Proposal 301

ROUTES TO NANOPHOTONIC DEVICES FOR MICRON-SCALE BEAM STEERING IN 3D

Type: Invited Submission

Level: MMAP - Materials and Manufacturing for Advanced Photonics

Authors: S. Kuebler¹, C. Xia¹, P. Golvari¹, R. Rumpf², N. Martinez¹, M. Martinez¹, J. Gutierrez¹, J. Touma¹, H. Cheng¹,

M. Sun¹, M. Zhang¹, X. Yu¹; ¹FL/United States of America, ²TX/United States of America

Abstract

Self-collimating spatially-variant lattices (SVLs) are integrated photonic devices that can be designed to steer optical beams in 3D within micron-scale volumes. SVLs can be fabricated by multi-photon lithography, and new routes to these and related devices are being explored based on modified Bessel beams.

Print