RECOGNIZING GALOIS REPRESENTATIONS OF K3 SURFACES

CHRISTIAN KLEVDAL

ABSTRACT. Under the assumption of the Hodge, Tate and Fontaine-Mazur conjectures we
give a criterion for a compatible system of f-adic representations of the absolute Galois
group of a number field to be isomorphic to the second cohomology of a K3 surface. This is
achieved by producing a motive M realizing the compatible system, using a local to global
argument for quadratic forms to produce a K3 lattice in the Betti realization of M and then
applying surjectivity of the period map for K3 surfaces to obtain a complex K3 surface.
Finally we use a very general descent argument to show that the complex K3 surface admits
a model over a number field.

1. INTRODUCTION

This paper grew out of an attempt to answer a question on the section conjecture for moduli
spaces of K3 surfaces, inspired by recent work of Patrikis, Voloch and Zarhin [PVZ16]. In this
paper, the authors study the section conjecture for the moduli space of principally polarized
abelian varieties. The section conjecture for a (geometrically connected) variety X over a
number field K relates the set of rational points X (K) with the sections of the fundamental
sequence

1 —>7T1(X) —>7T1(X) —T'g—1

(we omit base points for the étale fundamental group and, for any field K, write I'x =
Gal(K/K) for the absolute Galois group with a fixed algebraic closure K, and X the
basechange of X to K). Given a rational point x: Spec(K) — X, functoriality of 7, gives a
section I'y — m1(X) and this defines a map ox: X(K) — H(K, X) where H(K, X) is the
set of sections up to conjugation by 71(X). The section conjecture for X states that the
map oy is a bijection. Of course, for general X this map is far from a bijection, so we would
want to find a class of varieties suitably determined by their fundamental groups. These are
the so called anabelian varieties introduced by Grothendieck in his letter to Faltings [SLI7]
pages 49-58. Grothendieck suggested that hyperbolic curves, moduli spaces of curves and

(less emphatically) moduli spaces of abelian varieties should all be anabelian.

It is known that moduli spaces A, of abelian varieties should not be anabelian by results of
Thara and Nakamura [IN97]. However, theorem 1.1 of [PVZ16] shows that under the assump-
tion of well known motivic conjectures, a large subset of sections So(K, A,) C H(K,A,) is
contained in the image of o4, , where the sections Sy(K, .A,) are those coming from points
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locally. The authors are able to prove this by reducing to a question about Galois represen-
tations. More specifically there is a short exact sequence

1 —— m(A) —— m(A,) y T > 1
Eol ] »
1 — SpQg(Z) — Gszg(Z) s 7% > 1

Given a section s: I'x — m1(A,) composition with the middle arrow gives a collection of (-
adic representations {pg: I'x — GSpy,(Z¢)}¢. The fact that the left arrow is an isomorphism
shows that the sections H (K, A,) are determined by their associated ¢-adic representations.
Then the authors use well known conjectures to find conditions on a collection of ¢-adic
representations {p,} that ensure they are isomorphic to the ¢-adic Tate module of an abelian
variety [PVZ16, Thm 3.3]. The proof of theorem 3.3 proceeds by using these conjectures to
find a motive underlying the collection of ¢-adic representations. Taking Betti realization of
this motive gives a Hodge structure that has the Hodge weights of an abelian variety. Using
Riemann’s theorem one can show that this Hodge structure is isomorphic to the Hodge
structure on the first homology of an abelian variety.

One might ask whether [PVZ16, Thm 3.3] can be generalized to other classes of varieties. In
order for the above method to work, such a class of varieties would require an analogue of
Riemann’s theorem, which gives a criterion for an abstract Hodge structure to appear in the
(co)homology of a variety. After abelian varieties, the most natural class of varieties with this
property is K3 surfaces, where surjectivity of the period map is known. Our main theorem
is precisely the analogue for K3 surfaces of [PVZ16, Thm 3.3]. We find a set of conditions on
a weakly compatible system of ¢-adic representations (for all £) to relate them to the weakly
compatible system H?(Xz, Q) for varying primes . We now make this precise.

Let K be a number field and S a finite set of rational primes. A collection of Galois
representations {p;: ['x — GL,(Qy)}rgs is said to be weakly compatible if there exists a
finite set X of finite places of K satisfying

I. For each ¢ ¢ S the representation p, is unramified outside ¥, U Y where ¥, is the set
of places of K lying over /.

I1. For each ¢ ¢ S and each place v of K not in >, U X, the characteristic polynomial
of pe(Fr,) has rational coefficients and is independent of ¢ (here Fr, is a geometric
Frobenius element at v).

Now let A = U®3 @ Fg(—1)®? be the K3 lattice. Fix a basis e, f of the first copy of the
hyperbolic plane U such that (€)? = (f)? =0 and (e, f) = 1. We prove the following

Theorem 1.1. Let K be a number field. Assume the Hodge, Tate and Fontaine-Mazur
conjectures. Let {ps: T'x — O(A ® Qy)} be a weakly compatible system (with S empty) of
semistmple representations such that

(1) There exist an integer d > 0 such that for all but finitely many primes £, (e+df)®1 €
(A ® Q1))

(2) For some Ly, pe, is de Rham at all v|ly.
(3) For some {1, Endr, (ps,) = Qo & Qy, .
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(4) For some ly and some v|ly, py,|r,, is de Rham with Hodge-Tate weights 0,1,2 of
multiplicities 1,20, 1.

Then there is a K3 surface X over a finite extension L of K such that ps|r, = H*( Xz, Q)
for all ¢.

The primes (o, {1, {5 could all be the same. Conditions (1), (2) and (4) are of course necessary
conditions for the collection {p,} to be isomorphic to H?(X7, Q,) for X a K3 surface with
a polarization of degree 2d. Condition (3) is an irreducibility condition (similar to the
hypothesis of absolute irreducibility in [PVZ16, Thm 3.3]) and is satisfied by the cohomology
of the generic K3 surface, i.e. those of geometric Picard rank 1 with Endr, (H?*( X7, Q/)) =
Q¢ ® Q. Suppose X is a K3 surface over K C C. Recall that for any complex K3 surface
there is a decomposition of rational QQ-Hodge structures

H*(Xc,Q) = (NS(X¢) ® Q) & (T(Xc) @ Q)

of the rational Q-lattice NS(X¢) ® Q and its orthogonal complement 7'(X¢) ® Q. A theorem
of Zarhin [Zar83, Thm 1.4.1] shows that T'(X¢)®Q is an irreducible Q-Hodge structure. The
Mumford-Tate conjecture, which is known for K3 surfaces by Tankeev [Tan91], then shows
that condition (3) is satisfied by H?*(X7, Q¢) when T'(X¢) ® Q is an absolutely irreducible
Q-Hodge structure, and the I'k-action on

NS(X%) ® Qi = NS(X¢) ® Q,
is absolutely irreducible.

Our final remark regards the last section of the paper. The main result of this section, lemma
6.3, shows a rather general criterion for the rigid descent of a variety X over an algebraically
closed field €2 of characteristic zero to an algebraically closed subfield k& C €.

1.1. Questions. In the recent preprint [Ball8], Baldi independently proves an analogue of
theorem 1.1 above for K3 surfaces whose Picard rank p satisfies 12 < p < 20. This is theorem
1.2 of [Ball8] where he shows for representations

{pgi I'y — G122—p<Q€)}E

satisfying analogues of conditions (2), (3) and (4) above, there is a finite extension L of K
such that ps|p, is isomorphic to T'(X7)g,. The main question given our result and that of
Baldi is whether we can take L = K for the field of definition of the K3 surface X, or at
least if the degree of the finite extension can be bounded.

In both Baldi’s work and this paper, the arguments of [PVZ16] are immediately extended
to get a Q-Hodge structure V' of K3 type from the collection of ¢-adic representations. The
next key step, which is unique to the K3 case, is to produce a lattice inside this Q-Hodge
structure and to show that this lattice is isomorphic to a (sub-)polarized Z-Hodge structure
of H*(X,Z) for some complex K3 surface X. In Baldi’s paper, this is done by picking any
lattice T C V and then using an embedding theorem of Nikulin to get an embedding of
T into the K3 lattice A = U®3 & Eg(—1)®2. Then one shows that the Hodge structure
induced by T on A is of K3 type and hence, by surjectivity of the period map, isomorphic to
H?*(X,7Z) for a K3 surface X over C. Baldi’s requirement that 12 < p < 20 is a consequence
of the fact that this is the range for which the embedding theorem holds. For our proof,
we show that V = A ®; Q as quadratic spaces and thus produce a Hodge structure on
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the K3 lattice A from which we can apply surjectivity of the period map. In light of our
theorem and Baldi’s theorem it is natural to ask whether such a theorem holds for ‘Picard
rank’ 2 < p < 11, i.e. compatible system of representations {p;: I'x — O(A ® Q) } which
decompose as py = V, & Qu(—1)%° with V; irreducible (and satisfying conditions (2) and (4)
of theorem 1.1). The author does not believe that the proofs of this paper or those of Baldi
can be adapted to prove an analogous theorem for 2 < p < 11.

Our original motivation was to apply theorem 1.1 to answer a question about the section
conjecture for moduli spaces of K3 surfaces, as was done in [PVZ16, Thm 1.1] for abelian
varieties. The moduli space we are interested in is the space Faq, using the notation of [Riz06],
classifying primitively polarized K3 surfaces of degree 2d. Using the following diagram

1 — 7T1(]:2d — M ]:Qd > FK > 1

| 2

O(A2q ® Z)

we can associate to each section s € H(Faq, K) an O(Agg ® Z) representation. If we knew
that this map was a bijection then an analogue of [PVZ16, Thm 1.1] could be proven.
However, a computation of the group 7(Fq) seems difficult. One approach might be to
compute the topological fundamental group of the complex analytic space F3] and then
compare the profinite completion to a suitable orthogonal group. The domain F3} has an
explicit description as the quotient by an orthogonal group of the complement of an infinite
union of hyperplane sections in a period domain D, see [Huy16, Remark 6.3.7]. Given this
explicit description, one may be able to compute the topological fundamental group. This is
expected to be very large, containing an infinitely generated free group generated by loops
around the hyperplane sections. These are the sorts of groups that are not residually finite,
and the kernel to the profinite completion can be very large, see [Tol93]. So while 7;°%( 2d)
is very far from any orthogonal group, it may happen that the ‘non-orthogonal’ part gets
killed in the profinite completion.

Finally, the last question that naturally follows from this is paper is whether there are
analogues of theorem 1.1 for hyperkahler varieties. There are known results on surjectivity
of the period map and global Torelli theorems are known for hyperkahler manifolds, see
[Huy10], so it may be reasonable that methods in this paper could work for such varieties.

1.2. Terminology. Throughout the paper, K will be a number field with a fixed algebraic
closure K. We write 'y = Gal(K/K) for the absolute Galois group.

If K is a field, and F' a field of characteristic 0, we denote by Mg r the category of pure
numerical motives over K with coefficients in F. If F' = Q we simply write M. The functors
Hy, Hg, Hyr are the (-adic, Betti and algebraic de Rham realization functors. Implicitly
whenever we write any of these functors, we are assuming the conjecture that numerical
equivalence is equal to homological equivalence for that cohomology theory, and in this way
the realization functors may be defined on numerical motives.

See section 2 for notation about quadratic forms and lattices. If V and W are either both
Z-Hodge structures or Q-Hodge structures equipped with pairings (e.g. polarizations) then
amap V — W is called a Hodge isometry if it is an isomorphism of Hodge structures that
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also respects the pairings. All K3 surfaces are smooth and projective. We write Q-HS for
the category of Q-Hodge structures.

1.3. Acknowledgements. It is a pleasure to thank Stefan Patrikis, for suggested this prob-
lem to me, for his patient guidance and for the many helpful discussions we had. I would
also like to thank Domingo Toledo for some helpful discussions.

2. QUADRATIC FORMS AND LATTICES

2.1. Notation. If F'is a field of characteristic zero, a quadratic space over F' consists of a
vector space V with a non degenerate symmetric bilinear pairing V@V — F' (or equivalently
a quadratic form on V'). Of interest to us are quadratic spaces over Q,Q, and R. When
we talk about a lattice T', we mean a finitely generated free abelian group 7" with a pairing
(+,-): T x T — Z that is non degenerate.

2.2. Lattices associated to K3 surfaces. We write U to denote the hyperbolic plane and
FEy the lattice associated to the Dynkin diagram FEx.

Example 2.1. Let A be the lattice U®3 @ Eg(—1)®2. The disciminant d(A) = —1 so A is
even, unimodular and has signature (3,19). This is called the K3 lattice, because if X is a
K3 surface over C, then the singular cohomology H?(X,Z) with the cup product pairing is
isomorphic to A. See [Huy16].

We will need the following lemma for the proof of the main theorem.

Lemma 2.2. Let A be the K3 lattice. Then there exists a Q-quadratic space V' of signature
(r,s) such that V ®q Q, = A ®z Q, for all finite primes p if and only if (r,s) is one of the
following pairs:

(19,3),(15,7),(11,11),(7,15),(3,19)

Proof. By [Cas08, Thm 1.3, pg 77] and the fact that we know that the local data, we compute

H (V) = H p(A) = co(A) = —1

pFoo pFoo

(here we use theorem 1.3, page 77; theorem 1.2, page 56 loc. cit.). Again those same two
theorems and the fact that we know the local data imply that (—1)*¢=1/2 = —1 s0 s = 2,3
mod 4. By the Grunwald-Wang theorem, we can assume that d(V') = d(A). Therefore by
[Cas08, Thm 1.2, pg 56] we have (—1)°* = —1. We conclude from theorem 1.3 page 77 loc. cit.
that the required V will exist if and only if s =3 mod 4. Therefore the possible signatures
are (19,3), (15,7), (11,11),(7,15), (3, 19). O

3. K3 SURFACES

3.1. Facts about K3 surfaces. For convenience of the reader, we recall facts about K3
surfaces that we will use. All proofs may be found in the book [Huy16] whose terminology
we use.
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Let V be a finite free Z or Q-module. A Hodge structure of K3 type on V is a weight 2
Hodge structure such that V2% V%2 are 1-dimensional and V% = 0 for |i — j| > 2. Let A
be the K3 lattice (see example 2.1). The period domain D is defined as

D:={z € P(A¢): (2,7) >0, (x)*>=0}

Given an element x € D we get a unique polarizable Hodge structure of K3 type on A
satisfying A?% = 2 and « L AY'. The key fact that we use about K3 surfaces is the
surjectivity of the period map, which we recall here.

Theorem 3.1 (Surjectivity of the period map, [Huy16, Ch. 6, Rmk 3.3]). For any x € D

there exists a K3 surface X and a Hodge isometry @: H*(X,Z) = A such that ¢=*(z) spans
H?%(X).

Following the definition of [Huy17], two complex K3 surfaces X and X’ are isogenous if there
exists a Q-Hodge isometry H?(X,Q) = H?*(X',Q). We record the following lemma to be
used later.

Lemma 3.2. Let X be a complex K3 surface, and let S(X) be the set of isomorphism classes
of complex K3 surfaces Y that are isogenous to X. Then S(X) is countable.

Proof. The lemma will follow from a theorem of Huybrechts along with the countability of
the Brauer group of a surface and finiteness results on Fourier-Mukai partners of twisted K3
surfaces. Recall that a twisted K3 surface (S, «) consists of a K3 surface S and an element
« of the Brauer group of S. The set of twisted Fourier-Mukai partners of (S, a) is

FM(S,a) = {(S",&/) | there is an equivalence D°(S,a) = D°(S',a/)}/ =

where D’(S,a) is the derived category of a-twisted coherent sheaves on S. All that is
important for us is that for any K3 surface S and any o € Br(X) the set FM(S, ) is
countable, see [Mal0, Prop 4.3]

Let Y € S(X). Then by [Huyl7], we can find Brauer classes o € Br(X) and g € Br(Y),
complex K3 surfaces S1,...,S, and Brauer classes a;, 8; € Br(S;) for i = 1,...,n such that
there is a chain of equivalences

(Xu Oé) ~FM (517041), (51751) ~FM (52,042)7 Sy (Sn—hﬁn—l) ~FM (SmOén), (Smﬁn) ~FM (Y7 5)

Where we use ~g\r to denote the relation of being a twisted Fourier-Mukai partner. Further,
we may assume n < 22. Recall that Br(S;) = H?(S;, O3 )tors- From the exponential sequence,
we get an exact sequence

0— H'(X,05) = H*(S;, Z) — H*(S;,0s,) = H*(S;,05) = 0

and hence H?(S;,Og,) is isomorphic as groups to C/Z®?2~7(5) Tt follows that Br(S;) is
isomorphic to (Q/Z)®?2=°5) which is countable. Hence, given X there are only countably
many options for a and by countability of FM (X, ) only countably many options for (S7, ).
Likewise, there are only countably many options for $; and hence only countably many
options for (S, ). Proceeding in this fashion we conclude there are only countably many
options for Y. O
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4. MOTIVIC SETUP

We recall basics facts about motives and refer the reader to [And04] for details. For a field K,
write Py for the category of smooth projective varieties over K. If F'is a field of characteristic
zero we write Mg p for the category of pure homological motives over K with coefficients
in F'. There is a functor h: Px — Mg r that functions as a universal cohomology theory,
meaning that if H*: Py — F-Alg is a Weil cohomology theory, then H* extends uniquely
through h to a functor Mg p — F-Alg. Under the hom = num conjecture (which says that
numerical equivalence is the same as homological equivalence) then the category Mg p is
a semisimple rigid abelian tensor category by [Jan92] (for all of the categories of motives
appearing in this paper, the hom = num conjecture is a consequence of the Hodge or Tate
conjecture, which we will assume). A choice of a Weil cohomology theory H* that extends to
M pis a fiber functor, making Mk p a neutral Tannakian category. Thus by general theory,
we have an equivalence between Mg r and RepgKyF(F ), the category of F' representations

of the pro-reductive algebraic group Gr r = Aut® H*. We recall the most basic examples of
fiber functors, and the extra structures they carry.

Example 4.1. Let K be any field, K*° be a separable closure and ¢ a prime. For X smooth
projective over K, the f-adic cohomology Hy(X) = HZ(Xgser, Q) is a Weil cohomology
theory on Pg. Further, Hy(X) has a natural I'x = Gal(K®P/K)-action, and we write
Hy: Mg g, — Repg,(I'k) for the enriched (-adic realization functor. The Tate conjecture
asserts that H, is fully faithful when K is a number field.

Example 4.2. Let K = C. For a smooth projective variety X over C we can form the
corresponding complex-analytic manifold X*". Singular cohomology Hp(X) = H,,(X*",Q)
is a Weil cohomology theory on Pc. Further, Hg(X) has a Q-Hodge structure, and we write
Hp: M¢ — Q-HS for the enriched Betti realization functor. The Hodge conjecture asserts

that Hpg is fully faithful.

Example 4.3. Let K be a field of characteristic 0. For a smooth projective variety X
over K we have the algebraic de Rham complex Q% K Algebraic de Rham cohomology
Hap(X) = H*(X, Q%) is a Weil cohomology theory on Pk (with coefficients in K'). Further,
Har(X) has a filtration, and we write Hyr: Mg x — Filg (with Filg the category of filtered
K-vector spaces) for the corresponding enriched de Rham realization functor.

For a given embedding ¢: Q — Qy let H, be the composition M k3 — My, — Repg,(Fk).
The following lemma is taken from [PVZ16], with a slight weakening of the hypothesis due
to [Mool7], in which it is shown that the Tate conjecture implies the Grothendieck-Serre
semisimplicity conjecture.

Lemma 4.4 (Lemma 3.3, [PVZ16]). Assume the Tate and Fontaine-Mazur conjectures,
and let K be a number field. If ro: T'x — GLN(Qy) is an irreducz’ble_geometric Galois
representation. Then there exists an object M of M5 such that r, ®q, Q; = H,(M).

5. PROOF OF MAIN THEOREM

The first part of the proof follows closely that of [PVZ16, Thm 3.1], the main difference
being that we have to worry about carrying the bilinear form through the motivic yoga.
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Proof of theorem 1.1. Let {pe: I'x — O(A ® Qy)} be as in the theorem. Fix an embedding
w: Q— @- Then from lemma 4.4 (which extends to semisimple geometric representations)
we have a motive M in Mg such that H,,(M) = pg, ® Qq,. In fact, M has coefficients
in some finite extension E of Q inside Q. Let p: G ke — GLao g be the associated motivic
Galois representation. Now ¢y induces some place A\g of E. If A is a finite place of E (say
A | €) let py be the A-adic realization of p. Then as in [PVZ16], for almost all places v of K
there is an equality of the rational numbers

tr(pa(Fry)) = tr(px, (Fro)) = tr(pg (Fry)) = tr(pe(Fr, ).

By Brauer-Nesbitt, a continuous semisimple Galois representation p of I'x is determined by
tr(p(o)) for o in a dense subset of I',. By Chebotarev we may take the collection Fr, for v
as above and conclude that
px = pe Qq, B

for all \. Conditions (1) and (3) of our assumption say for a place A\; | ¢; that py,, ® E), (1)
splits as a sum of the trivial representation and an absolutely irreducible representation. By
the Tate conjecture, we conclude that p = 1(—1) @ p’ (where 1(—1) is the Tate twist of 1)
with p’ absolutely irreducible. It follows that each p, is isomorphic to Qu(—1) & V; with V}
an absolutely irreducible representation of I'.

Lemma 3.4 of [PVZ16] shows that p’ descends to Q, and clearly 1(—1) does, hence p descends
to Q. We have I'g-equivariant pairings p; ® py — Qy, and thus there are pairings p) ®g p) —
FE\. By the Tate conjecture, there is an isomorphism

'k

)QK,E

(Sym?pj; ®p E\ = (Sym®py)

Hence we get a non degenerate G g-equivariant pairing pp @ pr — E. However each local
pairing descends to Q,. By Galois descent the map

Homg, (p ®g p, Q) — Homg, ,(pr ® pg, E)'°
is an isomorphism, and therefore the pairing on pgr descends to a pairing p ®g p — Q.

Now that we have a motivic Galois representation p: Gx — GLg22 g Whose (-adic realizations
are py, we can do some comparisons. Let M € M be the corresponding rank 22 motive.
Objects of Mk enjoy the de Rham comparison theorem of p-adic Hodge theory. In particular,
for v and ¢ as in condition (4) there are isomorphisms:

Har(M) ®x Bark, — Hi,(M) ®q,, Bir x,

Hence
I'k,

Hayp(M) @k Ky = Dark,(He,(M)) = (HKZ(M) ®qy, Bd&m)
By assumption (4) and the comparison isomorphism, the Hodge filtration on H,z(M) satisfies

1 ifi=0,2,
dimg gr'Hygg(M) = { 20 if i =1,
0  otherwise.

The Betti de-Rham comparison theorem states that

Har(M|c) = Hp(M) ®q C,
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so Hg(M) is a Hodge structure of K3 type. It is also a Q-quadratic space, coming from
the motivic pairing. We will show that there is an isomorphism of (Q-quadratic spaces
Hp(M) =2 A®Q with A the K3 lattice U®*@® Eg(—1)®2. First, note that we have comparison
isomorphisms Hg(M)®Q, = Hy(M) that respect the pairings on both spaces. By assumption
Hy(M) = A®Q as quadratic spaces, so to show that Hg(M) = A ® Q it is enough to show
that Hg(M) has the same signature as A, which is (3,19). Now M = 1(—1) & M’ with
M’ absolutely irreducible. Thus we have an orthogonal decomposition of Hodge structures
Hp(M)=Q(—1)® Hg(M') with Hg(M’") irreducible.

We compute the possible signatures on Hg(M’). First, there is a smooth projective X such
that M’ < h*(X)(j) for some integers k, j where h*(X)(j) is the motive whose realization is
H*(X)(j). The pairing on M’ is up to a scalar multiple the same as the intersection pairing
coming from a polarization L on X because dimg(Sym?p’V)9% = 1. Since M’ has weight 2,
we know that k is even and k — 25 = 2. There is a decomposition of motives [And04, Prop

5.2.5.1]
= D L by (X) (=)
r<k
so M' C Lrhgmﬁf( )(j — ) for some 7 and thus Hy'(M') C UH;E1 mIHIT(X). The inter-

section pairing on this subspace is definite by the Hodge index theorem [Voi02, Thm 6.32].
By lemma 2.2 the only possible signatures of Hg(M) are (3,19), (7,15), (11,11), (15,7) and
(19, 3) but since the form is definite on the 19-dimensional subspace HY'(M') C Hg(M)®C,
the signature must be (3, 19) or (19, 3). The quadratic form restricted to Hg(1(—1)) is deter-
mined by an element a of Q*/(Q*)2. Assumption (1) assures that the image of Hg(1(—1))
under the comparison isomorphism

Hp(1(—1)) ® Qy = Hy(1(-1))

maps to the line spanned by the vector (e + df) ® 1 in A ® Q, (using the notation in
theorem 1.1). The fact that (e + df)? = 2d shows that the image of o in Q) /(Q;)? is 2d
for almost all /. Thus by the Grunwald-Wang theorem, we have that a = 2d. Consequently,
there is an isomorphism of quadratic spaces Hg(1(—1)) = Q(2d) where the bilinear form
on Q(2d) is given by (a,b) = 2dab. In particular, the pairing on Hg(1(—1)) is positive
definite. We conclude that the signature on Hg(M) is (3,19) which completes the proof
that Hg(M) = A ® Q as quadratic spaces. Let i: A — Hp(M) be an embedding and write
A(M) for the image of A under this embedding.

Now A(M) has an induced Z-Hodge structure from that on Hg(M). By surjectivity of
the period map (theorem 3.1) we know that there is a K3 surface X over C with a Hodge
isometry H*(X,Z) =2 A C Hg(M). The Hodge conjecture implies that M|c = h?*(X) and
further that this isomorphism respects the pairings on each motive. For each o € Aut(C/Q)
we have
R(X)7 = Mg = Mo = (X),

where M|c is the image of M under base change My — Mc and h*(X)?, M|% are the o-
conjugates of h?(X) and M|c. Since these isomorphisms respect the pairing, upon applying
Betti realization we see that X is isogenous to each conjugate X7, hence by corollary 6.4,
X admits a model over Q. We denote this model by Xg and write X¢ for the complex K3
surface above. The map

HOHIM@ULQ(X@>, M|@) — HOmMC(hQ(Xc), M‘(C)
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is an isomorphism, and hence there is an isomorphism a: h*(Xg) — M|z in Mg. Let L
be a finite extension of K such that both X and a are defined over L. Hence we get an
isomorphism «: h?(X) — M| in M, which yields isomorphisms

Hy(a): H(X7,Qe) = H(M) = plr, @ Q,

6. DESCENT

In this section we prove that complex K3 surfaces that are isogenous to all of their Q-
conjugates admit models over number fields. This will follow from a general spreading out
argument.

Proposition 6.1. Let L be an extension of a characteristic zero field K and E and F
subextensions of L. Suppose that

(1) K is algebraically closed in one of E or F.
(2) E and F are algebraically disjoint over K.
Then E and F' are linearly disjoint over K.

Proof. Let {x;}ic; be a transcendence basis for E over K and define Ey = K({z;}ics).
Likewise let {y;},ecs be a transcendence basis for F' over K and define Fy = K({y;};e)-

First, notice that Ey and F{y are linearly disjoint over K. This follows from the fact that
they are algebraically disjoint over K, and Ejy and F{, are purely transcendental extensions
of K see by [Boul3, Ch. V, §14, prop. 14]. It also follows from the same proposition that
E and Fj are linearly disjoint over K, as are Ey and F'. The theorem holds as long as EFy
and EyF are linearly disjoint over EyFp, by [Boul3, Ch. V, §14, prop. 8]. In what follows,
we will assume that K is algebraically closed in F.

We will show that £ N F = K. We already know that Ey N Fy = K as they are linearly
disjoint over K. Any element o € E'N F is contained in a finite extension of Ey and Fy
so we may assume for now that F is finite over Ey and F' is finite over F. We claim that
Trg, g () € K. Indeed since o € EFy and o € EyF’ we have the following equalities

[EF: EgF)Trg,r/mm (@) = Trer/mom (Trer/mr(a))
= Trgp/Er (@)
=Trer /ER (TTEF/EFO (@)
= [EF: EFy|Trgry mor ()
Notice that Trer,/g,m () = Tre g (o) as EFy = E ®p, EgFy (as the two fields are linearly

disjoint over Ey by the first remarks, and E is algebraic over Fy) and trace is invariant under
extension of scalars. Therefore

[EF: EF) () = [EF: EyF)
[EF: EE,) o/ Fofo [EF: ELy)

and consequently Trg,/p, () € EgNFy = K. However, by the same reasoning Trg /g, (") € K
forn=0,1,2,... [E: Ey|. From Newton’s identities, we see that the minimal polynomial of

TI‘E/EO(&) = TI'EFO/EOFO(O‘) = TI‘F/F()(Oé) c Fo
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a over Fjy has coefficients in K, and therefore « is algebraic over K. But from the assumption
that K is algebraically closed in E we see that a € K, as required.

Finally, to show that E'Fy and EyF are linearly disjoint over EyF we may enlarge F and F'
so that they are normal over Fy and Fj respectively. Then EF, and EgF' are normal over
EyFy and hence it is enough to show that FFyN EgF = EyFy. Suppose x € EFyN EyF and
write x = efy = e f for e € Eg,e € E, fo € Fyand f € F. Theneey' = ff;' € ENF =K.
Therefore e = (eeq 1)60 € KEy, = Ey and therefore x € EyF} as required. O

Corollary 6.2. Let Q) be an extension of a field k with 2 and k algebraically closed of
characteristic zero. Suppose that €2 has uncountable transcendence degree over k. Then for
any subextension E of Q2 that is countably generated over k, there is an element o € Aut(2/k)
such that E and o(E) are linearly disjoint over k.

Proof. Let x1,x9, ... be a transcendence basis of E over k, and let yy, 4o, ... be any elements
of Q such that the collection {1, xs,...,y1,¥2, ...} are algebraically independent over k. Let
o € Aut(2/k) be any element satisfying o(z;) = y;. By construction the fields £ and o(F)
are algebraically disjoint over k. As k is algebraically closed, the previous theorem shows E
and o(F) are linearly disjoint over k. O

Lemma 6.3. Let Q be an extension of a field k with € and k algebraically closed of charac-
teristic zero, and €2 of uncountable transcendence degree over k. Let X be a variety over )
whose conjugates X for o € Aut(Q2/k) are contained in a countable set. Then X admits a
model over k.

Proof. We can choose o1,09... € Aut(£2/k) so that every conjugate of X is isomorphic to
X7 for some i. For each i, X7 is defined over a finitely generated field extension K; over k.
Let K C Q be the composite in 2 of K, K5... so that X' X2 ... (hence any conjugate
of X) admit models over K. Note that K countably generated over k. Let 7 € Aut(Q2/k) be
any automorphism with 7(K) and K linearly disjoint over k which exists by corollary 6.2.
Suppose Xj is a model of X over K; for some i. As X7 is isomorphic (over Q) to X% for
some j, we know that X is a model of X% over 7(K;). Thus X’ admits a model over K;
and 7(K;). These are finitely generated and linearly disjoint over k, so X% admits a model
over k, (this can be seen from the proof of [Der03, Thm. 1]). Hence X admits a model over

k. 0

Corollary 6.4. If X is a complex K3 surface and X is isogenous to X° for all o € Aut(C/Q)
then X admits a model over Q.

Proof. By assumption X7 € §(X) where §(X) is the isogeny class of X. From lemma 3.2
S(X) is countable and by the previous lemma it follows that X has a model over Q. O
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