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ABSTRACT

We present EMPIRE, an IRAM 30-m large program that mapped A = 3—4 mm dense gas tracers at
~ 1—2kpc resolution across the whole star-forming disk of nine nearby, massive, spiral galaxies. We
describe the EMPIRE observing and reduction strategies and show new whole-galaxy maps of HCN (1-
0), HCO™ (1-0), HNC (1-0) and CO (1-0). We explore how the HCN-to-CO and IR-to-HCN ratios,
observational proxies for the dense gas fraction and dense gas star formation efficiency, depend on host
galaxy and local environment. We find that the fraction of dense gas correlates with stellar surface
density, gas surface density, molecular-to-atomic gas ratio, and dynamical equilibrium pressure. In
EMPIRE, the star formation rate per unit dense gas anti-correlates with these same environmental
parameters. Thus, although dense gas appears abundant the central regions of many spiral galaxies,
this gas appears relatively inefficient at forming stars. These results qualitatively agree with previous
work on nearby galaxies and the Milky Way’s Central Molecular Zone. To first order, EMPIRE
demonstrates that the conditions in a galaxy disk set the gas density distribution and that the dense
gas traced by HCN shows an environment-dependent relation to star formation. However, our results
also show significant (£0.2 dex) galaxy-to-galaxy variations. We suggest that gas structure below the
scale of our observations and dynamical effects likely also play an important role.

Subject headings: ISM: molecules — galaxies: ISM — galaxies: star formation — radio lines: galaxies.

1. INTRODUCTION

We present the “EMIR Multiline Probe of the ISM
Regulating Galaxy Evolution” survey (EMPIRE; PI:
F. Bigiel). EMPIRE used the IRAM 30-m telescope
to map multiple molecular lines in the 3-4mm atmo-

1 Harvard-Smithsonian Center for Astrophysics, 60 Garden
Street, Cambridge, MA 02138, USA; mdonaire@cfa.harvard.edu

2 Institut fiir theoretische Astrophysik, Zentrum fiir As-
tronomie der Universitat Heidelberg, Albert-Ueberle Str. 2,
69120 Heidelberg, Germany

3 Argelander-Institut fiir Astronomie, Universitit Bonn, Auf
dem Hiigel 71, 53121 Bonn, Germany

4 Department of Astronomy, The Ohio State University, 140
W 18t St Columbus, OH 43210, USA

5 Observatorio Astronémico Nacional, Alfonso XII 3, 28014,
Madrid, Spain

6 Laboratoire ~AIM, CEA/DSM-CNRS-Université Paris
Diderot, Irfu/Service d’Astrophysique, CEA Saclay, F-91191
Gif-sur-Yvette, France

7 National Radio Astronomy Observatory, 520 Edgemont
Road, Charlottesville, VA 22903, USA

8 Department of Astronomy and Laboratory for Millimeter-
Wave Astronomy, University of Maryland, College Park, MD
20742, USA

9 CNRS, IRAP, 9 Av. colonel Roche, BP 44346, F-31028
Toulouse cedex 4, France

10 Université de Toulouse, UPS-OMP, IRAP, F-31028
Toulouse cedex 4, France

11 Instituto de Astrofisica de Andalucia IAA-CSIC, Glorieta
de la Astronomfa s/n, E-18008, Granada, Spain

12 Institut de Radioastronomie Millimétrique (IRAM), 300
Rue de la Piscine, F-38406 Saint Martin d’Heres, France

13 Sorbonne Université, Observatoire de Paris, Université
PSL, Ecole normale supérieure, CNRS, LERMA, F-75005,
Paris, France

14 Max-Planck-Institut fiir Astronomie, Konigstuhl 17, 69117
Heidelberg, Germany

15 Max-Planck-Institut fiir extraterrestrische Physik, Giessen-
bachstrasse 1, 85748 Garching, Germany

T Submillimeter Array Fellow

spheric window across the whole star-forming area of nine
nearby, massive spiral galaxies. The lines covered include
the high critical density transitions HCN (1-0), HCO™ (1-
0) and HNC (1-0), frequently referred to as “dense gas
tracers.” Thanks to the wide bandwidth of the EMIR
receiver, we simultaneously cover the CO isotopologues
13CO and C'80 as well as a number of fainter lines (e.g.,
the low-lying transitions of SiO, CoH, NoH™T).

The ratios among the lines mapped by EMPIRE con-
strain the density distribution and other physical condi-
tions in the molecular gas. The faintness of these tran-
sitions at extragalactic distances has prevented previous
large-scale mapping efforts. EMPIRE overcomes this ob-
stacle by leveraging the wide bandwidth and excellent
sensitivity of EMIR on the IRAM 30-m telescope. The
result is the first resolved (1 — 2kpc resolution), wide
area mapping survey of density-sensitive molecular lines
in the 3-4 mm atmospheric window.

EMPIRE has two core goals. First, to constrain the
density distribution within the molecular gas and to mea-
sure how the gas density distribution depends on galactic
environment. Second, to measure how the star forma-
tion efficiency per unit molecular gas mass depends on
the density distribution within the molecular gas and en-
vironment. More colloquially, EMPIRE aims to answer
“Where is gas dense in galaxies and how does dense gas
relate to star formation?”

This paper describes the survey and addresses these
two core questions. Here, we focus on the HCN-to-CO
and IR-to-HCN line ratios as observational proxies for
the dense gas fraction and dense gas star formation ef-
ficiency, respectively. We measure how these quantities
depend on local conditions within galaxy disks.

Our results build on previous observations: the pointed
HCN survey by Usero et al. (2015), full-disk HCN
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mapping of M51 by Bigiel et al. (2016), and the
ALMA+IRAM study of four galaxies by Gallagher et al.
(2018a). J. Puschnig et al. (in preparation) will extend
our analysis to leverage the full suite of EMPIRE line
ratios, which we only discuss briefly here.

In addition to these studies, EMPIRE has already been
used to study physical conditions in the molecular gas
in a series of related papers. Jiménez-Donaire et al.
(2017a) derived constraints on the optical depth of dense
gas tracers by studying their less abundant isotopologues
(H3CN, H!'3COY). Jiménez-Donaire et al. (2017b)
showed that the C'®0O-to-'3CO line ratio increases sys-
tematically with radius in our targets. Cormier et al.
(2018) measured the 3CO-to-12CO ratio across our tar-
gets and showed how it depends on local physical con-
ditions. They also calculated a spatially resolved 3CO-
to-Hy conversion factor, and found that '3CO may be
a better tracer of the molecular gas mass than '2CO in
galaxy centers. Gallagher et al. (2018b) combined EM-
PIRE with higher resolution ALMA maps to show that,
on average, the spectroscopic dense gas fraction, traced
by HCN-to-CO, correlates with the cloud-scale molecular
gas surface density.

We give the scientific background for the survey in Sec-
tion 1.1. We describe our IRAM 30-m observations, data
reduction, and data processing in Section 2. In Section 3,
we summarize key supporting multi-wavelength data and
in Section 4 we explain how we convert these to physical
quantities. Section 4.7 describes the stacking techniques
that we use to improve the signal-to-noise ratio of our
measurements. We present our results in Section 5. In
Sections 5.1-5.2, we analyze the spatial extent of dense
gas emission and compare it to the distribution of the CO
emission. In Section 5.3 we compare our measurements
to star formation scaling relations obtained from previ-
ous observations. We investigate the systematic varia-
tions of the star formation efficiencies and the dense gas
fractions in Section 5.4. Section 6 discusses our findings.
We compare our observations to other recent results and
discuss plausible physical drivers that could explain our
observations. Finally, Section 7 presents a summary of
the survey and our key findings.

1.1. Background

The low-J 2CO emission lines have been used to map
the molecular ISM in the Milky Way and many external
galaxies. CO is the second most abundant molecule af-
ter Hso, and has been calibrated as a proxy to trace the
distribution of Hy mass (e.g., Bolatto et al. 2013). Given
the low “effective” critical density required to excite the
J = 1 — 0 transition and its low excitation tempera-
ture, CO emission traces the bulk molecular medium.
However, stars are thought to form preferentially in the
densest regions of molecular clouds. Studies of the Milky
Way (Heiderman et al. 2010; Lada et al. 2010, 2012;
Evans et al. 2014; Vutisalchavakul et al. 2016) and exter-
nal galaxies (Gao & Solomon 2004; Garcia-Burillo et al.
2012) have highlighted the role of dense gas as the im-
mediate site of star formation. Thus, knowing the preva-
lence and star-forming ability of this dense gas is crucial
to understand how gas is converted to stars in a galactic
context.

Line emission from molecules with higher dipole mo-
ments than that of CO, such as HCN or HCO™, has

a higher critical density than CO. This critical density
represents the density for which the total radiative decay
rate between an upper and lower rotational levels equals
the rate of collisional de-excitation out of the upper level
(see e.g., Shirley 2015). For an optically thin line, the
emissivity (line emission per unit mass, as defined in
Leroy et al. 2017a) of the gas reaches a maximum at
this value. In reality, radiative trapping effects can lead
to a lower “effective critical density.” Also, because the
emissivity of gas below the critical density is low but not
zero, large masses of low density gas can produce signif-
icant emission even from high dipole moment molecules
(e.g., Shirley 2015; Leroy et al. 2017a). Despite these
important caveats, the effective mean densities probed
by low-J HCN and HCO™ lines are still notably higher
than those accesses by low-J CO lines. As a result, we
expect these lines to trace gas more closely linked to star
formation.

In a seminal paper, Gao & Solomon (2004) observed
the ground-state transition of HCN emission from 53 en-
tire galaxies and bright galaxy centers across a large
range of galaxy types, from normal spirals to (ul-
tra)luminous infrared galaxies (L > 10! Le, here-
after (U)LIRGs). They observed a strong linear rela-
tionship between the recent star formation rate (SFR),
as traced by the total infrared emission, and the HCN
luminosity. Such a linear relationship does not hold
for CO, because IR-bright, starburst galaxies, LIRGs
and ULIRGs show a higher ratio of IR to CO emission
than normal galaxies. Similar results were found by sev-
eral subsequent studies of nearby galaxies (e.g., Gracié-
Carpio et al. 2006; Juneau et al. 2009; Garcia-Burillo
et al. 2012). If the conversion from line luminosities to
gas masses is the same for all galaxies, these results imply
that the star formation efficiency of the molecular gas as
traced by CO (SFEn0 = SFR/Mp01) is higher in more
luminous systems, while the star formation efficiency of
the dense molecular gas (SFEgense = SFR/Mgense) as
traced by HCN is approximately constant.

Observations isolating clouds and star-forming clumps
in the Milky Way (e.g., Wu et al. 2005; Heiderman et al.
2010; Lada et al. 2010, 2012; Evans et al. 2014) have ex-
tended the extragalactic IR-to-HCN correlation down to
individual molecular clouds and dense cores. This sug-
gests that the SFR per unit dense gas mass is nearly
constant across many scales. These studies also found
a good correspondence between the SFR in individual
clouds (by counting young stellar objects) and the dense
gas mass (by using extinction measurements). This sug-
gests that dense gas mass is a strong predictor of how
much star formation is occurring in a cloud.

As a result of these studies, a constant dense gas star
formation efficiency, SFEg4ense, above some critical sur-
face density, Ydense; has been hypothesized (e.g., Lada
et al. 2010, 2012; Evans et al. 2014). In such “density
threshold models” for star formation, there is a constant
SFE of dense molecular gas and the overall star forma-
tion rate would then be regulated by the amount of dense
gas available above this threshold. Lada et al. (2013) and
Evans et al. (2014) discussed in detail the limitations of
this column density threshold idea and its applicability
to Galactic molecular clouds. In particular Lada et al.
(2013) argue that a Kennicutt-Schmidt-type scaling rela-
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tion is not enough to completely describe star formation
in a cloud and, as a consequence, the observed scaling re-
lation in unresolved galaxies is likely a consequence of un-
resolved observations of individual clouds, (an idea also
explored in Bigiel et al. 2008; Leroy et al. 2008).

By contrast, turbulence regulated “whole-cloud mod-
els” for star formation postulate that the global prop-
erties of turbulent clouds set their density distribution
and star formation efficiency (e.g., Padoan & Nordlund
2002; Krumholz & Thompson 2007; Federrath & Klessen
2012). In such a scenario, the fraction of star-forming
dense gas, fdense = Mdense/Mmol1, and its efficiency,
SFEgense depend on cloud parameters such as cloud mean
density, virial parameter, and Mach number.

Observations of nearby galaxies, however, suggest that
a constant SFEgense for star-forming regions across differ-
ent galactic environments may be insufficient to explain
the observations. Garcia-Burillo et al. (2012) used the
IRAM-30m telescope to observe a sample of 19 LIRGs
in the J = 1 — 0 lines of CO, HCN and HCO*. Com-
bined with literature data, they assembled a sample of
~100 normal and (U)LIRG galaxies. Their observa-
tions, averaged across entire galaxies, largely obeyed the
IR-to-dense gas power-law correlation found in previous
Galactic and extragalactic work. However, the sample of
LIRGs and ULIRGs deviates from this power-law. They
measured Lir-to-Lycn ratios as a proxy for SFEgense
and found that these luminosity ratios are a factor of
2 — 3 higher in LIRGs and ULIRGs than those measured
in normal galaxies. These variations in the efficiency of
star formation in dense gas suggest that real physical ef-
fects are still at play in different galactic environments
and agree better with turbulence-regulated models.

Observations of entire galaxy disks at ~kpc scales are
bridging the gap between cloud-scale studies and galaxy-
scale surveys, which provide large number of systems but
at too low resolution to connect to local ISM physics.
Such observations are revealing systematic variations in
the overall linear correlation between dense gas tracers
and star formation rate tracers seen in global measure-
ments of entire galaxies. Usero et al. (2015) used the
IRAM 30-m telescope to survey HCN (1-0) emission from
62 regions across 29 nearby star-forming galaxies. Their
achieved resolution (~ 1 — 2kpc) allowed for the investi-
gation of the properties of the dense gas as a function of
local conditions in galaxy disks. Their results show that
the dense gas fraction (fqense), as traced by the HCN/CO
ratio, depends strongly on location in the disk, increas-
ing with stellar surface densities (X,) and molecular-
to-atomic gas ratios (Rmo1). On the other hand, they
found that the star formation efficiency of dense molecu-
lar gas (SFEgense), as traced by the IR/HCN ratio, anti-
correlates systematically with those same parameters: it
is ~ 6 — 8 times lower near galaxy centers than in the
outer regions of the galaxy disks.

Similar results have been found by Bigiel et al. (2016)
and Chen et al. (2015) across the full disk of NGC 5194
(M51): while there is an overall correlation between star
formation rate tracers and HCN emission at ~kpc res-
olution, the efficiency of dense gas to form stars drops
at small galactocentric radii (taking the observables at
face value). Gallagher et al. (2018a) presented new
ALMA dense gas observations combined with IRAM 30-
m short spacing, mapping the inner ~ 3 — 5 kpc of

four local galaxies (NGC 3351, NGC 3627, NGC 4254 and
NGC4321). They found the same correlations between
dense gas fraction, star formation rate, and local envi-
ronment, and expressed them in terms of the dynami-
cal equilibrium pressure needed to support the weight of
gas disk in a galaxy region (e.g., Elmegreen 1989; Helfer
& Blitz 1997; Wong & Blitz 2002; Blitz & Rosolowsky
2006). Querejeta et al. (2019) find similar results in
resolved regions of M51’s spiral arms, with high angu-
lar resolution observations from IRAM/NOEMA. Re-
cent findings by Bemis & Wilson (2019) in the Antennae
galaxy system also resemble these results. The two nu-
clei, NGC 4038 and NGC 4039, show the largest dense gas
fractions, but the lowest SFE per unit dense gas mass.

Correspondingly, multiple observations in our own
Milky Way have revealed that the SFR in the inner
~ 500 pc of the Galaxy (Central Molecular Zone, CMZ)
appears strongly suppressed relative to its dense gas con-
tent (e.g., Jones et al. 2012; Longmore et al. 2013; Barnes
et al. 2017; Mills & Battersby 2017). This reinforces the
trends discussed above. Dense gas in regions with high
mean density appears to be inefficient at forming stars.
Interpreting the observables at face value, these results
may suggest changing density distributions and chang-
ing star formation rates per unit dense gas. The latter
would be at odds with “fixed density threshold” models.
Exploring these trends further across whole galaxy disks
to understand the role of dense gas in galaxy scale star
formation requires wide field mapping of the main dense
gas tracers across full galaxy disks.

2. OBSERVATIONS & DATA PROCESSING
2.1. Sample selection

Table 1 lists the EMPIRE targets. All targets are
nearby (d < 15Mpc), face on (i < 65°) spiral galaxies
that are also large on the sky (> 2/).

We chose our targets from the HERA CO-Line Extra-
galactic Survey (HERACLES, Leroy et al. 2009). Be-
cause HERACLES builds on SINGS (Kennicutt et al.
2003), THINGS (Walter et al. 2008), and KINGFISH
(Kennicutt et al. 2011), this ensures high quality and ho-
mogeneous multiwavelength data. We picked our targets
to be CO-bright and actively star-forming, allowing us to
detect the faint dense-gas tracing lines. We also required
that they be relatively face on and close enough so that
the IRAM 30-m beam (~ 30" at ~90 GHz) translates to
physical scales of ~1-2kpc.

Finally, we aimed to cover a range of morpholog-
ical and dynamical features. The sample contains
galaxies which show a strong spiral arm structure
(NGC628, NGC3184, and NGC5194). It also covers
strongly barred galaxies (NGC 2903, NGC 3627), floccu-
lent disks (NGC 5055, NGC 6946), strong nuclear bursts
(NGC 2903, NGC 4321, NGC6946), Virgo cluster mem-
bers (NGC4254, NGC4321), and interacting galaxies
(NGC 3627, NGC5194).

2.2. IRAM 30-m observations

The observations for EMPIRE were carried out at the
IRAM 30m telescope located at Pico Veleta, Spain. Most
of the data were taken from December 2014 through De-
cember 2016 for ~440h over the course of 16 runs. We
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TABLE 1
EMPIRE GALAXY SAMPLE.

Galaxy RA DEC i PA. ros D Vhel Metal. Morph. (Esrr)  logio(My)

(EQ 2000)  (EQ 2000)

hh mm ss.s  dd mmss () ©) () (Mpc) (kms™!) 12+log(O/H) (Mg yr~'kpe™2)  logi0(Mg)
0 2) G @ B 6 @1 (8) (9) (10) (2
NGC 628 01:36:41.8 15:47:00 7 20 4.9 9.0 659.1 8.35 SAc 4.0x1073 10.0
NGC 2903 09:32:10.1 21:30:03 65 204 5.9 8.5 556.6 8.68 SABbc 5.7x1073 10.1
NGC 3184 10:18:17.0 41:25:28 16 179 3.7 13.0 593.3 8.51 SABcd 2.8x1073 10.2
NGC 3627  11:20:15.0 12:59:30 62 173 5.1 9.4 717.3 8.34 SABb 7.7x1073 10.5
NGC 4254 12:18:50.0 14:24:59 32 55 2.5 16.8 2407.0 8.45 SAc 18x103 10.5
NGC 4321 12:22:55.0 15:49:19 30 153 3.0 15.2 1571.0 8.50 SABbc 9.0x1073 10.6
NGC 5055  13:15:49.2 42:01:45 59 102 5.9 8.9 499.3 8.40 SAbc 4.1x1073 10.5
NGC 5194 13:29:52.7 47:11:43 20 172 3.9 8.4 456.2 8.55 SAbc 20x1073 10.5
NGC 6946  20:34:52.2 60:09:14 33 243 5.7 7.0 42.4 8.40 SABcd 21x10—3 10.5

Notes: Galaxy names (1), adopted centers (2-3) and morphological types (10) are taken as listed in NED, the NASA Extragalactic
Database. The orientation parameters: inclinations (4), position angles (5) and radius of the B-band 25th magnitude isophote (6) are
taken from the HyperLeda database (Makarov et al. 2014). Distances (7) are adopted from the Extragalactic Distance Database (EDD,
Tully et al. 2009). Heliocentric central velocities (8) are taken from Walter et al. (2008). Globally averaged metallicities (9) from
Moustakas et al. (2010), except for NGC 2903 (Engelbracht et al. 2008). Average star formation rate surface density (11) inside 0.75 ras,
adopted from Leroy et al. (2013). Integrated stellar mass (12) of the entire galaxies based on 3.6um emission from Dale et al. (2007) and

Dale et al. (2009).

TABLE 2
MAIN SPECTRAL LINES COVERED BY OUR EMIR SETUPS.
Species Vrest Bup ¢ nerit @ Beam size?
(GHz) (K) (cm~?) ()
Sio 2-1¢ 86.45 6.25 1x10° 34.04
CoH 1-0 87.32 4.19 1x10° 33.86
HNCO 4-3 87.93 10.55 1x10% 33.63
HCN 1-0 88.63 4.25 2%10° 33.36
HCOT 1-0  89.19 4.28 3x10% 33.15
HNC 1-0 90.66 4.35 1x10° 32.61
NoHT 1-0 93.20 4.47 4%104 31.73
C'80 1-0¢  109.78 5.27  4x102 26.83
HNCO 5-4 109.90 15.8 1x107 26.70
1B3CO 1-0¢  110.20 529  4x102 26.13
200 1-0  115.27 553  4x102 25.65

Notes: (a) The critical densities (ncrit) at 20 K and energies of
the upper level were calculated from the radiative and collisional
coefficients taken from the Leiden LAMDA database, (van der
Tak et al. 2007). (b) The beam size in this table refers to the
resolution of our final cubes, not the telescope native resolution.
(¢) Only available for NGC 5194. (d) Not available for NGC 5194.

refer the reader to the EMPIRE survey website!” for ad-
ditional information. A link to the official IRAM repos-
itories containing the data products will be available in
the website. We used the 3mm band (E090) of the dual-
polarization EMIR receiver (Carter et al. 2012), which
yields an instantaneous bandwidth of 15.6 GHz per po-
larization. The data were recorded using the Fast Fourier
Transform Spectrometers (FTS), with a spectral resolu-
tion of 195 kHz, corresponding to ~ 0.5 km s~! for the
E090 band. We tuned EMIR with a local oscillator
frequency of ~ 98.6 GHz. This allowed us to simulta-
neously observe the bright high critical density tracers
HCN (1-0), HCO™ (1-0), and HNC (1-0) as well as the
optically thin molecular column tracers *CO (1-0) and
C80 (1-0). In addition, many fainter transitions of other
molecules are also present in the band (see Table 2).
These are mostly not detected in individual lines of sight.
In future work we will explore if these are accessible by

17 https://empiresurvey.webstarts.com

means of spectral stacking.

For the remainder of the paper we refer to HCN (1-0)
emission simply as HCN, and proceed analogously for the
other molecular lines.

In every target galaxy, we defined a rectangular field
that encompassed the area where 2CO (2-1) emission is
detected in the HERACLES maps (Table 3). We mapped
these fields using the on-the-fly (OTF) mapping mode
with emission-free reference positions close to the galax-
ies. We scanned each galaxy at 8" per second in multi-
ple paths offset by 8", parallel to the major axis of the
scanned field to cover the entire molecular disk. While
scanning, we read out one dump every 4" (every 0.5 sec-
onds) to ensure Nyquist sampling. To avoid remnant
scan patterns in the final data products, we also scanned
the same area in perpendicular (minor axis) direction,
with the orientation of the cross-hatched pattern set by
the position angle of the galaxy. See Figure 1 for an
example. Additionally, we shifted the grid center by
N x /2" with N = 0,2,4,6 along the diagonal of the
grid cell to end up with a finer 2”-grid (Figure 1 shows
the case of N = 0). The observing dates for the indi-
vidual galaxies, area covered, and the orientation of the
OTF scans are shown in Table 3.

NGC5194 (M51) was observed in July and August
2012, as a precursor program to EMPIRE. For this
galaxy a slightly different E090 tuning was used, where
the local oscillator frequency was set to ~ 88.7 GHz. This
configuration allowed to capture the isotopologues from
the main dense gas tracers, H'3CN, H'3CO* and HN!3C
(see Jiménez-Donaire et al. 2017a), leaving *CO and
C'0O unobserved for this galaxy. The '3CO data for
NGC 5194, however, was observed as part of the PAWS
survey (Schinnerer et al. 2013). We refer the reader to
Bigiel et al. (2016) for an analysis of this galaxy and
details of the observations.

At the beginning of each observing session the focus
of the telescope was set using observations of planets or
bright quasars and then observed and corrected again
every ~ 3 hours, as well as at sunset and sunrise. The
telescope pointing was corrected every 1—1.5 hours using


https://empiresurvey.webstarts.com

The EMPIRE survey 5

. . ‘
i NGC 5194
15'00" |
)
(=3
(=3
a
= L
2
bS]
.E
2 L
o
47°10'00" |+ R
L | | J
13"30™M00° 29M30°
Right Ascension (J2000)
Fia. 1.— On-the-fly mapping strategy for NGC 5194. The gray

scale map shows the 12CO (2-1) integrated intensity map in units
of Kkms~! from HERACLES. Arrows indicate the length and
orientation of individual scan legs which fully sample the area of
interest. The red ellipse shows the 0.5 X r25 radius of the galaxy
a point-like source (quasar or planet) close to the target
galaxy. Chopper wheel calibrations were performed ev-
ery ~ 10 — 15 minutes employing standard hot/cold-load
absorber and sky measurements; these are used to per-
form the first basic calibration and to convert the data
to corrected antenna temperature scale (7.7). Line cal-
ibrators were observed as part of EMPIRE once a day
during the observing runs, and the measured velocity-
integrated intensities varied by only ~ 3 — 8 % between
different runs (see Figure Al), implying a stable relative
calibration in EMPIRE.

2.3. New 2CO (1-0) observations

A key goal of EMPIRE is to measure dense gas frac-
tion variations and relate these to local ISM conditions.
The ratio of high critical density (> 10° cm™3) tracers
like HCN (1-0), to tracers of total molecular material
(> 102em—?) such as CO (1-0), hereafter CO, is sensi-
tive to gas density changes (Leroy et al. 2017a). Thus,
e.g., the HCN-to-CO ratio is one immediately accessi-
ble observational diagnostic of the dense gas fraction.
High-quality and uniform *2CO (1-0) data thus play a key
role for such measurements. Although ancillary CO (2-
1) data exist for the EMPIRE galaxies (Leroy et al.
2009), no uniform, high quality, single-dish CO (1-0) data
set existed for all targets. Therefore, we also obtained
new maps of the CO (1-0) line emission from each target
using EMIR on the IRAM 30-m (PI Jiménez-Donaire,
projects 061-15 and 059-16; PI Cormier, project D15-12;
NGC5194 has 30m EMIR CO (1-0) data from PAWS).
These ancillary data cover a larger region matched to the
HERACLES coverage in 12CO (2-1). For these observa-
tions, the upper 8 GHz sub-band of EMIR was set at
3mm to cover the 2CO (1-0) line and the isotopologues

13CO (1-0) and C'80 (1-0). We centered the remaining
8 GHz bandwidth at 212.98 GHz, to capture the J = 2—1
transition lines of "*CO and C'®O. The new CO data set

was obtained and processed in the same way as the other
EMPIRE data.

2.4. Data reduction and processing

We use the Multichannel Imaging and Calibration Soft-
ware for Receiver Arrays (MIRA) to perform the basic
calibration and data reduction. This software is part
of the Grenoble Image and Line Data Analysis Software
(GILDAS) package'®. We first convert each spectrum to
the antenna temperature scale by combining it with the
nearest “chopper wheel” calibration scan. Then we sub-
tract the closest OFF measurement from the calibrated
spectrum. After this basic calibration, the data for each
observed line is written out using the Continuum and
Line Analysis Single-dish Software (CLASS) package. At
every position where a data dump is taken, we extract a
spectrum for each individual line of interest, subtract a
zeroth order baseline from this spectrum, and regrid the
spectrum to have channel width 4 km s~! across a 1500
km s~! bandpass. Then these spectra are written out
into a FITS table.

After this, we read the spectra into a custom IDL
pipeline (based on, but improved from, the HERACLES
data reduction pipeline Leroy et al. 2009). Here, we iden-
tify pathological data showing spikes or platforming ef-
fects (intensity offsets in the observed spectra) before fit-
ting any baselines. In order to fit baselines to each spec-
trum we want to avoid the expected velocity range of the
line, which we determine from CO (1-0) emission. For
every spectrum we define a window ranging between 50-
300 km s™1, centered around the galactic mean CO (1-0)
velocity. After that, we define two additional windows
adjacent to the central one and with the same width,
which we use to fit a second order polynomial baseline.
This fit is then subtracted from the entire spectrum.

In order to filter remaining pathological spectra, we
sort all spectra according to their root-mean-square
(RMS, calculated after subtracting the baselines on the
line-free windows) relative to the expected value from
the radiometer equation and reject the highest 10%. In
addition, we exclude spectra or parts of spectra in veloc-
ity, time or polarization, where careful inspection reveals
remaining platforming or other issues.

Finally, the data for each spectral line are gridded into
a cube, which is later convolved with a Gaussian kernel
to a common working resolution of 33" for the purposes
of this work. We employed forward and beam efficien-
cies available from the IRAM documentation'? in order
to convert the temperature scales, T, to main beam
temperature (Typ):

F,
Beff (1)
eff
For the 2013 campaign, the typical Tnvp/T5 ratios at

88.6 and 115.3 GHz are 1.17 and 1.21, respectively. For
the remainder of the paper, we work in units of Tg.

Tmb =

e

18 http://www.iram.fr/IRAMFR/GILDAS; see Pety (2005) for
more detailed information

19 Online IRAM documentation: http://www.iram.es/IRAMES/
mainWiki/Iram30OmEfficiencies
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TABLE 3
EMPIRE DENSE GAS AND COMPLEMENTARY CO (1-0) OBSERVING DATES AND SCAN ORIENTATION.

Galaxy Scanned Field Scan P.A.(@) Dates On-source time RMS(®) Ts(;g

(arcmin?) (°) (h) (mK) (K)

EMPIRE dense gas observations
NGC 628 4.0 x 4.0 45 Jun 2015; Sep 2015; Oct 2015 44 2.8 110
NGC 2903 2.0x 3.5 0 Apr 2016; May 2016; Dec 2016 19 2.3 80
NGC 3184 3.0 x 3.0 0 May 2016; Jun 2016; Jul 2016 24 2.2 80
NGC 3627 2.5 x 4.0 0 Nov 2015; Dec 2016 30 2.8 120
NGC 4254 3.0 x 3.0 90 Mar 2015; Apr 2015 27 1.8 80
NGC 4321 4.0 x 2.5 115 May 2015; Nov 2015; Jan 2016 30 2.1 90
NGC 5055 6.0 x 3.0 110 Aug 2015; Jan 2016; Jun 2016; Jul 2016 38 2.7 80
NGC 5194 4.2 X 5.7 0 Jul-Aug 2012 75 2.8 110
NGC 6946 4.5 X 6.5 243 Dec 2014; Apr 2015; Jun 2015; Aug 2015 52 2.7 100
CO (1-0) complementary observations

NGC 628 8.0 x 8.0 20 Aug 2016; Oct 2016 18 16.3 300
NGC 2903 4.0 x 7.0 204 Sep 2016 4 22.5 260
NGC 3184 6.0 X 5.5 180 Sep 2016 8 17.3 300
NGC 3627 5.0 X 2.5 0 Sep 2015; Sep 2016 6 16.2 300
NGC 4254 7.0x 7.0 35 May 2015 8 20.2 200
NGC 4321 6.0 X 6.5 30 Aug 2016; Oct 2016 12 13.1 300
NGC 5055 6.0 x 3.2 100 Aug 2013 12 15.0 200
NGC 6946 10.5 X 9.5 243 Aug 2016; Oct 2016 13 23.5 300

Notes: (a) Orientation of major axis scans measured from North through East. (b) Typical RMS (T\ig) values after reduction for the
HCN (1-0) and CO (1-0) data cubes, respectively, in 4 km s~! velocity channels and at 33" resolution. (c) Average system temperatures.

2.5. Final data products

Because low-J CO lines are much easier to excite, and
generally much brighter than those from the dense gas
tracers HCN, HCO™ and HNC, and CO isotopologues,
we use our new CO(1-0) data to construct masks for
the dense gas tracers in position and velocity. For that
we select those regions in each galaxy with a 12CO (1-
0) signal-to-noise ratio (SNR)>4 in at least 2 coincident
pixels, and we then expand these by incorporating ad-
jacent pixels with SNR>2. In all cases, the dense gas
emission appears well contained within these masks.

Maps of integrated intensity for each emission line are
created by integrating the masked data cubes along every
line of sight. We use the regions outside the bright CO (1-
0) mask (free of signal) to estimate the RMS noise in
individual channels as the standard deviation in line-free
parts of each spectrum in our datacubes. To generate un-
certainty maps of the integrated intensity, we multiplied
the derived RMS noise by the channel width (4kms™!) in
velocity and by the square-root of the number of channels
used to compute the integrated intensity along the line of
sight. We find an RMS noise range of 1.8-2.9mK (Tys),
with an average of ~2.4 mK for HCN (1-0). These values
are slightly higher in the case of our HCO™ (1-0) obser-
vations, where the typical RMS noise varies within 2.0-
3.0mK, with an average of 2.6 mK. We find our HNC (1-
0) cubes to be the noisiest within the studied dense gas
tracers, where the calculated RMS noise ranges from
2.7mK to 5.0 mK, with an average of 3.5 mK. Within our
sample, we consistently find the datacubes for NGC 628
and NGC5194 to be the noisiest, whereas NGC 4254
shows the lowest RMS noise. Regarding our complemen-
tary CO (1-0) data taken at ~ 115 GHz, we find typically
a much higher RMS noise level of ~18 mK (within the
range of 15-20mK) due to the much shorter integration
times needed to detect this line (see Table 3), although
the SNR achieved is much higher than for the dense gas

lines. This translates into uncertainties on the integrated
intensities of the order 0.07 K km s~! for the dense gas
tracers, about 0.09 K km s~ for the CO isotopologues
(13CO and C'®0) and 0.50 K km s~! for CO.

3. ANCILLARY DATA

The EMPIRE targets are some of the best-studied
nearby galaxies. They all have existing data across the
electromagnetic spectrum that provide an excellent char-
acterization of the distribution of gas, stars, dust, and
recent star formation.

The atomic gas content is measured using data from
“The HI Nearby Galaxy Survey” (THINGS, Walter et al.
2008). This VLA large program mapped 34 galaxies,
including 7 of the 9 EMPIRE galaxies, in the 21 cm line
with high angular (~ 10”) and velocity (~ 5km s~!
resolution and sensitivity. NGC 4254 and NGC 4321 were
not covered by THINGS, therefore we used archival VLA
maps (from Schruba et al. 2011; Leroy et al. 2013).

We employ broadband IR photometry in the 3.6 —
500 pm range, from the “Spitzer Infrared Galaxies Sur-
vey” (SINGS, Kennicutt et al. 2003) and the “Key In-
sights on Nearby Galaxies: a Far-Infrared Survey with
Herschel” surveys (KINGFISH, Kennicutt et al. 2011).
This broadband IR emission is then used to estimate
the total infrared emission following Galametz et al.
(2013) and star formation rate surface densities (Xsrr),
as described in Section 4. NGC2903 and NGC5194
lack KINGFISH coverage, therefore we use Spitzer 24pum
emission maps (Local Volume Legacy, LVL, from Dale
et al. 2009) for NGC2903 and other Herschel data for
NGC5194 (Very Nearby Galaxy Survey, VNGS, from
Bendo et al. 2012). We use the Spitzer Survey of Stel-
lar Structure in Galaxies (S4G) processing of the IRAC
data (Sheth et al. 2010) and LVL processing of the MIPS
data (Dale et al. 2009; Lee et al. 2009) to compute stellar
surface densities (X,) in our targets.
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4. ESTIMATING PHYSICAL PARAMETERS AND
SPECTRAL STACKING

Converting observed intensities into physical quantities
is subject to assumptions and hence is somewhat uncer-
tain (e.g., Kennicutt & Evans 2012; Bolatto et al. 2013;
Sandstrom et al. 2013; Usero et al. 2015). We therefore
choose in the following to report our results using direct
observables (e.g., intensities Iycn) in addition to report-
ing physical quantities (e.g., Ygense). These are derived
from linear transformations following Usero et al. (2015)
as detailed below.

4.1. Molecular gas surface density

We estimate the mass surface density of molecular gas
using our new maps of CO(1-0) line emission (Section
2.3) to trace the molecular hydrogen (Hs) content. The
molecular surface density can be derived as:

Emol = Oéco]coCOS(i). (2)

The cos(i) factor corrects for inclination and aco is
the CO-to-Hy conversion factor. We assume this value
to be Milky Way-like throughout the sample (aco =
4.4 Mg pc™? (K km s71)71 i.e. including the 1.36 fac-
tor for helium), which is commonly adopted for mas-
sive, solar metallicity galaxies (see Bolatto et al. 2013).
Although variations from galaxy to galaxy and within
galaxies are present, the most up-to-date values calcu-
lated in the disks of nearby galaxies largely agree with
the Galactic value (Sandstrom et al. 2013; Cormier et al.
2018). Galaxy centers show the largest differences, with
systematically lower values and the scatter per radius is
only a factor of 2 (Bolatto et al. 2013; Sandstrom et al.
2013; Cormier et al. 2018). Provided that our focus is on
kpc-size regions and late-type, normal spirals, we do not
expect large variations across the disks. In fact, the aver-
age disk metallicities only range from 12+logO/H of 8.34
to 8.68 (about a factor of two) among our target galaxies
(see Table 1). Despite these observed variations of aco
in galaxy centers, for simplicity and lacking a detailed
physical understanding, we adopt the fixed Milky Way
conversion factor and discuss its implications in Section
6.

4.2. Dense gas surface density

As for the dense gas surface densities, one can also
define a conversion factor (apcn) to calculate the mass
surface density of dense molecular gas, Ygense, from the
HCN (1-0) integrated intensity:

Zdemse - aHCNIHCNCOS(i)' (3)

Gao & Solomon (2004) estimated agcny = 10 Mg pe™2
(K km s~ 1)~ as a typical value for the disks of nor-
mal, star-forming galaxies based on virial theorem and
radiative transfer arguments. For that, they assume
self-gravitating dense gas clumps with typical n ~ 3 x
10* em ™3 and brightness temperatures of 35 K. Wu et al.
(2010) found larger values of ~ 20 Mg pc? (K km
s™1) 71 with a 0.54 dex scatter in a more complete study
of resolved dense clumps, for which the mass was deter-
mined through the virial method. However, this dense
gas conversion factor is not as well characterized as aco,
and should thus be considered at least as uncertain as

the latter (see Section 6.4). For consistency with pre-
vious extragalactic work, we use the conversion factor
estimated in Gao & Solomon (2004) to calculate dense
gas surface densities.

There are a number of caveats associated with using
HCN emission as a dense gas tracer. We review these
in detail in Section 6.4, but also mention them briefly
here. First, the mean density traced by any molecular
line reflects the convolution of an underlying density dis-
tribution with a density-dependent emissivity. As a con-
sequence, in the common case where low density gas is
more abundant than high density gas, significant emis-
sion can also arise from gas density below the critical
density. Second, the optical depth, and so strength of
radiative trapping, associated with HCN is not strongly
constrained. Nor is the HCN abundance or excitation
perfectly known. While a detailed assessment of HCN
emissivity and intensity, dense gas mass, and effective
density with the data in hand is not possible, the strongly
different effective critical densities of low-J HCN and CO
lines render, e.g., the HCN-to-CO ratio a good first-order
proxy for changing mean gas density on kpc scales (also
supported by radiative transfer modeling, Leroy et al.
2017a). Several other processes such as UV, X-ray or
cosmic ray heating can also alter the emissivity of HCN
via chemistry. These issues are likewise impossible to ad-
dress with only the EMPIRE data. We do indirectly ad-
dress this issue by using different line ratios (e.g., HCO™-
t0-CO), and we expect chemistry effects to average out
at least to some degree on kpc-scales. However, because
of these caveats we present and analyze our results us-
ing direct observables and recommend caution regarding
their interpretation (see Section 6).

4.3. Atomic gas surface density

We calculate the atomic gas mass surface density, >y,
from the 21 cm line integrated intensity maps obtained
by THINGS (Walter et al. 2008), via:

ZHI 121 cm .

Mo pe—? 0.020 s cos(7). (4)
This conversion assumes optically thin emission and
takes any missing zero-spacing correction to be neg-
ligible, reasonable assumptions for the THINGS data
set provided the good agreement found between
interferometric-only and single dish measurements inside
the THINGS 30’ primary beam (see Walter et al. 2008).
In addition, it includes a factor of 1.36 to reflect the pres-
ence of helium.

4.4. Stellar surface density

The stellar structure observed in galaxy disks can pro-
vide an interesting insight to the distribution of dense
gas: gas follows the stellar gravitational potential and
hence stellar distribution in the galaxy disk can be an
important driver of the local dynamical equilibrium pres-
sure. Usero et al. (2015) and Bigiel et al. (2016) em-
ployed the Spitzer 3.6 um maps (Dale et al. 2009) to
derive the stellar surface density, X, since photospheric
emission from old stars is responsible for most of the
emission seen in the 3.6 pm band. However there can be
contamination from dust heated by young stellar popula-
tions, therefore we follow the approach used by Gallagher
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et al. (2018a), and use contaminant-corrected maps from
Querejeta et al. (2015). They employed re-processed
3.6 pm and 4.5 ym photometry as part of S*G, and used
the “Independent Component Analysis” (ICA) method
presented in Meidt et al. (2012) to separate the contri-
bution from the dust emission heated by young stars in
the 3.6pum band (about 10—30%). Finally, we derive stel-
lar surface densities by assuming a mass to light ratio of
352 Mg pc=2 (MJy sr=1)~!) which corresponds to ap-
proximately 0.5 Mg per Ly (Meidt et al. 2014).

4.5. Total infrared intensity and star formation rate

Following the same approach as in our previous work
(e.g., Usero et al. 2015; Bigiel et al. 2016; Jiménez-
Donaire et al. 2017b; Cormier et al. 2018), we use the
total infrared (TIR) surface brightness as a proxy for the
local surface density of star formation. To estimate this,
we combine A = 70, 160, and 250 pm maps from Her-
schel (KINGFISH, Kennicutt et al. 2011). We convolve
these to match the 33" beam of our EMPIRE data using
the kernels from Aniano et al. (2011), calculate the TTR
surface brightness following Galametz et al. (2013):

YTIR = Z ci X, (5)

where Y; refers to the surface brightness in a given Her-
schel band i. We then convert to star formation rate
surface density using the prescription of Murphy et al.
(2011):

YTIR (6)

2
TR — 148 x 10710 —.
Lg kpe

Mg yr—tkpe™

NGC 2903 lacks Herschel data, therefore we use Spitzer
24 ym and 70 ym (from LVL, Dale et al. 2009) data to
estimate the TIR surface brightness, following the same
method. We motivate this choice and discuss alternative
SFR tracers in Section 7. We find that our results are
robust against the choice of SFR tracer, which was also
the conclusion reached in an extensive similar analysis
by Gallagher et al. (2018a).

In the study of **CO (1-0) emission from EMPIRE,
Cormier et al. (2018) compared TIR estimates for all
galaxies in our sample using both SED modeling and
the prescriptions of Galametz et al. (2013). They find
differences between the two estimates on the order of 10%
when combining the MIPS, PACS and SPIRE bands, and
about 20% when using the MIPS bands only.

4.6. Hydrostatic pressure of the ISM

The gravitational potential of a galaxy at any point
in the disk is the sum of contributions from the ISM,
stars and dark matter. In hydrostatic equilibrium, the
midplane pressure of the gas in a galaxy disk will ad-
just to support its weight in this combined gravitational
potential of gas and stars. We might expect this mid-
plane, external pressure to be coupled to the mean in-
ternal pressure of molecular clouds (e.g., Ostriker et al.
2010; Hughes et al. 2013), setting its individual pressure
and (surface) densities before star formation takes place.
These, in turn, may play a key role regulating the cloud
density structure and subsequent star formation.

In this picture the hydrostatic pressure, P, increases
with gas volume density, and it would determine not

only the ability of the ISM to form molecular hydrogen
(Elmegreen 1989; Elmegreen & Parravano 1994), but also
the initial ability of gas at any particular density to form
stars (e.g., Helfer & Blitz 1997; Usero et al. 2015; Meidt
et al. 2018). As P, rises, so would the mean density of
the gas in the clouds, which would lead to higher observ-
able dense gas fractions. Thus, a number of recent works
have focused on this dynamical equilibrium pressure as
a key parameter related to the fraction of dense gas and
star formation across large parts of local galaxies (e.g.,
Gallagher et al. 2018a).

Following Elmegreen (1989), Wong & Blitz (2002),
and Blitz & Rosolowsky (2006), the hydrostatic pressure
needed to balance the gravity on the gas in the disk can
be expressed as:

*

™ g
Ph = 5 ngas (Egas + o_ig Z*) ) (7)

7

where Y4, is the total atomic and molecular surface den-
sity, X« is the stellar surface density, o, is the velocity
dispersion of the gas and o, , is the stellar velocity dis-
persion along the vertical direction. While the first term
in the equation expresses the gas self-gravity, the second
one reflects the weight of the gas in the stellar potential
well. We neglect the contribution of dark matter to the
mass volume density, which in the inner parts of galaxies
is dominated by the stars near the disk midplane.

Since direct measurements of stellar velocity disper-
sion in nearby galaxy disks are rare, we adopt a series
of assumptions to obtain P}, as a function of more easily
observable quantities. Following Leroy et al. (2008), we
assume a self-gravitating stellar disk characterized by a

Gz z
27r(§'p* ?
ume density. The scale height, h.,, is typically observed
to be constant with radius across the star forming disks
of spiral galaxies (e.g., van der Kruit 1988; Kregel et al.
2002; van der Kruit & Freeman 2011). The stellar sur-
face density and the midplane stellar volume density are
then related: ¥, =~ 4 p, h.. We adopt o, ~ 15 km s~ !,
a value observed to be appropriate for large scales and
high surface density regions of galaxy disks (e.g., Tam-
burro et al. 2009; Caldu-Primo et al. 2013; Leroy et al.
2016; Sun et al. 2018). We refer the reader to Leroy et al.
(2008) and Gallagher et al. (2018a) for a more detailed
description of the assumptions taken in the hydrostatic
pressure derivation. We expect this pressure estimation
to be a good representation of the time-averaged hydro-
static pressure needed to balance the galaxy disk against
its own self-gravity and the stellar gravitational potential
well. In the following, we will refer to it as dynamical-
equilibrium pressure Ppg.

scale height h, = % where p, is the stellar vol-

4.7. Spectral stacking technique

The emission coming from high critical density trac-
ers such as HCN is faint for individual lines of sight,
especially in the inter-arm regions and outer parts of
galaxies. EMPIRE’s wide coverage includes significant
area where our target lines are not detected at high sig-
nificance over individual lines of sight. To increase the
signal-to-noise we thus also average independent spectra
over extended regions (e.g., deriving radial profiles) us-
ing a spectral stacking technique that leverages our high
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signal-to-noise CO data as a prior (Schruba et al. 2011;
Caldu-Primo et al. 2013; Jiménez-Donaire et al. 2017a).

Specifically, we measure the mean velocity along each
line of sight from the 2CO line, and assume that the
dense gas tracer emission is distributed over similar ve-
locities (as we do observe in HCN-bright regions). This
value, which varies across galaxy disks due to rotation,
is then used as a reference for the spectral stacking. The
velocity axis of all our spectral lines is then aligned to
the local CO mean velocity and the spectra is then sub-
sequently stacked. In Figure 2 and Figures B1-B8 we
provide an example of the resulting HCN spectral stacks
(blue lines) in radial bins of 30" for one EMPIRE galaxy.

We fit the stacked spectrum of each molecular line with
a single Gaussian profile or a double-horn profile. The
latter profile is adapted to better describe some of the
galaxy centers where the observed emission lines appear
broad, with a flattened peak due to spatially unresolved
gas motions that coincide with central bars or molecular
rings. To perform the fit, we center a 100 km s~ !-wide
window on the peak of emission to have an initial guess
for the line width and use the MPFIT function in IDL.
The free parameters we calculate from the fit are the line
center velocity, the peak intensity, and the velocity dis-
persion. We compute the uncertainties on the integrated
intensity as:

FWHM ine
ATl = 0pms X A\ Vepan X W7 (8)
A Vehan

where 0,5 is the 1o RMS value of the noise in K, which
is measured from the signal-free part of the spectrum,
A Ughan is the width of each channel in units of kms™!,
and FWHMj;,e is the full width at half maximum of
the line derived from the fit, also in kms~!. When the
emission lines remain undetected (below 30 RMS of the
noise), we compute 30 upper limits on the integrated in-
tensity. These are derived integrating over a Gaussian
profile with a peak set to the 3c RMS value of the noise,
and a width set to the FWHMj;,, found for the high
signal-to-noise CO line, stacked over the same physical
region.

5. RESULTS
5.1. Distribution of dense gas emission

Figures 3-11 show integrated intensity maps and az-
imuthally averaged profiles of line intensities, line ra-
tios, and physical conditions for each EMPIRE target.
The top left panel shows the infrared dust continuum at
70 pm tracing the location of recent star formation activ-
ity. The top right panel shows line-integrated 12CO (1-
0) intensity, from our new maps. Grey contours in the
top right panel show the HCN (1-0) line integrated in-
tensity. The middle row includes radial profiles for the
brightest lines detected in the EMPIRE survey (left); and
key quantities characterizing the galactic ISM structure
(right). The bottom row shows the radial profiles of the
ratios of the main dense gas tracers to CO (1-0), tracing
molecular gas (HCN/CO, HCO™ /CO and HNC/CO, left
panel), and among the dense gas tracers (HCO™/HCN,
HNC/HCN, HNC/HCO™, right panel).

Generally, the distribution of HCN intensity matches
the large-scale structure traced by CO and 70 pm emis-
sion. The HCN intensity peaks at the center of each

target and then appears prominent along the spiral arms
(e.g., NGC5055, NGC 5194 and NGC6946) and central
bars (e.g., NGC 2903 and NGC 3627). Globally, we find
the brightest emission in NGC 6946 and the weakest in
NGC 3184.

Outside galaxy centers, we find that the HCN inte-
grated intensity is ~ 30 — 70 times weaker than CO, on
average. As a result, we only detect the brightest indi-
vidual lines of sight at high signal-to-noise in HCN. The
spectral stacking approach described in Section 4.7 still
allows us to recover the line signal at good SNR after
integrating over a larger area.

The radial profiles in Figures 3-11 illustrate the success
of this stacking approach. We bin the data by galac-
tocentric radius, using 30” wide bins (~ 1 — 2kpc at
the distance of our sample). Within each bin, we create
stacked spectra for each dense gas tracer and CO iso-
topologue (e.g., see Figure 2). Despite the faintness of
HCN, we detect the average signal at high significance
out to galactocentric radii ~ 9—11 kpc in HCN. This is
similar to the radius of the Solar Circle. We also recover
the average HCO™ signal out to ~ 7 — 10kpc, and de-
tect HNC out to ~ 4 — 6 kpc. This represents the largest
collection to date of extended, resolved profiles of dense
gas in nearby galaxies.

5.2. Molecular line ratios
5.2.1. Dense gas tracers to CO

In Figures 3-11 the stacked intensities of all lines
(12CO, ¥CO, HCN, HCO™ and HNC) decrease with in-
creasing radius. On average, the emission of the dense
gas tracers decreases more rapidly than that of lower
density gas tracers 12CO and '*CO. In fact, in all galax-
ies except NGC 628, HCN/CO (blue in the bottom left
panel) appears highest in the galaxy center and then de-
creases with increasing galactocentric radius.

On average, HCN/CO decreases by a factor of
~ 2 across the range of radii where we detect
it. The decline in HCN/CO appears similar in our
barred (NGC2903, NGC3184, NGC3627, NGC4321
and NGC6946) and unbarred (NGC 628, NGC 4254,
NGC5055 and NGC5194) targets. We observe the
largest HCN/CO declines in NGC 3627 (~0.60dex),
NGC 4254 (~0.60dex), NGC 5194 (~0.60dex) and
NGC 6946 (~0.55dex). Again, we see no strong morpho-
logical divide, NGC 3627 and NGC 6946 are strongly
barred galaxies with prominent dense gas emission in
their centers and bars, while NGC 4254 and NGC 5194
are unbarred galaxies rich in molecular gas.

We quantify differences between the central pointing
and the rest of each galaxy, which we refer to as the
“disk”. Following Cormier et al. (2018), we take the
“center” to have a radius of 16” =~ 0.8kpc (i.e., one res-
olution element). The “disk” includes all other emission
above a low intensity threshold (~ 2K km s~ ') and ex-
cludes “center”. For each galaxy center and each disk
region, we create stacked spectra for each emission line.
We use these to measure average intensities and line ra-
tios. We calculate the mean ratios for barred galaxies
and unbarred galaxies separately, as well as for the en-
tire sample, and report these in Table 4 and Figure 12.
We also note the implied dense gas fractions, adopting
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Fia. 2. Example of stacked CO (1-0), HCN(1-0), HCO™ (1-0) and HNC(1-0) spectra in 30" (~ 1.5kpc) radial bins for NGC 5194.
Galactocentric radii are shown in the upper left of each panel. For ease of comparison, CO spectra are scaled (see legend).

the fiducial conversion factors®’.

From HCN/CO, we estimate dense gas fractions
(fdense) as described in Section 4 of 6 — 10 % for the EM-
PIRE galaxy centers. They show twice as much dense
gas than galaxy disks, where fqense ~ 5 %. We also find
similar HCN/CO, HCO* /CO and HNC/CO ratios com-
paring barred and unbarred galaxies.

While we do not find a clear link to bars, the concentra-
tion of gas at the galaxy center does appear to drive high
HCN/CO ratios. Figure 12 shows that high HCN/CO,
HCO*/CO and HNC/CO values tend to appear in re-
gions with high CO intensity. Modulo conversion factor
effects, these high CO intensities indicate large concen-
trations of gas in the galaxy centers. Achieving a high
dense gas fraction at the galaxy center appears to require
concentrating a large amount of gas at the galaxy center.
We return to this point in Section 5.4.

Figure 12 shows similar trends in HCN/CO,
HCOT/CO and HNC/CO. The similarity among all
three lines suggests that the results do reflect chang-
ing gas density. However, changing density may not be
the only effect. Galaxy centers also host conditions that
can lead to increased HCN excitation at fixed density.
Increased gas temperatures by excitation by electrons,
UV, X-rays, cosmic rays, and mechanical heating have
all been suggested to increase HCN emission (see e.g.,
Kohno et al. 2001; Izumi et al. 2013; Bisbas et al. 2015;
Goldsmith & Kauffmann 2017). We return to this in
Sections 5.4 and 6.4.

Our dense gas fractions estimated from HCN/CO
agree well with recent literature measurements in nearby
galaxies. The recent higher resolution (8” ~ 500 pc)

20 We apply our adopted HCN conversion factor to HCO* and
HNC. The dense gas fractions inferred from these lines should be
taken as more approximate than that from HCN.

study of nearby galaxies presented by Gallagher et al.
(2018a), shows that a median value of 10% is charac-
teristic of the inner kpc of four nearby galaxy disks
(NGC 3351, NGC 3627, NGC 4254 and NGC4321). Our
EMPIRE central dense gas fractions are 9%, 7% and
10% for NGC 3627, NGC4254 and NGC 4321, respec-
tively. These are in good agreement with the results in
Gallagher et al. (2018a), the small differences are likely
due to the larger beam size in EMPIRE, which will en-
compass more extended emission. We find very similar
fdense values to those from Usero et al. (2015) (median
values of 8% in all disk pointings and 5% excluding the
centers) and slightly lower values than those from Gao
& Solomon (2004) (12%). This is most likely attributed
to the fact that EMPIRE median values are dominated
by disk positions with overall lower fgense, while Gao &
Solomon (2004) measured galaxy averages (with total lu-
minosities dominated by the central enhancements) and
focused on IR-bright and starburst galaxies. All of these
studies also adopted our fiducial agcn.

5.2.2. Ratios among dense gas tracers

Table 4 also provides the average line ratios among our
high density tracers, HCO™ /HCN and HNC/HCN. We
find average HCO™ /HCN values of ~0.8 and HNC/HCN
values of ~0.5 across the disks of our targets. These
measurements agree with observations of the Milky Way
CMZ and Galactic GMCs (e.g., Jones et al. 2012, ~ 0.6),
nearby galaxies (such as M51, NGC 253 and NGC 6946
Meier et al. 2014, 2015; Chen et al. 2015, ~ 0.6 — 1.1),
and a number of LIRGs (e.g., Loenen et al. 2008; Privon
et al. 2015, ~ 0.5 — 2.0).

We plot profiles of HCO™/HCN, HCO*/HNC and
HNC/HCN in the bottom right panels of Figures 3-11.
The behavior of the HCOT/HNC and HNC/HCN pro-
files is only weakly constrained due to our lower HNC
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detection rate. On the other hand, HCN and HCO™ ex-
hibit almost identical profiles in NGC 3627, NGC 4254,
NGC4321, NGC5194 and NGC6946. In these targets
we only observe significant differences in the galaxy cen-
ters and at large radii. This resembles the results seen
at higher resolution over a smaller field of view by Gal-
lagher et al. (2018a). They find almost identical radial
profiles for the two lines in the inner ~ 4 kpc of their five
targets.

The HCO'/HCN line ratios measured across our
galaxy sample are close to unity, and change little over
the galaxy disks. This is suggestive of HCN and HCO™
lines being slightly subthermal across the galaxy disks
(Knudsen et al. 2007; Meier et al. 2015) if both are op-
tically thick, as shown in e.g., Jiménez-Donaire et al.
(2017a).

Two targets, NGC4254 and NGC 6946, show HCO™-
to-HCN profiles which are a function of increasing radius,
where the typical ratio reaches values up to ~1.5. These
values are large in comparison to those found in their cen-
tral regions (~0.8). Because HCO™ has a lower critical
density than HCN (see Table 2), changing HCO*/HCN
values could simply be attributed to changing gas density
across these disks. Larger HCO'/HCN values are also
found in lower metallicity systems such as IC10 (1.1-
2.8, Braine et al. 2017; Nishimura et al. 2016; Kepley
et al. 2018), M31 (1.2, Brouillet et al. 2005), M33 (1.1-
2.5, Buchbender et al. 2013; Braine et al. 2017) or the
Magellanic Clouds (1.8-3, Chin et al. 1997, 1998), possi-
bly due to less nitrogen produced by massive stars (Vin-
cenzo et al. 2016). However the slightly rising HNC/HCN
profiles in these two targets makes it difficult to con-
clude whether the larger HCOT-to-HCN ratios can be
associated to the reduction of nitrogen-bearing molecules
like HCN or HNC. Alternatively, the HNC/HCN abun-
dance ratio could increase at lower temperatures because
the chemical balance between the two species is rela-
tively more favourable to HNC. This would also cause
the HCO™ /HCN profiles to increase in those regions.

5.3. IR-HCN Scaling relations

In Figure 13 we plot the IR luminosity, tracing the
star-formation rate, as a function of the HCN luminos-
ity, which traces the dense gas content. Light red dots
show lines of sight from EMPIRE with signal-to-noise
> 3 HCN detections. We also show an integrated mea-
surement for each EMPIRE target as a filled gray circle.

We compare EMPIRE to an extensive compilation of
literature measurements. This includes measurements
of Galactic dense gas cores (Wu et al. 2010; Stephens
et al. 2016), individual giant molecular clouds (GMCs) in
the SMC, LMC and other low-metallicity galaxies (Chin
et al. 1997, 1998; Braine et al. 2017), giant molecular as-
sociations in nearby galaxies (Brouillet et al. 2005; Buch-
bender et al. 2013; Chen et al. 2017), resolved nearby
galaxy disks (Kepley et al. 2014; Usero et al. 2015; Bigiel
et al. 2015; Chen et al. 2015; Gallagher et al. 2018a),
and whole galaxies and galaxy centers (Gao & Solomon
2004; Gao et al. 2007; Krips et al. 2008; Gracia-Carpio
et al. 2008; Juneau et al. 2009; Garcia-Burillo et al. 2012;
Crocker et al. 2012; Privon et al. 2015). In total, we
plot 225 data points for resolved cores and GMCs; 194
data points correspond to observations of entire galaxies
or bright galaxy centers; and 415 data points (including

the high signal-to-noise EMPIRE detections) for resolved
(~ 0.3 — 2kpc) galaxy disks. This literature collection
is available?! in Table C1. The plots also include data
for the Milky Way’s central molecular zone (CMZ) (i.e.,
the inner ~ 500 pc Jones et al. 2012). The ensemble of
data in Figure 13 follow the same relationship found by
Gao & Solomon (2004) relating IR and HCN emission
in starbursts and IR-bright whole galaxies. As shown
before (e.g., Wu et al. 2005), this scaling relation spans
almost ten orders of magnitude in IR and HCN luminos-
ity. More, the relationship appears approximately linear.
Gray lines in Figure 13 show the mean IR-to-HCN ratio
found across the entire data set (including EMPIRE). In
Table 5, we report the mean IR-to-HCN ratios for each
type of data in the plot.

Our new EMPIRE measurements and the other re-
solved, kpc-scale data partly fill the gap between the re-
solved cores (~ 0.5 pc), individual clouds (~ 10—100 pc),
and the integrated emission from whole galaxies. We
caution that while this represents an appealing way to
visualize our data, the luminosity of a pointing in an
EMPIRE disk is somewhat arbitrary. We could define
larger or smaller regions and so shift the data in lumi-
nosity. As emphasized in the previous and next sections,
the key physics in EMPIRE comes from resolved ratios
among lines and tracers of recent star formation.

In that sense, the key point for Figure 13 is the good
agreement between the IR-to-HCN ratio in EMPIRE and
that from previous work. The bottom panels in Figure 13
plot this Lig-to-Lycn ratio, which has been widely used
as a tracer of the SFR per unit dense gas (SFEgense). We
find a mean ratio of ~ 776 L, /(K km™'pc?) across our
whole compilation (Table 5).

Figure 13 also illustrates the significant scatter in IR-
to-HCN across our data, which we also report in Table
5. We find an RMS scatter of 0.37 dex across all objects.
We find a smaller but still significant value of ~ 0.3 dex
for whole galaxies and ~ 0.25 dex for resolved regions in
nearby galaxies (see Appendix 7 for a detailed estimation
of the physical scatter in EMPIRE measurements).

Some of this scatter reflects measurement uncertainty
and on small scales stochasticity may play an important
role. On the scale of resolved galaxy disks, much of this
scatter has a physical origin. We see below that in EM-
PIRE the IR-to-HCN ratio shows systematic trends as
a function of environment (following Usero et al. 2015;
Bigiel et al. 2016; Gallagher et al. 2018a). As discussed
in Section 1.1, the Milky Way and other galaxy centers
show low ratios of star formation to dense gas. This also
points to a physical origin for much of the scatter in Fig-
ure 13.

5.4. Dense gas fraction and SFEjepnse

We designed EMPIRE to measure how the dense gas
fraction, fgense, and the star-formation efficiency of dense
gas, SFE4ense, depend on location and local conditions
inside a galaxy disk. Here, we address these questions
using our brightest dense gas tracer, HCN (1-0).

Figure 14 plots fgense and SFEgense, as likely func-
tions of galactocentric radius and local conditions rel-
evant to the formation and behavior of dense gas: stel-

2l Studies employing measurements taken from the literature
should cite the original works.
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TABLE 4
AVERAGE DENSE GAS LINE RATIOS (OBSERVED INTEGRATED INTENSITIES, EXCLUDING UPPER LIMITS), SEPARATED INTO CENTRAL POINTINGS
AND DISKS, ACROSS THE EMPIRE SPIRAL GALAXIES. THE PERCENTAGE NUMBERS IN PARENTHESIS SHOW THE DENSE GAS FRACTIONS ( foexse)
COMPUTED USING THE FIDUCIAL CONVERSION FACTORS FROM SECTION 4. THE QUOTED UNCERTAINTIES ARE ESTIMATED AS WEIGHTED MEANS
OF THE UNCERTAINTIES DERIVED AS INDICATED IN SECTION 4.7.

Center (inner 30” ~ 1 — 2kpc) Disk (excl. center) All
Ratio Barred Unbarred Barred Unbarred
HCN/CO 0.030(2) (6.8 £ 0.5%) 0.034(2) (7.7 £0.5%) 0.018(2) (4.0 £2.0%) 0.024(5) (5.4 £ 1.0%) 0.025 (5.7 + 1.0%)
HCO™*/CO 0.024(2) (5.4 £0.5%) 0.025(2) (5.7 £0.5%) 0.014(5) (3.2 £1.0%) 0.019(6) (4.3 +1.5%) 0.018 (4.0 +2.0%)
HNC/CO 0.013(2) (2.9 +0.5%) 0.014(2) (3.2£0.5%) 0.010(3) (2.3 £ 0.8%) 0.014(2) (3.24£1.0%) 0.011 (2.5 = 1.0%)
HCO™T /HCN 0.8+0.1 0.7+0.1 0.8+0.2 0.8+0.2 0.7+0.2
HNC/HCN 0.4+0.1 0.4+0.1 0.6 +£0.2 0.6 +£0.2 0.4+0.2
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Fic. 12.— Ratio of high critical density tracers to low critical density tracers for the central pointing (circles) and rest of the disk

(squares) of the EMPIRE galaxies. The exact values and uncertainties are described in Table 4. Upper limits to the stacked line ratios are
represented by open symbols. Symbols corresponding to barred galaxies are outlined with black contours.

lar surface density (X.), molecular gas surface density
(X1o1), the ratio of the ISM in a molecular phase (R0l =
Ymol/Xn1), and the pressure (Ppg). To construct these
plots, we define bins in stellar surface density, molecular-
to-atomic gas fraction and dynamical equilibrium pres-
sure. We sort each galaxy by each quantity, identifying
all lines of sight in each bin. Then, we stack all CO
and HCN spectra and TIR intensities in each bin. We
used these stacked CO, stacked HCN, and stacked TIR
measurements to compute the average HCN-to-CO frac-
tion and IR-to-HCN ratio in every bin. The error bars
that we report in the plots include uncertainties from the
statistical noise and from the spectral fitting.

In the main text, we focus on these stacked profiles to
reveal the underlying physical trends in the data. This
averaging technique is a core part of the EMPIRE exper-
iment design and allows us to explore whole galaxy disks.
In the Appendices (see Figures D1, D3, D7 and D9), we
present measurements of the same trends plotting each
individual line of sight.

5.4.1. Dense gas fraction

The left panels of Figure 14 show the variation of
the HCN-to-CO ratio, tracing fqense, as a function of
galactocentric radius, stellar surface density, molecular-
to-atomic gas fraction and Ppg.

In all targets fqense increases towards galactic centers.
We see similar stacked trends considering stellar sur-
face density (X, up to 103 — 10* Mg pc~2), molecular-
to-atomic gas fractions (Rye ~ 10%) and equilibrium
pressure (Ppg/kp ~ 10° — 107K cm™?). HCN-to-CO
correlates positively with all of these quantities. Individ-

ual galaxies do show distinct relationships, so that the
stacked trends appear offset among galaxies.

The positive correlations of HCN-to-CO with X, fiol
and Ppg agree with previous observations of ~kpc-sized
regions in nearby galaxies (e.g., Usero et al. 2015; Chen
et al. 2015; Bigiel et al. 2016; Gallagher et al. 2018a).
The stacked trends in Figure 14 cover the whole area
of active star formation across a significant sample of
whole galaxies. As a result, Figure 14 represents the best
systematic characterization to date of how fgense depends
on local conditions. Physically, all of the trends have the
sense fgense appears higher where there is higher stellar
surface densities, higher molecular gas surface densities,
higher molecular-to-atomic ratios and higher midplane
pressures.

We measure the strength of the correlation between
fdense and our environmental measurements using the
Spearman’s rank correlation coefficient, p. Table 6 re-
ports p for each environmental measure, each target, and
all targets together. The p coefficient quantifies the de-
gree to which fqense and the other quantity track one
another monotonically in our binned measurements. To
assess the uncertainty in our measured p, we repeatedly
add noise to our measurements, with the magnitude re-
flecting the associated uncertainties. We take the scatter
across 1,000 such Monte Carlo realizations to be the un-
certainty in p. We do caution that because our bins have
not been chosen for the purpose of rigorous statistical
comparison, so p should only be qualitatively compared
between quantities.

We also quantify the relationship between HCN-to-CO
and local conditions using power law fits (Figure 14). We
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fit lines to the stacked trends in log-log space, neglecting
upper limits (i.e., those bins with stacked SNR < 3 for
HCN). We weight all bins equally. While these fits cap-
ture general trends, there remains large galaxy-to-galaxy
scatter about each scaling relation. This implies that for
each of these fits, significant additional physics beyond
only the two variables considered affects the observed re-
lation. As a complement, we provide weighted averages
of fit parameters for each galaxy trend and discuss the
scatter introduced by galaxy variations below.

Galactocentric radius: HCN-to-CO anti-correlates
with galactocentric radius. The following power-law de-
scribes our data:

HCN
1og 1o % = (—1.54£0.2) — (0.8 +0.2) logy, é . (9)

where ra5 is the 25" magnitude B-band isophotal radius
from LEDA (Paturel et al. 2003). Our data mostly lie
in the range 0—0.6 r25, and the fit should apply over
this range. Individual binned measurements scatter by
+0.20 dex about this fit, with most scatter driven by
galaxy-to-galaxy variations. Our central measurements
out to ~ 2kpc in radius (confined in the inner two bins)
show even more scatter, +0.35 dex.

It is easy to understand an anti-correlation of galac-
tocentric radius and fgense: Bars, interactions, and the
inner parts of strong spiral arms can drive significant
masses of gas towards the inner parts of disks (e.g.,
Athanassoula 1992; Kormendy & Kennicutt 2004; Sor-
mani et al. 2018). As a result, galaxy centers tend to
show higher gas surface densities than the rest of the
disk. The central parts of galaxies also have the highest
stellar surface densities in the disk. Thus there tends to
be more gas and a deeper potential well in the inner parts
of galaxies. Both factors should lead to higher gas densi-
ties at smaller radii. In turn, this leads us to expect both
higher HCN intensities and higher HCN-to-CO ratios in
the inner parts of galaxies.

Individual galaxies show distinct trends in Figure 14.
Barred galaxies show stronger anti-correlations (p ~
—0.7) between fqense and radius than unbarred galax-
ies (p ~ —0.3). Galaxies also appear offset from one
another at fixed radius, reflecting that the same radius
may correspond to different physical conditions in differ-
ent galaxies. In the next few panels we plot fqense as a
function of gas or stellar surface density, we see greater
similarity among all galaxies.

Stellar surface density: We expect high fyense
where the gravitational potential is deeper (e.g., Helfer
& Blitz 1997). Stars represent the dominant mass com-
ponent over the inner part of most galaxy disks. There-
fore, following Usero et al. (2015), Bigiel et al. (2016),
and Gallagher et al. (2018a) the stellar surface density
should be a good predictor of fgense, at least in regions
with abundant gas.

Figure 14 and Table 6 indeed show a strong trend in
each galaxy that also appears similar among galaxies.
Our best-fit power-law relating Iien/Ico to Xy is:

HCN DN

(10)
Which is valid at ~ 1—2 kpc resolution and mostly over
the range ¥, ~ 100—1000 My pc~2. Individual bins
show a scatter of ~ 0.2 dex about this line, again driven
mostly by galaxy-to-galaxy variations.

Our best-fit relation agrees well with that found by
Usero et al. (2015). The slope is slightly shallower and
offset by 0.6 dex compared to the relation found in the
resolved inner regions of nearby galaxies by Gallagher
et al. (2018a).

Molecular gas surface density: In Section 5.2 we
saw that high HCN-to-CO ratios correlate with the inten-
sity of CO in galaxy centers. We can explain the larger
concentrations of denser gas in regions with higher mean
gas surface density, for the simple reason that these high
surface densities indicate a large amount of gas concen-
trated in a small area. Gallagher et al. (2018a) found that
HCN/CO correlates with 3,51 at ~ 500 pc scales as well
as with X,,01 on cloud-scale (Gallagher et al. 2018b).

We plot the observable ratio HCN/CO as a function of
Ymol in Figure 14 and fit the following scaling relation:

HCN Emol

(11)
This holds at ~ 1—2 kpc resolution over the range
Ymol ~ 1—400 Mg pc~2. We find 0.18 dex scatter about
the fit. Recall that we adopt a fixed aco = 4.4 Mg pc—?2
(K km s~1)~! and do not implement any environment-
dependent conversion factor. Therefore, Equation 11 for-
mally captures the scaling between HCN-to-CO and I¢o.

Thus HCN/CO, tracing the fraction of dense gas, cor-
relates well with both stellar and gas surface densities in
EMPIRE. More gas and a deeper stellar potential well
imply higher gas densities. Our targets mostly show com-
mon behavior, with the main outlier being NGC 6946.
This galaxy appears moderately displaced towards lower
HCN-to-CO ratios at a fixed X, or . NGC 6946 also
shows evidence of a radius-dependent conversion factor
(Sandstrom et al. 2013). Accounting for this effect should
move the points from that galaxy into better agreement
with the rest of our data, provided that the HCN con-
version factor variations are milder.

Molecular-to-atomic gas ratio: The local ratio of
molecular to atomic gas reflects the interstellar density
and pressure. Denser, higher pressure environments have
a larger fraction of their gas in the molecular phase (e.g.,
Wong & Blitz 2002; Blitz & Rosolowsky 2006; Leroy et al.
2008), though factors like the radiation field and dust
abundance also play a role (e.g., Pellegrini et al. 2009;
Wolfire et al. 2010; Sternberg et al. 2014). Usero et al.
(2015) showed that fqense correlates with the molecular-
to-atomic gas ratio. This implies that the same facts
that cause gas to become molecular may also drive gas
to higher densities.

We fit the following relation:
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TABLE 5
MEAN Lig-TO-LycN RATIOS REPRESENTATIVE OF EACH SAMPLE (ENTIRE GALAXIES, RESOLVED GALAXY DISKS AND MW CLOUDS) USED IN
FIGURE 13. WE INCLUDE THE 1o RMS SCATTER FOUND FOR EACH SAMPLE. THE Lig-TO-LycN SPEARMAN’S RANK CORRELATION
COEFFICIENTS AND THEIR p — values (IN PARENTHESIS), ARE ALSO INDICATED IN THE TABLE.

Sample logio(Lir/Lucn) Scatter ~ Spearman’s rank corr.
Lo / (K km s~ 'pc?)

Unresolved galaxies 2.99 +0.30dex 0.91 (< 0.01)

Resolved galaxy disks 2.85 +0.24dex 0.79 (< 0.01)

MW cores and nearby clouds 2.85 40.47dex 0.85 (< 0.01)

Combined 2.89 +0.37dex 0.96 (< 0.01)
isons to higher resolution CO mapping of our targets
HCON (e.g., Sun et al. 2018; Gallagher et al. 2018b) will help
log;, <o = (—1.840.1) + (0.42 4 0.04) log;y Ruol, to clarify the role of detailed ISM structure in producing

(12)
The relationship holds at 1—2 kpc resolution and over the
range Rp,o1 ~ 0.5—100. We again find +0.2 dex scatter
from galaxy-to-galaxy at fixed Ry, NGC 6946 appears
offset from the relations found for the rest of galaxy disks,
likely due to a variable CO-to-molecular gas surface den-
sity conversion factor.

Dynamical Equilibrium Pressure: The correla-
tions with surface density and R, could be expected if
the mean turbulent interstellar pressure couples closely
to the gas density distribution (see Helfer & Blitz 1997;
Usero et al. 2015; Gallagher et al. 2018a). Assuming
vertical hydrostatic equilibrium, the mean insterstellar
pressure must balance the weight of the gas in the po-
tential well (see references and discussion in Section 4.6).
We plot the fyense as a function of pressure in Figure 14.
There we do observe a clear correlation, though again
with some notable outliers.

We fit the following power law relating Iyon/Ico to
PDEI

HCN

Ppg
kpem 3K |~

(13]
This holds at 1—2 kpc resolution over the range
log,o Por/kp [K cm™®] ~ 4.5-6.5. Again, our individ-
ual binned stacks scatter by £0.2 dex RMS about the
measurement.

Similar to our results for Ry, Inon/Ico correlates
strongly with Ppp in each individual galaxy. This ap-
pears true for both barred (p ~ 0.9) and unbarred
galaxies (p ~ 0.8). These correlations show similar
slopes (within 10%) for different galaxy disks. How-
ever, the overall correlation appears weaker because the
stacked relations show considerable offset from one an-
other. Again NGC 6946 appears as a significant outlier,
possibly due to conversion factor effects. In this plot,
NGC 4254 also appears as a significant outlier.

In theory, Ppg represents the most direct physical
driver of density that we test. If Incon/Ico traces faense
and we estimate Ppg correctly, then our observations im-
ply that, while the ~ 1—2 kpc mean pressure scales with
fdense other physics also play an important role. In ad-
dition to the conversion factor effects discussed above,
we might also expect the structure of the gas within our
large beam to play a role. Our observations do not distin-
guish between gas concentrated into a few massive, dense
clouds and gas spread through a diffuse layer. Compar-

this galaxy-to-galaxy scatter.

Dense gas fraction and environment: The mea-
surements in this section represent the most thorough
view to date of how the HCN-to-CO ratio, tracing fqense,
depends on environment in nearby galaxies. Our results
agree well with previous work by Usero et al. (2015),
Bigiel et al. (2016), and Gallagher et al. (2018a), but
extend these studies to wider area and more complete
coverage of a sample of galaxies. EMPIRE recovers
HCN emission out to radii similar to the Solar Cir-
cle and spanning a wide range of local conditions: out
to ~ 8 — 10kpc in galactic radius, X, ranging from
~ 30 — 3200 M pc~2, molecular gas surface densities
up to Ymel ~ 300 M pe2, three orders of magnitude
in Ry (typical ratios range from ~ 0.1 — 2), and more
than two orders of magnitude in Ppg. The correlations,
fits, and stacked profiles that we present should provide
a basic reference for how the HCN-to-CO ratio behaves
across galaxies.

We find fqense traced by HCN-to-CO to vary signifi-
cantly as a function of local environment. fgense appears
higher in regions with high stellar and gas surface den-
sities, high interstellar pressures, and high molecular gas
fractions. These conditions tend to occur more in the in-
ner parts of galaxies, and we also observe that fqense ap-
pears to anti-correlate with galactocentric radius. These
correlations are often very strong for individual galaxies,
appearing almost monotonic in our binned data. How-
ever the relationship between fgense and each of these
quantities still shows significant galaxy-to-galaxy scat-
ter, with typical RMS scatter £0.2 dex. This exceeds
our measurement errors and highlights additional physics
still at play. In addition to uncertainties in physical pa-
rameter estimation, we highlight an important possible
role for ISM structure beneath the 1—2 kpc resolution
of our data (i.e. beam filling factor variations). We also
emphasize that the role of galactic dynamics (other than
vertical force balance) remains relatively unexplored so
far (but see, Meidt 2016; Meidt et al. 2018).

5.4.2. Star formation efficiency of dense gas

At face value, the ratio of TIR-to-HCN emission traces
the star formation efficiency of dense gas, SFEqense =
SFR/Mgense- In the right panels of Figure 14, the lower
part of Table 6, and the fits in this section we measure
how SFEqense depends on environment in EMPIRE. In
the main text, we again focus on stacked trends. In the
Appendix, we show every individual kpc-measurement
(Figures D2, D4, D8 and D10).
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Figure 14 shows that SFEgense < TIR/HCN generally
increases towards large galactocentric radii, and system-
atically decreases towards regions of high stellar surface
density, high molecular gas surface density, high molecu-
lar fraction, and high pressure. These trends all contrast
with what we observed for fqense, where the systematic
behavior has the opposite sense. The clear correlation
of SFEgense With environment shows that the observed
scatter about the Lir-Lycn scaling relation (Section 5.3)
reflects real correlations of SFEgense with local environ-
ment.

Galactocentric radius: SFEjcpse tends to rise with
increasing galactocentric radius, but with large galaxy-
to-galaxy scatter. Our best fit between Itir/Incn and
galactocentric radius is:

TIR
logio Fra = (284 03) + (0.6 £0.2) é

(14)

with an overall scatter of +0.30dex from galaxy to
galaxy at fixed radius. We quote the fit here in
terms of the TIR-to-HCN ratio, which has units of
Lo /(K km s ! pc?).

SFEgense increases with increasing galactocentric ra-
dius in most of our targets. But the large galaxy-to-
galaxy scatter means that radius alone does not do a
good job predicting the TIR-to-HCN ratio. As with
fdense, the same radius in different galaxies corresponds
to different physical conditions in a way that affects
SFEdense~

The increase in SFEqense with radius appears in both
barred (p ~ 0.7) and unbarred (p ~ 0.6) galaxies. We
do observe some difference in the shape of the profile
between these two groups, however. For unbarred galax-
ies the Itir/Iucn profile often appears quite flat across
most of the galaxy disk, with a lower value in the inner
~ 2kpc of the galaxy. In barred galaxies, the profiles
appear smoother, with TIR-to-HCN steadily increasing
with increasing radius.

We note that, with the resolution of the EMPIRE data,
we cannot rule out the effects of galaxy dynamics in
these radial trends. More specifically, barred galaxies
in which bars are smaller than their corotation regions,
often show pile-ups of gas in the leading edges of the
bar (e.g., Downes et al. 1996; Sheth et al. 2005; Beuther
et al. 2016). This particular orbit structure creates shear
motions in the molecular gas and little star formation
occurs, thus lower SFE, which is typically restricted to
the resonances of the bar. In addition to that, nuclear
bars such as those present in NGC 4321 (Sakamoto et al.
1995; Garcia-Burillo et al. 1998) may also be responsible
for this orbit structure and contribute to the lower SFE
observed in barred galaxy centers.

Stellar surface density: The middle right panel of
Figure 14 demonstrates an overall anti-correlation be-
tween Ir/Incn and stellar surface density. In fact,
all individual galaxies show an anticorrelation between
IR/HCN and X, and all but three galaxies show a strong
anti-correlation (see Table 6). A good fit to our data is
given by:

TIR

log1p fepe = (4-0£0.3) —(0.40£0.1) logy {

PO
Mgpe=2]"
(15)
This fit holds for disk galaxies at ~ 1—2 kpc resolution
over the range ¥, ~ 100—1000 Mg pc—2. Individual
binned measurements show RMS scatter of £0.26 dex
about the fit.

These trends with stellar surface density resemble
those seen by Usero et al. (2015), Bigiel et al. (2016), and
Gallagher et al. (2018a). The same conditions that make
the gas denser on average also appear to drive SFEjepge
to lower values.

Molecular gas surface density: Above, we find
higher fgense in regions with higher ¥,,,. Considering
SFEdense, the trend reverses. We find lower I1g /Igcn in
regions of high ¥,,,. Similar to the case for X, the
entire sample shows an overall strong anti-correlation
(p = —0.64) between Y01 and I1g/Igon. This anti-
correlation appears even stronger in many individual
galaxies, again reflecting offset trends among galaxies.

Our EMPIRE data are well-described by:

TIR Zm 1
logy, ION = (3.5+0.7) — (0.4 £0.1) logy, %71;;*2 .

(16)
The fit holds over ¥, ~ 10—100 Mg pc=2 at 1—2 kpc
resolution. The individual measurements scatter by
+0.22 dex scatter about the global fit. As in the fgense-
Ymol correlation, NGC 6946 appears moderately dis-
placed towards higher TIR-to-HCN ratios at fixed 3.
This could be related to the radius-dependent conversion
factor seen in Sandstrom et al. (2013).

To explain similar trends, Usero et al. (2015), Bigiel
et al. (2016), and Gallagher et al. (2018a) suggested a
context-dependent role for the “dense” gas traced by
HCN. In this scenario, which we discuss more below, the
anti-correlations observed between SFEgense and X, or
Ymol may occur because the mean density of the ISM
rises in high ¥, high ¥, regions (this appears to be
the case in EMPIRE and Gallagher et al. 2018b). In this
case, the HCN may trace gas at lower density than the
local density needed for gas to collapse and subsequently
form stars.

Molecular-to-atomic gas ratio: Given that
SFEgense anti-correlates with X, and X,,., we also ex-
pect an anti-correlation with the ratio of molecular to
atomic gas, Ry,01. We observe an anti-correlation in most
targets, but the scatter among galaxies is large compared
to the dynamic range of the observations.

We find a best fit relation

TIR
loglO HCN -

which holds over the range R0 ~ 0.3—10 at ~ 1—2 kpc
resolution. Compared to the trends with ¥, ¥, the
correlation of SFEqense shows a significantly weaker cor-
relation coefficient of -0.38, and the data scatter about
the fit with RMS £0.28 dex. Again, most of this scat-
ter is due to offsets among galaxies. The typical Ry

(3.140.1) — (0.30 = 0.06) Ry,  (17)
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varies by more than an order of magnitude across our
sample, and binning by Ry, does not appear to reveal
a strong common underlying relation. R, alone seems
insufficient to predict the SFEgense with high precision.

Dynamical equilibrium pressure: If SFEjepge,
traced by TIR-to-HCN, anti-correlates with the mean
ISM density, then it should anti-correlate with Ppg, our
environmental measure directly related to the mean mid-
plane density. We do observe a clear anti-correlation be-
tween SFEgense and Ppg, though again we find significant
galaxy-to-galaxy scatter.

A least-square minimization of our data yields:

TIR Ppg

valid at 1—2 kpc resolution over the range
log1o Por/kp[K cm™®] ~ 4.5—6.5. Individual data show
+0.24 dex scatter about the fit at fixed Ppg.

SFEgense anti-correlates with Ppg in the expected
sense, but does not offer a better predictor of SFEgense
than Yy, or ¥, (similar to the finding by Gallagher et al.
2018a), though it shows a clearer relation than Ry, or

(18)

T'gal-

gVVe note that this spread in pressures is correlated with
the total IR emission: for a fixed TIR-to-HCN ratio,
galaxies with higher SFR on average (see middle right
panel in Figures 3-11) show much larger characteristic
Ppg values in their centers.

Star formation efficiency of dense gas: Taking the
TIR-to-HCN ratio to trace SFE4ense, we observe a sys-
tematic dependence of SFEgense on environment across
the EMPIRE sample. These have the sense that the in-
ner, high pressure, high gas surface density regions of
galaxy disks appear to be the most inefficient at form-
ing stars out of dense molecular gas. These results also
demonstrates that the scatter in the Lig-Lcn scaling re-
lation (Section 5.3) has a physical origin. Using the scal-
ing relations in this section, one could predict whether
an EMPIRE data point would fall above or below the
scaling relation, on average.

Our results agree well with previous observations of
dense gas in nearby galaxy disks (see Usero et al. 2015;
Chen et al. 2015; Bigiel et al. 2016; Gallagher et al.
2018a). As we emphasize above, EMPIRE represents
the best systematic measurement to date. The combina-
tion of whole-galaxy mapping and a significant sample
mean that our results can serve as a reference for the
behavior of nearby disk galaxies at ~ 1—2 kpc resolu-
tion. In this sense, our observations help establish that
the SFEgense variations observed in previous studies are
not restricted to the nucleus of galaxies, nor are they the
result of biased sampling.

Gallagher et al. (2018a) speculate that the behavior
that we see could be expected if environment affects the
mean density of molecular clouds (which does appear to
be the case, e.g., Sun et al. 2018) and star formation
occurs in regions of local overdensity. In this case as
one moves to regions with high mean cloud densities,
e.g., high pressure regions like galaxy centers, the gas
traced by HCN represents less and less of an overdensity
relative to the mean. This scenario (see also Krumholz
& Thompson 2007; Narayanan et al. 2008; Usero et al.

2015) would qualitatively explain our results, but raises
some other issues in turn. We return to this in Section
6).
We show that while SFEqe,se anti-correlates with X,
Ymol, Rmol and Ppg, none of these quantities places all
of the EMPIRE targets on a single scaling relation. This
suggests that several of these variables need to be taken
into account, or that there must be additional physics at
play regulating SFEgense. We highlight the likely roles of
sub-beam structure, i.e., different gas structure within
our 1—-2 kpc beams and dynamics. Querejeta et al.
(2019) show a strong relationship between SFEgense and
velocity dispersion in Mb51, and kinematics in M51 also
strongly correlate with the star formation efficiency of
the total molecular gas (see Meidt et al. 2013; Leroy
et al. 2017b). Comparing EMPIRE-based SFEqense to
kinematic information will be an important next step.

Finally, we emphasize that our fitted scaling relations
should not be extrapolated far outside the regime where
we measure them. Gao & Solomon (2004), Garcia-Burillo
et al. (2012), and Usero et al. (2015) have all shown that
the TIR-to-HCN ratio in (U)LIRGs is not heavily sup-
pressed relative to that in disks (see Section 5.3. Extrap-
olating our relationships to arbitrarily high Ppg, Ymol,
or Y, would thus yield incorrect results.

5.5. The relation between fgense and SFE,

At face value, our EMPIRE results show a variable
SFEgense as traced by the observable TIR-to-HCN ra-
tio across and within galaxies. These results are diffi-
cult to explain within the framework of density threshold
models. As noted by Usero et al. (2015) and Gallagher
et al. (2018a), among others, in a density threshold model
one expects variations in the star formation efficiency of
the total molecular gas, SFE,, to track fqense with no
change in SFEjense (€.g., see Gao & Solomon 2004; Lada
et al. 2012).

Following Gallagher et al. (2018a), Usero et al. (2015),
and Gao & Solomon (2004), we test the density thresh-
old hypothesis by measuring the strength of the corre-
lation between SFE.o1 = Xgrr/Ymol, as traced by the
TIR-to-CO ratio, and the dense gas fraction (fgense =
Ydense/ Xmol) indicated by HCN/CO. EMPIRE allows us
to test this hypothesis across the whole area of nearby
galaxies, in the process extending to lower Ygense/Zmol
and Ygpr/Ymel than previous tests.

The left panel in Figure 15 displays Yspr/Ymol as
a function of Ygense/Zmol- EMPIRE > 30 disk mea-
surements appear as gray points. For a comparison, we
show the Usero et al. (2015) pointed observations (green
points), integrated galaxy measurements from Garcia-
Burillo et al. (2012, red points) and Gao & Solomon
(2004, dark blue points), data from the Milky Way’s
Central Molecular Zone (CMZ)?? (light blue, data from
Jones et al. 2012; Barnes et al. 2017), and data from
other galaxy centers from Gallagher et al. (2018a, orange
points).

The plot clearly indicates a relationship between
SFEmor and fgense- The thick black line indicates an
ordinary least squares bisector fit to the significant EM-

22 We define the CMZ region as a rectangle centered on | =
0.545°, b = 0.035 with width= 151.0’ and height= 29.8’. This
width corresponds to a linear size of ~ 500 pc.
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EFFICIENCY OF DENSE GAS) AS A FUNCTION OF GALACTONCETRIC RADIUS, STELLAR SURFACE DENSITY, MOLECULAR GAS SURFACE DENSITY,

RATIO OF MOLECULAR-TO-ATOMIC GAS, AND LOCAL DYNAMICAL EQUILIBRIUM PRESSURE.

Iucn/Ico vs r/ras5 Z ol Rl Ppr
Galaxy

NGC 628% 0.20 (0.06) _ 0.25 (0.09) -0.80 (0.02) -0.10 (0.04) _ 0.30 (0.05)
NGC 2903°  -0.61 (0.02) 0.75 (0.04)  0.96 (0.03)  0.90 (0.02)  0.94 (0.03)
NGC 3184°  -0.75 (0.02) 0.80 (0.10) 1.0 (0.04)  0.70 (0.04)  1.00 (0.04)
NGC 3627 -1.00 (0.01) 0.95 (0.03) 0.82 (0.01)  0.96 (0.02)  0.97 (0.01)
NGC 4254%  -1.00 (0.02) 1.00 (0.01)  1.00 (0.01)  0.96 (0.01) 1.0 (0.01)
NGC 4321°  -0.97 (0.03) 0.83 (0.04) 1.00 (0.01)  0.93 (0.04)  1.00 (0.01)
NGC 5055%  -0.90 (0.04) 0.92 (0.03)  1.00 (0.01)  0.91 (0.02)  0.55 (0.03)
NGC 5194¢  -0.70 (0.02) 0.98 (0.02)  1.00 (0.02)  0.75 (0.02)  0.96 (0.01)
NGC 6946  -0.93 (0.02) 0.98 (0.01)  1.00 (0.01) 0.98 (0.01)  0.97 (0.01)
All data Z0.60 (0.04) 0.80 (0.03) _ 0.80 (0.02) _ 0.45 (0.03) _ 0.60 (0.03)
Iir /TN vs r/r25 DI ol Rl Ppg
NGC 628% 0.10 (0.05) -0.37 (0.08) -0.40 (0.06) 0.50 (0.09) _-0.20 (0.08)
NGC 2903°  0.04 (0.05) -0.35 (0.10) -0.75 (0.05) -0.55 (0.05) -0.94 (0.09)
NGC 3184°  -0.05 (0.08) -0.90 (0.08) -1.00 (0.08) -0.61 (0.08) -1.00 (0.08)
NGC 3627  0.25 (0.06) -1.00 (0.04) -0.82 (0.04) -0.93 (0.04) -0.83 (0.03)
NGC 4254% 100 (0.06) -1.00 (0.04) -1.00 (0.04) -0.96 (0.03) -1.00 (0.05)
NGC 4321° 0.2 (0.05) -1.00 (0.02) -0.92 (0.03) -0.98 (0.05) -0.31 (0.01)
NGC 5055¢  0.55 (0.07) -0.17 (0.05) -0.75 (0.03) -0.18 (0.02) -0.06 (0.04)
NGC 5194¢  0.98 (0.05) -0.98 (0.03) -0.95 (0.06) -0.94 (0.05) -0.97 (0.02)
NGC 6946  0.90 (0.06) -0.92 (0.03) -1.00 (0.06) -0.99 (0.03) -0.96 (0.03)
All data 0.35 (0.05) -0.70 (0.04) -0.64 (0.06) -0.38 (0.05) -0.50 (0.04)

Notes: (a) Unbarred galaxies. (b) Barred galaxies. The numbers in parenthesis indicate the corresponding p-values.
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PIRE measurements (gray points). This fit has the form:

3 by ns!
logy o = ~2.07+0.93log;o ==, (19)

mol mol

where Ygpr/Ymor has units of Myr~—!. The accompa-

nying black dashed lines show the +1o scatter about
the relation. This relation applies at 1—2 kpc resolu-
tion mainly over the range logio fgense ~ —1.5— — 1.0
and log, o SFE 01 [Myr '] ~ —3.5— — 3.0 (i.e., molecular
gas depletion times of ~ 1—3 Gyr). We caution that our
fit does not extend to the starburst regime included in
the samples of Garcia-Burillo et al. (2012) and Gao &
Solomon (2004).

For comparison, we plot fits using the same method-
ology applied to samples of Gallagher et al. (2018a, all
data, not only the plotted galaxy centers), Usero et al.
(2015), Garcia-Burillo et al. (2012), and Gao & Solomon
(2004), shown as orange, green, red and blue lines, re-
spectively. In Table 7 we report the fits, rank correlation
coefficients and its significance relating Xgpgr />me and
Ydense/Xmol in each sample. We also note the scatter in
SFEgense for each sample in parentheses.

All the datasets in Figure 15 show some correlation be-
tween SFE,o1 and Ygense/Zmol- But the choice of data
sets can significantly alter the best fit scaling relation (a
conclusion also emphasized by Gallagher et al. 2018a).
Our best fit to EMPIRE appears almost identical to our
fit to the Gallagher et al. (2018a) measurements. Both
appear similar, but modestly offset from the fit to the
Usero et al. (2015) points. The Usero et al. (2015) points
show systematically higher SFE,,,, perhaps consistent
with the selection of bright disk regions for that sam-
ple. Similarly, our fit to the Gao & Solomon (2004) data
intersects the EMPIRE data but shows a steeper slope,
reflecting the high SFE,, o1, high fgense points that make
up most of their sample. Meanwhile, the Garcia-Burillo
et al. (2012) relation appears displaced from ours. Their
sample covers starbursts with higher fgense and higher
SFEgense than EMPIRE, so a direct comparison requires
extrapolations.

These discrepancies are also reflected in the median
SFEdense for each sample (see Table 7). The EMPIRE
median ratio, 10g10XsFR /Zdense [Myr_l] = 1.05 x 1072
is similar to those found by Gallagher et al. (2018a)
(1.10 x 10~2) and slightly lower than that found by Usero
et al. (2015) (1.80 x 10~2). EMPIRE shows notably lower
scatter than both the Gallagher et al. (2018a) and Usero
et al. (2015) data (~ 0.3 dex). This likely reflects that
those two studies emphasized a range of environments
by focusing on the disk-center contrast or selecting a few
bright pointings per galaxy. We suggest to take the EM-
PIRE 0.2 dex as indicative of the true scatter of SFE4ense
treating all (detected) ~ 1—2 kpc points equally in disk
galaxies. The median EMPIRE SFEqense also resembles
the value found by Gao & Solomon (2004) (1.31 x 1072).
Their scatter ~ 0.25 dex reflects galaxy-to-galaxy vari-
ations. Our SFE4ense appears significantly lower than
that found by Garcia-Burillo et al. (2012) 2.45 x 1072.

This scatter, ~ 0.2—0.3 dex depending on the sample,
is significant when compared to the dynamic range in
either fgense or SFEo1. More, we show above that the
scatter has a physical origin. Figure 15 thus offers at best

qualified support for a threshold model: overall, higher
fdense does correspond to higher SFE,o, but only with
an RMS accuracy of 0.2—0.3 dex, and the scatter about
the relation is physical. This suggests that the dense gas
fraction as calculated from the observable Iycn-to-Ico
ratio may not be an accurate predictor of Xgpr /X mol (x
SFEmo1) across all systems.

The left panel of Figure 15 and the right panel of Figure
16 clearly display the suppression of SFEgense in galaxy
centers (see Section 1.1), also seen in Figure 13. To see
this, one can contrast the central datapoints from the
Gallagher et al. (2018a) ALMA sample (orange points)
and the Milky Way CMZ (light blue point) with the
EMPIRE scaling relation. The Milky Way’s CMZ and
the Gallagher et al. (2018a) central points appear ineffi-
cient at forming stars relative to their dense gas content
(e.g., Jones et al. 2012; Longmore et al. 2013; Barnes
et al. 2017; Mills & Battersby 2017). The reason for the
low SFEgense in the CMZ remains under debate, with
dynamical explanations among the most popular (e.g.,
large velocity fields, turbulence or large scale “breath-
ing” modes, see Benincasa et al. (2016); Battersby et al.
(2017); Kauffmann et al. (2017)). Similar processes seem
likely to be at play in the central regions of these other
nearby galaxy disks, and perhaps to operate at a lower
level to create the scatter in the EMPIRE data.

5.5.1. Scatter in SFEqense and SFFEmo

Vutisalchavakul et al. (2016) compared the SFR per
mass of molecular gas (SFE,,.1), and the SFR per mass
of dense gas (SFEgense) to the molecular gas mass and
dense gas mass (which they call “aggregate mass,” in
the case of external galaxies). They studied a sample of
molecular clouds from high-mass star forming regions in
the Galactic Plane and compared their results to other
nearby clouds from Evans et al. (2014), M51 (Chen et al.
2015), and a sample of unresolved starburst galaxies (Liu
et al. 2015). Vutisalchavakul et al. (2016) concluded that
the mass of dense gas appears to be a better predictor
of SFE than the total molecular gas mass across all en-
vironments. Treating the scatter in the SFE as a figure
of merit, they found that dense gas predicted the SFE
with roughly one third of the scatter found when using
all molecular gas mass.

In Figure 16 we replicate the calculation of Vuti-
salchavakul et al. (2016). We plot SFE,,, as a function
of molecular gas mass in the left panel and SFEgense as a
function of dense gas mass in the right panel. In addition
to the measurements by Vutisalchavakul et al. (2016),
we show the EMPIRE disk measurements (gray), the
samples of resolved and unresolved extragalactic systems
used in Figure 15, and measurements from the Milky
Way’s CMZ.

If we follow Vutisalchavakul et al. (2016) and treat the
scatter in SFE,o; or SFE4ense as the figure of merit, then
we reach similar conclusions to that paper. We find a
mean SFEgense of —1.97 + 0.22, which is very similar to
the average value found in Vutisalchavakul et al. (2016).
The scatter we find in SFEgense (£0.22dex) is smaller
than what we find for SFE., (£0.31dex). This also
closely resembles the original arguments made by Gao
& Solomon (2004) regarding HCN and CO. In the most
basic terms, HCN emission does appear to represent a
more basic predictor of the star formation rate than CO.
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TABLE 7
SFEyoL VS. ZJDE]\'SE/EMOL

Dataset p log10 ¥sFr/Sdense
EMPIRE (this work) 0.33 (0.02) ~1.98 (£0.20)
Gallagher et al. (20184) 0.13 (0.003)  -1.96 (+0.33)
Usero et al. (2015) 0.42 (0.005)  -1.73 (£0.29)
Garcia-Burillo et al. (2012)  0.35 (0.07) -1.62 (£0.20)
Gao & Solomon (2004) 0.65 (0.001) -1.88 (£0.25)

Notes: Rank correlation coeffients, p, and p-value in parentheses.
We quote the median of the logarithm of the ratio Xsrr/Zdense,

as well as its 10 RMS scatter in units of log1o (Myr—1).

However, note that the SFR-CO relation is non-linear
for starbursts galaxies and (U)LIRGs at ~kpc scales,
as observed by Gao & Solomon (2004); Garcia-Burillo
et al. (2012); Usero et al. (2015). This non-linearity con-
tributes to the higher spread of points observed in the
SFE-M o relation in the left panel of Figure 16. If a
linear relation is required, and the absolute scatter in
SFEmo1 or SFEgense is treated as the figure of merit, then
the arguments of Vutisalchavakul et al. (2016) hold. But
if a non-linear relation is adopted allowed for CO, then
the situation becomes more nuanced.

We do caution that the absolute molecular and dense
gas masses for parts of galaxies plotted in Figure 16 have
limited physical meaning. The integrated mass in one
of our EMPIRE measurements depends on a number of
quantities (e.g., inclination, distance) in addition to the
physical properties of that part of the galaxy.

5.5.2. Scatter Within Individual EMPIRE Galazies

As discussed and seen in the Figures in Section 5.4,
much of the dispersion in SFE4ense and fgense that we
find EMPIRE appears as offsets among galaxies in the
scaling relations. In Figure 16 the scatter in the gray
points mixes both galaxy-to-galaxy offsets and the in-
trinsic scatter within individual galaxies.

To better quantify the relative importance of these con-
tributions, we calculated the 1-o dispersion in SFEgense
for each individual galaxy (0 — SFEgense). We find an
average of 0 — SFEgense = 0.12+0.02 dex in our sample.
We caution that this value includes only regions with sig-
nificant detections and so suffers from some bias. Taken
at face value, this scatter is comparable to the lowest
values found for SFE,,, in individual galaxies (e.g., see
Figure 12 in Leroy et al. 2013). This again highlights
a tighter local correlation between HCN and SFR than
CO and SFR, though a rigorous statistical analysis will
require either careful statistical modeling or data with
individually higher S/N than EMPIRE. Again, treating
the scatter in the simplest terms, we can subtract this lo-
cal scatter in quadrature from the global +0.22dex scat-
ter found for the entirety of the EMPIRE sample (Table
8). The result is that ~ 0.18 dex of the point-by-point
scatter in the well-detected EMPIRE regions is due to
galaxy-to-galaxy variations, while ~ 0.12 dex comes from
intra-galaxy variations.

6. DISCUSSION

EMPIRE reveals a systematic dependence of
Iyen/Ico and Itir/Iucn on local conditions. These
variations appear in all EMPIRE targets, with magni-
tude ~ 0.2 dex up to one order of magnitude, depending

TABLE 8
MEAN SFEy o, AND MEAN SFEpgnse.
Average  Vutisalchavakul et al. (2016)  This paper
SFEmor 2.83 (£0.42) 23.09 (+0.31)
SFE dense -1.82 (£0.19) -1.97 (+£0.22)

Notes: We quote the mean of the logarithm of SFE,,, and
SFEdense, as well as its 1o RMS scatter (in parenthesis) in units
of log1o (Myr—1).

on the trend in question. At face value, Incn/Ico
traces the fraction of dense gas, while Itir /Icn traces
the star formation rate per unit dense gas mass. Both
interpretations have important caveats, however. In this
section we discuss the implications of our observations in
the context of galactic star formation and then lay out
some key caveats regarding the translation of observed
to physical quantities.

6.1. The gas density distribution depends on
environment

Our observations of Iycn/Ico indicate that the den-
sity distribution in molecular gas depends on local en-
vironment and changes across galaxy disks. Given the
large difference in effective critical density between the
two species, the ratio HCN-to-CO will certainly be sensi-
tive to density variations, although there are important
subtleties (Section 6.4).

Two important pieces of evidence support the idea that
HCN-to-CO traces density variations. First, we see qual-
itative agreement among different dense gas tracers (J.
Puschnig et al. in preparation will present a quanti-
tative comparison). In both this paper and Gallagher
et al. (2018a), the radial profiles of HCO™ agree well
with those of HCN. To a lesser degree, the profiles of
HNC (here) and CS (Gallagher et al. 2018a) also show
the same shape, though these are limited by signal-to-
noise and lack of short spacing correction for Gallagher
et al. (2018a). Qualitative agreement among the high
critical density lines of species not chemically coupled
suggests that variations of the HCN abundance are not
the main driver for our results. Second-order variations
in excitation and chemical abundances certainly remain
important topics, however (Section 6.4).

Second, Gallagher et al. (2018b) showed, using EM-
PIRE and ALMA data, that the HCN-to-CO ratio mea-
sured at ~kpc scales correlates, on average, with the
mass-weighted average of the 120 pc resolution molec-
ular gas surface density, traced by CO (2-1) emission,
inside the beam. That is, changes in the HCN-to-CO
ratio correlate with changes in the apparent surface den-
sity of molecular clouds. Regions with high HCN-to-CO
also show high surface brightness CO emission and ap-
parently dense clouds at 120 pc (FWHM) resolution.

These arguments give us good reason to expect that
HCN-to-CO traces the gas density distribution to first
order. We have phrased the associated physical quan-
tity as faense, but we also expect that HCN-to-CO traces
the mass-weighted mean density. For any somewhat uni-
versal gas density distribution, e.g., the lognormal den-
sity distribution expected for isothermal turbulence (e.g.,
Vazquez-Semadeni 1994; Padoan & Nordlund 2002) or a
power law, the two properties will correlate. The Gal-
lagher et al. (2018b) results suggest a close association.
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F1G. 16.— SFR per mass of molecular gas (left), as a function of the mass of molecular gas, and SFR per mass of dense gas (right), as a
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and included the data from Vutisalchavakul et al. (2016) for a comparison with Galactic molecular clouds.

Our results indicate that the gas density PDF changes
across galaxy disks. The sense of the variations is that re-
gions with more gas and deeper potential wells (as traced
by 3,) on average, also show denser gas on small scales.

Following Helfer & Blitz (1997) and Gallagher et al.
(2018a), one useful way to express this dependence is
that fgense appears to correlate with the dynamical equi-
librium pressure, Ppg, estimated from hydrostatic equi-
librium (see 4.6). The fqense-PpE correlation is not the
tightest one that we observe, but it has a solid physi-
cal underpinning: when we look at parts of a disk with
higher mean pressure, we find higher density gas. We do
still observe significant galaxy-to-galaxy scatter in each
scaling relation. We suggest that galactic dynamics and
ISM structure below the scale of our beam (e.g., flows
along bars, spiral arms, etc.) represent the natural next
environmental factors to consider.

Our results relate directly to the evolving literature re-
lating molecular cloud properties to local environment.
If the sub-beam gas density distribution, traced by the
HCN-to-CO ratio, reflects environment, then the gas
density at intermediate scales, traced by the properties
of giant molecular clouds, likely does as well. Molec-
ular clouds in high pressure environments should have
higher mean densities, and this should relate to their
internal gas density distribution, traced by our spectro-
scopic measurements.

Recent work on this topic does suggest that molecular
cloud masses and surface densities correlate with envi-
ronment (e.g. Hughes et al. 2013; Colombo et al. 2014;
Leroy et al. 2016; Sun et al. 2018, A. Schruba et al. sub-
mitted, J. Sun et al. in preparation). The sense of the ob-
served correlations agrees with what we find here: higher
mass galaxies and the centers of galaxies host more mas-
sive, higher surface density clouds. The internal pressure
of molecular clouds appears to correlate with the mean

pressure in the environment (Hughes et al. 2013). The
observed CO line widths within molecular clouds also in-
crease in higher pressure environments Sun et al. (2018).
These observed larger line widths are directly related to
larger Mach numbers, a measure of the intracloud tur-
bulence. Thus, in turbulent models for star formation,
this would also lead to more dense gas because the Mach
number drives the width of the density distribution (e.g.,
see Padoan & Nordlund 2002).

One next major step on this topic will involve detailed
comparison of molecular cloud structure to spectroscopic
observations like EMPIRE. Gallagher et al. (2018b) take
an important first step here, showing that cloud-scale gas
properties do correlate with our EMPIRE HCN-to-CO
ratios.

Another key next step will be to constrain the shape
of the density distribution using the full suite of molecu-
lar line data available from EMPIRE and other surveys.
We mainly focus on HCN-to-CO. The combination of all
EMPIRE lines allows the prospect to measure the rela-
tive amounts of low, intermediate, and high density gas,
though abundance variations remain a key concern (e.g.,
see Leroy et al. 2017a). This work is ongoing in EM-
PIRE and will be presented in J. Puschnig et al. (in
preparation).

Finally, these results have the prospect to inform and
test turbulent models of star formation (e.g., Padoan &
Nordlund 2002; Krumholz & Thompson 2007; Federrath
& Klessen 2012). In these models, the mean density,
virial parameter, Mach number, and other properties of
clouds affect the gas density PDF and star formation in
the cloud. Coupling these models, our measurements of
density and star formation to cloud-scale molecular gas
properties can test these models. Comparing all three
types of measurements to key environmental factors, e.g.,
Y, Xmol, PpE, etc., allows the prospect of a holistic disk-
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to-core model of star formation.

6.2. An environment-dependent role for gas density in
star formation?

In agreement with Usero et al. (2015), Bigiel et al.
(2016), and Gallagher et al. (2018a) we find that
Itir/Iucn, tracing the efficiency of dense gas to form
stars, anit-correlates with the surface density of stars
and molecular gas, Ppg, and Ry.. These same quanti-
ties correlate with fqense, S0 that as gas becomes denser,
the dense gas traced by HCN also appears less efficient
at forming stars. This observation agrees with recent
work targeting the Milky Way’s Central Molecular Zone
(Longmore et al. 2013; Barnes et al. 2017; Mills & Bat-
tersby 2017).

As above, the use of HCN to trace dense gas is piv-
otal to this interpretation. We review caveats on this
below (Section 6.4). The arguments above hold here,
too. Other dense gas tracers yield a qualitatively simi-
lar picture and comparison to cloud-scale gas properties
does suggest that the HCN-to-CO ratio traces density.
More, the Galactic center work has employed a variety
of gas tracers, not only HCN, to reach qualitatively sim-
ilar conclusions in the Milky Way (e.g., Battersby et al.
2017; Walker et al. 2018). Usero et al. (2015) present a
detailed discussion of plausible scenarios for agcyn varia-
tions and conclude that the observed trends are unlikely
to be exclusively driven by conversion factor effects.

Previous studies of dense gas in nearby galaxies (Usero
et al. 2015; Bigiel et al. 2016; Gallagher et al. 2018a) in-
terpreted similar observations as evidence that density
plays a context-dependent role for star formation. The
simplest interpretation would be that star formation oc-
curs in the densest parts of clouds, so that contrast with
the mean density, not absolute density, represents the key
quantity. This might be expected if the mean dynamical
state of clouds is approximately universal (e.g., clouds
are all virialized, on average), but the mean density of
clouds varies due to changes, reflecting the mean den-
sity and pressure in the disk. To first order, HCN traces
only a fixed density where the free-fall time should not
change significantly. In low pressure regions, this den-
sity may capture star-forming overdensities. In higher
pressures regions, like galactic centers, HCN may trace a
larger fraction of the emission, extending into the “bulk”
molecular material. In practice, this would translate into
a lower apparent star formation efficiency of dense gas, in
line with the increasing HCN-to-CO and decreasing TIR-
to-HCN ratios observed in individual EMPIRE galaxy
disks. Aspects of this argument have been made by
Krumholz & Thompson (2007), Narayanan et al. (2008),
Usero et al. (2015), Bigiel et al. (2016), and Gallagher
et al. (2018a).

Figure 17 illustrates that the suppression of SFEqcnse
in galaxy centers in EMPIRE does appear more related
to the mean pressure. We show the average observed
TIR-to-HCN ratio as a function of the mean Ppg in the
same region. The centers of our EMPIRE galaxies are
characterized by their high pressures, but the exact cen-
tral Ppg varies from galaxy to galaxy by more than one
order of magnitude. Figure 17 shows that the centers
with the highest Ppg appear, on average, to form less
stars per unit dense gas mass.

This simple view clashes with the popular claim that

the star formation efficiency per free fall time is approx-
imately fixed across scale and density (e.g., Krumholz &
Tan 2007; Utomo et al. 2018). If this were true, then
HCN-emitting gas would show approximately the same
SFEgense everywhere, regardless of whether HCN traced
“bulk” or “star-forming” gas.

In practice, most turbulent models of star formation
contain additional physical parameters related to dynam-
ics, e.g., the Mach number and virial parameter, which
can affect the density distribution and star formation ef-
ficiency. Considering the models of Krumholz & McKee
(2005) and Krumholz & Thompson (2007), Usero et al.
(2015) showed that the observed IR, CO, and HCN data
for nearby galaxies and starburst galaxies could all be
explained by allowing Mach number and density to both
vary. Our observations agree well with those of Usero
et al. (2015), and a similar case should hold for these
data too. A key next test will be to infer the Mach num-
ber and mean density from high resolution observations
(e.g., Sun et al. 2018; Gallagher et al. 2018b; Querejeta
et al. 2019) and test for consistency with these models
when the physical parameters are constrained.

As with fyense, significant galaxy-to-galaxy scatter re-
mains in all of our observed SFEqcuse scaling relations.
The strong correlations between the HCN-to-CO ratio
and the local Ppg seen in every individual galaxy disk
suggest that the ambient pressure (set by the hydrostatic
midplane pressure of a galaxy disk) does play a key role
by setting the natal density distribution of molecular
clouds, initially in hydrostatic equilibrium. Recent semi-
analytic modelling by Rahner et al. (2017) and Rahner
et al. (2019) have shown exactly this effect: ensembles
of identical clouds can evolve differntly when they are
initially set in different pressure environments. In ad-
dition to dynamics and ISM structure, timescale effects
should also play an important role. Recent modelling
by Rahner et al. (2017) and Grudié¢ et al. (2018) shows
that larger and more massive star-forming clouds evolve
and expand more slowly with high internal pressures.
High SFR regions, formed out of larger and more mas-
sive clouds, would typically show much higher internal
cloud pressures. This could contribute to the horizontal
shift seen in the global EMPIRE trends with respect to
pressure in Figures 14 and 17. If this evolutionary se-
quence is slow and individual galaxies are dominated by
only a handful of clouds, then the scatter among galax-
ies might capture evolutionary effects. Alternatively, if
large scale dynamics synchronizes star formation in some
way, these timescale effects might play a key role. Such
“breathing modes” have been suggested based on simula-
tions by Benincasa et al. (2016); Orr et al. (2019), though
it is possible that short dynamical timescale associated
with dense gas might wash these effects out.

6.3. Relation to the Lycn-Lrir scaling relation and
SEFE o1

The scaling relation between IR and HCN luminos-
ity, most influentially shown by Gao & Solomon (2004),
has been interpreted to indicate a universal role in star
formation for the gas traced by HCN (e.g., Lada et al.
2010, 2012). Our EMPIRE data do fall on this scaling re-
lation, intermediate between individual cores and clouds
and whole galaxies.

Thus, our observation of an environment-dependent
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TIR-to-HCN ratio should not be taken to invalidate the
scaling relation. Rather, our observations show that the
scatter about the relation is physical in nature. For de-
tected regions of resolved galaxy disks, and treating each
unit area the same, the RMS scatter is 0.2—0.3 dex and
correlates with environment as described above. In prac-
tice, the quantitative scatter about the relation depends
on the adopted sampling scheme. For example, weight-
ing equally by area tends to de-emphasize galaxy cen-
ters. Weighting by luminosity de-emphasizes outer disks
with little star formation. In any case, we find significant
physical scatter about the IR-HCN scaling relation and
have quantified the dependence of the TTR-to-HCN ratio
on environment.

An important corollary, already emphasized above, is
that the trends that we observe relating TIR-to-HCN to
environment cannot be extrapolated indefinitely. Gao &
Solomon (2004) and Garcia-Burillo et al. (2012), among
others, show that the TIR-to-HCN ratio in starburst
galaxies with high >,, and high Ppg is “normal.”
Galaxy centers do not extrapolate into the (U)LIRG pop-
ulation correctly, perhaps due to the different dynamics
at play in the different environments.

Gao & Solomon (2004) and several following papers
also highlighted that the HCN-to-CO ratio, fgense, could
predict the star formation efficiency of the total molecu-
lar gas, SFE o1 or TIR-to-CO. We do find that SFE,,
correlates with fgense- That is, variations in SFEgense
and fgense do not totally offset. But the exact scaling
inferred depends sensitively on the data sets considered
because the TIR-to-HCN ratio varies. In that sense, our
work agrees with Gallagher et al. (2018a) and Usero et al.
(2015) in finding that a density threshold model above
which SFEgense remains constant appears too simple to
explain the observations of IR, HCN, and CO in nearby
galaxies.

6.4. Caveats

In this work, we focus on the content of dense gas in
nearby galaxies by analyzing the emission of lines with
high critical densities such as HCN (1-0). However, the
interpretation of the HCN emission and thus the dense
gas mass remains an open issue (see Section 6.4.1) es-
pecially in the context of clouds with varying density
probability distribution functions (PDFs).

6.4.1. The mass of dense gas from HCN observations

If we assume that HCN is a good tracer of dense
gas, the second major limiting factor needed for a well-
calibrated relationship between HCN emission, dense gas
mass and star formation is the conversion factor agcn.
Thus, the observational constraints we can place on any
star formation theory are sensitive to the conversion fac-
tors that translate line luminosities into masses of dense
molecular gas.

The first estimation of the HCN conversion factor is
detailed in the seminal work by Gao & Solomon (2004).
The authors derived a dense gas conversion factor as-
suming virialized (self-gravitating), optically thick dense
gas cores with n ~ 3 x 10*cm ™ and constant brightness
temperatures of 35K (e.g., Radford et al. 1991). In this
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Galaxy centers from high star-forming galaxies appear at higher
pressures and, on average, they seem less efficient at forming stars
out of dense gas.

way, they obtained a simple relation:

amnen = 2.11/n(Hy) /Ty = 10 M, (Kkms ™ 'pc?)~L.
(20)

Any conversion factor calculated under these assump-
tions would then depend on the gas density in molec-
ular clouds and its temperature, which will in turn de-
pend on the gas excitation and the beam filling frac-
tion. Later on, Wu et al. (2010) also derived a dense gas
conversion factor by comparing the HCN luminosity in
massive Galactic clumps, to their virial mass and found
ancn = 201 Mg (Kkms™ 'pe?)~!. However, the phys-
ical conditions observed in individual Galactic clumps
likely differ from those of the bulk dense gas in galaxies.

Generally aco has been observed to increase with de-
creasing metallicity and to drop where the gas is more
turbulent (galaxy centers and starbursts, e.g., Gracia-
Carpio et al. 2008; Garcia-Burillo et al. 2012). Moreover,
excitation effects can also drive changes in the molecular
gas conversion factor aco. While the dense gas conver-
sion factor is harder to constrain due to the scarce data
situation and challenging observations, one can expect a
similar dependence on turbulence and excitation.

In that regard, Shimajiri et al. (2017) estimate the
mass of dense gas in Galactic clouds using dust column
densities from Herschel and compare them with HCN
luminosities to obtain empirical conversion factors. The
authors claim that variations in agcn in Galactic clouds
could be related to variations in the FUV field (which
is significantly stronger towards galaxy centers) and so
to gas excitation and/or chemistry variations. Could the
observed variations in SFEqense (Figure 14) be explained
by gas excitation variations? Their dust temperature
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maps from Herschel, however, blend different ISM phases
when used at extragalactic scales (> 100 pc), which could
introduce additional uncertainty in GGy and the strength
of the FUV field. Thus, assessing dense gas excitation
through direct observations of several rotational transi-
tions (e.g., J = 3—2to J = 1-0) is of crucial importance.

In terms of modelling, most estimates of dense gas
conversion factors are performed using idealized clouds
and density distributions (Krumholz & Thompson 2007;
Leroy et al. 2017a), or simulate very small regions with-
ing molecular clouds (Onus et al. 2018), which are likely
not representative of the varying conditions across galaxy
disks. Recent work by Vollmer et al. (2017) on analytic
modeling also considers large-scale properties of entire
galaxies (e.g., surface density, turbulent velocity, disk
height) and also models the line emission from individual
self-gravitating clouds using detailed chemical networks
and an escape probability formalism. By comparing their
calculated dense gas masses and line emission in star-
forming galaxies, they predict agcn = 21 + 6, 33 £ 17,
and 59 421 Mg (Kkms ™ 'pc?)~! for local spiral galaxies
and ULIRGs, submillimeter galaxies, and high-z galax-
ies, respectively.

A more accurate determination of the dense gas con-
version factor (e.g., between HCN and the dense molec-
ular gas mass) is needed for a complete understanding
of the relation between HCN emission, gas density and
star formation efficiency of dense gas. This requires de-
tailed knowledge of HCN emission in different systems
(e.g., ULIRGS, starbursts, low-metallicity galaxies) and
further constraints on HCN excitation conditions. As-
sessing dense gas excitation using higher-J lines of these
molecules is possible with facilities like ALMA, NOEMA
or the Submillimeter Array, and will be an important
step forward to resolve the tension between competing
star formation theories. High-resolution observations
of dust continuum emission in nearby galaxies and its
comparison to GMC-scale observations of CO and HCN
will additionally provide insight into empirical molecular
and dense gas conversion factors, as well as its variation
across different galactic environments.

6.4.2. HCN emissivity and critical density

The line ratios we employ in our study (e.g., HCN/CO)
are sensitive to density changes but also could reflect
opacity, chemical, or excitation effects. Thus, analyzing
and interpreting line ratios arising from sub-beam den-
sity distributions requires additional knowledge to probe
gas densities. In this regard more extragalactic obser-
vations of optically thin isotopologues remain crucial to
probe the optical depth, effective critical density (neg)
and isotopic abundance of high-density tracers (Jiménez-
Donaire et al. 2017a,b). As detailed in Leroy et al.
(2017a), differential excitation also plays an important
role in determining true optical depths and characteriz-
ing the emissivity properties of gas tracers. Multi-.J ob-
servations of high-density tracers like HCN, HCOT and
HNC in external galaxies have the prospect to constrain
Tkin and n of the gas.

Ideally, we are interested in knowing how much gas
mass is emitting at a given density, and how this emis-
sivity changes as a function of density. The HCN (1-0)
transition has a high effective critical density compared
to the low-J CO lines. But the mean density of HCN

emitting gas remains uncertain because even gas below
the effective critical density can emit (the emission is
subthermal), albeit with lower emissivity. In real molec-
ular clouds, there is much less mass at high density than
at low densities. If this imbalance is large enough, then
despite the lower emissivity, the high abundance of low
density gas can lead to a case where almost all emission
comes from sub-thermally excited gas. There is obser-
vational evidence that this sub-thermal emission consti-
tutes a significant contribution to the dense gas luminos-
ity of entire galaxies (e.g., Papadopoulos 2007; Aravena
et al. 2014). Thus, knowing how much of the emission we
detect comes from high-density gas is crucial to interpret
the observed HCN-to-CO and TIR-to-HCN variations.

Current Galactic surveys focusing on resolved sub-
parts of star-forming regions have investigated whether
commonly used dense gas tracers, including HCN (1-0),
are good tracers of dense gas. One of the key results
from the ORION-B survey (Pety et al. 2017) and first
conclusions from the LEGO survey (Kauffmann et al.
2017) is that most of the HCN emission comes from gas
densities n < 10*cm™3. Pety et al. (2017) and Kauff-
mann et al. (2017) find that NoH™ (1-0) is the only tracer
sensitive to high column densities (> 10*2cm™2). It is
important to note that their direct observables are, how-
ever, column densities (V) instead of volume densities, n.
Additionally, they are focused on very specific physical
conditions (strong interstellar radiation fields by young
stars and almost no embedded stars) that are inherent
to small (< 10 pc in diameter) sub-regions within Orion.
In particular, observations of pre-stellar cores and cold
filaments in Orion A and B have shown that freeze-out of
molecules onto dust grains reduces the gas phase abun-
dance of CO and other molecules, with the notable ex-
ception of NoH™T, which stays in the gas phase for a long
time (e.g., Hacar et al. 2018). Along those lines, high-
resolution simulations analyzed by Onus et al. (2018) also
show that a significant portion of the HCN (1-0) emission
comes from gas with mean densities a factor of 10 lower
than the HCN critical density. However, most of the
HCN emission originates in gas at densities ~ 2.5 — 5
times greater than the mean density of the gas (Onus
et al. 2018).

Recent efforts modelling line emission from sub-beam
density distributions (e.g., Liszt & Pety 2016; Leroy et al.
2017a) show that, while gas can indeed emit effectively
below its effective critical density, transitions with crit-
ical densities higher than the average density of the gas
show emissivities that vary strongly as the density dis-
tribution changes. Therefore the line ratios we employ
as proxies (HCN-to-CO) should be good probes of the
fraction of dense gas. These models however are subject
to uncertain factors such as fixed Ty, and fixed abun-
dances, and they only account for one main collider.

Additionally, other physical mechanisms at play in the
ISM of galaxies could increase the emissivity of HCN (1-
0) at lower densities. This is mainly motivated by the
fact that Pety et al. (2017) find that the spatial extent of
the emission of high-density tracers like HCN (1-0) does
not correlate with the Hy density that is required for col-
lisional excitation. Two possible causes of low-density
HCN (1-0) excitation are cosmic ray heating and elec-
tron collisions. Recent work by Vollmer et al. (2017)
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presents an analytic model of galactic clumpy gas disks
where, given physical properties of galaxies (e.g., size,
rotation curve, stellar mas profile), they are able to si-
multaneously calculate quantities such as the total gas
mass, gas velocity dispersion, TIR luminosity, CO SLED
and HCN (1-0) luminosity. They show that, while cosmic
ray heating does not significantly alter the CO emission,
it can increase the HCN (1-0) emission by at most a fac-
tor of two. They also show that this factor is indeed
necessary to reproduce the observed HCN emission in
ULIRGs. Goldsmith & Kauffmann (2017) and Kauff-
mann et al. (2017) additionally suggest that HCN can
also be excited by collisions with electrons. In Gold-
smith & Kauffmann (2017), the authors compute the
collisional excitation of the rotational levels of HCN,
HCO™, CN, and CS by electrons and Hy molecules. They
conclude that electron excitation of HCN (1-0) is impor-
tant at densities n < net if the electron abundance is
X(e™) > 1075, that is electron collisions dominate the
excitation of HCN molecules in regions where most car-
bon is ionized but hydrogen remains molecular.

Thus, there are a number of factors responsible for
increasing the HCN emissivity (e.g., UV, X-rays, cos-
mic rays, mechanical heating) that will always depend
on the details of the chemistry models. While tak-
ing all these factors into account is extremely complex,
a key path forward would have to involve contrasting
large scale Galactic and extragalactic observations with
predictions from simulations of ensembles of molecular
clouds, equipped with detailed chemistry models (Rah-
ner et al. 2019; Seifried et al. 2019; Bisbas et al. 2019).

7. SUMMARY AND CONCLUSIONS

We present EMPIRE, a spectral line mapping survey
that targeted A = 3—4 mm tracers of dense molecular gas
(HCN, HCO™, HNC) and the bulk-gas-tracing CO iso-
topologues (12CO, 13CO, C'®0). EMPIRE covered the
whole star-forming disk (typically out to ~ 8 — 10kpc)
of nine nearby, massive galaxies and so provides the
first sample of whole-galaxy resolved (1-2 kpc resolution)
dense gas maps.

Here we describe the survey products, which will be
publicly available from the TRAM repository and the
EMPIRE website. We use these data to investigate how
the dense gas fraction fgense, as traced by the HCN-to-
CO line ratio, and the efficiency with which this gas forms
stars, SFEgense, as traced by the TIR-to-HCN line ratio,
depend on environment and host galaxy. Our main re-
sults are:

1. We detect dense gas as traced by HCN (1-0),
HCO™ (1-0) and HNC (1-0) emission across the en-
tire galaxy sample. We employ stacking techniques
to recover the emission from low signal-to-noise re-
gions. This allows us to detect HCN out to radii
of ~ 9 — 11kpc, i.e., beyond the radius of the So-
lar Circle in the Milky Way. We detect HCO™ out
to ~ 7 — 10kpc, and HNC out to ~ 4 — 6kpc.
To first order, the HCN integrated intensity maps
show similar large-scale structure to the CO and
70 pm emission.

2. Emission from the three dense gas tracers appears
faint. On average across all EMPIRE galaxies, the

HCN-to-CO line ratio is 0.025 and the HCO*-to-
CO ratio is 0.018. HNC appears fainter, with a typ-
ical HNC-to-CO ratio of 0.011. Following this, the
average HCOT-to-HCN is 0.7, while the average
HNC-to-HCN ratio is 0.4. HCO™ shows, on aver-
age, a similar radial profile to HCN but we identify
a few cases where the HCO™-to-HCN ratio shows
a systematic increase with radius. Adopting a
(highly uncertain) standard conversion from HCN
integrated intensity to dense gas suggests that on
average ~ 6% of the molecular gas across the EM-
PIRE targets is dense HCN-emitting material.

. EMPIRE reveals a clear dependence of the dense

gas fraction, fqense, on local conditions in a galaxy
disk. fgense appears highest in galaxy centers and
decreases with increasing galactocentric radius in
all targets. At our 1-2 kpc resolution fgepse cor-
relates with the local stellar mass surface density,
the local molecular gas mass surface density, the
molecular-to-atomic gas ratio, and the local dy-
namical equilibrium pressure Ppg estimated from
hydrostatic equilibrium. All of these trends have
the sense that concentrating more gas in a deeper
potential well leads to a larger fraction of dense
gas. Our measurements agree well with those seen
in previous work (e.g., Usero et al. 2015; Chen et al.
2015; Bigiel et al. 2016; Gallagher et al. 2018a).
With EMPIRE, we quantity the relations across
the whole area of a sample of galaxies, providing
the best systematic measurement to date.

. Well-detected individual regions from EMPIRE fol-

low the same global infrared-HCN luminosity scal-
ing as a large compilation of literature observa-
tions targeting Galactic cores, individual clouds,
and whole galaxies (i.e., our data agree with Gao
& Solomon 2004; Wu et al. 2005; Garcia-Burillo
et al. 2012, among many others). That is, on aver-
age, EMPIRE shows the same TIR-to-HCN ratio
as starburst galaxies and Galactic cores. In detail,
there is significant scatter about this global scal-
ing relation. Our observations show that there are
physical, systematic variations causing this large
scatter, and that it is not the result of random
statistics.

. The TIR-to-HCN ratio also shows a systematic de-

pendence on local environment. SFEgense anti-
correlates with the stellar mass surface density,
molecular gas mass surface density, molecular-to-
atomic gas ratio, and the dynamical equilibrium
pressure. As a result, the inner regions of our tar-
gets, especially the inner 1-2 kpc, appear inefficient
at forming stars relative to their (high) dense gas
content. Our results agree with other recent stud-
ies of nearby galaxies (Usero et al. 2015; Chen et al.
2015; Bigiel et al. 2016; Gallagher et al. 2018a)
and resemble findings for the Milky Way’s Cen-
tral Molecular Zone, which also shows low SFEgense
(e.g., Longmore et al. 2013; Barnes et al. 2017;
Mills & Battersby 2017). These results reinforce
that the role of gas density in star formation is at
least somewhat context-dependent. As with fyense,
the wide field of view and complete coverage of
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EMPIRE should render our measured relationships
more general than previous work.

6. We find a correlation between dense gas fraction,
Sfdense, and the overall star formation efficiency of
the total molecular gas, SFE;., as expected by
density threshold models. However, there is con-
siderable scatter, ~ 0.2—0.3 dex in the relation-
ship between SFE,,, and fgense due to the sys-
tematic, physical variations in SFEgense described
above. Thus EMPIRE shows that in normal star-
forming galaxies, dense gas threshold models can
only hold with an accuracy of ~ 0.2—0.3 dex, which
is large compared to the dynamic range in fqense-

7. We observe significant, ~ 0.2 dex, galaxy-to-galaxy
scatter in the scaling relations between fyense and
SFEgense to environment. Much of this scatter
appears as offsets among individual galaxies. We
suggest that galactic dynamics and sub-beam gas
structure may be important additional factors at
play. We also highlight the importance of HCN
excitation studies and further investigations into
how our adopted line ratios trace the underlying
gas density distribution.
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APPENDIX A. LINE CALIBRATORS

Figure A1l show the different line calibrators observed
for the EMPIRE survey: W3(OH), IRC 10216 and
DR21(OH). The bottom panel shows the typical system
temperatures during the observations. The variations
seen over the course of the observations are of the order
of only 7%, which implies a very stable relative calibra-
tion of our observed lines.

APPENDIX B. INDIVIDUAL MEASUREMENTS AND
RADIAL STACKS

We provide every individual line-of-sight measure-
ments performed for the EMPIRE galaxy sample. Table
B1, which appears as electronic material only, includes
the integrated intensities and respective uncertainties for
each molecular line mapped (HCN (1-0), HCO™ (1-0),
HNC (1-0), 12CO (1-0), ¥CO (1-0) and C*®O (1-0)) at
each galactocentric radii.

Figures B1-B8 show the result from our spectral stack-
ing technique, applied to regions of increasing radii in the
EMPIRE galaxy sample. As detailed in Section 4.7, we
employed our well detected CO (1-0) data as a prior to
average independent spectra from the weaker, high crit-
ical density lines (HCN, HCO™ and HNC). We perform
this averaging over extended radial regions of 30”in an-
gular size (~ 1 — 2kpc), which roughly corresponds to
the angular resolution of our observations.

Table B2 provides the measured integrated intensities
in each of the radial bins displayed in Figures B1-BS8 as a
result of our stacking procedure. The full version of this
table appears as an electronic table only.

APPENDIX C. LITERATURE DATA

Table C1 provides a subset of the most up-to-date
dense gas observations in the literature, as traced by the
HCN (1-0) emission line. Its full version appears as on-
line material only. This compilation includes the data
used for constructing Figure 13. When using this com-
pilation table, please refer to the original studies of the
various datasets included.

APPENDIX D. INDIVIDUAL GALAXY TRENDS

In this Section we present the individual line-of-sight
measurements of the observed HCN-to-CO and TIR-to-
HCN line ratios in every galaxy disk as a function of
galactocentric radius (Figures D1 and D2), stellar surface
density 3, (Figures D3 and D4), molecular-to-atomic gas
ratio Ry (Figures D7 and D4) and the local dynami-
cal equilibrium pressure Ppg (Figures D9 and D10). In
all figures the light gray datapoints represent the entire
EMPIRE survey, while the light blue datapoints repre-
sent the line-of-sight measurements for each individual
galaxy. Light blue points with black outlines show points
in the galaxy where HCN is detected at S/N> 3. Dark
blue points show the stacked trends shown in Figure 14,
which indicate systematic variations of the HCN-to-CO
(as a proxy for the dense gas fraction) and IR-to-HCN
(as a proxy for the star formation efficiency of the dense
gas) line ratios as a function of galactic environment.

APPENDIX E. ALTERNATIVE SFR TRACERS

In this paper we make use of TIR emission, calculated
from a combination of A = 70, 160 and 250 ym Herschel



38 Jiménez-Donaire et al.

Line: HCN o= 7.0%

AT AES calw3oh calirc10216 caldrZ g
Vo128 —-
™~ 1.0 E o ®ea® o cots®e®®eo.e 20000500 ,0 00,90 ooscoe - coooate
v Ve e T FeeTETE - hhhdd - e T oy 0,0T0TF, T T T Tee]
= 82? «** % =
— 250 E- =
X 200 =
o 190 ?‘_,—\_,J_Ll_l—"‘—'_‘_,_\_r\—l_‘—’_'_l—l_,_r =
> 100 Ex W — =
— 58 =

5.2
5
5
5
5
5
6_
6_
6_.
6
6
6
_1
_2
1
5.2
5.1
5.2
1
5.2
_1
7ouaT>2

| —
|

****mm‘m‘mm‘ ‘Lo‘mmmmmmmmmmmmg@@fffﬁfﬁfLOLO fffff DD NONWD EEOEOOO === & ©OOOO (oo OO
Dt s e e g P T b O, > > > > @O QOO T e e e
0888ccccccccc PO R e Oy 30Ccc0000000555000003333333C5C5€E688000000ccccc=—2I999339Y
0002222223220 00 unn00000E22EEEEEEECOOEEEEECCCccccc 28900 EEEEEER22223232353c00000000
OORONOODOO——NMNROAO— — 0O~ NMMTFNONODONMMIODO—NTION0DONONONM T 0O N — NN WO — NS OO MM S < OO O~
OO0~ —ANANNNN————ANNO——ANNOOOOOOOOO~NNNOO———0OO000O0O0~ 0O~~~ 0O0O0O0OO0OO0OOOOOONNNNNM v v v v v v v

Fic. Al.— HCN (1-0) integrated intensity for each day and line calibrator, divided by the mean of all measured intensities (top panel).
During the EMPIRE observing runs, three different line calibrators were used: W3(OH), IRC 10216 and DR21(OH).
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FiG. Bl.— Same as Figure 2 but for NGC 0628. Stacked CO (1-0), HCN(1-0), HCO™ (1-0) and HNC(1-0) in 30" (~ 1.5kpc) radial bins.
Galactocentric radii are shown in units of kpc.

TABLE B1
TABLE OF INDIVIDUAL LINE-OF-SIGHT MEASUREMENTS
Galaxy Radius IHCN AHCN IHCO+ AHCO+ IHNC AHNC Ilzco
725 (Kkms ') (Kkms!) (Kkms!) (Kkms!') (Kkms!') (Kkms!) (Kkms!)
NGC 628  0.00 0.21 0.05 NaN 0.14 NaN 0.22 7.67
NGC 628  0.06 0.14 0.04 NaN 0.13 NaN 0.22 7.12
NGC 628  0.06 NaN 0.14 NaN 0.14 NaN 0.23 6.86
NGC 628 0.06 NaN 0.14 NaN 0.15 NaN 0.22 7.04
NGC 628  0.06 NaN 0.16 NaN 0.14 NaN 0.21 6.88
NGC 628  0.06 NaN 0.15 NaN 0.14 NaN 0.19 7.05

NGC 628 0.06 NaN 0.16 NaN 0.16 NaN 0.24 6.86

Notes: Uncertainties: 1) Where intensity measurements are below the significance threshold (3c RMS), columns 3-14 contain NaN for
the integrated intensities, and upper limits to the emission in the respective uncertainty column. 2) The data were sampled at a common
angular resolution of 33”. 3) The full version of this table appears as online only material.
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F1G. B2.— Same as Figure 2 but for NGC 2903. Stacked CO (1-0), HCN(1-0), HCO™* (1-0)
Galactocentric radii are shown in units of kpc.
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FiG. B3.— Same as Figure 2 but for NGC 3184. Stacked CO (1-0), HCN(1-0), HCO™ (1-0) and HNC(1-0) in 30" (~ 1.5kpc) radial bins.

Galactocentric radii are shown in units of kpc.
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Fic. B4.— Same as Figure 2 but for NGC 3627. Stacked CO (1-0), HCN(1-0), HCO™ (1-0) and HNC(1-0) in 30" (~ 1.5kpc) radial bins.
Galactocentric radii are shown in units of kpc.
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F1G. B5.— Same as Figure 2 but for NGC4254. Stacked CO (1-0), HCN(1-0), HCO™ (1-0) and HNC(1-0) in 30" (~ 1.5kpc) radial bins.
Galactocentric radii are shown in units of kpc.
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Fic. B6.— Same as Figure 2 but for NGC 4321
Galactocentric radii are shown in units of kpc.
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Fic. B7.— Same as Figure 2 but for NGC 5055
Galactocentric radii are shown in units of kpc.
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FiG. B8.— Same as Figure 2 but for NGC 6946. Stacked CO (1-0), HCN(1-0), HCO™ (1-0) and HNC(1-0) in 30" (~ 1.5kpc) radial bins.

Galactocentric radii are shown in units of kpc.

TABLE B2
TABLE OF INDIVIDUAL RADIAL PROFILES
Galaxy Radius IHCN AHCN IHCO+ AH00+ IHNC AHNC Il2co
(kpc) (Kkms™!) (Kkms™!) (Kkms!') (Kkms™!) (Kkms ') (Kkms™!) (Kkms 1)
NGC 628 1.02 0.08 0.04 0.06 0.00 0.04 0.00 6.54
NGC 628 2.05 0.05 0.03 0.02 0.00 0.04 0.00 4.62
NGC 628 3.27 0.05 0.02 0.03 0.02 0.02 0.00 4.01
NGC 628 4.65 0.04 0.02 0.03 0.02 NaN NaN 2.69
NGC 628 7.00 0.04 NaN 0.01 NaN NaN NaN 1.09
NGC 2903  0.73 1.16 0.04 0.81 0.05 0.31 0.06 31.38

NGC 2903 1.78 0.68 0.02 0.42

0.03 0.29 0.02 23.96

Notes: Uncertainties: 1) Where intensity measurements are below the significance threshold (30 RMS), columns 3-14 contain NaN for
the integrated intensities, and upper limits to the emission in the respective uncertainty column. 2) The full version of this table appears
as online only material. The radius provided corresponds to the outer edge of each selected ring.

bands following the prescription from Galametz et al.
(2013), as our main SFR tracer. TIR emission is a com-
mon SFR tracer in other galaxies (e.g., Gao & Solomon
2004; Garcia-Burillo et al. 2012; Usero et al. 2015; Bigiel
et al. 2016), which makes it our preferred tracer for a
comparison to prior work. The method rests on probing
IR emission over the full IR range from dust heated by
UV emission from recent star formation. However, one of
the main caveats to its usage is that TIR emission is sen-
sitive to stellar populations up to ~ 100 Myr (Kennicutt
& Evans 2012).

An alternative approach is to use a tracer sensitive
to more recent massive star formation, like Ha emission
(~ 10Myr). These need to be carefully corrected for
extinction, however, which is commonly done in other
galaxies by combining them with mid-IR measurements
accounting for reprocessed starlight at shorter wave-
lengths. Here we use two of these “hybrid” SFR tracers
to test for systematic effects in our results by our specific

choice of SFR. The first calibration is a linear combina-
tion of Ha and 24 pm emission following Calzetti et al.
(2007):

YSFR
——————— =634 Iy, + 0.0025 Iog 0, 21
Mg yr—'kpe™? f 2 1)

1 2

where Iy, is in units of erg s™" cm™ st~ ! and I24m in
MJy sr~!. We also employ a linear combination of FUV
intensity and 24 ym emission, as proposed by (Leroy
et al. 2012),

YSFR

W = 0.081 IFUV + 0.0032 I24#m, (22)
©

where Ipyy is in units MJy sr—1.

In Figures E1 and E2 we plot the SFE4ense calculated
using these two SFR tracers, instead of the TIR emission,

as a function of one of our environmental parameters,
Y. We do this for all the galaxies observed in EMPIRE.
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TABLE C1
DENSE GAS LITERATURE COMPILATION

Reference

Gracia-Carpio et al. (2008)

logio(Lir) _ logio(Lucn)
(Le) (K km s~ ! pc?)
12.26 9.26
12.24 9.06
12.18 9.19
12.07 9.10
11.99 8.86
11.98 8.85
11.88 9.00
11.86 8.81
11.66 8.77
11.61 8.75
11.54 8.43
11.53 8.30
11.41 8.05
11.23 7.87

11.36 8.30

Notes: This table is a literature compilation, and its full version appears as online only material. Please ensure to cite each individual

study when making use of the contents of this table.

When compared to SFEgenge from TIR emission in Fig-
ure D4, Figures E1 and E2 show that there are minimal
differences in our trends (up to a ~ 20% level), suggest-
ing that most of the radiation associated with recent star
formation is reprocessed by dust. The results presented
in this paper appear, therefore, robust with respect to
the choice of SFR tracer.

For a more detailed study of the choice of SFR trac-
ers, we refer the reader to the previous analyses in Usero
et al. (2015) and Gallagher et al. (2018a). They find the
same trends exist when using a selection of SFR tracers:
TIR, He, 24pum and FUV data, as well as the hybrid
combinations of 24um and Ha, and 24pm and FUV. In
Gallagher et al. (2018a) they additionally find that, for
the majority of regions of interest (inner ~ 3 — 5kpc)
in their galaxy sample, the contribution from the unob-
scured FUV and Ha emission is significantly much lower
than any estimate that involves IR emission.

APPENDIX F. PHYSICAL VARIATION IN THE IR-TO-HCN
RATIO

Our main results for star formation efficiencies in the
different galaxy disks we analyzed suggest a variation in
the SFE with respect to several environmental parame-
ters somehow interconnected (radius, stellar surface den-
sities, molecular-to-atomic gas ratios and local dynam-
ical equilibrium pressure, Figures D3 to D10). Before
we continue to interpret the physical mechanism behind
the line ratio variations, we assess whether they could be
driven by the noise in the HCN data. We build a simple
Montecarlo test that includes the uncertainties on the
data which can be significant. The null hypothesis of
this model is that the underlying true ratios:

HCN
TR * ¢

(23)
are constant, C'. We compute random values that will be
added to our HCN emission measurements as randomly
generated values within the range of actually observed
HCN uncertainties in our data. After that, we compute

new, synthetic ratios as:

HCN  C x TIR + A(HCN)
TIR IR

As seen above, we perturb the HCN observations with
different, random values per data point, realistic within
our observations to check if the observed scatter in Fig-
ures D9 to D10 can be explained. We perform 10° re-
alizations of the experiment and we compute the mean
IR-to-HCN ratio obtained among them, as well as the
standard deviation from the mean. We also repeat the
experiment for a range of possible values of C', which
is initially determined from the positions in the galaxy
disks where we have high SNR measurements of HCN.

Figure F1 shows the simple Montecarlo test for the
EMPIRE data set. It displays the HCN-to-TIR ratio as
a function of the TIR emission computed in every indi-
vidual sampling point for every particular galaxy. The
EMPIRE original observations are shown as dark blue
points, whereas the light blue points reflect the mean
value of a constant HCN/TIR model from 105 realiza-
tions. In those models, as described above, the HCN
value includes a random, realistic perturbation within
the range of the observed uncertainties. The various
panels show the different cases obtained depending on
the constant chosen for the model, which is initially in-
ferred from our high SNR measurements in the galaxy.
The error bars are the (1o) standard deviations from the
modeled points in 10° realizations. Every panel of Figure
F1, for all galaxies, shows that there are variations in the
HCN-to-TIR ratio for both high and low TIR values, and
the amplitude of these variations cannot be explained by
our Montecarlo test. We quantify this by calculating
the ratio between the typical standard variation of every
particular EMPIRE galaxy and its Montecarlo simulated
data. This quantity is shown in the y-axis of Figure F2,
as a function of the TIR luminosity. Every data point
corresponds to an independent TIR bin where the stan-
dard deviations for the real and the simulated data are
computed. The different colors correspond to each EM-
PIRE galaxy. Figure F2 shows that the vast majority

. (24)
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F1G. D1.— HCN-t0-CO ratio (left axis) and Ygcn/2co (right axis), tracing the dense gas fraction, as a function of the normalized
galactocentric radius r/r25. Each data point represents a ~kpc-size measurement per line of sight. Grey points show all EMPIRE lines of
sight. Light blue points indicate meaurements for each selected galaxy. Points with black outlines show regions where HCN is detected at
S/N>3. Dark blue points show the stacked HCN data, which recovers signal in low S/N regions; downward arrows give a lower limit to the
ratio in those regions where HCN is not detected. The dense gas fraction in all galaxy disks appears to decrease at larger galactocentric
radii. We note that the plots above are in logarithmic scale, therefore non-detections with negative values cannot be represented. These
are, however, taken into account in the stacked intensities.

of data in EMPIRE has a much larger scatter than the
expected one from our Montecarlo realizations. The only

exception is NGC 3627, which shows a comparable scat-
ter in the real and simulated data across its entire disk,

PASP, 123, 1218

except for its very central position. Therefore there are
real and systematic variations beyond what we can ex-
pect from the noise; there must be physical and chemical
processes responsible for the even larger scatter at low

TIR values.
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Fi1a. E1.— SFEgense as a function of the stellar surface density of stars for the EMPIRE galaxies. The SFE4cnse has been calculated
using a linear combination of 24 um and Hea intensities as a SFR tracer. The grey points correspond to every line-of-sight measurement,
light blue points surrounded by black circles represent measurements above the 30 detection limit, and dark blue points represent our
stacked results.
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Fia. E2.— Same as Figure E1, but using a combination of 24 um and FUV intensities to calculate the SFR and SFE4ense-
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Fic. F1.— Montecarlo realizations for the observed galaxies. The EMPIRE original data are shown as black points, whereas the perturbed
points for a null hypothesis of SFE = C are shown in light green areas. The different panels show the case for each galaxy, for a typical
C value equal to the median HCN/IR value in each galaxy. The error bars correspond to the 1o standard deviations from the modeled
points in a sample of 10° realizations.
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