. Use of FRW instead should allow GFI methods to be used in a wider

range of applications.

Supplementary Materials

The following supplementary material is available online.

Additional details: Technical details, additional results for applications, and graphs on ad-

ditional simulation results (pdf file).

Code and data: Datasets, JMP and R code for simulations and data analysis. (zip file).
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