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GROWTH AND STEADY STATE OF THE PATAGONIAN ANDES
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ABSTRACT. Water isotopes are an important tool for reconstructing the amount of
atmospheric lifting related to high topography in the geologic past. However, our
capacity for meaningful interpretation requires understanding the climatic setting and
isolating the influence of orography on water isotopes. Patagonia’s simple, steady
climatology and location within the Southern Westerlies makes it an ideal setting for
successful application of water isotopes to measuring topography through time. Here
we use hydrated volcanic glass to construct a new record of the size of the Patagonian
Andes during the Cenozoic. We also utilize a novel method for identifying the
contribution of orography in regional climate records. Our results show that variation
in the observed record can largely be explained by variations in climate. Thus we
conclude that the mountain range has maintained a size similar to modern since at least
Paleocene. This result is in agreement with geologic data, which constrain the bulk of
the surface uplift of the Andes to the Cretaceous. The reconstruction of the Patago-
nian Andes, which grew in the Cretaceous and remained high through the Cenozoic, is
markedly different from the widely held view of Miocene formation of this mountain
range. In particular, the topography appears to remain stable during the northward
propagation and collision of offshore spreading centers.
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INTRODUCTION

The western edge of South and North America is distinguished by a cordillera
(literally rope, from Sp. cuerda) of orogenic topography, extending from Tierra del
Fuego to the Russian Far East (fig. 1). This American Cordillera is often viewed as a
distinctive orogenic setting, characterized by subduction of oceanic lithosphere, arc
magmatism, and back-arc thrusting. DeCelles and others (2009) emphasize these
features as defining attributes of a cordilleran orogen. An important aspect of this setting
is the growth and maintenance of high topography for tens to hundreds of millions of
years.

Herein, we focus on the topographic evolution of the Patagonian Andes, which
extend from ~39°S to 56°S (Ramos and Ghiglione, 2008) along the active margin of
South America (fig. 1). In this region, the Andes are characterized by high topography,
a Late Jurassic—Cretaceous magmatic core called the Patagonian batholith (Hervé and
others, 2007), and Late Cretaceous—Miocene back-arc thrust belt (Fosdick and others,
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Fig. 1. Cordilleran orogens of North and South America. Cordilleran orogens are characterized by
ocean-continent subduction, histories of arc magmatism that often include large-scale plutonism, and
back-arc shortening. Dashed box indicates the area shown in figure 7. After Dickinson (2004) and DeCelles
and others (2009).

2011). The Patagonian Andes share these characteristics with other well-known
examples from the North American Cordillera, such as the Mesozoic Sierra Nevada of
California (cored by the Sierra Nevada batholith), and the Late Cretaceous to
Paleogene North Cascades/Coast Mountains of Washington and British Columbia
(cored by the Coast Plutonic Complex). All of these orogens had high topography
early in their evolution, as recorded by thick crust (based on thermobarometry),
crustal shortening, and synorogenic sedimentary basins in the Sierra Nevada (Ague
and Brimhall, 1988; Ducea, 2001; Cassel and others, 2009; Hren and others, 2010;
McPhillips and Brandon, 2012) and the Coast Mountains/Cascades (Monger and
others, 1982; Whitney and others, 1999; Miller and others, 2016).

Early workers estimated paleotopography using synorogenic sediments, thermo-
chronology, and biogeography. Here we reconstruct ancient water isotopes (8D and
3'%0 of precipitation), which are closely related to the size of topography through time
(Garzione and others, 2000; Poage and Chamberlain, 2001; Mulch and Chamberlain,
2007; Rowley and Garzione, 2007). Lifting of moist air over high topography results in
precipitation and fractionation of water isotopes—the so-called “altitude effect” (Dans-
gaard, 1964; Rozanski and others, 1993). Much of the isotopic work on paleotopogra-
phy has made use of an empirical isotopic lapse rate. However, GCMs indicate that
lapse rates may have varied in the geologic past (Poulsen and others, 2010).

Patagonia receives almost all of its atmospheric moisture from the Southern
Hemisphere westerly winds impinging on the Andes (fig. 2, Garreaud and others,
2013). This circulation is known to be a fundamental and persistent feature of
mid-latitude paleoclimatology (Parrish and others, 1982; Williams, 1988; Schneider,
2006). While Patagonia has moved westward during the Cenozoic, it has not rotated or
changed latitude appreciably (Seton and others, 2012). We can therefore expect that
the basic configuration of Patagonia—a north-south mountain range facing persistent
Westerlies—has remained unchanged through the Cenozoic.

Water isotopes are recorded by a variety of geologic materials, including soil
carbonate (Cerling and Quade, 1993), leaf waxes (Sachse and others, 2012), and
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Fig. 2. Mean annual precipitation (from GPCP) and 700 hPa (about 3 km ASL) wind speed (from
NCEP-NCAR reanalysis). The Southern Ocean is dominated by westerly flow, as indicated by the bold arrow,
impinging directly on the Patagonian Andes. The study area (blue box) lies in the belt of mid-latitude
westerly winds.

volcanic glass (Friedman and others, 1993b). Patagonia contains widespread, long-
ranging terrestrial sedimentary sequences, which preserve all of these types of water
isotope records. Here we (1) measure modern water isotopes in central Patagonia, (2)
reconstruct paleo-water isotopes on the downwind side of the Patagonian Andes from
volcanic glass, (3) model the effect of Cenozoic climate change on water isotopes
under constant topography, and (4) compare our paleo-water isotope record to the
modeled results to evaluate what part of the record is the result of changing topogra-
phy as opposed to climate change.

GEOLOGIC CONTEXT

There are numerous tectonic interpretations for the formation of the Patagonian
Andes. These include back-arc shortening (Ramos, 2005), ridge collision (Ramos and
Kay, 1992; Gorring and others, 1997; Georgieva and others, 2016), geometry and rate
of subduction (Blisniuk and others, 2005; Folguera and Ramos, 2011; Encinas and
others, 2016), and migration of the Chile triple junction (Lagabrielle and others, 2004;
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Breitsprecher and Thorkelson, 2009; Ghiglione and others, 2016). Many of these
tectonic events are Miocene in age, which has led to the widely held view that the
Patagonian Andes formed during the Miocene and the area was generally low prior to
then. However, the existing geologic literature contains substantial evidence that high
subaerial topography likely formed much earlier, during the Late Cretaceous. We
follow here with a brief review of this literature.

The Patagonian Andes contain a record of arc magmatism back to at least the
Early Jurassic. The arc had little or no subaerial topography at this time, as indicated by
roof pendants of Early Jurassic volcanics and marine limestones preserved in the
Patagonian batholith (Giacosa and Heredia, 2004) and spatially extensive submarine
silicic volcanics of the Late Jurassic Tobifera Formation (Hanson and Wilson, 1991).
The arc crust grew rapidly from ~155 to 115 Ma, as recorded by geochronology of the
Patagonian batholith (figs. 3 and 4). This large composite plutonic complex of
diorites, granodiorites, tonalites, and granites was intruded at an average depth of ~10
km (fig. 3) (Pankhurst and others, 1999; Seifert and others, 2005; Hervé and others,
2007). The batholith, extending ~1800 km along the length of the Patagonian Andes,
defines the core of the range. Also present in this region are localized exposures of
Miocene plutonic rocks (fig. 3), but given their distinctly younger age, we consider
them genetically unrelated to the batholith.

The timing of subaerial emergence of the arc is recorded in the back-arc basin
stratigraphy. Cretaceous paleogeographic reconstructions show the arc was separated
from cratonic South America to the east by the Aysén-Magallanes back-arc basin
(Pindell and Tabbutt, 1995; Maffione, 2016), which is now filled with >7 km of
sediment (Fosdick and others, 2011). Paleocurrent directions (Dott and others, 1982),
sandstone petrofacies (Fildani and others, 2003; Fildani and Hessler, 2005; Romans
and others, 2011), and detrital zircon ages spanning the age of the arc (fig. 3B)
indicate the arc was an emergent high by the Late Cretaceous. This time was also
marked by rapid accumulation of ~4 km of marine deposits in the back-arc (Romans
and others, 2011). Petrographic analysis of these sediments indicates that volcanic
rocks of the arc became an increasingly important sediment source in the Late
Cretaceous, while clast counts of conglomerates show no evidence of granitic cobbles
(Crane, ms, 2004). Zircon fission-track ages in the Patagonian batholith (fig. 3C) show
widespread cooling at this time, which we attribute to post-magmatic cooling and
erosion of the arc.

The back-arc basin also became emergent in Cretaceous time, as indicated by
terrestrial sediments in the northern part of the basin by ~125 Ma and in the southern
part by ~70 Ma (Macellari and others, 1989; Suarez and others, 2000; Fosdick and
others, 2011). Back-arc thrusting began at ~100 Ma (Fosdick and others, 2011) and
continued until 9 Ma (Lagabrielle and others, 2004), with most of the convergence (27
km) occurring between ~88 and 74 Ma (Fosdick and others, 2011). Terrestrial
back-arc basins continued to accumulate synorogenic sediment through at least the
Miocene (Charrier and others, 2007), and these basins received frequent and wide-
spread deposits of volcanic ash from the arc (Rapela and others, 1988; Bellosi, 2010a).
Evidence exists for localized marine deposition during the Late Oligocene—Early
Miocene (Flint and others, 1994; Bechis and others, 2014; Encinas and others, 2018),
though terrestrial deposition continued elsewhere during this time (Blisniuk and
others, 2005; Dunn and others, 2013; Metzger, ms, 2013). Such a setting may have
resembled the eastern Aleutian Arc in modern Alaska, with mixed marine and
terrestrial deposition occurring in a retro-arc basin adjacent to the mountainous
topography of the arc. Sediment deposited in these basins continued to contain a large
fraction of volcanic lithic material until ~14 Ma (Macellari and others, 1989; Matheos
and Raigemborn, 2012), indicating the continued dominance of the volcanic arc as a
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Fig. 3. Cooling history of the Patagonian batholith and derived material. (A) U/Pb and Rb/Sr ages of
batholithic rocks, assumed to represent crystallization (Pankhurst and others, 1999; Hervé and others,
2007). (B) Detrital zircon U/Pb ages from the latest Cretaceous to Middle Miocene samples from the
Magallanes back-arc basin (Fosdick and others, 2015). (C) Fission-track cooling ages of zircons from
batholithic rocks (see compilation in Herman and Brandon, 2015). (D) Depth of emplacement of plutons as
measured by Al-in-hornblende thermobarometry. For locations of geochronology samples, see figure 4. The
primary event visible in these data is the large Late Cretaceous pulse of crystallization followed by erosion
and cooling. Exhumation appears slow and steady since that time, despite the Miocene intrusive event.
MUD = multiples of uniform density, an expression of deviation from the mean (values greater than 2 are
significant).
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Fig. 4. Distribution of samples placing constraints on the crystallization and cooling history of the
Patagonian batholith plotted in figure 3. Pink triangles are samples with magmatic ages, green diamonds are
fission-track cooling ages of zircons, and blue circles are detrital zircon sampling locations. Purple squares
indicate locations of sedimentary sections discussed in text.

sediment source while the batholith itself remained largely unexposed. Granitic
cobbles are common in ~6 Ma glacial moraines (Wenzens, 2006; Christeleit and othes,
2017), which brackets the first widespread exposure of the batholith to ~14 to 6 Ma.

Today, the high topography of the Patagonian Andes extends to the bedrock peak
of Monte San Valentin, ~4 km above sea level. The range is composed primarily of
granitic rocks of the Patagonian batholith with screens of metamorphic rocks. In the
San Valentin massif, a range of thermochronometers show old cooling ages (fission-
track zircon = 100—72 Ma, fission-track apatite = 32—7 Ma, He apatite = 13—3 Ma),
indicating slow erosion since the Late Cretaceous (Thomson and others, 2010). This
pattern of relatively old cooling ages is common throughout the Patagonian Andes
(Thomson and others, 2010; Herman and Brandon, 2015), suggesting slow erosion at a
regional scale through the Cenozoic.



the Patagonian Andes 437

In summary, these observations indicate that the Patagonian arc evolved from a
submarine arc in the Jurassic to a fully emergent subaerial arc in the Cretaceous. The
detrital record shows erosion down through volcanic cover into the plutonic core of
the arc. Sediments in the back-arc basin required a steep topographic gradient for
sediment transport, indicating that the source area was mountainous ( Wilson, 1991;
Suarez and others, 2000; Gutiérrez and others, 2017). Genomic work indicates the
presence and diversification of cold-adapted flora in what is today the Patagonian
Andes prior to ~40 Ma (Mathiasen and Premoli, 2010), which requires high topogra-
phy to account for a cold environment amidst a period of global warmth.

This interpretation conflicts with the currently widespread view of Miocene (~15
Ma) formation of the Patagonian Andes, which is explained by back-arc shortening or
migration of the Chile triple junction (see references above). However, the geologic
evidence does not support this view. Back-arc shortening is estimated at <13 km of
convergence since ~74 Ma (Fosdick and others, 2011), which is insufficient to grow
the topography of the Patagonian Andes. The northward migration of the Chile triple
junction is important for tectonics south of its current position at ~47°S, but it cannot
explain the high topography of the Patagonian Andes that continues north for an
additional >1000 km. The Patagonian batholith is the only feature that is coincident
with the entire length of the range, and it was emplaced at a time when sedimentologi-
cal and provenance records indicate the emergence of high subaerial topography.
Thus, we infer that the emplacement of the Patagonian batholith is a likely candidate
for the formation of the topography of the Patagonian Andes.

CLIMATIC CONTEXT

Many mountain ranges are characterized by a wet windward side and an arid
leeward side. In Patagonia, the mean annual precipitation (MAP) on the windward
side of the Andes is >5 m yr~ ', while the leeward side is <0.3 m yr~' (Smith and Evans,
2007; Garreaud and others, 2013). This orographic effect leads to decreasing water
isotope values with increasing orographic lifting (Stern and Blisniuk, 2002; Smith and
Evans, 2007; Garreaud and others, 2013). The resulting relationship between elevation
and water isotopes forms a basis for reconstructions of past topography (Poage and
Chamberlain, 2001; Rowley and Garzione, 2007). However, any water isotope record
also includes the influence of climate, including changes in global temperature,
atmospheric circulation, and mode of lifting (stable vs. convective) over time. Recent
work indicates that these climatic effects might bias estimates of paleotopography (for
example, Galewsky, 2009; Poulsen and others, 2010; Insel and others, 2012; Lechler
and Galewsky, 2013; Rohrmann and others, 2014).

As a result, we have taken care to account for the role of climate in our study. First,
we correct for the effect of global temperature on the isotopic record in the analysis of
our data (see below). Second, we address here two important climatic assumptions: (1)
the Southern Hemisphere (SH) Westerlies have dominated atmospheric flow across
Patagonia during the Cenozoic, and (2) the distribution of water isotopes is primarily
controlled by stable orographic lifting and fractionation of moist air from the Pacific
Ocean.

We base the first assumption on the fact that the mid-latitude Westerlies, along
with the Hadley cell at lower latitudes, (fig. 2) are a direct result of Earth’s rotation
(Held and Hou, 1980; Williams, 1988; Schneider, 2006) and should thus be a
persistent feature of atmospheric circulation. This prediction is borne out by paleocli-
mate studies (Parrish and others, 1982). The SH Westerlies form a band currently
centered at ~50°S, but are thought to shift several degrees of latitude in response to
global cooling and warming (Lamy and others, 2001; Moy and others, 2008; Koffman
and others, 2014). This effect, however, is small compared to the ~20°-wide latitudinal
span of the SH Westerlies (fig. 2). For reference, plate reconstructions indicate the
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latitudinal position of Patagonia has been steady during the Cenozoic (Seton and
others, 2012).

We consider the possibility that the South American Monsoon System (SAMS)
(Vera and others, 2006) (fig. 2) might reach far enough south to contribute significant
atmospheric flow to the eastern part of central Patagonia, particularly in a warmer
world. However, the poleward extent of the SAMS is controlled not by temperature but
by a ventilation mechanism that provides extratropical westerly flow (Chou and
Neelin, 2001). Even in the current cool climate, the radiative and thermal forcing over
eastern Patagonia is similar to the forcing at lower latitudes. The mid-level SH
Westerlies bring air with low static energy (relatively low moisture/low temperature)
from the Pacific that inhibits deep convection over the continental plains south of 35°S
(Chou and Neelin, 2001), keeping the SAMS north and east of Patagonia. Thus, with
respect to our first assumption, there is no physical basis for a change in the dominant
wind direction of the SH Westerlies through the Cenozoic and it is reasonable to
assume this is a longstanding atmospheric feature in Patagonia.

The second assumption rests on the fact that any flow of moist saturated air over
topography will result in orographic precipitation and isotopic fractionation commen-
surate with the size of the topography. Storms moving across low continental areas also
show isotopic fractionation, but these are small, on the order of 8D = —1.6 %o0/100 km
(Criss, 1999). Central Patagonia is ~600 km across, so in the absence of high
topography, we would expect cross-continent fractionation of 8D < 10%o. However,
the modern Patagonian Andes are marked by a decrease in 8D of ~80%o across ~150
km (fig. 5).

Exceptions to this assumption — that incoming moist air will pass directly over
topography —may occur for three reasons: (1) flow around mountain ranges with a low
length:width ratio (for example, Galewsky, 2009; Lechler and Galewsky, 2013), (2)
impedance by a combination of stable atmospheric conditions and slow wind speeds
(“blocking”) (for example, Smith, 1979; Galewsky, 2009), and (3) ascent of air masses
due to deep convection (for example, Poulsen and others, 2010; Rohrmann and
others, 2014). Mid-latitude Patagonia shows none of these conditions, having an
extremely long (1000s of km), narrow mountain range standing in the path of
relatively fast westerly winds (on the order of 10 m/s) with average atmospheric moist
stability. The Patagonian Andes are analogous to the New Zealand Alps in size and
climatology. Wheeler and Galewsky (2017) show that the simple notion of orographic
lifting and isotopic fractionation works quite well there. Finally, convective rainfall is
common along the west coast of South America but is rarely observed in the mid-
latitudes (Garreaud and others, 2014). Considerable convection on the west coast of
South America only occurs north of ~5°S, where sea surface temperature (SST) is
22°C. Despite warmer conditions in the past, coastal SSTs would still be well below that
needed to excite convective activity over western Patagonia.

MODERN WATER ISOTOPES IN PATAGONIA

Modern water isotopes across Patagonia (figs. 5 and 6, table 1) illustrate their use
for interpreting topography. These data are from samples of base-flow in small streams,
which provide isotopic measurements average precipitation over the 1 to 3 year
residence time of water typical of small catchments (McGuire and others, 2005).
Base-flow waters also typically show minimal influence of evaporation. Figure 6 shows
that most of our base-flow samples (blue) are unaffected by evaporation, while ~15
percent of samples (red) have a low deuterium excess, indicating evaporation. We
highlight this because evaporation can be an issue for interpretation of ancient water
isotope measurements (for example, Quade and others, 2007; Lechler and others,
2013; Cassel and Breecker, 2017). Because volcanic glasses largely sample groundwa-
ter, their isotopic record is generally insensitive to evaporation.
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Fig. 5. Relationship between water isotopes (A) and topography (B) in central Patagonia between 44°S
and 48°S. Blue symbols indicate stream water samples that have experienced little to no evaporation; red
symbols indicate samples with low d-excess (see fig. 6). Swath topography in (B) is from a 2 km-wide moving
window between 44°S and 48°S.

The modern water isotope distribution across Patagonia is dominated by oro-
graphic fractionation (fig. 5). The first precipitation—the precipitation that falls as an air
mass begins to lift due to topography—reflects the composition of the incoming water
vapor, and is approximately —30 permil in Patagonia (fig. 5, table 1). The primary
water isotope values (blue) decrease from west to east, reaching a minimum of
about —120 permil at 71°W, after which values rise to —80 permil. This rise is due
to moisture from southeasterly Atlantic storms, which produce precipitation with
oD as high as —30 permil in southern mid-latitude settings. Simple mixing of
end-member values suggests that Atlantic precipitation could contribute up to ~30
percent of the water isotope composition in parts of eastern Patagonia. Case studies
(Agosta and others, 2015; Tuthorn and others, 2015), climatological analysis
(Garreaud and others, 2013), and HYSPLIT back-trajectories (Draxler and Rolph,
2013) give broadly similar results, indicating =20 percent Atlantic-sourced precipi-
tation. Data from the Falkland Islands (fig. 5), which lie >500 km east of South
America and ~1000 km from the Andes, still show a significant component of
Andean-fractionated moisture.
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Fig. 6. Stable isotope composition of modern surface water samples in Patagonia. Samples in blue are
unevaporated meteoric waters; samples in red have been influenced by evaporation (d-excess < 4.8%o). The
linear fit through the unevaporated samples matches the global meteoric water line (GMWL) closely.
Schematic inset after Coplen (1993), Gat (1996), and University of Arizona SAHRA.

SAMPLING LOCATIONS

We measured and sampled stratigraphic sections in three locations (fig. 7) on the
leeward side of the Andes between 46°S and 51°S (fig. 8). The Paleocene-Eocene
section at Mina Ligorio Marquez near Lago Jeinimeni is composed primarily of
volcanic-rich mudstones and sandstones. It is underlain by Cretaceous rocks (Suarez
and others, 2000), and is capped by a basalt flow assigned to the Basaltos Inferiores de
la Meseta de Chile Chico Formation (Encinas and others, 2019). The Middle Eocene-
Early Miocene sedimentology at Gran Barranca has been intensively studied for over a
century (Ameghino, 1906; Simpson, 1930, 1933), and detailed information about the
sedimentology of the numerous sections appears in Bellosi (2010a, 2010b). The
geochronology is based on radiometric dates from Dunn and others (2013) and Ré
and others (2010) and geochemical data (Colwyn and Hren, 2019). The sedimentol-
ogy, geochronology, and detailed measured sedimentary section of the Early-Middle
Miocene Santa Cruz Formation at Cerro Observatorio appear in Metzger (ms, 2013).
We also discuss the data of Blisniuk and others (2005) from the Santa Cruz Formation
at Lago Posadas (fig. 7).

Sections underlie a Miocene-to-Present aggradational surface (Martinez and
Coronato, 2008), indicating that they have never been deeply buried. Cerro Observato-
rio and Gran Barranca have existing high-quality age constraints. The Lago Jeinimeni
section has paleobotanical age constraints (Suarez and others, 2000), which are
supplemented here with *’Ar/*Ar (Encinas and others, 2019) and new detrital zircon
data.
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TABLE 1
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Sample Latitude  Longitude  Elevation 8'%0 oD d-excess Source
(m) (%0) (%0)
15SW34 -47.118 -72.464 439 9.1 =78 -5.5 !
15SW37 -47.065 -72.356 486 -12.8 -100 25 !
15SW16 -46.605 -71.690 338 -13.9 -107 42 !
15SW17 -46.546 -71.791 372 -14.2 -111 29 !
15SWO01 -45.685 -72.057 360 -10.7 -81 4.7 !
15SW103 -48.156 -73.545 0 -10.6 -75 9.6 !
15SW101 -48.003 -73.581 7 -11.3 -80 10.9 !
15SW102 -47.919 -73.881 0 -9.5 -69 6.7 !
15SW100 -47.500 -72.955 85 -14.3 -104 10.4 !
15SW32 -47.153 -72.520 1060 -155 -112 12.6 !
15SW31 -47.152 -72.508 1156 -14.1 -104 9.3 !
15SW30 -47.149 -72.468 878 -153 -111 11.1 !
15SW33 -47.147 -72.528 773 -15.0 -109 11.3 !
15SW38 -47.128 -72.505 391 -14.9 -109 9.8 !
15SW28 -47.128 -72.705 176 -14.8 -108 10.0 !
15SW29 -47.127 -72.481 459 -14.8 -109 9.7 !
15SW27 -47.121 -72.776 192 -12.1 -85 11.5 !
15SW35 -47.121 -72.463 451 -14.1 -105 7.3 !
15SW26 -46.997 -72.797 393 -15.1 -109 12.0 !
15SW23 -46.839 -72.691 226 -12.7 -94 7.9 !
15SW13 -46.838 -72.011 847 -14.2 -105 8.4 !
15SW14 -46.838 -72.016 869 -15.6 -116 9.1 !
15SW07 -46.822 -72.665 214 -14.2 -104 9.9 !
15SW12 -46.819 -71.987 836 -14.7 -108 9.9 !
15SW11 -46.801 -71.945 791 -15.2 -113 9.1 !
15SW24 -46.793 -72.582 367 -14.6 -103 139 !
15SW25 -46.792 -72.579 385 -15.1 -108 13.1 !
15SW39 -46.792 -72.813 221 -15.2 -111 10.7 !
15SW10 -46.788 -71.911 723 -15.1 -111 9.9 !
15SW09 -46.727 -71.738 552 -14.6 -112 5.5 !
15SW40 -46.726 -72.803 261 -14.0 -98 13.7 !
15SW15 -46.707 -71.704 487 -15.5 -117 7.0 !
15SW22 -46.697 -72.433 300 -14.8 -104 14.7 !
15SW21 -46.625 -72.353 437 -14.7 -109 8.6 !
15SW20 -46.591 -72.226 247 -14.8 -105 133 !
15SW19 -46.562 -72.027 474 -15.5 -114 9.7 !
15SW18 -46.554 -71.893 408 -15.9 -117 9.6 !
15SWO08 -46.546 -71.791 379 -14.2 -108 54 !
15SW46 -46.458 -72.722 208 -12.8 -88 14.2 !
15SW42 -46.458 -72.722 208 -12.3 -84 14.9 !
15SW44 -46.458 -72.722 208 -12.2 -82 15.7 !
15SW06 -46.427 -72.708 214 -11.3 -81 9.2 !
15SW43 -46.358 -72.765 234 -11.9 -80 15.3 !
15SW45 -46.172 -72.716 587 -11.6 =719 13.5 !
15SWO05 -46.164 -72.637 527 -12.4 -87 13.0 !
15SW47 -46.159 -72.337 310 -13.0 -92 12.2 !
15SW48 -46.110 -72.117 501 -14.9 -109 10.3 !
15SW49 -46.060 -72.006 1030 -14.7 -106 11.5 !
15SW50 -45.988 -71.910 853 -14.6 -106 11.2 !
15SW04 -45.969 -71.869 930 -14.4 -106 9.5 !
15SW03 -45.807 -71.920 416 -13.5 -100 8.4 !
15SW02 -45.685 -72.057 360 -13.1 -93 11.4 !
15SW41 -45.535 -72.724 237 -12.8 -89 13.6 !
14LP80 -47.590 -71.825 1017 -14.5 -117 -1.0 !
14AR05 -47.075 -70.832 659 -12.6 -103 -1.3 !
14CL03 -47.128 -72.505 375 -14.0 -103 9.5 !
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TABLE 1
(continued)
Sample Latitude  Longitude  Elevation 8'%0 oD d-excess Source
(m) (%o) (%0)
14CL02 -47.121 -72.776 195 -11.4 -83 8.6 !
14CLO1 -46.827 -72.001 839 -14.2 -105 9.4 !
14AR04 -46.583 -70.917 394 -13.4 -102 53 !
14AR06 -46.554 -71.640 232 -14.9 -113 6.0 !
14CL04 -46.192 -72.776 539 -11.7 =719 14.3 !
14AR03 -45.470 -69.834 411 -10.8 -80 6.9 !
Lago Potrok Aike -51.950 -70.410 -12.6 -93 7.6 2
Rio Gallegos met station -51.620 -69.280 -11.6 -90 3.6 2
ArrPedegoso -46.620 -71.267 247 -12.6 -106 -54 3
Las Chilcas -46.612 -71.338 235 -133 -108 -1.2 3
GauchitaGil -46.602 -71.179 274 -13.1 -107 2.7 3
Los Antiguos -46.555 -71.640 227 -14.6 -115 1.0 3
CerroPicoSur -46.545 -71.783 354 -13.2 -104 1.4 3
RioMayo -45.685 -70.251 420 -10.5 -90 -6.3 :
Rio Senguer -45.470 -69.831 413 -10.3 -82 -0.1 3
Andrade2 -45.153 -73.519 22 -5.5 -41 33 3
Andradel -45.153 -73.519 22 -5.5 -39 4.5 !
Pte Catalan -46.997 -72.796 393 -13.8 -102 8.4 3
Pt Bertrand -46.944 -72.786 226 -14.3 -104 10.6 3
CerroCastillo -46.933 -72.342 697 -13.9 -100 11.0 !
Pte Leonos -46.737 -72.858 248 -13.0 -94 10.2 3
La Parra -46.730 -72.793 242 -13.5 -101 7.1 3
PteSantaMarta -46.726 -72.802 226 -13.2 -97 9.3 !
CerroJeinemeni -46.720 -72.457 251 -13.7 -98 11.6 3
RioTrapial -46.705 -72.696 312 -14.0 -105 7.2 3
PteBlas -46.625 -72.673 218 -12.3 -91 7.5 !
PteChirito -46.625 -72.673 219 -13.9 -101 10.2 !
Rio Aviles -46.591 -72.225 254 -13.7 -96 139 3
Rio Jeinemeni -46.581 -71.660 258 -14.2 -107 6.0 !
Rio Bana -46.555 -71.894 423 -14.7 -107 10.0 !
RioEngano -46.458 -72.723 222 -11.7 -86 7.3 3
PuertoMurta -46.379 -72.746 250 -12.3 -88 10.3 !
Arr.Aserradeo -46.171 -72.682 548 -12.3 -84 15.0 :
CerroSinNombre -46.122 -72.543 353 -12.4 -88 11.5 3
Pte. Moro -45.501 -72.154 135 -11.5 -84 8.1 !
RioSimpson -45.479 -72.282 117 -11.4 -81 10.3 3
Las Pizarras -45.470 -72.306 101 -10.0 -69 11.3 3
Pnte. El Salto -45.447 -72.780 11 -8.7 -63 6.7 !
Pnte. Prieto -45.432 -72.721 17 -9.6 =72 4.9 :
Pte. Rossel -45.424 -72.416 73 -10.1 -63 17.9 3
Pnte Viviana -45.351 -72.462 45 -11.1 -84 4.8 3
RioManihuales -45.293 -72.326 96 -11.2 -85 49 :
Andrade3 -45.153 -73.519 22 -5.7 -40 6.1 3
Andrade4 -45.153 -73.519 22 -5.5 -37 7.1 !
PntePedregoso -45.084 -72.118 257 -11.8 -79 14.9 :
Sta.Andres -44.884 -72.204 349 -10.5 =74 10.2 3
RioCisnes -44.694 -72.241 194 -10.8 =11 9.8 !
Waterfall Seno -44.510 -72.558 3 -1.7 -51 10.4 :
MiradordelRio -43.974 -72.466 37 -10.4 <71 11.6 3
PnteLoicas -43.526 -72.342 165 -9.7 -66 11.1 !
Pnte Arauca -43.307 -72.418 252 -9.9 -68 11.6 :
AldeaEscolar -43.133 -71.556 350 -12.0 -86 10.4 3
Arr. Fontana -42.990 -71.561 633 -12.2 -84 14.0 !
Arr. Raninto -42.954 -71.592 599 -12.3 -86 12.8 :
Chaitenl -42.890 -72.740 48 -6.8 -46 8.0 3
RioDeseguardero -42.889 -71.609 518 -12.5 -89 11.1 3
3

Sta Barbara -42.856 -72.794 16 -6.2 -42 73
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TABLE 1
(continued)
Sample Latitude  Longitude  Elevation 8'%0 oD d-excess Source
(m) (%0) (%0)
Cascada Tio Mindo -42.839 -71.603 569 -12.5 -90 9.4 3
Arr.Montoso -42.741 -71.098 982 -13.1 -95 9.7 :
Arr.Lepa -42.615 -71.077 836 -12.7 -96 5.8 3
Leleque -42.431 -71.103 726 -13.6 -99 10.1 3
RioButalcuva -42.279 -73.709 62 -6.1 -41 7.6 :
PulchicanPnte -41.962 -73.837 0 -5.2 -30 11.7 3
MechaicoPnte -41.938 -73.830 6 -5.1 -28 12.3 3
Darwin -41.882 -73.662 10 -5.3 -30 12.2 3
RioFoyal -41.722 -71.456 672 -12.4 -92 7.4 3
MurrowPnte -41.663 -73.317 26 -4.7 -28 9.5 3
Trapen Pnte -41.523 -73.091 68 -4.5 -30 5.5 :
PuertoMontt -41.470 -72.935 37 -7.0 -45 11.3 3
Guillermo -41.439 -71.485 900 -13.1 -94 10.4 3
Escalera -41.302 -71.492 799 -13.3 -97 9.7 :
Nahuelhuapi -40.942 -71.369 822 -11.8 -88 5.9 3
RioPireco -40.734 -71.832 804 -9.7 -68 10.0 3
PuertoArauca -40.725 -71.687 794 -11.0 -80 8.1 !
RioPuychue -40.725 -71.928 1154 -9.6 -63 13.9 3
PnteNique -40.724 -72.433 203 -7.6 -47 13.6 3
Rio Totoral -40.712 -71.790 779 -9.7 -71 6.3 !
Farm Pond -40.605 -72.892 94 -7.4 -51 8.4 3
EastLake -40.088 -71.184 782 -12.3 -92 5.7 3
PX1 -47.950 -72.134 918 -13.2 -102 32 4
PX6 -47.929 -72.045 890 -5.5 -65 -21.1 4
PASW99-5 -47.914 -73.326 80 -9.7 -73 42 4
PX5 -47.833 -72.126 866 -11.8 -98 3.1 4
PX4 -47.833 -72.126 866 -13.1 -103 1.9 4
PASW22 -47.833 -71.296 849 -12.1 -97 -0.3 4
PASW27 -47.832 -72.127 866 -12.3 -94 42 4
PASW36 -47.803 -72.084 850 -13.8 -107 33 4
PASW99-9 -47.783 -73.307 125 -9.9 -76 3.7 4
PASW13 -47.743 -71.197 851 -6.4 -62 -10.8 4
PASW00-2 -47.588 -71.825 940 -14.1 -116 -3.4 4
PASW70 -47.578 -71.735 180 -1.3 -70 -11.9 4
PASW49 -47.575 -71.563 290 -12.6 -97 35 4
PASW51 -47.574 -71.620 190 -11.5 -90 1.9 4
PASW72 -47.570 -71.636 190 -7.9 =17 -14.0 4
PASW99-2 -47.555 -71.867 1105 -14.4 -113 1.8 4
PASW99-1 -47.553 -71.861 940 -13.8 -112 2.0 4
PASW20 -47.459 -71.861 170 -8.4 -70 2.4 4
PASW21 -47.455 -71.813 160 -10.2 -84 2.2 4
PASW68 -47.455 -71.813 160 -10.3 -85 -2.9 4
PASW65 -47.312 -72.596 291 -8.9 -74 2.4 4
PASW99-14 -47.056 -72.269 365 -5.3 -53 -10.4 4
PASW48 -47.991 -71.820 844 -13.5 -99 9.5 4
PASW44 -47.956 -72.111 890 -13.4 -96 10.8 4
PASW40 -47.954 -72.157 916 -13.6 -102 6.5 4
PX2 -47.953 -72.158 916 -14.7 -111 7.0 4
PX3 -47.952 -72.149 895 -134 -100 7.1 4
PASW41 -47.952 -72.148 895 -13.6 -101 79 4
PASW39 -47.951 -72.146 910 -13.0 -96 8.4 4
PASW43 -47.950 -72.121 892 -13.7 -97 12.3 4
PASW37 -47.949 -72.135 918 -12.7 -91 10.4 4
PASW42 -47.949 -72.134 898 -13.6 -100 9.0 4
PASW38 -47.949 -72.140 910 -12.6 -94 6.8 4
PASW45 -47.943 -72.083 890 -11.8 -88 6.6 4
PASW47 -47.943 -71.883 878 -14.3 -101 13.5 4
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TABLE 1
(continued)
Sample Latitude  Longitude Elevation 8%0 oD d-excess Source
(m) (%) (%)
PASW46 -47.938 -72.060 860 -12.2 -90 7.7 4
PASW99-4 -47.919 -73.330 60 9.1 -68 5.0 4
PASW99-6 -47.895 -73.319 95 9.9 -74 5.1 4
PASW99-7 -47.886 -73.318 245 -11.9 -84 11.1 4
PASW99-8 -47.852 -73.302 320 -12.2 -87 10.9 4
PASW26 -47.832 -72.127 866 -13.5 -100 8.4 4
PASW32 -47.817 -72.018 961 -14.8 -113 52 4
PASW31 -47.804 -72.008 933 -15.2 -114 7.6 4
PASW1 -47.778 -73.298 45 -10.6 -73 12.3 4
PASW52 -47.772 -73.288 45 -11.7 -79 14.3 4
PASW35 -47.768 -72.088 995 -15.5 -116 7.7 4
PASW33 -47.768 -72.221 961 -14.7 -107 10.7 4
PASW34 -47.768 -72.212 906 -15.1 -109 11.8 4
PASW2 -47.768 -73.273 45 -11.0 -76 12.0 4
PASW3 -47.767 -73.270 45 -10.9 -74 12.8 4
PASW99-10 -47.767 -73.265 48 -12.1 -85 12.2 4
PV2-01 -47.767 -73.264 7 -10.6 4
PASW4 -47.767 -73.265 48 -11.0 -74 13.9 4
P3-00-2 -47.766 -73.266 48 -10.3 -67 15.0 4
PASWS53 -47.763 -73.257 45 -11.5 -78 14.4 4
PASW54 -47.757 -73.246 45 -9.9 -64 15.3 4
PASWS55 -47.748 -73.240 38 9.3 -60 14.8 4
PASWS5 -47.736 -73.235 15 -12.0 -86 10.5 4
PASW6 -47.736 -73.235 3 -12.1 4
PASW99-11 -47.736 -73.236 5 -11.8 -86 8.3 4
PASWS56 -47.723 -73.203 23 -10.5 -70 13.9 4
PASWS57 -47.722 -73.173 7 -11.3 -64 26.8 4
PASW7 -47.722 -73.172 7 -12.2 -84 13.5 4
PASW28 -47.714 -72.153 895 -16.0 -120 8.3 4
PASW29 -47.714 -72.153 895 -15.8 -117 9.1 4
PASW30 -47.709 -72.167 973 -15.3 -113 9.7 4
PASWS8 -47.703 -73.103 28 -10.8 =77 9.2 4
PASWS58 -47.698 -73.125 40 9.4 -62 13.1 4
PASWS59 -47.697 -73.046 25 -12.0 -84 12.0 4
PASW60 -47.690 -73.035 43 -11.8 -85 9.6 4
P3-00-1 -47.682 -73.025 68 -13.6 -100 8.5 4
PASW61 -47.673 -73.015 35 -10.5 -78 5.7 4
PASWO00-1 -47.672 -71.776 1800 -15.2 -112 9.4 4
PASW25 -47.648 -71.742 1520 -15.6 -118 7.0 4
PASW14 -47.634 -71.277 860 -15.3 -118 4.8 4
PASW24 -47.633 -71.745 1225 -15.7 -120 5.7 4
PASW99-13 -47.611 -72.914 120 -12.4 -90 9.3 4
PASW9 -47.610 -72.877 95 -12.1 -87 10.1 4
PASW62 -47.610 -72.905 138 -12.5 -76 23.9 4
PASW69 -47.590 -71.746 220 -15.2 -114 7.9 4
PASW71 -47.579 -71.284 624 -14.3 -107 7.5 4
PASW23 -47.576 -71.382 625 -15.0 -111 8.7 4
PASWS50 -47.571 -71.584 245 -12.3 91 7.1 4
PASW99-12 -47.567 -72.864 90 -14.2 -100 13.8 4
PASWI10 -47.567 -72.864 90 -14.2 -96 17.9 4
G3-01 -47.567 -72.864 90 -13.6 4
PASW63 -47.547 -72.861 90 -12.9 -88 15.0 4
PASW67 -47.523 -71.803 160 -14.2 -108 5.7 4
PASW64 -47.514 -72.865 93 -13.6 -92 17.0 4
4

PASW15 -47.445 -72.064 475 -13.9 -96 15.1




the Patagonian Andes 445

TABLE 1
(continued)
Sample Latitude  Longitude Elevation 8%0 oD d-excess Source
(m) (%) (%)
PASW16 -47.435 -72.036 490 -14.8 -107 11.8 4
PASW17 -47.434 -72.019 450 -14.4 -102 13.0 4
PASW18 -47.427 -72.002 410 -14.5 -109 7.3 4
PASW19 -47.420 -71.943 167 -15.0 -105 14.6 4
PASW99-3 -47.176 -71.822 630 -14.7 -112 53 4
PASW12 -47.161 -71.835 630 -15.3 -114 8.8 4
PASW99-15 -47.121 -72.047 556 -14.3 -104 10.5 4
PASW66 -47.121 -72.048 538 -13.9 -99 12.7 4
PASWI1 -47.121 -72.048 590 -14.3 -102 12.6 4

Sources: 'this work; 2Mayr and others, 2007; *Smith and Evans, 2007; *Stern and Blisniuk, 2002.

AGE CONTROL

Four sandstones from the Lago Jeinimeni section were crushed and zircons were
separated based on their high density and non-magnetic character. Crushed samples
were hydraulically separated using a Gemeni shaking table, and the resulting high-
density fraction was repeatedly passed through a Franz magnetic separator at increas-
ing magnet strengths. The hi%hest density fraction was isolated using methylene iodide
heavy liquid (p = 3.32 g/cm”). Zircons were analyzed at the University of California
Santa Cruz LA-ICP-MS laboratory following the procedure described by Sharman and
others (2013). Sri Lankan zircon (SL2) (563 Ma) was used as the primary standard and
Plesovice (337 Ma) was used as a secondary standard. Results are reported in table 2.

The Lago Jeinimeni section has previously been considered to be of Paleocene—
Eocene age based on the paleofloral assemblage at the site (Suarez and others, 2000).
The lowest sandstone sampled in the section contains grains as young as Campanian
(Late Cretaceous). The remaining three sandstones have, in ascending stratigraphic
order, youngest zircon U/Pb ages of 57.3+2.7 Ma, 53.7+2.9 Ma, and 50.5*=2.5 Ma. We
interpret these three samples as contemporaneous with deposition, given that arc
magmatism was active during these times (figs. 3A and 3B). The age of the uppermost
sandstone bed is statistically identical to the whole rock *’Ar/**Ar age of the basalt flow
conformably overlying the sediments <3 m above it (Encinas and others, 2019). We
also note that the ages become progressively younger with stratigraphic height and are
consistent with the paleofloral age. The lowest sample is interpreted to be Paleocene as
well, as it lies <6 m below the next dated sandstone and the lithologic character of the
section appears continuous. The lack of young volcanic zircons is anomalous com-
pared to the other samples.

HYDROGEN ISOTOPES IN HYDRATED GLASS

While modern water isotopes are easy to measure, reconstructing them in the past
requires a material that records isotopic composition and then remains stable over
long (>10 Myr) time scales. Soil carbonate nodules have been used in many paleocli-
mate and paleotopography studies (Quade and others, 2007). However, the evapora-
tive origin of carbonate nodules and the seasonal and episodic nature of their
formation (Breecker and others, 2009; Ringham and others, 2016) make them more
difficult to interpret.

We employed hydrogen isotopes (8D) preserved in the hydration water of
volcanic glass to reconstruct water isotopes through time. Knowledge of volcanic glass
hydration has been utilized in obsidian hydration dating (for example, Friedman and
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Fig. 7. Map of Patagonia showing selected tectonic features and geologic units. Sample sites and
locations mentioned in the text are denoted by purple circles.

Smith, 1960) and assessing the stability of glasses used in nuclear waste storage (for
example, Grambow, 2006), as well as isotopic reconstruction of ancient magmatic and
environmental waters (Friedman and others, 1993b; Mulch and Chamberlain, 2007;
Seligman and others, 2016). Following eruption, volcanic glass typically retains =0.3
weight percent magmatic water (Ross and Smith, 1955; Dingwell, 1996). This nominally
dry glass is unstable in the surface environment, and as such will take up environmental
water as it moves towards a more stable hydrated phase. Once bound, the hydration
products are largely stable at earth surface conditions; Friedman and others (1993a)
found that temperatures of >800 °C were required to liberate this hydrogen on
laboratory time scales. Glass particles typically have thin walls and high surface area,
which allows them to hydrate rapidly and completely (Nolan and Bindeman, 2013).
The water donates H" ions that exchange with alkali cations (for example, Na*, K*)
(Cerling and others, 1985). Anovitz and others (2009) show that fully hydrated glass is
resistant to further change in hydrogen content. Complete hydration is observed to
occur in the range of ~1 to 5 weight percent water, typically around ~3.5 weight
percent (for example, Ross and Smith, 1955). Higher water contents may indicate the
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Fig. 8. Stratigraphic columns and reconstructed meteoric water 8D for sections at (A) Lago Jeinimeni
(Mina Ligorio Marquez), (B) Gran Barranca, and (C) Cerro Observatorio. Radiometric age measurements
interpreted to be formation ages are indicated to the right of columns in roman type; indirect constraints
from detrital zircons (Lago Jeinimeni and Gran Barranca) and paleomagnetism (Cerro Observatorio) are in
italics. Detrital zircon ages are the minimum U/Pb age from the dated population of grains. Half-shaded 8D
points in Gran Barranca section are shown only for assessment of alteration (and thus not in fig. 10); their
paleoclimate significance is discussed in Colwyn and Hren (2019).

added presence of clays or other hydrous phases. Sonication is widely used to remove
these phases (for example, fig. 9). Full hydration typically occurs in 10° to 10* years
(Friedman and Long, 1976; Cerling and others, 1985; Friedman and others, 1993b).
This is advantageous because the hydration process tends to average out short-term
isotopic variations due to climate.

The hydrogen isotopic composition of the hydrated glass can be related back to
the ambient water composition via an effective fractionation factor (Friedman and
Smith, 1958; Friedman and others, 1993b; Cassel and Breecker, 2017), and there is
strong evidence for the long-term stability of the 8D of the initial hydration water. First,
studies of natural glasses show that after initial hydration, the 8D is generally preserved,
even in sediments that have been buried to depths of several kilometers. In particular,
in a related study we have found that volcanic glass retains isotopic variability related to
the Eocene-Oligocene climatic transition, which implies minimal to no resetting by
younger water (Colwyn and Hren, 2019). Second, contemporaneous glasses record
expected variations in 8D between fluvial and lacustrine environments (Cassel and
Breecker, 2017). Third, they preserve gradients in elevation (Jackson and others,
2017). These observations support the interpretation that hydrated glass has long-term
stability and reflects the long-term (10°-10* yr) average of the local precipitation
during initial hydration (Friedman and others, 1993b; Dettinger and Quade, 2015;
Seligman and others, 2016). Consequently, glass 3D has been used to reconstruct
Cenozoic paleoclimate and paleotopography (for example, Mulch and others, 2008;
Cassel and others, 2009; Canavan and others, 2014; Fan and others, 2014; Pingel and
others, 2014; Saylor and Horton, 2014).

In order to understand the mechanism (s) for the observed stability of the isotopic
composition of glass hydration water, some studies have explored the behavior of glass
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Fig. 9. Scanning electron images of glass separates. Fragments show primary volcanic textures, sharp
edges indicating an airfall origin, and minimal clays adhering to grain surfaces. (A) LJ-60 Paleocene, from
Lago Jeinimeni. (B) GB-09 Eocene, from Gran Barranca. (C) GB-08 Eocene, from Gran Barranca. (D) GB-97
Eocene, from Gran Barranca.

in the laboratory. The key issue is the possible diffusive isotopic exchange between
environmental water and glass hydration water following initial hydration. Isotopically-
enriched water exposure can change glass 8D on lab time scales (ca. 1 year) in
some experiments (Nolan and Bindeman, 2013; Cassel and Breecker, 2017), although
other experiments show negligible change (Ross and others, 2015). It is difficult to
relate these laboratory experiments to natural settings because the laboratory samples
have been crushed, which makes them quite different from natural materials. This is
analogous in some ways to the observation that glass can be devitrified on short time
scales, but pristine glass is found in rocks that are tens to hundreds of Myr old (for
example, Hamilton, 1992). This discrepancy between natural and laboratory rates of
glass alteration has long been recognized (Colman, 1981). If natural samples were as
reactive and isotopically diffusive as some lab studies suggest, then all natural glasses
should be altered and isotopically reset in a few years of exposure.

Cassel and Breecker (2017) have expressed concern about isotopic resetting by
younger waters and have argued that it is important to “clean” the samples using an HF
acid wash. Our assessment is that this approach is burdened by two unaddressed
problems: (1) HF contains a large amount of hydrogen of unknown isotopic composi-
tion and (2) the hydrogen isotope fractionation between HF and water is very large
(tpoor = ~1.2) (estimated from Harris, 1995). Cassel and Breecker (2017) did not
report the isotopic composition of the HF used in their study. Industrial HF is
produced by dissolving fluorite by sulfuric acid, a process which is incomplete and is
likely accompanied by large and unpredictable isotopic fractionation. Some studies
(Fan and others, 2014; Cassel and Breecker, 2017) have found that HF treatment
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produces a coherent shift in 8D value, while others (Dettinger and Quade, 2015;
Seligman and others, 2016) have found that it instead produces changes in 3D that vary
in both magnitude and direction. Differences in the source and isotopic composition
of lab HF and water may explain why HF cleaning by different labs produces variable
shifts in magnitude and sign of the isotopic composition. In addition, it is not clear if
HF treatment is removing isotopically-reset rims or altering the 8D of the glass by
adding or exchanging H, or both. We considered these effects by rinsing four samples
with 5 percent HF for 30 seconds. Treated samples showed variable changes in 8D
relative to untreated samples (three samples did not change within error, one
decreased by 11%o0). SEM images of glass samples treated with sonication but not HF
(fig. 9) show pristine fragments, with minimal or no precipitates coating glass surfaces.
Given the good quality of our samples and the theoretical and observed cautions about
the effect of HF, we chose not to use HF cleaning, in keeping with the recommenda-
tions of Seligman and others (2016) and Dettinger and Quade (2015). This is also
consistent with field-based tests (see Results), which argue against alteration.

METHODS

Fresh samples were collected from fluvial and aeolian mudstones in measured
sedimentary sections (fig. 8). Lacustrine sediments were not sampled to avoid the
issues with evaporation (for example, DeCelles and others, 2007; Cassel and Breecker,
2017). Established procedures were used to separate glass from bulk samples (for
example, Cassel and others, 2009; Dettinger and Quade, 2015). Sediments were
dry-sieved to isolate the 180 to 63 um fraction, and clay and carbonate were removed by
a series of rinses of deionized water, sodium pyrophosphate deflocculant solution, and
10 percent HCI. A Frantz Isodynamic magnetic separator was used to remove magnetic
grains, particularly hydrogen-containing biotite. Glass was then separated in a lithium
polytungstate solution with a density of 2.48 g/cm®. Resulting splits were inspected
using a microscope to select pure separates of glass. SEM images of selected samples
show fresh, vesicular, angular texture indicative of airfall deposition, rather than
reworking by fluvial transport, and do not show significant secondary material on the
surface of glass fragments (see fig. 9). Samples were stored in a glass desiccator for one
week prior to analysis. High purity separates were weighed into silver capsules, dried in
a vacuum oven for ~24 hours at 80 °C, and flushed with He gas. Tests of replicates with
longer drying times showed no effect on sample 8D (Colwyn and Hren, 2019). The 8D
of the hydrated glass was measured using a thermal conversion elemental analyzer
(TC/EA) attached to a Thermo MAT 253 IRMS at the University of Connecticut.
Isotopic values were determined relative to repeated runs of standard materials PEF-1
(foil), NBS-22 (oil), and KGa-1 (kaolinite). Measured 38D of glass was transformed to
the 8D of meteoric water (table 3) using the fractionation factor of Friedman and
others (1993a) (oo = 0.9668), which has been validated experimentally by Seligman
and others (2016) and observationally by Porter and others (2016). Water contents
were determined by TC/EA (for example, Martin and others, 2017) and are ~5 weight
percent (table 3), which is typical for environmentally hydrated glasses.

Modern water samples were collected in vials and sealed with Parafilm. Water
isotopes were measured in triplicate using a Los Gatos Research LWIA Cavity Ring
Down Spectrometer with an autosampler in the Stable Isotope Facility at the University
of Wyoming. Results (table 1) were normalized to repeated runs of internal and
external reference materials.

RESULTS
Volcanic glass 8D data for all sites range from —108 permil to —142 permil (table
3). Conversion of these values using the fractionation factor of Friedman (1993a) gives
mean values of —85 permil at Lago Jeinimeni, —98 permil at Gran Barranca, and —103
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TABLE 3

Hydrogen isotope data from volcanic glasses

Sample Stratigraphic Age 0D a5 StdDev n H,0 0D ater
height (m) Ma) (VSMOW) (wt. %)  (VSMOW)
Lago Jeinimeni (base of section at -46.76958, -71.82899)
15LJ50 1.5 61.8 -118 2.1 3 2.6% -88
15LJ51 34 61.4 -114 1.0 3 2.8% -84
15LJ52 6.5 60.8 -116 1.4 3 2.4% -86
15LJ53 14.5 59.3 -114 2.6 3 2.8% -84
15LJ54 17.3 58.8 -110 1.8 3 5.8% -80
15LJ58 244 57.5 -110 0.9 3 4.3% -81
15LJ60 284 56.7 -108 1.6 3 4.4% -78
15LJ61 322 56.0 -112 1.2 3 2.4% -82
M15LJ-1.0m 345 55.6 -110 1.6 3 3.1% -80
15LJ62 352 55.4 -112 2.4 3 3.3% -82
PB15LJ02 443 53.9 -127 0.5 3 4.4% -98
M15LJ-17.0m 50.5 52.6 -115 1.9 3 3.4% -86
MI15LJ-21.6m 55.1 51.8 -113 1.8 3 2.8% -83
M15LJ23.65m 57.2 51.4 -113 2.0 3 2.0% -83
Gran Barranca (multiple sections (letters) in area of -45.70998 -68.73487; see Ré and others (2010) for coordinates)
13GB08 (MMZ) 46 39.9 -133 5.3 2 5.8% -104
13GB09 58 38.0 -127 3.7 5 1.2% -97
13GB90 (A) 57 37.1 -122 3.7 2 6.9% -92
13GB12 (K) 7 343 -125 54 3 0.7% -95
13GB13 10 343 -122 54 2 4.3% -92
13GB14 13 34.2 -128 4.2 3 0.6% -98
13GB23 40 33.8 -128 1.4 3 0.7% -98
13GB25 43 33.7 -130 5.2 3 0.6% -101
13GB26 46 33.7 -129 0.6 3 0.7% -99
13GB28 49 33.6 -129 2.6 3 0.7% -99
13GB32 55 33.6 -124 3.9 2 4.9% -94
13GB33 58 33.6 -128 43 3 0.8% -99
13GB34 61 33.6 -126 5.6 3 0.7% -96
13GB35 64 335 -126 1.9 2 2.6% -96
13GB36 67 335 -127 6.3 3 0.5% -97
13GB37 70 335 -130 3.8 3 0.5% -100
13GB38 73 335 -125 6.3 3 0.5% -95
13GB39 76 33.5 -130 8.9 2 0.4% -100
13GB104 (A) 81 30.7 -120 33 5 1.6% -90
13GB41 (MMZ) 152 21.3 -128 2.8 1.4% -98
13GB43 158 20.9 -142 4.7 2 5.4% -113
13GB44 159 20.9 -136 23 1.9% -107
13GB48 167 20.3 -132 3.0 2.2% -102
13GB49 170 20.1 -141 2.8 2.3% -112
13GB51 176 19.8 -131 5.5 2 6.7% -102
13GB52 179 19.7 -142 5.1 4.1% -113
13GB53 182 19.7 -141 34 2.6% -112
13GB55 188 19.5 -142 0.9 1.1% -113
13GB56 191 19.5 -135 0.5 0.9% -105
13GB57 194 19.4 -140 34 2.8% -111
13GB61 211 18.4 -130 0.9 1.0% -100
Cerro Observatorio (section at -50.56478, -69.15127)
ARG 2 MD ASH E 6 17.0 -130 0.7 2 4.7% -100
ARG 2 MD ASH A 6.5 17.0 -124 5.2 4 5.0% -94
ARG 2 MD ASHB 8 16.9 -138 0.7 2 4.8% -108
ARG 2MD ASH C 12.5 16.7 -135 0.0 2 2.6% -105
ARG 2 MD ASH D/1 15.5 16.6 -138 1.7 4 4.1% -109
CM ARG ASH 5A 15.5 16.6 -138 0.7 2 4.6% -108
CMARG ASH 2 322 16.1 -138 0.7 2 4.4% -108
CMARG ASH 3 72.1 154 -135 1.9 1 3.4% -105
CMARG ASH 3A 72.1 15.4 -123 1.4 2 1.2% -93
CMARG ASH 4/4A 73.1 154 -133 2.9 3 4.0% -104
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permil at Cerro Observatorio (table 3). The ancient precipitation 8D values recorded
in our glass samples (fig. 8), which are entirely from the leeward side of the range,
show a similar amount of fractionation to modern water samples across the Andes
(fig. 5). These relatively low 8D values suggest that the Patagonian Andes have likely
existed in some form since at least the Paleocene.

We have already discussed the issue of potential isotopic resetting by young waters.
At this point, we add the additional observation that volcanic glass shows stratigraphic
variations in isotopic composition that are comparable to those expected for climate
variations (fig. 8). If the samples had been isotopically reset, we would expect the
samples to be reduced towards a common value.

THE INFLUENCE OF CLIMATE

Interpretation of water isotopes requires an understanding of the initial composi-
tion of water in the atmosphere and the amount of fractionation per kilometer of
orographic lifting (“isotopic lapse rate”). Temperature has a strong effect on both of
these, and this is particularly important for our study because of the significant amount
of global cooling during the Cenozoic. Here, we evaluate these effects by: (1)
estimating surface air temperature in Patagonia upwind of the range, (2) estimating
the 8D of upwind precipitation, and (3) estimating the 8D of downwind precipitation
after orographic fractionation, assuming modern-size topography.

To estimate surface air temperature (SAT) over the ocean adjacent to western
Patagonia, we start with an ice volume-corrected benthic foraminiferal 'O time series
(Zachos and others, 2008; de Boer and others, 2010; de Boer and others, 2012), which
provides a Cenozoic record of SST at the latitude of deep-water formation (Gordon,
2001). In the Southern Ocean, this occurs at ~70°S latitude. We then use the
meridional energy-balance equation of North and others (1981, see eq. 32) and a
steady equatorial temperature of ~30 °C (Rose and Ferreira, 2013) to calculate an
interpolated temperature at 46°S. While there has been a debate about the Cenozoic
temperature history of the tropics (for example, Huber and Caballero, 2011), model-
ing (Abbot and Tziperman, 2008; Rose and Ferreira, 2013; Sagoo and others, 2013)
and paleotemperature measurements (Pearson and others, 2001; Norris and others,
2002; Roche and others, 2006) indicate that tropical temperatures remained steady
(27 < T < 34 °C) during global warming and cooling. Variation within this range has
little influence on our interpolation. We then account for the difference between SST
and SAT by shifting our interpolated SST curve to match the local modern mean
annual SAT (12 °C) (fig. 10A).

The resulting SAT curve (fig. 10A) shows long-term cooling in Patagonia of ~5 °C
during the Cenozoic, punctuated by familiar thermal events such as the PETM
(~56 Ma) and the MECO (~40 Ma). The transformed data retain the same age values
as Zachos and others (2008). The blue and red points correspond to their raw data
(typical time step ~10 kyr) and their five-point moving average (typical integration
time of ~50 kyr), respectively. We use these two different renderings of the data to
help evaluate how climate variability has affected the 8D signature preserved in our
glasses.

The second step is to estimate the 8D of first precipitation in Patagonia through
the Cenozoic. We use the relative relationship defined by local station records between
precipitation 8D and temperature in Patagonia to convert the estimated temperature
curve from the first step into first precipitation 8D. Using this empirical relationship to
reconstruct water isotopes from temperature is essentially the reverse of commonly
used isotope paleothermometers.

To make this conversion, we use a linear approximation,

8(¢) = 8(0) + o[T(1) — T,(0)], (1)
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Fig. 10. Comparison of modeled and reconstructed precipitation 8D in order to separate the effects of
climate and tectonics on the 3D signal. (A) Reconstructed SAT for western coastal Patagonla (46°S) based on
marine 3'0 records. (B) Upwind precipitation (“first precipitation”) 3D modeled using reconstructed SAT
from (A), modern upwind precipitation 8D, and the regional T-8 relationship. (C) Modeled downwind
precipitation 8D assuming constant modern—size topography (gray curve) and reconstructed downwind
precipitation 8D from volcanic glasses (colored boxes). The heavy gray line shows the modeled 8D given
changing temperature with fixed modern topography; gray points reflect the scale of variability. Red/yellow/
green symbols show precipitation 8D reconstructed from glass, with color corresponding to section. Purple
symbols show the range of soil carbonate 3'%0 data from Lago Posadas of Blisniuk and others (2005), which
are projected into precipitation 8D space using a local meteoric water line from the water data of Stern and
Blisniuk (2002) (including those affected by evaporation) and assuming a soil temperature of 10 °C.
Analytical error (table 3) is smaller than the size of the symbols.

which is based on the well-known empirical correlation between surface temperature
T, and water isotopes & (Dansgaard, 1964; Rozanski and others, 1993). In (1), ¢is time
(¢ = 0 is present) and b is the slope of the 7,—3 relationship. In this case, we have
empirically determined that 8D (0) = —30%o (mean of 5 highest observed 8D values in
low-elevation coastal Chile, from table 1) and the mean annual value for 7,(0) = 12 °C.
To calibrate b, we use the seasonal variation in temperature and water isotopes (fig.
11). Seasons are much longer than the response time of the atmosphere, and therefore
seasonal variations capture the 7—35 relationship.

Seasonal variations are also representative of the full range of conditions that
occurred in the past. Specifically, the intra-annual variation in temperature in western
coastal Patagonia is large (~15 °C), greater than that predicted over the Cenozoic (fig.
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Fig. 11. Temperature-3D relationships for three IAEA-GNIP stations in Patagonia.

10A), and there are many individual precipitation events in each year. IAEA-GNIP
stations at Coyhaique (45.4°S), Puerto Montt (41.2°S), and Punta Arenas (53.0°S)
show a robust, consistent correlation between temperature and isotopic composition
of precipitation (8D w 3.2 T(°C)) (fig. 11). Modeled 7,—3D relationships show similar
scaling for mid-latitude sites on geologically long time scales (Boyle, 1997; Hendricks
and others, 2000), and isotope-enabled climate modeling indicates the slope of the late
Eocene relationship is similar to the present in the region (Feakins and others, 2014).

Using (1), we transform the SAT curve (fig. 10A) into 8D of precipitation, and
then pin the resulting 8D curve (fig. 10B) to the modern upwind precipitation 3D (0)
(see above). This reconstruction of Cenozoic first precipitation shows modest changes
in 8D (<30%o) as a result of long-term Cenozoic cooling and source 8D (that is, ice
volume).

The third and final step in determining the effect of Cenozoic climate change is to
estimate the isotopic fractionation associated with orographic lifting. This estimate is
made using a simple one-dimensional adiabatic lifting model, which accounts for
uniform lifting of the overlying atmosphere (compare, Dansgaard, 1964; Smith and
Barstad, 2004). (Note this is different from the parcel-based model of Rowley and
others, 2001.) We assume a fully saturated atmosphere and a moist stability N,, ~ 0.001
rad/s. Coupled GCM results (Frierson, 2006) indicate that N,, remained fairly constant
in the mid-latitudes across climate states, so we use this modern value for the entire
Cenozoic. The 1-D column has an initial surface temperature at sea level given by the
estimated SAT curve (fig. 10), from which we calculate the associated moist adiabat.
The initial thermal gradient (environmental lapse rate) is determined from the
governing relationship for N,, (Smith and Barstad, 2004). The saturated water vapor
decays exponentially with height as governed by the environmental lapse rate and SAT.
Lifting and precipitation follow the moist adiabat. We calculate the incremental
fractionation of water vapor in the column at each position along its path by vertically
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Fig. 12. Timing of events relating to and constraining the uplift of the Patagonian Andes, including the
presence of marine sediments in the area of the range (Giacosa and Heredia, 2004; Hanson and Wilson,
1991), batholithic magmatism (Pankhurst and others, 1999; Seifert and others, 2005; Hervé and others,
2007), horizontal shortening in the backarc (Fosdick and others, 2011), terrestrial deposits in the backarc
(Sudrez and others, 2000; Blisniuk and others, 2005; Charrier and others, 2007; Metzger, ms, 2013; Navarrete
and others, 2018), and the presence of cold-adapted Nothofagus pumilio (lenga beech) in the Andes
(Mathiasen and Premoli, 2010). Although horizontal shortening occurred over nearly 100 Myr, the bulk (27
km) occurred during the interval indicated by the solid bar.

integrating the amount of condensation, the associated temperature, and the
phases (solid, liquid) being formed. This integration is carried down wind, and the
complement is the isotopic composition of the resulting precipitation (Ciais and
Jouzel, 1994).

We finally use the model to calculate a reference curve for leeward precipitation
oD, accounting for climate change (that is, surface temperature and lapse rate) but
holding the amount of lifting constant. This 1-D lifting model provides an estimate of
the leeward 8D record if topography had remained constant through the Cenozoic. We note
that the predicted leeward precipitation 8D matches the observed modern values and
their range well (fig. 10), indicating that our estimate of the effect of climate is a useful
approximation.

Our focus in using this approach is not to determine a quantitative height of
ancient topography. Because large-scale mountain ranges can vary in shape, maximum
height, and relief, we instead ask the question: was the size of ancient topography
significantly larger or smaller than the present?

DISCUSSION AND CONCLUSIONS

The match between the observed water isotope data and the predicted leeward
precipitation 8D based on a modern-size Andes (fig. 10) is striking. That leads to the
most robust conclusion of this study: a significant isotopic rain shadow—of a magni-
tude similar to the modern—has existed in Patagonia since at least the Paleocene. This
conclusion fits well with the abundant sedimentological evidence for the presence of
the Patagonian Andes as an important, elevated sediment source since the Late
Cretaceous. The timing of significant uplift in the Patagonian Andes is constrained by
geologic data to between ~135 Ma and ~70 Ma (fig. 12).

In estimating the past size of the Patagonian Andes (or any mountain range), it is
important to acknowledge the substantial uncertainties, particularly related to age
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control and the modeled leeward 8D. This is why we have chosen to estimate
paleotopography qualitatively and in reference to the modern state. As an example,
one might think that the difference between the older samples at Lago Jenimeni and
the modeled curve is significant, which would imply a small amount of uplift. However,
there is enough uncertainty in the older parts of the Lago Jeinimeni age model (fig. 8)
that the samples could easily be clustered toward the Early Eocene (the upper age is
tightly constrained), where the samples fall on the modeled curve. Conversely, we
think that we have minimized the errors associated with the model because of the good
match with observed modern water 8D, and because of the behavior of the model,
which shows the expected slight convergence of initial and leeward precipitation 8D
under the warmer conditions of the Paleogene. However, without a high-resolution
suite of terrestrial data across the Cenozoic to compare with, it is not possible to fully
test the accuracy of the modeled estimate. Thus our model is appropriate for the
back-of-the-envelope approach we have chosen, but not for identifying small changes
in topography. The difference between model and data for the older samples at Lago
Jenimeni is beyond the resolution of this approach, as it would represent a change in
topography of <15 percent of the current size.

It is important to note that leeward water isotope records capture an integrated
height of the orographic barrier. We observe that precipitation falls at all elevations,
suggesting that moist air travels over both high and low topography, and downwind
mixing of moist air and precipitation integrates this signal. The large reconstructed
depletion between windward and leeward water isotopes (~80%o) requires substantial
lifting, indicating that the high summits are probably important in lifting (Smith and
Evans, 2007). Our water isotope-based reconstruction of past topography estimates the
integrated height, not the maximum height of the topography. Thus it is possible that
the maximum summit height could have been higher if the valleys were larger. For
example, prior to the Late Miocene onset of glaciation in Patagonia (Wenzens, 2006;
Christeleit and others, 2017), the Andes were likely lower relief, although our data
indicate that the integrated height was similar to modern as late as the Middle
Miocene.

Based on our results and the geological data discussed previously, we see the
history of the Patagonian Andes as one of Cretaceous uplift followed by relative stability
of high topography through the Cenozoic. This conclusion is consistent with geologi-
cal data discussed previously (see also fig. 12), including (1) patterns of foreland basin
development and sedimentation, (2) the presence of cold-tolerant flora in the
Paleogene (Mathiasen and Premoli, 2010), and (3) the timing of major magmatism
and deformation. The temporal constraints on the timing of the formation of high
topography in the Patagonian Andes from this study and others (fig. 12) suggest that
intrusion of the Patagonian batholith and/or crustal shortening likely were respon-
sible for uplift (for example, Gianni and others, 2018).

Though our Cenozoic record (fig. 10) has coarse temporal resolution, the data do
not reflect a punctuated history during that time, instead suggesting that the height of
the Patagonian Andes may have been in an approximately steady state during the
Cenozoic. The intrusive rocks of the Patagonian batholith require on the order of 10
km of erosion to reach their current position at the surface (fig. 3D). If there was no
long-term change in the height of the orographic barrier posed by the Andes, as our
record suggests, then that erosion must have been balanced by the slow uplift, as
shown by thermochronological data (Thomson and others, 2010; Herman and
Brandon, 2015). While the idea of a mountain belt in long-term steady state may
seem at odds with some field observations, other Cordilleran orogens (for example,
the Sierra Nevada) show similar histories of uplift followed by long-term
persistence of high topography (House and others, 1998; Cassel and others, 2009;
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McPhillips and Brandon, 2012). The gradual, protracted exhumation of Cordille-
ran orogens has implications for the timing and rate of silicate weathering (for
example, Kump and others, 2000; McKenzie and others, 2016) related to this style
of mountain building.

The work of Blisniuk and others (2005) is often cited as evidence for Miocene
formation of the Patagonian Andes. However, as they note, their soil carbonate 380
data show a high degree of scatter due to evaporation, with the lowest values (least
affected by evaporation) equivalent to the hydrated glass 8D values we observe. The
observed variation in contemporaneous volcanic glass data from both Cerro Observato-
rio and Gran Barranca is smaller, but comparable with the variation in the estimate
based on the marine record and modern precipitation (fig. 10). We interpret this
difference to be the result of the formation modes of soil carbonates, which precipitate
in response to evaporation (Cerling and Quade, 1993), and volcanic glasses, which are
hydrated by shallow groundwater that is largely insensitive to evaporation (Criss, 1999).
Importantly, both our observations and those of Blisniuk and others (2005) indicate an
arid, evaporative environment in the back-arc during this time. This result is consistent
not with formation of the Andes at that time but with an isotopic rain shadow that
persisted before and during the Early-Middle Miocene.

The existence of this rain shadow through the Cenozoic is attested to by the
existence of the glasses we studied. At surface temperatures, glass—particularly if
hydrated— can be replaced or dissolved relatively quickly if water is abundant (Fried-
man and Long, 1984). The Paleocene and Eocene samples we analyzed are among the
oldest hydrated glass samples ever analyzed for 8D. We speculate that the preservation
of these glasses is due to the presence of the rain shadow in Patagonia since the time of
deposition. In short, the existence of relatively old, well-preserved glass probably
requires a dry climate. However, it is important to note that the persistence of an
isotopic rain shadow does not imply a modern rainfall amount in eastern Patagonia
through the entire Cenozoic. The isotopic rain shadow is a function of the difference
between initial and final atmospheric temperature and the amount of lifting over
topography. In greenhouse climates, the precipitation amount on the leeward side of
the Andes would have likely been higher (although still much drier than the windward
side), if the reconstructed isotopic gradient was maintained.

The idea of Cretaceous uplift is easily tested by future studies that extend the
record of Patagonian paleotopography back into the Cretaceous. This will be impor-
tant in determining whether an association between voluminous granitic magmatism
and construction of high topography is a common feature of Cordilleran orogenic
systems. These findings also bring forward the question of whether the Cretaceous
formation of the Patagonian Andes was an important factor in the diversification of
numerous plant and animal taxa (Wilf and others, 2013), which led to the high
diversity that was well established in Patagonia by the early Paleogene (Reguero and
others, 2002; Wilf and others, 2003; Wilf and others, 2005; Iglesias and others, 2007;
Tejedor and others, 2009).

The new record we present here tracks changes in the amount of orographic
lifting in Patagonia through the Cenozoic. After accounting for the effect of global
climate change on precipitation 8D, we find that the Andes have been a high
topographic feature since at least the Paleocene. This unexpectedly long history of
high topography, similar to the Sierra Nevada (for example, Mulch and others, 2006;
Cassel and others, 2009; Hren and others, 2010), suggests that we need to revisit our
ideas about the way(s) high topography is created and maintained in Cordilleran
settings. We also highlight the importance in accounting for the effects of climate
change on precipitation 8D when using stable isotope-based approaches to reconstruct
paleotopography.
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