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Abstract

In water-limited regions, competition for water resources results in the
formation of vegetation patterns; on sloped terrain, one finds that the
vegetation typically aligns in stripes or arcs. We consider a two-component
reaction—diffusion—advection model of Klausmeier type describing the
interplay of vegetation and water resources and the resulting dynamics of
these patterns. We focus on the large advection limit on constantly sloped
terrain, in which the diffusion of water is neglected in favor of advection of
water downslope. Planar vegetation pattern solutions are shown to satisfy an
associated singularly perturbed traveling wave equation, and we construct
a variety of traveling stripe and front solutions using methods of geometric
singular perturbation theory. In contrast to prior studies of similar models, we
show that the resulting patterns are spectrally stable to perturbations in two
spatial dimensions using exponential dichotomies and Lin’s method. We also
discuss implications for the appearance of curved stripe patterns on slopes in
the absence of terrain curvature.
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1. Introduction

Large parts of earth have an arid climate (deserts) with low mean annual precipitation and
little to no vegetation; even larger parts of earth have a semi-arid climate with somewhat more
precipitation, which allows (some) vegetation to grow. However, human pressure and global
climate change have been turning semi-arid climates into arid climates, with severe conse-
quences for life in these areas [24, 53]. This so-called desertification process has been studied
extensively over the years, from both ecological and mathematical perspectives. These studies
have shown the importance and omnipresence of spatial patterning of vegetation, which is
widely recognized as the first step in the desertification process [3, 24, 25, 37, 39, 41, 43, 44].
On flat ground, the reported patterns are gaps, labyrinths and spots, while on sloped terrain,
(curved) banded or striped patterns can form [16, 22, 42, 55]; this article is focused on the
latter, and in particular the stabilizing effect of terrain slope on striped vegetation patterns.

To understand the formation and dynamics of vegetation patterns in semi-arid climates,
many conceptual models have been formulated [23, 35, 42, 55]. All of these dryland models
describe the interplay between the available water and the density of vegetation, in different
levels of detail. The simplest models only have two components: U, the water in the system
and V, the vegetation. These two-component models generally have the following (rescaled)
form:

U =DAU+SU,+a—U-—G(U,V)V, o
V, =AV—mV+RV)GU,V)V. .1

In (1.1), the movement of water is modeled as a combined effect of diffusion (DAU) and
advection (SU,), where D is the diffusion constant and § is a measure for the slope of the ter-
rain. We assume the terrain is constantly sloped, so that uphill corresponds to the positive x
direction. The dispersal of plants is described by diffusion (AV). The reaction terms describe
the change in water due to rainfall (+a), evaporation of water (—U) and uptake by plants
(=G(U, V)V). Simultaneously, the change of plant biomass is due to mortality (—mV) and
plant growth (R(V)G(U, V)V).

In this formulation, G and R are functions that describe, respectively, the amount of water
that is taken up by the plant’s roots and the density-dependent growth rate of the vegetation.
Because the presence of vegetation increases the soil’s permeability, G is typically assumed
to increase with both U and V. The conversion rate R is decreasing with V and for a specific
V* > 0 we have R(V*) = 0. This value, V*, is called the carrying capacity of the system and
describes the total concentration of vegetation that can be supported at a certain location. In
light of these ecological intuitions, one expects that the function R(V)G(U, V) should take the
form as depicted in figure 1 (for fixed U). A simple choice which satisfies these constraints is
givenby R(V) = 1 — bV and G(U, V) = UV, where 1/b is the carrying capacity. For clarity of
presentation, we fix this choice for the remainder of this paper; however, we emphasize that,
with minor modifications, the following analysis can be shown to hold for a different choice
of the functions R and/or G which take the same qualitative form.

Finally, in (1.1), the displacement of water is modeled as a combined effect of diffusion and
advection. However, in reality banded patterns are mainly observed on sloping grounds, where
movement of water is dominated by the downhill flow and diffusive motion is of lesser impor-
tance [16, 22, 42, 55]. Note that this agrees with recent studies on ecosystem models that show
banded vegetation is unstable against lateral perturbations of sufficiently small wavenumber
when diffusion is large enough (i.e. D large enough compared to S) [48, 50]. Therefore, as a
first step, we ignore the diffusion of water completely (as in [35]) and set D = 0. Moreover,
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R(V)G(U,V)

\ %

Figure 1. The qualitative form of R(V)G(U,V) for fixed U based on ecological
intuition of dryland ecosystems.
due to the separation of scales between movement of water and dispersion of vegetation, we

take § = -, where 0 < & < 1is a small parameter.
To summanze, the dryland model we consider in this article is given by

U =1U+a-U-GU V)V
e (1.2)
Vi, =AV-—mV+R(V)G(U,V)V,
where a,m,b > 0,0 < € < 1 and the functions R and G are given by
G(U,V) =UV, R(V)=1-0bV. (1.3)

Remark 1.1. Notably, one of the first dryland ecosystem models, by Klausmeier [35], takes
G(U,V) = UV and R(V) = 1. This corresponds to the assumption that vegetation growth in
drylands is always water-limited, and hence to the assumption of infinite carrying capacity, i.e.
taking b = 0, in our formulation. Therefore in the limit » | 0 our model is the original Klaus-
meier model, and our model can thus be seen as a modified Klausmeier model. We emphasize,
however, that the results in this article hold only for & > 0. The limiting case b = 0 turns out to
be highly degenerate (see remark 2.12) and requires additional technical considerations; this
is analyzed in detail in [7].

The model (1.2) admits a spatially homogeneous steady state
(U, V) = (Uo, Vo) = (a,0), (1.4)

corresponding to the desert-state of the system. When & > 2 (b +V1+ b2) there are also
two additional vegetated steady state solutions, (Uj, V1) and (U,, V,), where

(a Vis ) 44285 +2b %\ [(£) -4 (1+ 2b)
(/12 =m = 5

1= bVia 201 1 b2) :
Vi *$¢ 4(1+50) (1.5)
v 2(1+ “W '

For & =2 (b +V1+ b2) these two steady states coincide. The desert state, (U, Vo), is stable

against all homogeneous perturbations; the first vegetated state, (U7, V1) is unstable against
these perturbations and the last steady state, (Ua, V), is stable if V, > —see appendix A.
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Figure 2. Shown are the different patterned solutions of (1.2) that are studied in this
paper. Presented figures show cross-sections of the water, u(x), (blue) and the vegetation,
v(x), (red) of direct numerical simulations with ¢ = 0.01, m = 0.45, b =0.5 and
a=12(a)ora=2.0 ((b)~(d)). The 2D pattern is a trivial extension of these patterns
in the y-direction, visualization of which is shown in figure 19. (a) Vegetation stripe. (b)
Vegetation gap. (c) Vegetation-desert front. (d) Desert-vegetation front.

The condition V, > ﬁ, corresponding to & > 4b + %, is not strict; however in the following
analysis of banded vegetation patterns we nonetheless restrict our results to this region.

Remark 1.2. Ecologically, the parameter a is a measure for the rainfall and m for the mor-
tality of plants. Therefore, & is a natural measure for the amount of resources needed for
vegetation (patterns) to exist: if m is large, vegetation dies faster and more water is needed to
maintain vegetation; when m is small, plants die slowly and less water is needed. Hence, & is
a natural bifurcation parameter. Also note that 2 usually is taken as a small bifurcation param-
eter in studies of the extended-Klausmeier or generalized Klausmeier—Gray—Scott systems
[2, 19, 48, 54].

In this article we aim to study patterned solutions to (1.2), which arise as traveling wave
solutions to (1.2).We define the traveling wave coordinate £ := x — ct, where c¢ is the move-
ment speed. Here, ¢ < 0 corresponds to downhill movement of the traveling wave and ¢ > 0
to uphill movement. Moreover, we set (U, V)(x,y,t) = (u,v)(§,y,t), which results in the
equation

éug + cug +a—u— G(u,v)v,

Uy
{vt = (8 + 9;)v + cve — mv + R(0)G(u, v)v. (1.6)

Stationary solutions to (1.6) which are constant in y correspond to traveling wave solutions of
(1.2); these solutions satisfy the first order traveling wave ODE

M{ = Hisc (Lt —a+ G(u’ U)U) s

% =g, (1.7)
ge = mv—R(v)G(u,v)v — cq.

This equation has an equilibrium at (#, v, ¢) = (a, 0, 0) which represents the homogeneous des-
ert state (Up, Vo) of (1.2). There are two additional equilibrium points at (1, v, q) = (u1,2,712,0)
corresponding to the other homogeneous steady states (U 2, Vi 2) of (1.2).

Based on the parameters of the model, several different patterned solutions to (1.2) can
emerge that correspond to homoclinic or heteroclinic orbits of (1.7). Single vegetation stripe
patterns occur as orbits that are homoclinic to the desert state. Similarly, vegetation gap pat-
terns occur as orbits that are homoclinic to the vegetated state (uy, v2,0). Besides these, there
are also heteroclinic connections between the vegetated state and the desert state (and vice-
versa) that represent transitions, or infiltration waves, between these uniform stationary states.
Plots of these patterned solutions are shown in figure 2.
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Figure 3. A sample singular ¢ = 0 bifurcation diagram in (a/m,c) parameter space.
The solid green line indicates stripe solutions, while the solid purple line denotes
the gap solutions. Vegetation-to-desert fronts are indicated by the dashed green line.
Finally, desert-to-vegetation front solutions are given by the dashed and solid purple
lines. Schematic depictions of the associated singular limit geometries are depicted in
the insets, where the labels D and V denote the locations of the desert and vegetated
equilibrium states, respectively. The precise bifurcation structure depends on the value
of the parameter b; see section 2.4.

In this article, we first establish existence of the aforementioned patterns rigorously. To that
end, we exploit the scale separation in (1.7) using the methods of geometric singular perturba-
tion theory [21]. Using a fast-slow decomposition, these patterns are shown to correspond to
the union of trajectories on so-called invariant slow manifolds of (1.7) and fast connections
between these slow manifolds. Specifically, (1.7) has three slow manifolds: one manifold,
MF (¢ for left), consists of states without vegetation and the two others, M™ (middle) and
M (right), consist of states with vegetation. Fast front-type solutions ¢4 exist which connect
M to M", and likewise there exist fast front solutions ¢, which connect M” to M. Using
these, stripes, gaps and fronts can be constructed for various parameter values. Pulse solu-
tions to (1.2) consist of trajectories on M and M” and rwo fast front-type connections; front
solutions to (1.2) only possess one fast front-type connection. In figure 3 these patterns are
shown in the € = 0 limit, where they are characterized by their speed in a sample bifurcation
diagram.

2763



Nonlinearity 32 (2019) 2759 R Bastiaansen et al

100 100

90 1.2 90 1.2

80 80

70 1 70 1

60 0.8 60 08
Y 50 06 Y 50

40 ’ 40 + 06

30 0.4 30 0.4

20 0.0 20 02

10 10 ’

0 0 . ‘

50 100 150 200 0 50 100 150 200
T x
(a) Straight vegetation stripe (b) Curved vegetation ‘corner’

Figure 4. A snapsthot of a straight (a) and slightly bent (b) traveling vegetation stripe
solution (with ¢ > 0), obtained via direct numerical simulation of (1.2) with € = 0.01,
m=045,b=05anda=1.2.

The main theme of this paper is the spectral stability of the patterns. Because the main
building blocks of all of the patterns are normally hyperbolic slow manifolds and fast front-
type connections between these, we argue that destabilization can, a priori, only be caused
by a ‘small’ eigenvalue, one of which is created by every front-type connection. However,
using formal asymptotic computations this possibility is excluded: all described patterns to
(1.2)—stripes, gaps and fronts—are thus (always) stable against two-dimensional perturba-
tions. These formal arguments are also verified rigorously by carefully constructing eigen-
functions using techniques previously employed to prove stability of traveling pulses in the
FitzHugh—Nagumo system in [6]; similar arguments were also used in [30, 31]. However, in
those previous works, only stability with respect to perturbations in one spatial dimension was
considered. By performing a Fourier decomposition in the transverse (y) direction, we show
that these methods can also be used to obtain 2D spectral stability of the full planar traveling
waves.

Furthermore, in this paper we show that the 2D stability of the (straight) planar vegetation
patterns implies that slightly curved variants of the same patterns, sometimes called corner
defect solutions, are also solutions to (1.2) that are—again—2D stable. An example of one of
these solutions is given in figure 4. Existing techniques developed in [27, 28] can be applied to
infer that the orientation of these patterns is related to the speed c of their associated straight
patterns; in particular we predict that when ¢ > 0 the corresponding corners are oriented con-
vex upslope, and when ¢ < 0 they are convex downslope.

Besides these mathematical findings, this paper also provides novel insights in the context
of ecology—and the study of desertification in particular. In simple dryland ecosystem mod-
els, typically vegetation patterns are found where the vegetation stripes (or gaps) have only a
(very) small width, which is not very realistic [16, 22, 42, 55]. In this article, however, patterns
are found that do have a more sizable width, that can even be expressed in terms of the model
parameters. These larger widths are caused by the addition of a carrying capacity in (1.2)
which limits the amount of vegetation at one place and forces the patterns to become wider
instead. Moreover, this study indicates the kind of (striped) patterns that are possible based on
the values of the model parameters; see figure 3. Vegetation stripe patterns only exist in rela-
tively dry conditions (i.e. when - is small). For every so slightly more humid conditions, it is
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possible to find vegetation gap patterns and invading front patterns (both invading vegetation
and invading desert fronts). For even more humid conditions, only invading vegetation fronts
can be found. Finally, we also found slightly curved variants of the aforementioned planar
vegetation patterns, an example of which is given in figure 4. In this paper, we show that these
curved vegetation patterns can be formed through the internal dynamics of (1.2), and provide
a possible explanation for the observed vegetation arcs—even in the absence of topographic
mechanisms [22].

Remark 1.3. In an ecological context, traveling (spatially) periodic orbits are perhaps more
relevant than the traveling pulse solutions constructed in this paper. However, once these pulse
solutions are found, the periodic ones typically follow naturally [48]—as is the case here. Fur-
thermore, properties of these periodic orbits are closely related to those of the pulse solutions.
See also section 2.4.4.

The set-up for the rest of this article is as follows. In section 2, we study (1.7) as a
slow/fast system in the context of geometric singular perturbation theory. We determine
the slow manifolds M, M™ and M" and the fast connections ¢+ and ¢, that connect the
manifolds M?* and M, which are then used to construct singular stripe, gap and front
solutions to (1.7). In section 3, we prove the persistence of these solutions for sufficiently
small € > 0. Next, in section 4, we compute the essential and point spectra of all these pat-
terns using (formal) asymptotic computations, and show that all patterns are stable against
all two dimensional perturbations. Subsequently, in section 5 these stability statements are
made rigorous by carefully constructing eigenfunctions. In section 6 we inspect existence
and stability of weakly bent (corner) solutions to (1.7). Then, in section 7 we present the
results of numerical computations on closely related spatially periodic patterns and numer-
ical simulations of both straight and bent patterns. We conclude with a brief discussion of
the results in section 8.

2. Slow-fast analysis of traveling wave equation

In this section, we study the traveling wave equation (1.7) as a slow-fast system in the singular
limit € = 0. A discussion of the critical manifolds is given in section 2.1. In section 2.2, we
describe the singular layer problem, and we construct families of singular front solutions. We
describe the reduced flow on the critical manifolds in section 2.3, and we construct singular
traveling front and stripe solutions in section 2.4, which consist of fast segments that are het-
eroclinic solutions to the singular layer problem and of slow segments that are solutions of the
reduced flow on the critical manifolds. Finally, section 2.5 contains statements of our main
existence results.

2.1. Critical manifolds

The traveling wave ODE (1.7) is a two-fast-one-slow system. We obtain the fast subsystem or
layer problem by setting € = 0 in (1.7), which results in the system
u =0,
v =g, (2.1)
/

qd =mv—R(v)G(u,v)v — cq,

or, equivalently, the collection of planar ODEs
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4bm

Figure 5. Shown are the three branches of the critical manifold M, and the
associated reduced flow (2.20)—(2.22) in the case i < 2 (b + \/1+7bz) There is a
single equilibrium at po(a) on the left branch Mg corresponding to the desert state
(u,v,q) = (a,0,0).

v 22

qd =mv—R(v)G(u,v)v — cq, (2.2)
parameterized by u. We note that (v,q) = (0,0) =: po(«) is always an equilibrium of (2.2);
there are additional equilibria (v, 0) whenever v satisfies R(v)G(u,v) = m. Thus we see that
there are additional equilibria py (u) := (v4(u),0), where

L x /1 —4bm/u
B 2b ’
provided u > 4bm. We see that (2.2) admits three equilibria for u > 4bm, two equilibria for

u = 4bm, and a single equilibrium for u < 4bm.
Denoting the right-hand-side of (2.2) by

F(v,q;u) == ( 7 > , (2.4)

mv — R(v)G(u,v)v — cq

0+ (u) 2.3)

we consider the linearization of (2.2) about each of the three equilibria pg, p that is given by

0 1
D(o,q)F(0,0;u) = (m . ) 2.5)
0 1
D(va)F(vi(u)’O; M) = u—4mb==+/ u?>—4mbu _c . (26)
2b
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4bm 4bm

Figure 6. Shown are the three branches of the critical manifold M, and the
associated reduced flow (2.20)~(2.22) in the case ;. > 2 (b + m) The reduced
problem admits two addtional equilibria corresponding to the vegetated states
(u,v,9) = (4;,v;,0),j =1,2. The equilibrium (u,v,q) = (u1,v1,0) corresponds

to p_(u;) and lies on the middle branch M. If & < 4b+ 1/b, the equilibrium
(u,v,9) = (u2,v2,0) lies on the middle branch M and corresponds to

p—(uz), while if & >4b+1/b, it lies on the right branch Mg at py(uz). (a)
2(b+VIHH) <& <dbt )0t >4b+ )

For ¢ > 0, we deduce that the equilibrium po(u) is always a saddle. When u > 4bm, the equi-
librium p_(u) is a stable node or spiral, and the equilibrium p, (u) is a saddle. When u = 4bm,
the equilibrium p_ (4bm) = p_(4bm) is not hyperbolic.

In the full system, the equilibria of the layer problem (2.2) form critical manifolds, given
by three normally hyperbolic branches

Mj={v=q=0},
0 =1{p-(u):u>4bm}, (2.7)
MG ={ps+(u) : u> 4bm},

with the branches M, M{ meeting at a nonhyperbolic fold point F = p, (4bm) = p_ (4bm);
see figure 5. For u;, u, € R, we will use the notation

Mé[ul,uz] = Mé N{u; <u<up} (2.8)

to refer to a compact segment of one of the critical manifolds M, j=4m,r.

We recall that there are (up to) three equilibria of the full system, given by (u, v, ¢) = (a,0,0)
and (u,v,q) = (412,712, 0); see figures 5 and 6. The equilibrium at («, v, g) = (a,0,0) lies on
the left branch Mg and corresponds to po(a), while that at (1, v, g) = (u1,v;,0) corresponds to
p— (u1) and lies on the middle branch M. The location of the equilibrium (u, v, ) = (u2, v2,0)
depends on the parameter values: if a/m < 4b + 1/b, then it lies on the middle branch M
at p_(uz), while if a/m > 4b + 1/b, then it lies on the right branch My at p; (u2). When
alm = 4b + 1/b, the equilibrium (u, v, ¢) = (u2,v2,0) coincides with the fold F .
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2.2. Layer fronts

In the previous section we have constructed the critical manifolds M$, MG and My, and
determined the location of the desert state po(a) on M and the vegetation state p. (u) on
Mi—under certain conditions on the parameters. In this section, we study the connections
between the outer manifolds Mg and Mj—which present themselves as fronts in the fast
layer problem (2.2) for certain values of u and c. Ultimately, the goal is to construct homo-
clinic and heteroclinic solutions to the equilibrium states po(a) and/or p (u,). Therefore, it is
necessary to find front solutions that land on these states (because of the instability of these
points on their respective critical manifolds). As these fronts are characterized by a specific
speed ¢, a homoclinic connection can then only be constructed if a front connection going
the other way can also be found for the same speed ¢ (but possibly different value of u). In
this section, we first catalogue the possible front connections between M and M}, and give
the corresponding speeds. Subsequently, we determine wether we can find a pair of fast front
connections—one from M}, to M, and one from M to Mj—that exist for the same speed
¢, such that one lands precisely at an equilibrium state and a singular homoclinic connection
can be found. We first find those relevant pairs that land on py(a) and then those that land on

P+ (u2).

2.2.1. Front connections between M§ and M. We are interested in fronts between the two
saddle equilibria po(u) = (0,0) and py (u) = (v (u),0); equivalently, we search for connec-
tions between the outer branches Mg, M}. For each value of u > 4mb, there are two such

fronts, ¢o(&u) = (0o(&;u),qo(&u))T and ¢4 (& u) = (v4(&u), g4 (& u))T, with explicit v
profiles given by

Vo (&) = U+2(u) (1 — tanh (%g&)) :

vi(&u) = v+2(14) (1 + tanh (v;g€>> ; (2.9

and wave speeds

¢i(u) = @7 (0. (u) — 20_ (1))

) =~ Y2 (0, (0) ~ 20 () (2.10)

W

The o-fronts connect p . to po, while the {-fronts connect p to p ; see figure 7.

When u = 4mb, the situation is slightly different as the equilibria p4 (u) collide in a sad-
dle-node bifurcation at the fold point F, and the equilibrium p . (1) is no longer a saddle.
However, it is still possible to find fronts between po and p4 (4bm) = p_(4bm). In particular,
there exists a front connecting p . (4bm) to po(4bm) for any

¢ < Cocrit = bV2m (v (4bm) — 2v_(4bm))
po .11

-\ 7
When ¢ = ¢, it this front decays exponentially in backwards time, while for lesser speeds it
decays only algebraically. Similarly, there exists a front connecting po(4bm) to p (4bm) for
any
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(b)

Figure 7. Shown are the singular fronts fronts ¢ (&;u), ¢+(&; u) of the layer problem
(2.2). () ¢ = co(u). (b) ¢ = c4(u).

¢ > Croit = —bV2m (v (4bm) — 20_(4bm))
= /=, (2.12)

When ¢ = ci ¢ this front decays exponentially in forwards time, while for greater speeds it
decays only algebraically.

2.2.2. Fronts asymptotic to po(a). In particular, provided a > 4bm, the fronts (2.9) exist when
u = a. Therefore we have a front connecting p (a) to po(a)—the equilibrium (a, 0, 0) of the
full system (1.7)—when

c=csa)

2\ﬁ( Va+3va—4bm). 2.13)

We now search for fronts which exist simultaneously for the same speed but different value of
u, in particular for u < a. We have the following.

Lemma2.1. Foreach > 3b, there exists a pair of fronts ¢o(&; a), ¢+ (& u*(a)) with speed

c=c"(a) = 2\F< Va+3va—4abm). (2.14)

The front ¢, (&; a) connects p(a) to po(a) in the layer system (2.2) for u = a, while the front

¢+(&u*(a)) connects po(u*(a)) to po(u*(a)) in the layer system (2.2) for u = u*(a) < a,
where

1 (17a — 18bm — 15va® — 4abm) . %< < By,
u*(a) ;=4 °® ( oem 4 (2.15)
4bm, 4> Bp,

Proof. When < = b, we have c}(a) =0 = ci(a). Thus, the layer problem is Hamiltonian
and therefore both heteroclinic orbits lie simultaneously in the plane # = a, forming a hetero-
clinic loop. For values of %b < % < %b, the second heteroclinic orbit exists for a value of
4bm < u* < a given by (2.15), which can be obtained by solving the relation c3(a) = ¢} (u)
for u = u*(a).

For a > %, the second heteroclinic orbit occurs when u = u*(a) = 4bm; the decay is
exponential in forward time when a = M and algebraic for a > 25b’" O
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Remark 2.2. In the case 4b < % < %b, there (also) exists a second front ¢+ (&; u*(a)) with
speed ¢ = ¢*(a) that connects po(u*(a)) to p4(u*(a)) in the layer system (2.2) for u = u*(a),
where

u*(a) = é (17a — 18bm — 15+/a? — 4abm) .

However, in this case u*(a) > a, which—because of the flow on M, (see section 2.3)—pre-
vents the existence of a homoclinic connection in the full system.

2.2.3. Fronts asymptotic to p;(uz). We recall that for a/m > 4b + 1/b, the equilibrium
p+(u2) on the right branch M, corresponds to the equilibrium (i, v, 0) of the full system
(1.7). For a/m = 4b + 1/b, this equilibrium lies precisely on the fold F. We now search for
singular fronts to this equilibrium for values of a/m > 4b + 1/b, and the argument is similar
as above. When a/m > 4b + 1/b, there exists a front connecting po(u2) to p4 (u2) when

¢ = ci(u2)
1
_ ,ﬁ (7./u2 + 3y ux — 4bm> , (2.16)

and when a/m = 4b + 1/b this front exists for each ¢ > c¢1 i, With exponential decay in for-
ward time for ¢ = c¢; ¢rir and algebraic decay when ¢ > ¢ ¢rir. We again search for fronts which
exist simultaneously for the same speed but different value of u, and we have the following
lemma, analogous to lemma 2.1.

Lemma 2.3. Concerning the layer problem (2.2), the following hold.

(i) For each 4b + § < & < 3b+ %, there exists a pair of fronts ¢o(&; i (a)), ¢1(&; uz) with
speed ¢(a) = ci(uz). The front ¢1(&;uz) connects po(uz) to p(u2) in the layer system
(2.2) for u = uy, while the front ¢o(&; itz (a)) connects p (itz(a)) to po(ita(a)) in the layer
system (2.2) for u = iz (a), where

1
ip(a) = 3 (17u2 — 18bm — 15¢/u3 — 4u2bm) . (2.17)

(ii) Whena/m = 4b + 1/b, for eachc > ¢4 ey, there exists a pair of fronts ¢+(§; u2), ¢ (&5 0t(c)),
where i(c) is an increasing function of ¢ which satisfies (¢4 orie) = it2(4mb + m/b).

Proof. For (i), when £ = b + %, we have c}(u) =0 = ¢ (u2), and therefore both hetero-
clinic orbits lie simultaneously in the plane u = u,, forming a heteroclinic loop. For values of
4b + % < % < %b + %, the second heteroclinic orbit exists for a value of it; > u, given by the
solution of (2.17), which can be obtained by solving the relation ¢ (u) = ¢} (u2) for u = ity.

For (ii), when a/m = 4b + 1/b, the equilibrium p (uy) lies precisely on the fold F and
hence we obtain the fronts ¢4 (&; uz) for each ¢ > ¢4 orie. The facts regarding i(c) follow by
noticing that the relation

cou) = \/iﬂ (04 (1) — 20_(u))
1
=37 (= v+ 3= 2bm) (2.18)

2770



Nonlinearity 32 (2019) 2759 R Bastiaansen et al

defines ¢} (u) as a strictly increasing function of u, and that u, = 4bm when a/m = 4b + 1/b,
so that i, (4mb + m/b) = 25bm/4, and ¢} (25bm/4) = ¢4 erit- O

2.3. Slow flow

We now examine the slow flow restricted to the critical manifolds M§ and M. We rescale
7 = £ and obtain the corresponding slow system
u, = ﬁ (u —a+ G(u,v)v)
€V =gq (2.19)
eqr =mv—R(0)G(u,v)v — cq.

By setting € = 0, we obtain the reduced flow on MS as

- =u-—a, (2.20)
on M as

ur =u—a+ Glu,v_(u))o_(u), (2.21)
and on Mg as

ur =u—a+ Gu,v4(u))vs(u). (2.22)

See figures 5 and 6 for depictions of the reduced flow, depending on the value of a/m. We
see that for u < a, under the reduced flow on Mé, u is always decreasing, while on My, u is
always increasing, provided a/m < 4b + 1/b. When a/m = 4b + 1/b, there exists an equilib-
rium of the full system (uy, v5, 0) which coincides with the fold F, which thus takes the form
of a canard point [36]. As a increases through this value, this equilibrium moves up along
the right branch Mj,. In that case, the flow is away from this equilibrium point; that is, u is
decreasing when u < u; and increasing when u > uj.

2.4. Singular orbits

In the previous sections we have studied the slow flow on the manifolds M§ and M}, and the
dynamics of fast transitions between these manifolds. In this section, we use this knowledge
to construct families of singular orbits, which will serve as the basis for constructing traveling
front and pulse solutions to (1.2). These singular orbits are constructed for open regions in
(a, b, m) parameter space, with the wavespeed c¢ in general determined uniquely by the value
of (a, b, m). The bifurcation structure, as well as the singular limit geometry of the associated
solution orbits, is depicted in the bifurcation diagrams in figures 8(a) and (b). These diagrams
show the dependence of the wave speed ¢ on the value of the quantity a/m, in the regions
b < 2/3 and b > 2/3, as the bifurcation structure changes qualitatively as b crosses through
the critical value 2/3.

We first consider traveling pulse solutions, which can be thought of as two front-type solu-
tions glued together to create a profile which is bi-asymptotic to one of the equilibrium states
with a plateau in between. These come in two varieties: vegetation stripe solutions, considered
in section 2.4.1, which manifest as homoclinic orbits to the desert equilibrium state po(a), and
vegetation gap solutions, considered in section 2.4.2, which arise as homoclinic orbits to the
equilibrium p (u). In both cases, the corresponding homoclinic orbits are composed of two
portions of the slow manifolds Mg and M, concatenated with two fast jumps in between,
which exist for the same value of c. The singular limit geometry for these solutions is shown
in the bifurcation diagrams figures 8(a) and (b) (see also figure 9 for more details), in which
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the stripe solutions are defined along the upper solid green, and the gap solutions are defined
along the upper solid purple curve. The distinction between the cases b < 2/3 and b > 2/3 is
related to the manner in which these two curves interact; this is discussed in more detail in
section 2.4.1.

Next we consider singular front solutions in section 2.4.3, characterized by a sharp trans-
ition from the uniform desert state to the uniformly vegetated state or vica versa. In the slow/
fast framework of the traveling wave equation (1.7), these solutions manifest as heteroclinic
orbits between the equilibria pg(a) and p (u2), and are composed of a single slow segment
along one of the manifolds Mg and M concatenated with a fast jump to the opposite slow
manifold. In the diagrams figures 8(a) and (b), these singular front solutions are defined along
the upper solid and dashed green and purple curves in the region a/m > 4b 4 1/b. The green
curves correspond to front solutions in which the vegetated state is downslope of the desert
state, while the desert state is downslope of the vegetated state along the purple curves.

We briefly discuss periodic orbits in section 2.4.4, and in the following section section 2.5,
we state our main existence results regarding traveling front, stripe, and gap solutions to (1.2).

2.4.1. Homoclinic orbits to the desert state pp(a). By lemma 2.1, for each % > %, there exists
a pair of fronts ¢, (&; a), ¢+(&; u*(a)) with the same speed

1
c=c"(a):=——=(—va+3 a74bm>. 2.23
(@ =5 (~va+3v (2.23)
We can concatenate these fronts with portions of the critical manifolds ./\/lg’r in order to con-

struct singular homoclinic solutions to the equilibrium po(a). However, when a/m > 4b + 1/b,

9b

the equilibrium p (u2) lies on Mj and can block these orbits. For each & > =2, we have a

candidate singular homoclinic orbit to the desert state po(a) given by
Ha(a) = Milu* (@), a] U o1 (u* (a)) U Mi[u* (a). a] U ¢o(a), (2.24)

corresponding to a vegetation stripe solution (see figure 9), where the notation Mé[ul, )
was defined in (2.8). This orbit will be blocked if the equilibrium p; (uz) lies on My with
u*(a) < up. There are two cases based on the expression for u*(a) in (2.15). If a/m > 25b /4,
then this orbit is blocked whenever p (uz) lies on M, thatis, for any value of a/m > 4b + 1/b.
If a/m < 25b/4, then this orbit is blocked if u; > u*(a), which occurs when
2

& gy = 2b 5

m V44302 V1249p?
We therefore expect a different singular bifurcation diagram for the cases 4b + 1/b > 25b/4
or 4b + 1/b < 25b/4 (i.e. b < 2/3 respectively b > 2/3). In the former case the singular front
¢+(& u*(a)) can jump precisely onto the fold point F; in the latter case this is not possible.
Equivalently, the structure changes depending on whether b < 2/3 or b > 2/3 (see figures 8(a)
and (b)). We define the quantity

4b+ 1 <2
ap) = (4 /b b<2/3
g b>2/3

(2.25)

(2.26)

Then for each b,m >0, we can construct the singular homoclinic orbits Hq(a) for
9b < & < a(b). We note that when b < 2/3 and £ € [4b + 1/b,25b/4], the front ¢ (u* (a))
jumps precisely onto the nonhyperbolic fold point F. While it is possible to construct homo-
clinic orbits in this regime as well as determine the stability of the underlying traveling wave
solution [4, 9, 6] using geometric blow-up methods, we do not consider this case here. Rather
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Figure 8. Shown are the singular e = 0 bifurcation diagrams in (a, ¢) parameter space
in the cases b < 2/3 (a) and b > 2/3 (b).
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Figure 9. Shown is the singular orbit #4(a) homoclinic to the desert state po(a). The
orbit first traverses a portion of the manifold M§, then the front ¢+ (u*(a)), followed by
a portion of the critical manifold My, and finally the front ¢ (a).

we restrict our attention to orbits which jump on/off normally hyperbolic portions of the criti-
cal manifold. To that end, we define the quantity

o [25h/4 b<2/3
anyp (b) = {adh b>2/3

and consider only the singular homoclinic orbits Hq(a) for 3b < £ < Gy, (b).

(2.27)

Remark 2.4. In addition to the class of homoclinic orbits described above, there also exist
singular homoclinic orbits to the equilibrium p((a) lying entirely in the plane u = a. These
orbits in fact correspond to solutions of the layer problem (2.2) for # = a and ¢ = 0, and they
are depicted along the lower green curves in the bifurcation diagrams in figures 8(a) and (b).
As with the singular homoclinic orbits H4(a) constructed in this section, it is possible to show
that these layer homoclinic orbits also persist for sufficiently small € > 0 using geometric
singular perturbation arguments, and in fact they lie on the same continuation branch; see fig-
ure 16. Furthermore, the bifurcation structure near these orbits is surprisingly rich; a detailed
analysis is carried out in [8]. However, unlike the orbits Hg4(a), the resulting traveling wave
solutions are typically unstable as solutions to (1.2), and we therefore refrain from analyzing
these solutions in this work.

2.4.2. Homoclinic orbits to the vegetated state p (U»). Similarly, we can construct singular
homoclinic orbits to the vegetated state p (uy), using the fronts from lemma (2.3). By similar
arguments as above, we obtain singular homoclinic orbits

Hy(a) := M[ua, itz (a)] U ¢ (ita(a)) U M[ua, itz (a)] U ¢4 (2), (2.28)
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corresponding to vegetation gap solutions. For each b,m > 0, these orbits can be constructed
for parameters a(b) < £ < 3b+2/b.

Remark 2.5. Additionally, in the case b < 2/3, using lemma 2.3 (ii), when a = 4bm + m/b,
we also obtain homoclinic orbits

Hy(c) := Myuz, i(c)] U ¢o(it(c)) U Mz, it(c)] U ¢+ (u2) (2.29)
for each c¢; orie < ¢ < ¢*(4bm + m/D).

Remark 2.6. Similarly as in section 2.4.1, there exist singular homoclinic orbits p (u;)
lying entirely in the plane u = u, for ¢ = 0; see remark 2.4. These orbits are depicted in
figures 8(a) and (b) along the lower purple curves. We remark on their presence here, but we
refer to [8] for a detailed singular bifurcation analysis.

2.4.3. Heteroclinic orbits connecting desert state po(a) and vegetated state p4 (Uz). To con-
struct singular heteroclinic solutions that connect the steady state pg(a) to the steady state
P+ (u2), we can concatenate M with a front ¢4 that limits onto the fixed point p (u2). The
latter fronts only exist when p (uy) lies on Mg, i.e. when & > 4b + %. Hence, a singular
heteroclinic orbit connecting po(a) to p4 (uz) is given by

Hav(a) := MGluz.a] U ¢4 (), (2.30)

the speed of which is ¢ = ¢(a).
Similarly, a heteroclinic orbit connecting p (u) to po(a) can be found by concatenating
o with a front ¢, that limits onto the fixed point po(a). Again, this can only happen when

=~ > 4b+ %; a candidate orbit is given by
Hya(a) := Mglua, al U ¢o(a), (2.31)
the speed of which is ¢ = ¢*(a).

Remark 2.7 We note that there exist additional heteroclinic orbits for values of
2(b4+V14b%) < & <4b+ %. However, in this parameter regime, the steady state (U, V3)
corresponding to the equilibrium p4 (u) is unstable (against some non-uniform perturba-
tions) in the original PDE (1.2). Hence a heteroclinic orbit in this regime corresponds to a
front which invades the unstable vegetated state. We do not analyze such invasion fronts in
this work; rather, we focus on the bistable regime, corresponding to the singular heteroclinic
orbits Hyq(a) described above.

2.4.4. Periodic orbits. In this section, we comment briefly on periodic orbits. Follow-
ing the construction as for singular homoclinic orbits in section 2.4.1-2.4.2, it is also pos-
sible to construct singular periodic orbits by concatenating portions of the critical manifolds
ME, M}y with fast layer transitions in between, provided the relevant segments of M, M}
do not contain either of the equilibria po(a) or p; (uz2). Hence, one expects to find singu-
lar periodic orbits for any value of % <4< % + %, and any value of the wavespeed
0 < ¢ < min{c*(a, b,m), ¢(a, b, m)}. Further, general theory predicts that such periodic orbits
persist for small € > 0 [52]; these solutions correspond to wavetrain solutions of (1.2), or
periodic vegetation stripes. While such solutions are perhaps more ecologically relevant, in
the following we focus on traveling pulse solutions as the question of stability, particularly in
two spatial dimensions, is more analytically tractable.
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We remark that periodic wavetrain solutions have been found in a similar slow-fast context
in the FitzHugh—Nagumo equation [5, 29], and furthermore, their spectral stability (in one
spatial dimension) has been studied in [20].

2.5. Main existence results

In this section, we have studied (1.2) in the singular limit € | 0. Here, we have found several
singular homoclinic and heteroclinic orbits. These orbits persist for € > 0, as we will prove
in section 3. To summarize our findings, we end this section with our main existence results.

Theorem 2.8 (Vegetation stripe solution). Fix b,m >0 and a such that
L ¢ (3b,anyp(b)). There exists e > 0 such that for € € (0,e0), (1.2) admits a traveling pulse
solution ¢4(&;a,€) = (ug,va)(&; a, €) with speed

ca(a,e) = c*(a) + O(e) (2.32)

and satisfying 1im|¢| o0 (14, 0a) (&5 @, €) = (Uo, Vo). The length of the vegetation stripe is giv-
en to leading order by

L /” du
ol et 2.33)

Theorem 2.9 (Vegetation gap solution). Fix b,m >0 and a such that
4 ¢ (a(b), 3b+ 2). There exists g9 > 0 such that for € € (0,&), (1.2) admits a traveling
pulse solution ¢y(&; a,e) = (uy, vy)(&; a, €) with speed

cv(a,e) =¢(a) + O(e) (2.34)

and satisfying lim|¢| o0 (y, 0y)(§: @, €) = (Ua, Va). The length of the vegetation gap is given
to leading order by

eL, ::/zﬂ = log (uz(a)—a>. (2.35)
W U—a

ﬁz—a

Theorem 2.10 (Desert front solution). Fix b,m >0 and a such that
% > 4b + %. There exists €9 > 0 such that for € € (0,&9), (1.2) admits a traveling front solu-
tion ¢gy(&; a,e) = (uay,vav)(&; a, €) with speed

cav(a,e) = c*(a) + O(e) (2.36)
and Sati‘sfying limﬁﬁfoo(udw vdv)(g; a, 5) = (UO» VO) and hmﬁ%oo (udv, vdv)(é-; a, 5) =
(Uz, Vo).

Theorem 2.11 (Vegetation front solution). Fix b,m >0 and a such that
- >4b+ %. There exists €9 > 0 such that for € € (0,¢), (1.2) admits a traveling front solu-
tion ¢va(&; a,e) = (tyg, Ova)(&; a, €) with speed

cva(a,€) = é(a) + O(e) (2.37)

and satisfying lime_, oo (tva, 0va) (& a,€) = (Ua, Vo) and  lime_o0 (va, Uva) (€ a,€) =
(Up, Vo).
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Remark 2.12. We recall that the case b = 0 corresponds to the original Klausmeier model
[35]; see remark 1.1. From the geometry of the critical manifold (see figure 5), the degeneracy
of the limit » — 0 becomes apparent. In particular, the branch M, of the critical manifold
is sent to infinity, and the left branch M§ coincides with the hyperbola v = m/u in the plane
g = 0. In the current analysis, we will consider only the case b > 0. However, we note that
under appropriate rescalings, it is possible to unfold the degenerate case b = 0 and construct
traveling wave solutions. Additional complications arise in the singular perturbation analysis
due to loss of normal hyperbolicity along the critical manifold, for which blow up desingulari-
zation techniques are needed. We refer to [7] for the details.

3. Persistence of solutions for0 < ¢ < 1

In this section, we prove that the singular orbits constructed in section 2.4 perturb to solutions
of (1.7) for sufficiently small € > 0 using methods of geometric singular perturbation theory.
In section 3.1, we prove technical lemmata regarding the transversality of the fast connections
®1.0, and we discuss the proofs of theorems 2.8-2.11 in section 3.2.

3.1. Transversality along singular orbits

We consider the layer system (2.1)
W =0
v =gq (3.1

g =mv— (1 —bo)uv*—cq.

As outlined in section 2.2, this system possesses heteroclinic connections ¢o+ = (Vs 1, go.t)
between the left and right critical manifolds MET, where the speed c for a given heteroclinic
orbit depends on the value of u (as well as the other parameters). We define the stable and
unstable manifolds, WS(Mé) and W" (/\/l(’)) of a critical manifold Mé, j =4, r, as the union
of the stable and unstable manifolds, respectively, of the corresponding equilibria of the layer
problem (3.1).

Then an orbit ¢ lies in the intersection of W"(M§) and W* (M), while an orbit ¢, lies
in the intersection of W"(M}) and W*(M§). For a given orbit ¢4, which we suppose exists
for some values of (¢, u) = (co, tp), we aim to determine how this connection breaks as (c, u)
varies near (c, up); that is, we determine the transversality of the intersection of W"(M§) and
WH (M) with respect to (¢, u). We find the following.

Lemma 3.1. Consider a heteroclinic orbit ¢+ which lies in the intersection of W*(MS§)
and WS (M) for some (c,u) = (co, up). Then this intersection is transverse in (c,u), and we
compute the splitting of W*(M§) and W*(M}y) along ¢+ via the distance function

D;(¢,01) = M§¢ + MY+ O(& + i) (3.2)
where ¢ := ¢ — cg, Ul = u — ug, and
c __ > co& 2
M —/ e g+ (£)"d§ > 0,

Mi = /_oo eV (1 = boi (€))01 (§)*q1(§)dE > 0. (3.3)
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Proof. We use Melnikov theory to compute the distance between W"(M§) and WS (M)
to first order in lc — col and lu — ugl. We consider the adjoint equation of the linearization of
(3.1) about the front ¢ given by

0 —m+uvs(€)(2 — 3bv; (€))
Y = Y. (3.4

-1 c

The space of bounded solutions is one-dimensional and spanned by

wa=es (4

!

et ( 4;(¢) ) , (3.5)
—4:(£)

Let Fyy denote the right hand side of (3.1), and define the Melnikov integrals

MY = / Dy Fo(64(6)) - 1 (€)d, (3.6)

for v = ¢, u. The quantities M{, M measure the distance between W* (M) and W* (M) to
first order in lc — col and lu — ugl, respectively. We compute

M = / e g (€)%d¢ > 0,

M= [ e bor(€)or € (€ >0,
As these are nonzero, we deduce that the intersection of W"(M§) and W* (M) along ¢4 is
transverse in both ¢ and u, and we arrive at the distance function (3.2). O

Analogously, we can determine the transversality of the intersection of W*(Mj) and
Ws(/\/lf;) along an orbit ¢. We have the following lemma, which follows from a similar com-
putation as in the proof lemma 3.1.

Lemma 3.2. Consider a heteroclinic orbit ¢, which lies in the intersection of W' (M)
and W* (M) for some (c,u) = (co, uo). Then this intersection is transverse in (c, ), and we
compute the splitting of W* (M) and W*(M§) along ¢, via the distance function

Do (&, 01) = MSC + MYii + O(& + ii?), (3.7)

where ¢ := ¢ — ¢, Il := u — ugy, and

ME = / g, (€)2dE > 0,

— 00

M= [ e b (€)ouePan €16 < 0. (3.8)
3.2. Proof of existence results

In this section, we conclude the proof of theorem 2.8. The proof of theorem 2.9 is similar. The
proofs of theorems 2.10 and 2.11 also follow a similar argument—albeit less involved—and
we omit the details.
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Proof of theorem 2.8. Based on the analysis in section 2, we obtain a traveling pulse
solution of (1.2) as a perturbation from the singular homoclinic orbit H4(a) (see (2.24) and
figure 10) within the traveling wave ODE (1.7) for a speed ¢ & ¢*(a). We will construct a
homoclinic orbit for 0 < e <1 as an intersection of the stable and unstable manifolds
W*(po(a)) and W*(po(a)) of the equilibrium po(a) corresponding to the desert state.

For ¢¢ > 0 sufficiently small, from standard methods of geometric singular perturbation
theory, as the left branch M of the critical manifold is normally hyperbolic, it persists for
e € (0,&p) as a one-dimensional locally invariant slow manifold M¢. Similarly, away from
the fold F, the right branch M, of the critical manifold is normally hyperbolic and persists for
e € (0,g9) as a one-dimensional locally invariant slow manifold MZ. The two-dimensional
(un)stable manifolds W*(MJ) and W* (M), j = £, r, persist for € € (0, &) as two-dimen-
sional locally invariant manifolds W" (M) and WS(MY), j = £, r.

As the equilibrium pg(a) is repelling with respect to the reduced flow on Mﬁ (see sec-
tion 2.3), for sufficiently small ¢ > 0, the two-dimensional unstable manifold W*(py(a)) of
pola) coincides with W' (MY). The equilibrium po(a) also admits a one-dimensional stable
manifold W*(po(a)) which precisely corresponds the strong stable fiber of W*(M?) with
basepoint po(a). We note that for e = 0 and ¢ = ¢*(a), the manifold W*(po(a)) is precisely
the singular front ¢, (a).

Using the results of lemma 3.1 for ¢g = ¢*(a), up = u*(a), for each fixed ¢ = c*(a) the
two-dimensional manifolds W"(M§) and W*(M3}) intersect transversely along the front
¢+(u*(a)). This transversality persists for sufficiently small € > 0, and using the fact that
WH(po(a)) = WH(MY), we deduce the transverse intersection of W*(po(a)) and W*(M?)
for each ¢ ~ ¢*(a) and each sufficiently small € > 0. We now track W"(po(a)) as it passes
near MZ; by the exchange lemma [32, 47], there is a constant > 0 such that W"(po(a))
aligns C'-O(e~"/¢)-close to W"(MZ) upon exiting a neighborhood of M’ near the front
bo(a).

Using lemma 3.2 for ¢y = ¢*(a), up = a, we can compute the distance between W" (M)
and W*(po(a)) along the singular front ¢, (a) using the distance function (3.7). In order to
find a homoclinic orbit, we are interested in intersections of W"(po(a)) and W*(po(a)).
By the C'-O(e~"/¢)-closeness of W"(po(a)) and W"(M?), the resulting distance function
differs only by O(e~"/¢) terms. Hence we compute the distance between W"(po(a)) and

W:(po(a)) along ¢o(a) as
D(¢,it,¢) = M5¢ + O(e + &), (3.9)

where MS # 0 and ¢ = ¢ — ¢*(a). We solve for D(¢,t,e) = 0 when

¢ =c4(a,e) = c*(a) + O(e), (3.10)
which corresponds to an intersection of W"( po(a)) and W*( po(a)) along a homoclinic orbit
of (1.7). Ll
4. Stability

In the previous sections we have constructed several different localized solutions to (1.6):
homoclinics to the desert state (u,v) = (Up, Vo) = (a,0), homoclinics to the vegetated
state (u,v) = (U, Vo)—see (1.5)—and heteroclinics connecting these states. In this sec-
tion we study the linear stability of these solutions using formal arguments; rigorous
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Figure 10. The traveling pulse solution of theorem 2.8 is obtained for 0 < e < l asa
perturbation of the singular homoclinic orbit H4(a).

proofs follows in section 5. We denote a steady state solution to (1.6) by (uy, v5)—without
specifying yet which steady state solution—and we linearize around this state by setting
(u,0)(&,1) = (us, v5)(€) + N (7, D) (€). The linear stability problem then reads

{)\ﬁ _ ldec 17‘5 _ (1 + '0?) u — 2u,0,0,

€

D =TDge + ¢50¢ + (—m — 2 + (2 — 3bv,)uyv,) 0 + (1 — boy)v2a. @D

Here, ¢, denotes the speed of the steady state under consideration. With the introduction of
q := U¢ we can write this stability problem in matrix form as

it i e LA+ 0] T 2us0s 0
U¢| =A| 0], where A = 0 0 1
e q —(1 = bvg)v?  m+ 2+ X~ (2-3bvy)uo; —cs

4.2)
The rest of this section is devoted to finding the spectrum X of this eigenvalue problem for
the different stationary solutions to (1.6), using formal computations. The spectrum consists
of an essential spectrum g and a point spectrum X, which can each be interpreted in rela-
tion to the eigenvalue problem (4.2). The essential spectrum, which we consider in section 4.1,
can be determined from properties of the asymptotic matrices obtained by taking the limit
& — +ooin (4.2). We then study the point spectrum in section 4.2, which consists of eigenval-
ues for which (4.2) admits exponentially localized eigenfunctions. In section 4.3 we formulate
theorems based on our findings, the proofs of which are given in section 5.

4.1. Essential spectrum

The essential spectrum consists of all eigenvalues A such that an asymptotic matrix of (4.2)
has a spatial eigenvalue with real part zero. Depending on the type of steady state solution we
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are inspecting, the asymptotic matrix or matrices might be different. However, since we are
only considering steady state solutions that limit to either the desert state (u,v) = (a,0) or
the vegetated state (u,v) = (U, V2), there are only two possible asymptotic matrices; when
(us, vy) limits to (a, 0) (for either £ — oo or £ — —oo) we have Aq as asymptotic matrix and
when (uy, vy) limits to (Ua, V,) we have Ay, where these matrices are given by

=1+ 0 0
Ad(\ ) = 0 0 1 (4.3)
0 m+C2 4N —c
o LA+ V] 7220V 0
A\ 0) = 0 0 1|,
—(1=bV)VZ  m+0C+ A= (2-3V))U,V, —cy

4.4)
where the values for U, and V; are given in (1.5).

Lemma 4.1. Concerning the asymptotic matrices Ag, Ay defined in (4.3)—(4.4), we have the
following.

(i) The matrix Aq is hyperbolic for all X € C satisfying
Re A > —min{m + ¢*,1}. 4.5)

(ii) For values of a,m,b > 0 satisfying = > 4b + %, the matrix A, is hyperbolic for all X\ € C
satisfying

. 2m (Wm_m) p

oL < 0.
4b>"  2m+ ab — b\/a? — 4m(m + ab)

ReA > —min< 1+

(4.6)
Proof. For (i), a straightforward computation reveals that A4 is non-hyperbolic when
Ae{deC:Red=—1}U{\=—m— 2 —k* +ick;k € R}; see figure 11.
For (ii), we compute that A, is non-hyperbolic when

(1 fsc (L+A+V3) — iu) (ive, — v —m — 2 = X+ (2= 3bV,) U, V)

. fECSzUsz(l — V) V2 =0, @.7)
for some v € R. We note that
Re (ive, — 12 —m — 02 — X+ (2= 3bV,) U, V) <0 4.8)
whenever
Re\ > —m — 2 4 (2 — 3bV,) U, V5. (4.9)

Furthermore, using the expressions (1.5), when % > 4b + %, we have that V, > 2% and

2m (b\/a2 — 4m(m + ab) — m)
2m+ab— b/ — 4m(m + ab) -
<0

—m— 0+ (2 =3bV,)U,V, =
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for all £ € R. By rearranging (4.7), we deduce that A, is non-hyperbolic when

2U2V2(1 — sz)Vz 1+ ECs
A=-1-V3 2 :
2+ (ivc—1v2 —m— 02 — X+ (2—3bV2)U,V>) T € (4.10)
Taking real parts of (4.10) in the region
m (b a?> — 4m(m + ab) — m)
Re A > — _ (4.11)
2m+ ab — by/a? — 4m(m + ab)
we have that Re A < —1 — V3, and noting V, > 3, the result follows. O

Thus, since both A4 and A, stay hyperbolic for all A with Re A > 0 for the relevant param-
eter values, the essential spectrum of all of the types of steady state solutions found in sec-
tion 2 is located in the left half-plane.

4.2. Point spectrum

In this section we study the point spectrum X, using formal perturbation theory. Here we
focus on 1D stability, that is £ = 0. Rigorous proofs of the statements in this section, and the
extension to all £ € R, follow in section 5.

We observe that the slow manifolds Mg” are hyperbolic (away from the fold point F)
and consist entirely of saddle equilibria of the fast layer problem (2.1). Hence, we expect that
these slow manifolds do not contribute any eigenvalues; the only eigenvalues come from the
contribution of the fast fronts ¢+ and ¢,. That is, eigenvalues in the point spectrum lie close
to the eigenvalues of the fast-reduced subsystem (2.1). Since ¢+ and ¢, are fronts and (2.1)
is translational invariant, standard Sturm-Liouville theory indicates that they carry an eigen-
value A = 0 and possibly several other eigenvalues that are all real and negative. Therefore,
if there are potentially unstable eigenvalues in the point spectrum X, they need to lie close to
A = 0. Specifically, there are as many eigenvalues close to 0 as there are fronts in the steady
state solution (u, vy) under consideration.

Because the full system (1.6) is translational invariant, A = 0 is an eigenvalue of the full
system. When we study the stability of a heteroclinic connection (connecting the desert state
po(a) to the vegetated state py (uy) or vice-versa) this is the only eigenvalue close to 0; in
particular X\ {0} C {A € C: Re X < 0}. On the other hand, when we study the stability of a
homoclinic connection (connecting either the desert state po(a) or the vegetated state p (uz)
to itself), there is an additional eigenvalue close to 0. This eigenvalue—of the homoclinic
steady state solutions—can, in principle, move either to the left or to the right (making the
steady state unstable). In this section, we use perturbation theory to track this movement and
pinpoint the location of the second eigenvalue formally.

4.2.1. Formal computation of small eigenvalues. Let (ug, v5) be an exact solution to (1.6). The
linearized stability problem (4.1) can be recast to the following form

i i e 1 +ecs)0 — (1 +02) —2u,v;
£(0) (z‘;) =X <z7> ’ £(0) = ( (1 — bvy)v? R+ —m—114(2— 3bvs)usvs> ’

(4.12)
For simplicity, we focus on the operator £(0) corresponding to the case ¢ = 0; the case of
¢ € R is similar and is carried out in detail in section 5.
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Figure 11. Shown is the essential spectrum X associated with the desert state
(t,v) = (a,0) in the case £ = 0.

Since we are looking for a small (order O(¢)) eigenvalue closely related to the derivatives
of the fast fronts (uT, UT)T and (us, UQ)T, in particular at leading order, (4.12) is satisfied in the
fast &-fields by any linear combination of (u}, U%)T and (u},,v},)T. We denote the fast region
with the front (u;,v4)” by I; and the fast region with the front (u,vs)” by I,. Then, to find
the small eigenvalues we therefore use regular expansion and determine the eigenvalues with
a Fredholm solvability condition. In particular, we first focus on the fast fields and we expand
the eigenvalue and (i,7) in these fast regions as

Cj) — (ZD e (ZD TOE),  (€ehj=to) @.13)

A=0 +eX + O(e?), (4.14)

where a4, are constants to be determined. Moreover, we also need to expand the exact solu-
tion (us, v)T as well as the speed c;:

(Z) B (ZQ e (Zji) TOE), (€ehi=to) (4.15)

¢ = o + ec +0(e?), (4.16)

where (u;,v;)” (j = 1,¢) and co are the leading order approximations of the exact solutions as
constructed in section 2.5, theorems 2.8 and 2.9. Substitution in (4.12) leads at order O(¢) to
the following equation (the O(1) equations are automatically satisfied):

ljljl-vl = ZOéjujUjU;, .
,C;Ziijl = (:\ — c185 — [2 — 6b'0j} ujvj,] — [2 — 3b'0j} Uijy]) Oéj'U]/- — [1 — b'Uj} 'Ujgljtj,], (5 € Ij’ 7= T’O)
4.17)
where
L] := 0 + co0c — m + (2 — 3bv;)ujv;. (4.18)

In (4.17) terms with ¢, v;; and u;; appear, and to determine these, we expand the existence
problem (1.7) in € as well. In the fast fields the order O(e) terms read
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/ — . 72
{uj,l = Uj a—|—ujvj,

r _ Neoyoas /
,CjUj‘] = —(1 — b’UJ)’UJMJ,] C]"Uj

(e, j=1,0). (4.19)

Taking the derivative with respect to £ of the second equation then yields

70l = (—c10¢ — [2 — 6bvj] wvy — [2 — 3bv)| vy ) v) — [1 — bvj vruf .

4.20
Substitution in (4.17) then reduces the core stability problem to (4-20)
i = 2q;u;0,v,
i1 jUuivil;e
_ 5 _ €l, j=1,0). (4.21)
{Efvfll = LV} + Aayof + (1 — boj] o} (aj”},l —”j.l) ek j=to)

From this equation it is clear that i can be found by integration (regardless of the value of
A, at and a,). However, since L7 has a non-trivial kernel, we have to impose a solvability
condition on vj,;. We define v} as a solution to the adjoint equation (Ej’ )*vj* = 0 and note that

v (§) =e™0i(€), (€€ Lj=1.9). 4.22)

Thus we obtain the following Fredholm solvability condition

0= 04]'5\/ (1))%eede +/ [1 = boj) vie] (ayujy —wa) & (j=1.9). (4.23)
We observe from (4.17) and (4.19) that au, — it;; is constant in the fast fields I; (j = 1, ).
Thus the Fredholm condition reduces to

oo

0= ;A / (0))%e™dé + (oyuy, — 1) / [ —byloje™ vide  (j=1.0). (4.24)
— 00 —0o0

Note that we thus have two solvability conditions. Only when both are satisfied simultane-

ously, it is possible to find (i1, 2) that solve (4.12). The terms in (4.24) change depending on

the type of steady state solution we are considering, and in particular, to which equilibrium

state these solutions are homoclinic, as this determines the value of ajuj’-,l — Uj).

4.2.2. Homoclinics to desert state. In this situation, u;,l(g ) = 0 for £ — oo in I, since the
jump here is onto the fixed point. Moreover, i, 1 () — 0 for £ — oo in I, to ensure integrabil-
ity of the eigenfunction. Thus, the condition in I, is

oAM= 0, (4.25)

where

My = / (€)% @S dg > 0. (4.26)

Therefore, either A = 0 or o, = 0. The former gives us back the translational invariant eigen-
value with eigenfunction (i1, 0)7 = (u},v:)T, so we focus on the latter possibility. Note that
o, = 0 implies that %, ; = Ointhe fast field /. Thus, this provides a matching condition for the
equations in the slow field between the fast fields /; and I,. By expanding the slow field equa-
tion in the slow variable, it immediately follows, from this fact, that the eigenfunction must be
0 in the slow field between I; and I, as well. Hence we conclude that i3 ; (£) — 0 for £ — oo
in 14 as well. Moreover, uy,1 (§) = uy —a — uzv4 (uy)? = u*(a) — a + u*(a)vy (u*(a))?* for
§ — oo in I4—see equation (4.19) and theorem 2.8. Thus the second solvability condition
becomes
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ar [Amd, + ] =0, (4.27)
where

M, = / v} (€)% @8 dg > 0, (4.28)
M{_ = [u*(a) — a+ u*(a)vy (u"(a))’] /_ (1 — boy (€)1 (€)% S0l (€) dé > 0. (4.29)

The signs of these are positive, since v; is increasing with &, and the quantity
(u*(a) — a+u*(a)vy(u*(a))?) is positive per construction. Because taking ay =0
leads to the trivial solution (on R), we therefore obtain the additional eigenvalue
~ Md
A=¢el=—¢

i.e
Md
Y
stable half-plane {A € C: Re A < 0}. A plot of the corresponding eigenfunction, computed
numerically, is given in figure 13(b).

< 0, which indicates that the eigenvalue A close to zero has moved into the

4.2.3. Homoclinics to the vegetated state. This case is very similar. However, now the solu-
tion in /; limits to the fixed point of (1.7). Using similar arguments, we then find the following
condition in /4

apAMY \ =0, (4.30)

where

M, = /_ . v} (€)% dg > 0. (4.31)

This time we need to take oy = 0. Similar to before, matching through the slow field yields
ui1(§) = 0 and uo ) — uo — a = ix(a) — afor { — oo in I,,. Therefore the second condition
for this steady state reads

o [XM;_ Nt Mia} —0, 4.32)

where
oA = / vl (€)% W de > 0, (4.33)
M}, = [in(a) — d] / (1 — bvo (€))v, (€)% W, (£) dE > 0. (4.34)

Because it;(a) —a < 0 and v,, is decreasing with &, the sign of all these terms are positive

. . . . 5 M .
again. Therefore we obtain the additional eigenvalue A = e\ = —e;= < 0, and again the
O,

A
eigenvalue has moved into the stable half-plane.

4.3. Main stability results

In the previous sections we have formally determined the spectrum of the various steady
state solutions to (1.6). The computations in these sections hold for 1D perturbations of
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Figure 12. Shown are the results of theorem 4.3. The left panel depicts the spectrum
of the £ = 0 operator £(0), corresponding to 1D stability. The point spectrum contains
two critical eigenvalues Ao, A. close to the origin, while the remainder of the spectrum
is bounded away from the imaginary axis in the left half plane. The right panel depicts
a schematic of the continuation of the critical eigenvalue Xg for|¢| > 0.

the steady state in question. We do, however, also want to understand the stability of these
steady states under 2D perturbations. For that, we linearize around this state by setting
(u,0)(&,y,1) = (us,05)(€) + N (1, 0) (&), where £ € R is the transverse wavenumber,
which results in the family of linearized PDE operators

E_l(l + ECS)ag —1- U? _zusvs )

L) = ( (1 — bo,)v? 82 + 2 + ;0 — m+ (2 — 3bvy)usv; (4.35)

Linear stability is then determined by the corresponding family of eigenvalue problems

£ (g ) . Gﬁ ) (eR. (4.36)

Introducing ¥ := (&,9,7')T we write the eigenvalue problem (4.36) as the first order non-
autonomous ODE

1#—655‘ [1 + >\ + Uﬂ ﬁZuSvs 0
U =A(E N L,e)T, A&\ L) = 0 0 |
—(1 — bo,)?? m+ A+ 2 — (2 —3bvy)uv;, —c

4.37)
The essential spectrum associated with this problem was treated in section 4.1. By introducing
A = X + £2 the previous formal computations for the point spectrum in section 4.2 still hold
up to leading order by replacing A with A. To summarize our findings, we formulate several
stability theorems for the various types of steady state solutions (also see figure 12); these are
proved rigorously in section 5.

Theorem 4.2 (Spectrum of traveling front solutions). Ler a,b,m, < as in theorem
2.10 or 2.11 and let ¢y, denote a traveling front solution as in the same theorem. Then, the
following hold.

(i) The spectrum of the operator L£(0) is contained in the set {\ € C : Re A < 0} U {0}, and
the spectrum of the operator L({), £ # 0 is contained in the set {\ € C : Re A < 0}.

(ii) The eigenvalue X\o(0) =0 of L(0) is simple and continues to an eigenvalue of
L(0), €] < Ly for some Ly >> 1, satisfying \,(0) = 0 and

M) = =2 +0(leloge)?),  MNj(£) = =24 O(lelogel?), 10| < L. (4.38)
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Figure 13. Shown is the numerically computed 1D spectrum (left panel) associated
with a traveling pulse solution of (1.2) found fora = 1.61,b = 0.6,m = 0.5, = 0.003.
The v profile of the solution is shown in the right panel, along with the eigenfunction
corresponding to the critical eigenvalue A,.

(iii) The remaining spectrum of L(¢) is bounded away from the imaginary axis uniformly in
€ > 0 sufficiently small and { € R.

Theorem 4.3 (Spectrum of vegetation stripe solutions). Lera, b, m, < as in theorem
2.8 and let ¢q be a traveling pulse ‘stripe’ solution as in theorem 2.8. Then, the following hold.

(i) The spectrum of the operator L£(0) is contained in the set {\ € C : Re A < 0} U {0}, and
the spectrum of the operator L({), £ # 0 is contained in the set {\ € C : Re A < 0}.

(ii) The eigenvalue X\o(0) =0 of L(0) is simple and continues to an eigenvalue of
L(0), €] < Ly for some Ly >> 1, satisfying \,(0) = 0 and

M) = =2 +0(lelogel?),  MN(£) = =24 O(|elogel*), 0| < Ly. (4.39)

(iii) The operator L(£), |€| < Ly admits an additional critical eigenvalue

d

M
A(0) = —22 — M}E e+ O(leloge?), || < Ly, (4.40)
A

where M?,A and MJ‘?’E are as defined in (4.28) and (4.29).
(iv) The remaining spectrum of L({) is bounded away from the imaginary axis uniformly in
€ > 0 sufficiently small and { € R.

Theorem 4.4 (Spectrum of vegetation gap solutions). Let a,b,m,c as in theorem
2.9 and let ¢y be a travelling pulse ‘gap’ solution as in theorem 2.9. Then, the following hold.

(i) The spectrum of the operator L£(0) is contained in the set {\ € C : Re A < 0} U {0}, and
the spectrum of the operator L(£), € # 0 is contained in the set {\ € C : Re A < 0}.

(ii) The eigenvalue \g(0) =0 of L(0) is simple and continues to an eigenvalue of
L(0), €] < Ly for some Ly > 1, satisfying \,(0) = 0 and

M) = =2 +0O(leloge)?),  MNj(£) = =24 O(lelogel?), 10| < L. (4.41)
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(iii) The operator L(£),|€| < Ly admits an additional critical eigenvalue

M
Ae(l) = =% — Mj’s e+ O(lelogel?), 16| < Ly, (4.42)
LN

where M \ and M _ are as defined in (4.33) and (4.34).
(iv) The remaining spectrum of L(¢) is bounded away from the imaginary axis uniformly in
€ > 0 sufficiently small and ¢ € R.

5. Rigorous proof for stability theorems

The theorems in section 4.3 are based on computations of the essential spectrum in section 4.1
and a formal computation of the point spectrum in section 4.2. The former directly provides
proof for the theorem statements concerning the essential spectrum. The latter, however, does
not provide a rigorous proof for the theorem statements concerning the point spectrum; to
that end, in this section we provide the rigorous justification for the formal point spectrum
computations in section 4.2. We restrict ourselves to the study of the traveling pulse ‘stripe’
solution ¢4 as in theorems 2.8 and 4.3. The setup and proof for the traveling ‘gap’ solution
¢y as in theorems 2.9 and 4.4 is similar; the setup and proofs for the traveling heteroclinic
orbits ¢q and ¢qy as in theorems 2.10, 2.11 and 4.2 are also very similar, though less involved.
Therefore, the details of these are omitted.

To analyze the point spectrum, we search for exponentially localized solutions to the fam-
ily of eigenvalue problems (4.37) parametrized by the transverse wavenumber ¢ € R. To this
end, we use exponential dichotomies/trichotomies and Lin’s method to construct potential
eigenfunctions, based on similar techniques used in the study of stability of traveling pulses
in the FitzHugh—Nagumo equation [6]. We briefly review the notions of exponential dichoto-
mies/trichotomies in section 5.1.

To determine eigenvalues of (4.37), it is useful to split the complex plane in several regions.
For M > 1 and § < 1 fixed independent of €, we define the following regions (see figure 14)

Ri(0) :={CeC: || <}
Ry(0,M):={CeC:0<|(| <M,Re( > -4}
R;(M) :={C € C: || >M,|arg(¢)| <2nm/3}. (5.1
In section 5.2, we first show that large wavenumbers ¢ do not contribute eigenvalues, and
hence it suffices to restrict to a region of bounded £. We then set A(¢) := A 4 £? and study the
behavior of solutions to (4.37) for X in the various regions (5.1). The region Rj is considered in
section 5.3. In section 5.4, we collect preliminary results in order to set up the analysis for 5\(6)

in the regions R; and R,, which are analyzed in section 5.5 and 5.6, respectively. We briefly
conclude the proof of theorem 4.3 in section 5.7.

5.1. Exponential dichotomies/trichotomies

Exponential dichotomies extend the notion of hyperbolicity to nonautonomous linear systems
such as (4.37) by separating the dynamics into subspaces of solutions which satisfy exponen-
tial growth/decay estimates. Consider a linear system

U =AY, veC (5.2)
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and let T(¢, f ) denote the corresponding evolution operator. Let I C R denote an interval.
The system (5.2) is said to admit an exponential dichotomy on / with constants C, 4 > 0 and
projections P**(&), & € I if the following hold for all §,& € 1

PO+ P(E) =1
T(&E)P(€) = P*(OT(E.E)
ITEOPELITEOP (O] < Ce 79, =&

We will sometimes write T%(&, €) := T(&, )P (€) to denote the corresponding stable/unsta-
ble evolution operators.

Exponential trichotomies allow for a ‘center’ subspace which does not satisfy the same
exponential decay estimates required for an exponential dichotomy. The system (5.2) is said to

admit an exponential trichotomy on / with constants C > 0 and y; > p, > 0 and projections
PUe5(€), € € I'if the following hold for all £, & € 1

PO+ P +P () =1
T(& )P (&) = P ()T (£.€)
TP ITEOP (] < CeES,ife> ¢
IT(& )P (E)] < Cerl<~el,
Our analysis will make use of exponential di-/trichotomies in order to build exponentially
localized eigenfunctions, and in particular we will make use roughness properties, which
guarantee that exponential di-/trichotomies persist under small perturbations of the linear sys-

tem (5.2). For more information on dichotomies and their properties, as well as their applica-
tions to stability analysis, see [13, 40, 46].

5.2. Reduction to region of bounded |¢|

In this section, we show that it suffices to consider bounded wavenumbers |¢| < Ly for some
Ly > 1.

5.2.1. The region |¢| > 1. We first consider the region of large transverse wavenumber, that is
we consider (A, ¢) such that A € R;(§) U R2(6, M) U R3(M) and |€| > Ly for a fixed constant
1 <« Ly < M independent of €. In this region, we perform a rescaling of the stability problem
(4.37) and show that the rescaled problem is a small perturbation of a constant coefficient
problem which admits exponential di/trichotomies and no exponentially localized solutions.

We rescale £ = VA + £2€,q = q/v/A + £2, which results in the system

dv  _ - - R
= =A(E N\ 4,e)T, A&\ le) = A (M Le) + A& 0 e) (5.3)
where A (), 4, ) is the constant coefficient matrix
e A 0
14-ecq m
A\ Le) = 0 0 1
262
0 P\iﬁl 0
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Figure 14. Sketch of the regions R;(d), R2(6,M) and R3(M) as considered in the
analysis of the point spectrum.

and

_ 1
A&l e) =0 | ——
A& 6e) ( AT eZ)
uniformly in f_ ,&. We consider |£] > Ly, for some sufficiently large, fixed constant L. We can
compute the eigenvalues of A; (), £, €) explicitly as

S A+ 02 L€ A
=7 A+ 2 T ltecaVAF 2

For A € R1(6) URy(0,M) UR3(M)forany 6 < land M >> Ly, we note that the pair of eigen-
values v+ have absolute real part greater than 1/2, because | arg v/ (A + €2)/|A + €3]] < /3.
One of these eigenvalues has negative real part and the other positive real part.

For the third eigenvalue v., there are three cases: Rev. > 1/4,|Rev.| < 1/4, or
Rev. < —1/4. If Rev. > 1/4, then, by roughness, (5.3) admits exponential dichotomies
and hence no exponentially localized solutions. If | Re v¢| < 1/4, by roughness (5.3) admits
exponential trichotomies with one-dimensional center subspace. Any bounded solution must
lie entirely in the center subspace. By continuity, the eigenvalues of the asymptotic matrix
AT () £, e) =limg_, 4 A(& N, £, €) are separated so that only the eigenvalue v has abso-
lute real part less than 1/4 + & for some small £ > 0. For A to the right of the essential spec-
trum, we have that Rev. > 0. Let U, be the corresponding eigenvector. Any solution ¥(&)
in the center subspace satisfies lime_, 4 U (€&)e v=¢ = (4, for some (1 € C\ {0}, which
contradicts the fact that ¥(&) is bounded. Finally we note that the case Re v, < —1/4 cannot
occur for A to the right of the essential spectrum since in this region the asymptotic matrix
AT\, £, ) has two eigenvalues of positive real part and one of negative real part.
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Thus we conclude that for |£| > Ly and any A € R (8) U R,(d, M) U R3(M) to the right of
the essential spectrum, (4.37) admits no exponentially localized solutions.

5.2.2. Setup for |¢| < Ly. In the following sections, we will consider the region where || is
bounded. We begin by setting A = A(¢) := X + ¢2. Under this transformation, (4.37) becomes

U = A& N L,e)T, (5.4)
where
- i s 13-+l e, 0
A(G N Le) =AGA— 0 le) = 0 0 |
—(1 — boy)v? m+ X — (2 —3bvy)uv, —cy
(5.5)

In the following we characterize all eigenvalues A € C such that
(A 0) € Ri(8) URy(6,M) UR3(M) x [—L, Ly]. (5.6)

This characterizes all eigenvalues A € C with Re A > —¢* — § and thus all eigenvalues A € C
with Re A > —4. In particular, all potential unstable eigenvalues with Re A > 0 are captured
by this characterization.

5.3. The region (\(£),¢) € Rs(M) x [—L, Ly]

In this region, we follow a similar strategy to that in section 5.2.1 and perform the rescaling
€ = \/|A€,q = q/+/|\|, which results in the system

‘:éf CAEMLEY,  AENLe) =

1N Le) + Aq(€;

>
>

L€) (5.7)

where A (), £, €) is the constant coefficient matrix

5 A
o 1+€c‘5m 0 0
A\ Le) = 0 0 1
N
0 N 0
and
A~ 1
A (&N Lle) =0 —

VIA
uniformly in é, €, and |[¢| < Ly, where we recall that 1 < Ly < M. The remainder of the
argument follows analogously as in section 5.2.1, and we conclude that for any fixed Ly, any
sufficiently large M and any (\(¢),£) € R3(M) x [—Ly, Ly] with A\ = X\ — £2 to the right of
the essential spectrum, (4.37) admits no exponentially localized solutions.

5.4. Setup for the region (\(£),£) € Ry(5) U Ra(8, M) x [—Lu, Ly

In the previous section we have deduced that all eigenvalues need to be located in the region
(A(0),£) € Ri(6) UR2(0,M) X [—Lyy, Ly]. The analysis in this region is more involved and we
need a specific set-up for this region, the details of which are explained in the next subsections.
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5.4.1. Estimates from the existence analysis. To study the stability of the traveling pulse solu-
tion ¢4, we need to be able to approximate it pointwise by its singular limit, and bound the
resulting error terms. The following theorem establishes these estimates.

Theorem 5.1. For each v > 0 sufficiently large, there exists g > O such that the follow-
ing holds. Let ¢4(&) = (ua(€),v4(€))T be a traveling-pulse solution as in theorem 2.8 for
0 <e<eg and define L. := —vloge and ®4(&) := (ua(€),va(€),v4(&))T. There exists
0 < Z. = O(1/e) such that:

(i) For € € Iy := (—o0, —L¢], ®4(£) is approximated by the left slow manifold M§ with

d(@4(€). Mg) = O(e).

(ii) For & € It := [—Le, L], ®4(€) is approximated by the front ¢1+(&) = (v4(€), q4+(€))T with

_(w(@)\] _ T Y

w0~ (5 (6))| - otore). [oie)— (1)) | - Ocloxe)

(iii) For & € I, »= [Le, Z: — Lc}, ®4(€) is approximated by the right slow manifold M, with
d(®4(8), Mp) = O(e).

(iv) For € € I, := [Z. — L., 0), ®4(€) is approximated by the front ¢, (£) = (v6(£), go(£))"

with

0

P (€ — ZE)) ‘ = O(cloge).

26~ (4" )|~ 0rre. w0 - (

Proof. The proof is similar to theorem 4.3 in [6]. The estimates are based on the proximity
of the solution to the singular limit; along each of the slow manifolds, and along each of the
fast jumps outside small neighborhoods of the slow manifolds, these estimates follow directly
from the existence analysis, and ®q4(§) is within O(e) of the corresponding singular profile.
The regions in between, i.e. where ®4(§) transitions from a fast jump to a slow manifold or
vice versa, are more delicate and require corner-type estimates, which result in the O(e log€)
errors; see, e.g. [6, theorem 4.5] or [20, 30]. O

5.4.2. Weighted eigenvalue problem. 1In this section we introduce a small exponential weight
to the stability problem (5.4). This weight is introduced to deal with the inconvenience that
arises due to the fact that when € = 0, along the critical manifolds M , M, the matrix A
admits three spatial eigenvalues: one negative, one positive, and a zero eigenvalue which cor-
responds to the slow direction. On the other hand, for ¢ > 0 the asymptotic matrix Ay is
hyperbolic with two positive spatial eigenvalues and one negative eigenvalue. In the follow-
ing, we will construct exponential dichotomies for (5.4) along each of the slow manifolds
MY, M and each of the fast jumps, and for the following computations it will be convenient
to preserve this dichotomy splitting at € = 0 and preserve the exponential decay in forward
(resp. backward) time within the corresponding stable (resp. unstable) dichotomy subspaces.
To this end, for each 7 > 0 we consider the weighted eigenvalue problem

U = A, (&N Le)T, (5.8)
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where

~ - - l+5( {1 + )\ 62 +o ] +n |+502ud'0d 0
Ap(&s M le) =AM e)+nl = 0 n

7(1 — bUd)Ug m+ /~\ — (2 — 3bvd)udvd n—c
(5.9

The effect of mtroducmg the weight 7 is to shift the spectrum (i.e. the spatial eigenvalues) of
the matrix A(&; WA ¢) to the right. For any A chosen so that A = A — £2 lies to the right of the
essential spectrum of £, the asymptotic matrix AT®(), £, ¢) = limg o0 A(£; A, £, €) admits
two eigenvalues of positive real part and one of negative real part. Provided 7 is chosen so that
A%‘X’(S\, le)=lime 00 Ap(§ : M\ 4, ¢) retains this spectral splitting, the original eigenvalue
problem (4.37) admits a nontrivial exponentially localized solution ¥ (&) if and only if the
weighted problem (5.8) admits a solution given by e”¢ W (¢&).

We proceed by determining 1 > 0 such that the spectrum of the coefficient matrix

A& WA ¢) of (5.8) has a consistent splitting into one unstable and two stable eigenvalues
for any X € R;(8) U Ry(8, M) such that A = X — £2 lies to the right of the essential spectrum
of £ and any & € I, U I,, where Iy, 1, are as in theorem 5.1. This consistent splitting will be
used to construct exponential dichotomies for (5.8) on the intervals I, I,. This is the content
of the following proposition.

Proposition 5.2. There exists C, j1,1,£9 > 0 such that for € € (0,¢€), (5.8) admits expo-
nential dichotomies on the intervals Iy = (—oo, —L.]| and I, = [L.,Z. — L.) with constants
C,pu >0, and the associated projections Q" (&; A €) are analytic in X\ € Ry (6) U Ry (8, M)
and satisfy

12 - Pl-Ls 50 |1 - Piza i)

(Q; = PI(Z. — LiAve) | < Clelogel,

where ’P(§ ) denotes the spectral projection onto the stable eigenspace of the coefficient
matrix Ap(§; X\, 4, €) in (5.8).

Proof. By theorem 5.1, for £ € I, U, the pulse solution is O(g)-close to the slow mani-
folds MY and M, respectively. For [¢| < Ly bounded and any A € R () URy (6, M), on I
the matrix A,(&; A, £, €) has slowly varying coefficients and is an O(e) perturbation of the
constant-coefficient matrix

n 0 0
Ap(&Mte) =0 7 1 : (5.10)
0 m+X n—c*(a)
For any sufficiently small 77 > 0 fixed independently of & and A € R () U Ry(8, M), this ma-
trix is hyperbolic with two eigenvalues with positive real part and one with negative real part
and a spectral gap with lower bound independent of X € R;(8) UR,(8,M). By continuity
this also holds for A, (&; M 2, ¢) for € € Iy, and since Ay (& A, £, ) has slowly varying coef-

ficients on this interval (see [13, proposition 6.1]), as in the proof of [6, proposition 6.5],
we can construct exponential dichotomies for (5.8) on I, with constants C, u independent of
A € R (8) URy(8, M) and all sufficiently small .

We proceed similarly along /,, noting that here the matrix A, (§; WA €) again has slowly
varying coefficients but is now an O(g) perturbation of the matrix
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n 0 0
AZ({;A,&S) = 0 i n 1 (5.11)
‘7(1 A—bvd)vd m-+ A 4’(2‘* 3bvd)udvd n A*C*(a)

where (ug,vq) lies within O(e) of the set {(u,v) = (u,v4(u)) : u € [u*(a),a]} where v is
as in (2.3). On this set, we note that since m = (1 — bvy (u))uvy (u), u > 0 and v (1) >
we have that

1
2%
m— (2 —3bvy (u))uvy(u) = (—1+ 2bvy (u))uvy (u) > 0. (5.12)

Hence for ¢ > 0 sufficiently small A7, (¢; WA g) is hyperbolic with two eigenvalues with posi-
tive real part and one with negative real part and a spectral gap with lower bound independent
of A\ € R (0) U Ry(0,M). The existence of exponential dichotomies for A,,(; 2 €)on I, then
proceeds similarly to the case of I, above. O

5.5. The region (\(£),¢) € Ry(8) x [—Lu, Lu]

The argument below is based on the analysis in [6] regarding the stability of traveling pulse
solutions in the FitzHugh—Nagumo equation. The fundamental idea is to construct potential
eigenfunctions as solutions to (4.37) using Lin’s method: the solutions are constructed along
three separate intervals which form a partition of the real line and are matched at two loca-
tions corresponding to the two fast jumps in the layer problem; see figure 15. The resulting
matching conditions give bifurcation equations which can be solved using the eigenvalue A as
a free parameter, and to leading order these conditions correspond to the Fredholm conditions
(4.25) and (4.27).

5.5.1. Reduced eigenvalue problems along fast jumps. We consider the reduced eigenvalue
problems

n 0 0
U = A ()T, A, = ( 0 7 1 ) . j=to
—(1 = bv;(&))v;(€)* m— (2= 3bv;(&))uv;(§) n—c*(a)
(5.13)

obtained by considering (5.8) withe = A =0and approximating ¢q by the fast front solutions
¢j,j = t,¢, and we denote the corresponding evolutions by T;(&, é) for j = 1,0.In(5.13),v;(§)
denotes the v-component of ¢;(£), and uy = u*(a),u, = a. Hence, for £ € Iy = [—L., L.},
(5.8) can be written as the perturbation

U = (A10(&) + BiEX L)) W, Bi(&ALe) = Ay(E N L) = Apy(€)
(5.14)
and for £ € [—L, 00), (5.8) can be written as the perturbation

V= (Aen(& +Bo&A L)) W Bol&AL6) 1= Ag(E +Zei M loe) = Aoy (§):  (5.15)
We note by theorem 5.1 (ii) and (iv) that the perturbation matrices By, B, satisfy

I1Bi (&: M. L)l < Clelloge| +|A]), € € [Le, L],

i . (5.16)
1Bo(§: A £,€)|| < Clefloge| + |A]), & € [~Le, 00).
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Next, we note that (5.13) has a lower triangular block structure and leaves the
two-dimensional subspace {0} x C? C C? invariant, the dynamics on which are given by

1
'=¢; , C = ( 4 ) = 1,9 5.17
V=Gl Gl = 2 b @e) n-e@) T 517
The space of bounded solutions of (5.17) is one-dimensional and spanned by
Ui(6) =€), j=t.e. (5.18)
Likewise, the associated adjoint system
Y ==Cn(&)™, =10, (5.19)
has a one-dimensional space of bounded solutions spanned by
g (&) ) @-m¢
i = e , =T,0. 5.20
dbad(g) (__Zé(g) J T ( )

Note the similarities with (4.22) in the formal computation. The system (5.17) admits expo-
nential dichotomies on both half-lines, which can be extended to the full system (5.13) by
exploiting the lower triangular block structure and using variation of constants formulae. This
is the content of the following proposition.

Proposition 5.3. There exist C, i > 0 such that the following hold.

(i) The system (5.17) admits exponential dichotomies on Ry with constants C, x> 0, pro-
jections IL'} (€), and corresponding (un)stable evolutions S (&, €), j = t,¢. The projec-
tions can be chosen so that

R(II;, (0)) = Span(¢5(0)) = R(II}_(0)), R(II}, (0)) = Span(¢.a(0)) = R(IL; _(0)), j= ngl)

(ii) The system (5.13) admits exponential dichotomies on R with constants C, u > 0, pro-

Jections Qj“i(f ),J = 1, ¢, and (un)stable evolutions T]ui (&, f) We have that

. 0 0 .
Qi’*(g)_<—fofe"<’if>s;,+(£,é>Fj<é>dé H;,+(§>>_1 (e €20

0 0
H = . . A =1-0" 5.22
- (—ffooe‘"@‘@S;,(&5)6(5)@ H@,(&)) B

where Fi(€) := (0, —(1 — bv;(€))v;(£)?) 7. Furthermore, the projections satisfy
,ad

)
R(Q;1(0)) = Span(w;aa(0), Wo),  R(Qj(0)) = Span(w;(0)),

R(Q!_(0)) = Span(w;(0), T;oc),  R(Q}_(0)) = Span(w;aa(0)), (5.23)

where

“l8) = (w?@)’ “paal8) = (w,»,::(s))’ Vo= @ Yieo = G- 000, J=To.

(5.24)
with ;(§) and v;j.4(§) defined in (5.18) and (5.20), respectively.
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Figure 15. Shown is the geometric setup for the construction of potential eigenfunctions
using Lin’s method. The solutions are constructed along the three intervals
(—00,0],[0,Z.], [Zc, >0) and are then matched at £ = 0 and £ = Z. corresponding to
the two fast jumps in the layer problem (2.2).

Proof. For (i), we refer to [6, proposition 6.6]. The exponential dichotomies in (ii) can be
constructed from those in (i) using variation of constants formulae, by exploiting the block
triangular structure in (5.13); see [6, corollary 6.7]. O

5.5.2. Construction of eigenfunctions. In this section, we use the exponential dichotomies
from proposition 5.3, variation of constants formulae, and the estimates from theorem 5.1 to
construct potential eigenfunctions. These eigenfunctions are constructed in three pieces along
the intervals (—o0, 0], [0, Z], [Zc, o) (see figure 15), and then matched together at { = 0, Z.;
the associated matching conditions can then be solved to find eigenvalues A. We begin with
the following proposition, which describes potential eigenfunctions along each of the three
intervals.

Proposition 5.4. LetB;beasin(5.14) and (5.15), and wj, Wy, ¥; o as in (5.24) for j = t,0.
There exists 3, €y, C, q > 0 such that for A € R(0) and ¢ € (0, &), the following hold.

(i) Any solution ¥4 _ (¢, 5\) to (5.8), which decays exponentially in backward time, satisfies

~ 0 A, A~ A, ~
i—(0,A) = By—wi(0) + (- V00 + Bi.— /_L T3 _(0,€)B(& A L e)wy (§)dE + Hy— (By—, G- ),
: (5.25)

for some By _, (r.— € C, where Hy _ is a linear map satisfying

1. B1 G < € ((elloge] + 3)I¢r.—| + (cllogel + X161
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(ii) Any solution Uy (€, 5\) to (5.8) which is bounded along the slow manifold M satisfies

~ 0 A A~ A ~
Pa(0,A) = Brwi (0) + By /L T} 1 (0,8)B+ (& A, £, €)wt(§)dS + Hi (Bt Bos o), (5.26)

0
Ua(Ze, A) = Bowo (0) + CoWo00 + ﬂo/ T3, (0,8)Bo(&: A €, £)wo (§)dE + Ho (B, Bos Co)
—L.
(5.27)
for some By, Bo, Co € C, where Hy and H., are linear maps satisfying
#4481 B o)l < € ((ellog 2] + X811 +7=(1o] + 16 )

[He(B5, Bor G| < € ((ellome] + ADIGe| + (elloge] + 3218 ] +e79/<|541)

(iii) Any solution ¥, 4 (&, 5\) to (5.8) which decays exponentially in forward time satisfies

~ 0 A A~ A ~
Vot (Ze, A) = Bo4wo(0) + B+ / T5.+(0,8)Bo (& A, 4, €)wo (§)dE + Ho 4 (Bo.t ), (5.28)

for some B, € C, where H, 4 is a linear map satisfying

[Ho+(Bo. )| < Clellog el + |X)?|Bo+-
Moreover; the functions i _ (€, X), Uy (€, N), and U, 1 (€, N) are analytic in .

Proof. Using the exponential dichotomies from propositions 5.2 and 5.3(ii), the proof is
nearly identical to the proofs of propositions 6.8—6.10 in [6]. ]

It remains to solve the matching conditions which arise when attempting to glue together
the three solutions from proposition 5.4 (i)—(iii) at ¢ = 0 and £ = Z., in order to construct an
exponentially localized eigenfunction.

Theorem 5.5. There exists §,e9 > 0 such that for € € (0,¢¢) and |¢| < Ly, the eigenvalue
problem (5.8) has precisely two eigenvalues Ao(£), \c(£) € Ry(0) given by
d

3 _ 2 3 _ 7MT,E 2

Mo (£) = O(Jelogel?), Ac(l) = Mij\g +0 <|510gs| ) ,
where

M?,X = Lm (& a)’e” (W8 de > 0, (5.29)
M, = [u(a) — a+u*(a)vy (u*(a))’] / (1 = bo(€))or (€)% vl (¢) dE > 0. (5.30)

The derivatives of Xo(£) with respect to { satisfy the same estimates, and Xo(0) = Ny(0) = 0.

Proof. We recall from proposition 5.4 that any exponentially localized solution must satisfy
the conditions (5.25)—(5.28) at £ = 0, Z, for some 3; _, (i,—, Bt Bo» Co» Bo+ € C. Therefore,
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to obtain an exponentially localized solution to (5.8) we match the solutions ¥y _, ¥gat§ =0
and the solutions Wy, ¥, ; at & = Z,, which results in matching conditions which must be
satisfied by A and e which can be solved to find eigenfunctions. Since the projections QJ“_T_ (0)
associated with the exponential dichotomy of (5.13) established in proposition 5.3(ii) satisfy

Jqu(O) + st,Jr(O) = I’ ]: T’ <,

this is equivalent to ensuring that the differences Wi _(0,A) — Wy(0,)\) and
Wy (Zo, A) — Uy (Z2, X) vanish under the projections 0:”", (0) and Q77 (0), respectively.
We first note that we must have 8; = B; — and 5, = [, +. This can be seen by applying
4 (0), j = 1,9, to the differences ¥ _(0, 5\) — Ty(0, 5\) and Uy (Z., 5\) -0, 4 (Z, 5\), re-
spectively, using the expressions (5.25)—(5.28).
‘We next recall the vectors wj,ad(O) and V¥ defined in (5.24). By (5.23) the vectors ¥, and

0
\I}j,L = UJj,ad(O) — (/ eT]€ <¢j,ad(€)’ F](&))dg> \IJOs Fj(g) = (7(1 o ijo(f))'Z)J(é)z) s ./: "',0,

span R(Q},(0)). Hence we aim to show that the inner products of the differences
Wi (0,A) — Wgy(0,\) and Wy(Z., \) — W, (Zo, \) with Wy and ¥; | vanish for j = {,,
respectively. Using (5.25)—(5.28) we first project along along ¥, whereby

0= (W0, Wi (0.3) = Wa(0.8)) = G1. +O ((chogel + A1) (181 +1G1-) + /(18] + IG:D))

0= (Vo Wa(Zer ) = Vo (2, X)) = Go + O (cllogel + (M) (186l + [GD) +e7%I81]) (531

where we used theorem 5.1 (ii) and (iv), and (5.16). Provided |5\|, € > 0 are sufficiently small,
we can solve (5.31) for (; — and ¢, to obtain

G- = O ((cllogel + A)I3i] + /%[5

(=0 ((6|10g€| + ADIBo| + e“’/EIﬂTI) - (5.32)

We substitute  (5.32) into (5.25)-(5.28) and noting ¥, € Ker(Q}_(0)*) =
R(Q; _(0)*) C R(Q}',.(0)*) for j=T,0, we obtain the final conditions by projecting with
V; 1,j = 1,0, whereby

0= <‘I’u, Ty (0,N) — Wy (0, X)>

L
:m/ <TT(0,5)*\1/T,L,BT(§; X,é,a)wf(§)>d£+(9 ((auogs\ T |X|)2\5T| +e_‘1/5\ﬁo|>,

€
—L.

::IT

(5.33)
0= <\I/M, U(Ze, N) — oy (Z., Z\)>

= [ (0.9 e Bo(E 5 £ han(€)) a4 (chogel + A1) [l + 07131

—L.

=T,

(5.34)

where we recall that T;(¢, f ) denotes the evolution for the reduced system (5.13).
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To estimate the integrals Z; for j = {, o appearing in (5.33)—(5.34), we note that 7;(0, £)*¥; |
is the solution to the adjoint equation

U = —Af U
S (5.35)

of (5.13) satisfying ¥(0) = ; ;; hence we calculate

[ el @-mE(1 — poy())o i(€)20)(€)dE
( S <1§;d P (£)>d€> e @-1¢ gl ¢)
j,ad

_e(c*(a)fn)fv 7€)

T(0.6) ;1

s

(5.36)

for§ € R and j = T, ©. We now approximate Z; by first extracting the leading order A contrib-
ution, whereby we obtain

I = [L (e™T4(0,)" Wt 1, B4(&0,4,)¢4(£)) d€ Md )\—|—(9 <|510g5\(|5\| + |Elog5|))

=J;
(5.37)

7, :/_L (7°T6(0,€)" Wo, 1, Bo(£:0,4,€)94(€ + Z2)) dE —Mi;\j\—l—(’)(|aloge|(\5\| + |glogg\)),

€

o (5.38)
where '

d > c*(a){ / 2 te c*(a)§ / 2
iy [ SO = [ pf) a0 6539)

M 5=[ e (0], (€))" dg = / e @8 (0 (€))7 dE + O(e),  (5.40)

where we used the fact that the integrands decay exponentially to estimate the tails of the
integrals. Finally, in order to obtain the leading order € contribution, it remains to estimate the
integrals J; for j = {, o which appear in the expressions (5.37)—(5.38). To do this, we note
that the derivative ®/(&) = (u4(€),v}(€),¢,(£))" of the pulse solution solves the linearized
equations when ¢ = 0, and therefore satisfies

Py (&) = (A10(&) + B1(£:0,0,e)) Dy(§), € € [—Le, L] (5.41)

and

DY (E+2Zo) = (Aop(€) + Bo(£:0,0,2)) Dy(E + Z), £ € [—Le,00).(5.42)

In particular, for £ € [—L., L.], we obtain
B;(&:0,4,6)®4(&) = [0 — At0(&) + Bt (&0, ) — B4(£;0,0,¢)] 24(€)

0 ( ) ( (5) 1+5Ld (5) )
_ AG + 0
[0 — Cro(8)] ( QZ(f) > (1 = boi(€))v (€)*u)(6)
and similarly
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Bo(£0,0,6)P4(6 +Z.) = [0 — Aoo(§) + Bo(£:0,0,€) — Bo(£;0,0,¢)] ®4(€ + Z2)

: ( (£+Z) l+scd (£+ZE))
_ o 5) + 0
o~ Coote] (14T ) (1= bos (€)oo () (€ + 22)

€+

€+

for £ € [—L, 00). Using the fact that 1;, ad(ﬁ) solves (5.19), we have
[aﬁ - Cj,O(g)] (engl/b ad ))

and we therefore obtain
‘ W€ — 1He4(©)
Ji = /L <e"£Tt(0,€)*\I!T,L, ( ! 0 ‘ )>d§
- (1 = by (€)1 () ug(€)
L. .
B 7/_L (e DL (€)(1 — by (€))05(€) uy(€) + ug (€ )/

— 00

Jj="10 (5.43)

e @8 (1 — va(g))vf(é)zv;(é)d»é) d¢

el?
1+ ECq

s (ué(é) [ R0 b @y ;(é)aé) &+ O(),

where we used the fact that the integrands decay exponentially. Integrating by parts, we have
that

L. 3 N R . A
Ji=— [ . % (u:m [ . e W8(1 — bUT(f))UT(f)ZU,T(f)d‘f) d¢

72 & X R ok
ey [1© / e e~ bv+<€>>vf<s)2v;<f>ds}
e B
62 L. .
B 1i€cd /_L ua(€)e (1 — boy(€))v4 ()0} (€)dE + O ()

= —uj(Le) /_ " e @1 — by (€))0 (620} (£)dE + O(eloge])

= —¢ [u"(a) — a+u*(a)os (u" ()] /OO e D51 = buy (€))v4(€)70}(€)dé + O(7[loge] ),

where we again used the fact that the integrands decay exponentially, and we estimated
ua(§) = u*(a) + O(eloge) for £ € [—L., Lc]and

uj(Le) =€ [ud(LE) —a+ ud(Lg)vé(LE)z]
— e [0*(@) — a4 (@04 (1 (@)* + O(lcloge])]

using theorem 5.1. Hence we have that

Ji = —M§ e + O(*[loge)), (5.44)
where

M, = [u*(a) — a+u*(a)os (u” (a))’] /oo e D51 = buy(€))v4 (€)°0} (€)dE > 0. (5.45)

—00
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Performing a similar computation for 7, we arrive at
To == lim w2 +6) [ e O - b0+ O =OE). (546)

due to the fact that u}(Z. + &) — 0 as £ — oo.

Substituting the expressions for Z;, J;,j = 1, ¢, into the remaining conditions (5.33)—(5.34),
we find the following linear system of equations for (8, 5, ), solutions of which correspond
to eigenfunctions of (5.8):

MO (§T> o (5.47)
where
M(he) m fXM‘;j -M{ e+ O ((E|log el + |5\|)2> ~ O(e=4/%) ~
O(e~9/7) —AM! 0 ((g|10g5\ n |A|>2)
(5.48)

Since the solutions ¥y _, ¥y, ¥, | from proposition 5.4 and the matrices B; are analytic in A,
all entries in the matrix M(;\, €) (5.48), and furthermore its determinant D(S\, €), are analytic
in . Note that the quantities Mie and Mﬁ;\, Jj =1,¢ are nonzero and independent of A\e.
Hence, provided 9, e > 0 are sufficiently small, we have

ID(X &) =AM 5 (AMY 5 +eM§ )| < |AMS 5 (M 5 + eMf ).

for 5\~€ OR,(0) = {A e C: |\ =6}, and by Rouché’s theorem D(),e) has precisely two
roots Ao, A1 in Ry () which are O(|elog €|?)-close to the roots

- M¢
A=0.  A=-_T%e
A

of ;\Mg ;\(S\Mél 5 FeM{ ). We deduce that (5.8) has two real eigenvalues in the region R ()
given by

d

3 2 3 MT,E 2
Xo(0) = O(Jelogel?), Ac(l) = ~ e + O(Jelogel|?),
.

and by implicitly differentiating the characteristic equation of (5.48), we furthermore obtain
that the derivatives of :\0(6) with respect to ¢ satisfy the same estimates. We note that the
derivative ®/ of the pulse solution is an eigenfunction with eigenvalue O when £ = 0 due to
translation invariance, hence Ag(0) = 0. Furthermore, since (5.48) depends on ¢ only via the

quantity £2, we obtain that \(0) = 0. O

5.6. The region (\(£),{) € Ra(8, M) x [—Lu, Ly

We now consider the final remaining region, A(£) € R,(8, M) for |¢| bounded. The funda-
mental idea is the same as for the region R;(d); using exponential dichotomies along the fast
jumps and the slow manifolds, we attempt to construct potential eigenfunctions. However,
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in this region it is possible to construct exponential dichotomies along each of the intervals
Iy, 14,1, 1, and by comparing their projections at the endpoints of these intervals we obtain
estimates which preclude the existence of a nontrivial exponentially localized eigenfunction.
We note that the exponential dichotomies along 7, and I, are guaranteed by proposition 5.2.
The existence of exponential dichotomies along I; and I, is due to the fact that the associated
reduced problems along each of the fast jumps admit no eigenvalues for A(¢€) € R, (8, M).

To see this, proceeding in a similar fashion as in section 5.5, we consider the following
reduced problems along I+ and 1, obtained for € = 0 and = R>(5,M).

U 0 0
Ye = Ajy (& 5\)771% Ajn(&s 5\) = ( 0 i n 1
—(1 = bv;(€))0;(€)> m+ A — (2= 3b0;(E))u0(€) 1 — c*(a)

(5.49)
Here j = 1, o, where again v;(§) denotes the v-component of ¢;(£), and uy = u*(a), u, = a.
As in section 5.5, the lower triangular structure allows us to restrict to a two-dimensional
invariant subspace with dynamics

(e (X)) = n 1 P
=Gl Gl (5 360,(6))u(€) - o) I
(5.50)

We note that the front profiles v;(£) and v, () are solutions to the scalar equations
0, = vge + cF(@)vg —mo + (1 — bo)u®,  j=1,0,

and critically, the linear system (5.50) is precisely the (weighted) eigenvalue problem one obtains
by considering their stability with eigenvalue parameter A. Since the derivatives v]{(g ),j =10
define exponentially localized eigenfunctions with no zeros when A = 0, Sturm-Liouville the-
ory precludes the existence of eigenvalues in R,(d, M), provided ¢ is sufficiently small. Thus
(5.50) admits exponential dichotomies, which can be extended to the full system (5.49) using
variation of constants formulae. Finally, these exponential dichotomies can be extended to the
stability problem (5.8) on the intervals I; and I, using roughness results.

Once exponential dichotomies are established along each of the intervals Iy, I+, I, I,,, it remains
to compare their projections at the endpoints of each interval. Using the estimates in theorem 5.1
combined with repeated use of a technical lemma [30, lemma 6.10], it is possible to show that each
pair of projections is sufficiently close at each endpoint, and further that any exponentially local-
ized solution to (5.8) must be trivial. This is summarized in the following proposition.

Proposition 5.6. Fix M > 0. There exists § > 0 such that for each sufficiently small € > 0
and each A € Ry(6, M), the eigenvalue problem (5.8) admits no nontrivial exponentially local-
ized solutions.

The proof of proposition 5.6 follows the argument as outlined above, and is similar to the
proof of [6, proposition 6.20]. For completeness, we include this in appendix B.

5.7 Proof of theorem 4.3

Proof of theorem 4.3. This is a direct consequence of the analysis in sections 4.1, 5.2
and 5.3, in combination with theorem 5.5 and proposition 5.6. The fact that the translational
eigenvalue A¢(0) = 0 is simple follows from a similar argument as in [6, proposition 6.14].

O

2802



Nonlinearity 32 (2019) 2759 R Bastiaansen et al

6. Defects and curved vegetation pattern solutions

In this section we consider (1.2) with a small diffusion term added to the water component.

{u, = DAu+ Lu, +a—u—G(u,), ©6.1)

v, = Av—mv+ R(v)G(u,v)v,

where D < 1. The reason for this is mainly technical, in order to draw on results concerning
planar interface propagation in parabolic equations. However, to accurately describe water
movement on flat terrains a diffusion term is necessary [54]—see also the upcoming discus-
sion in section 8.

The results of theorems 2.8-2.11 and theorems 4.2—4.4 concern the existence and stability
of straight stripe, gap, and front solutions; that is, the traveling patterns are constant in the
direction transverse to the slope and are essentially one-dimensional patterns. We reiterate that
these patterns are, however, stable to perturbations in two spatial dimensions.

We now consider the system (6.1) for which, by a perturbation argument, the results of
theorems 2.8-2.11, and furthermore the results of theorems 4.2—4.4, are expected to hold
for sufficiently small D > 0. Within this system, we are able to call on general results on
the existence and stability of corner defects in planar wave propagation [27, 28]. In essence,
considering a straight vegetation stripe, gap, or front solution satisfying certain hypotheses
(see below), for nearby wave speeds there exist stripe solutions at slightly offset angles. Two
oppositely angled such stripes can meet at a corner defect, forming a ‘curved’ stripe solu-
tion, which can be oriented convex upslope (exterior corner) or downslope (interior corner).
Further, some of these solutions can be shown to be stable. In particular, we will argue using
the results of [27, 28] that nearby vegetation stripe, gap, or front solutions of (6.1), there exist
stable interior corner defects, and in the case of certain front solutions, there exist stable exte-
rior corner defects.

Consider a traveling wave solution (u,v)(x,y,t) = (us, vy)(§) of (6.1) with speed ¢ = ¢,
and & = x — ct. An almost planar interface o-close to (uy, v5)(€) with speed c is a solution of
the form

(u,0)(x,y,1) = (us, 05)(§ + h(y)) + (1, 0)(&, ), (6.2)
where h € C*(R) and
sup n' ()| <o, Sup 1@ 2) o)l rrey < o0 e = <o (6.3)

This solution is a planar interface if #”” = 0 and a corner defect if /”/ # 0, and /'(y) — 7 as
y — 00. A corner defect can be classified depending on the asymptotic orientations 7 as an
(i) interior corner (n4+ < 1-), (ii) exterior corner (N— < n4), (iii) step (n+ = n— # 0), or (iv)
hole (n+ =n— = 0).

Depending on the original traveling wave solution (u, v;)(&), it may be possible to deter-
mine which type(s) of defects can arise. As stated above, a corner defect is essentially com-
posed of slightly angled stripe solutions meeting along an interface. An angled stripe solution
can be written as a traveling wave

(u,0)(x,y,1) = (u,0)(&), & =xcosp+ysing — ct (6.4)

where the case ¢ = 0 corresponds to a solution which is constant in the direction transverse
to the slope as before. Substituting this ansatz into (6.1) results in the traveling wave ODE
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—cug = Duge + 28y +a—u— G(u,0)v,
{ ¢ e T U (u, ) 65)

—cv¢ = vge —mv + R(v)G(u,v)v.

By setting £ = £/ cos ¢, we see that (6.5) is the same traveling wave equation one obtains in
the case of ¢ = 0, except with € replaced by €. For small values of , we have that

E=c(1+0(¢Y) (6.6)
and (6.5) can therefore be solved to find an angled traveling wave solution when
c=c(p) = cs + O(e?). (6.7)

The quantity ¢(y) is called the nonlinear dispersion relation and relates the speed of propaga-
tion and angle of the traveling wave solution. A related quantity

9= o

called the directional dispersion, or flux, relates the angle to the speed of propagation in the
direction of the original traveling wave (i, v5), i.e. the x-direction. The flux near ¢ = 0 is said
to be convex if d” > 0, concave if d’ < 0, and flat if & = 0 for small |¢]. In [27], the authors
related the convexity of the flux to the type of corner defect which is selected: in particular
when d is convex, there exist interior corner defects for nearby speeds ¢ > c,, while for d con-
cave there exist exterior corner defects for speeds ¢ < c;.

In the case of (6.5), the directional dispersion is computed as

(6.8)

2
d() == ¢ (1 + g) + 0 (e¢? ¢%), (6.9)
from which we find that
d"(p) :=c;+ 0O (c,¢7), (6.10)

that is, to leading order the convexity is determined by the speed of propagation of the origi-
nal traveling wave (uy, v;). In particular, for sufficiently small €, the directional dispersion is
convex for ¢; > 0 and concave for ¢; < 0. Hence in the setting of theorems 2.8, 2.9, or 2.10,
one expects to see nearby interior corner solutions, but not exterior corner solutions. That is,
the resulting curved vegetation stripe, gap, or front is oriented convex downslope. However, in
the setting of theorem 2.11, the convexity depends on the value of a/m as the speed ¢, can be
negative if a is large enough. In particular, one expects interior corner solutions if & < 92—b + l%,
but exterior corners (oriented convex upslope) if & > 9—21’ + %.

7. Numerics

In this section we present numerical results related to theorems 2.8-2.11 and theorems 4.2-4.4
regarding the existence and stability of front, stripe, and gap pattern solutions of (1.2) . In
particular, we discuss the results of numerical continuation of stripe and gap traveling wave
solutions, and direct numerical simulation of planar stripe, gap, and front solutions, as well as
corner defect solutions as discussed in section 6.
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71. Continuation of traveling stripes and gaps

Theorems 2.8 and 2.9 predict the existence of traveling stripe and gap solutions to (1.2) which
solve the traveling wave ODE (1.7). These solutions were constructed as perturbations of
singular homoclinic orbits, organized by the singular bifurcations diagrams in figures 8(a)
and (b), corresponding to the cases of b < 2/3 and b > 2/3, respectively. Figure 16 depicts the
results of numerical continuation of speed ¢ versus a for traveling stripes and gaps, conducted
in AUTO for the parameter values € = 3 - 10—, m = 0.5, and values of b = 0.6, 0.7 on either
side of the critical value b = 2/3. The continuation curves corresponding to vegetation stripe
solutions are depicted in green, while those corresponding to gap solutions are in purple, with
the relevant singular bifurcation curves depicted as dashed lines.

We note that the upper branches of the bifurcation curves for both stripes and gaps continue
towards ¢ = 0 and eventually turn back onto lower branches which persist for a range of a values
and small speeds ¢ < 1. These waves arise as perturbations of a family of fast planar homoclinic
orbits, as discussed in remark 2.4, and we expect they are unstable (even to 1D perturbations) as
traveling wave solutions of (1.2). Interestingly, the lower branch of stripe solutions continues for
increasing a, while the lower branch of gap solutions eventually turns back near the canard value

4 = 4p + 1/b due to interaction of the equilibrium p (u,) with the fold point F .

m

Remark 7.1. We also remark that in the case of b < 2/3, depicted in the left panel of
figure 16, that the upper branch of gap solutions also approaches the canard point. Here this
branch transitions into a ‘double-gap’ solution, resembling two copies of the primary homo-
clinic orbit. This transition is similar to canard transitions observed in systems such as the
FitzHugh—Nagumo equation [10, 11, 26], albeit with a somewhat different mechanism due to
the presence of the additional equilibrium po(a).

We also depict the results of continuation of both stripe and gap solutions for fixed values
of rainfall a = 1.2 (stripes) and a = 2 (gaps), with m = 0.45,b = 0.5, and € = 0.01. As dis-
cussed in section 2.4.4, it is expected that nearby the single traveling stripe or gap solutions
are periodic wave train solutions corresponding to repeating vegetation patterns which exist
for a range of wave speeds, and that these patterns can similarly be constructed by perturbing
from singular periodic orbits in the traveling wave equation (1.7). We verify this prediction by
numerically continuing the stripe (and gap) solutions as periodic orbits for decreasing period,
the results of which are depicted in figure 17. We observe that in general the wave speed ¢
decreases as the period T decreases, as do the total biomass B := fOT v dx and the maximum
value of v over one period, denoted by Up,y. Lastly the results of continuation of periodic
orbits in (a, k)-space for fixed wave speeds ¢ = {0.15,0.2,0.25,0.3,0.35} are depicted in fig-
ure 18; here k denotes the wavenumber of the corresponding pattern.

These numerical results align with previous work on (similar) ecosystem models; simi-
lar trends are found in, for instance, studies on the Klausmeier vegetation model [49], on
extended Klausmeier models [2, 3, 51], on the Klausmeier—Gray—Scott model [48] and the
Rietkerk model [14]. Moreover, measurements on the speed of migrating vegetation patterns,
indeed, show vegetation patterns with higher wavelength move faster [3, 15]. Finally, recent
in situ measurement on the above ground biomass in the Horn of Africa corroborate displayed
trends in biomass [3].

72. Direct simulations

In this section we present direct numerical simulations of the various traveling wave solutions
predicted by theorems 2.8-2.11. To that end, we have spatially discretized the PDE (1.2) with
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a uniformly spaced grid in both x and y directions, which was integrated using a Runge—
Kutta solver. In all simulations, the initial conditions were constructed using the approximate
expressions derived in the previous sections of this article.

First, we have tested the existence and 2D stability of straight (i.e. non-curved) patterns.
The results for b = 0.5 < 2/3 are given in figure 19 and for b = 0.75 > 2/3 in figure 20. In
both cases, all solutions from theorems 2.8-2.11 could be obtained easily and were (2D) sta-
ble in our simulations (and in fact all seem to have a quite large domain of attraction).

Moreover, we numerically inspected corner solutions as described in section 6. Again,
numerical simulations corroborate theoretical predictions—see figure 21. In fact, we were
able to find corner-type solutions for each front or pulse in theorems 2.8-2.11. When the speed
of the straight pattern is positive, i.e. ¢; > 0, it is possible to find curved patterns which are
oriented convex downslope (interior defect) and when ¢; < O the curved pattern is oriented
convex upslope (exterior defect); recall that upslope corresponds to the direction of increasing
x. This matches the prediction given by the directional dispersion, as outlined in section 6.

8. Discussion

In this paper we constructed planar traveling stripes, gaps and front-type solutions to the mod-
ified Klausmeier model (1.2). We proved their existence rigorously using geometric singular
perturbation methods for a wide range of system parameters a, b, m in the large advection limit
€ — 0. We showed that vegetation stripes exist for smaller a/m values, while vegetation gap
patterns and front solutions can be found for larger values of a/m. For the largest a/m values,
stripes and gaps no longer persist, and we find only front-type solutions that correspond to
invading vegetation. Contrary to the typical pulse patterns constructed in similar dryland mod-
els [2, 48], the stripes and gaps found in (1.2) are not thin, but have sizable widths—aligning
better with observations of real dryland ecosystems [16, 22, 42, 55].

Furthermore, we showed that all such solutions are 2D spectrally stable, using exponential
dichotomies and Lin’s method, based on similar stability analysis of traveling pulse solutions
to the FitzHugh—Nagumo equations in [6]. We note that, to our knowledge, there are currently
no direct results which guarantee nonlinear stability based on spectral stability of traveling
wave solutions to (1.2). Multidimensional nonlinear stability of traveling wave solutions in
reaction—diffusion systems, however, has been studied previously [33]. By adding a small dif-
fusion term, as in (6.1), we obtain a system which fits into the framework of planar interface
propagation studied in [27, 28]. We expect our results still hold for (6.1) using a perturbation
argument, provided D < € < 1. Further, results relating spectral and nonlinear stability have
been found to hold in mixed parabolic-hyperbolic equations such as (1.2) for perturbations in
one spatial dimension [45], and we expect that similar results may hold in higher dimensions.

As far as we are aware, ours is the first construction of 2D linearly stable traveling stripes
in a reaction—diffusion—advection model of vegetation pattern formation. Typically in this
class of models, one finds that stripe solutions are stable in 1D, but destabilize for some range
of (small) wavenumbers in 2D [17, 38, 48, 50]. We attribute this phenomenon to the stabiliz-
ing effect of the large advection term, as well as the destabilizing effect of water diffusion.
By ignoring the diffusion of water and allowing the advection to dominate, the lateral com-
petition for water resources is diminished, and 2D stability can essentially be reduced to 1D
stability. This is reflected in our stability analysis in which the critical part of the 2D spectrum
is bounded to the left of the 1D spectrum: in order to compute the 2D spectrum, a Fourier
decomposition in the transverse variable y results in a family of 1D eigenvalue problems
parameterized by the transverse wavenumber £. These eigenvalue problems can then be solved
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Figure 16. Shown are numerically computed bifurcation diagrams of vegetation stripes
(green curves) and gaps (purple curves) for the parameter values m = 0.5,¢ = 0.0003,
and b = 0.6 (leftpanel), b = 0.74 (right panel). The solutions were obtained via parameter
continuation in AUTO for the traveling wave equation (1.7). Also plotted in dashed
black are the curves ¢ = ¢*(a) and ¢ = ¢(a). The vertical dashed curve denotes the
location of a in each panel.
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Figure 17. Results of numerical continuation of periodic stripe ((a)—(c)) and gap
((d)—(f)) pattern solutions for decreasing wavelength for the parameter values
m=0.45,b=0.5,£ =0.01 and a = 1.2 (stripes), a =2 (gaps). Shown are plots of
speed c of the pattern versus period T (left panels), biomass B := fOT v dx versus period
T (middle panels), and vy, versus the period 7, where vp,,x denotes the maximum of v
over one period (right panels).

using the methods of [6], and we find that eigenvalues occurring for £ # 0 can be bounded to
the left of those occurring for ¢ = 0, corresponding to the 1D spectrum. In fact we find that
the correspondence is approximately A — A — 2.
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Figure 18. Results of numerical continuation of periodic stripe/gap patterns for
spatial wavenumber k versus a for fixed b = 0.5,m = 0.45,e = 0.01 and wave speeds

¢=4{0.15,0.2,0.25,0.3,0.35}.
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Figure 19. Results of direct numerical simulation of the PDE (1.2) for b = 0.5,
m =045, e =0.01 and a = 1.2 ((a), (f)), a =2.0 ((b)—(d), (g)—(1)) or a = 3.0 ((e),
(3)). Figures (a)—(e) show the evolution of a cross section of v, i.e. for constant y and
figures (f)—(j) show the v(x, y) pattern at a specific time. Simulations are run on a finite
grid of size L, =200, L, = 100, accompanied with Neumann boundary conditions
for the y-direction and either periodic ((a)—(b), (f)—(g)) or Neumann ((c)—(e), (h)-(j))
boundary conditions in the x-direction. (a) Stripe. (b) Gap. (c) Vegetation front. (d)
Desert front. (e) Desert front. (f) Stripe. (g) Gap. (h) Vegetation front. (i) Desert front.

(j) Desert front.

An important question is how and why the addition of water diffusion and reduction in the

magnitude of the advection term results in instabilities in the resulting patterns. This matches
intuition, as water diffusion allows for lateral competition for water resources, which—if suf-
ficiently large—could manifest in lateral instabilities. From the mathematical point of view,
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Figure 20. Results of direct numerical simulation of the PDE (1.2) for b = 0.75,
m =045, =0.01 and a = 1.75 ((a), (f)), a = 2.4 ((b), (g)), a = 2.5 ((c)—(d), (h)—(1))
or a = 3.0 ((e), (j)). Figures (a)—(e) show the evolution of a cross section of v, i.e. for
constant y and figures f—j show the v(x,y) pattern at a specific time. Simulations are
run on a finite grid of size L, = 200, L, = 100, accompanied with Neumann boundary
conditions for the y-direction and either periodic ((a)—(b), (f)—(g)) or Neumann ((c)—(e),
(h)—(j)) boundary conditions in the x-direction. (a) Stripe. (b) Gap. (c) Vegetation front.
(d) Desert front. (e) Desert front. (f) Stripe. (g) Gap. (h) Vegetation front. (i) Desert
front. (j) Desert front.
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Figure 21. v(x, y) configuration of corner solutions in direct numerical simulations of
the PDE (1.2) form = 0.45, ¢ = 0.01, b = 0.5 ((a)—(e)) or b = 0.75 ((f)—(j)) and various
a-values. Simulations are done on a finite grid of various sizes, accompanied with either
periodic boundary conditions ((a)—(b), (f)—(g)) or Neumann boundary conditions ((c)-
(e), (h)—(j)) in the x-direction and the boundary conditions vy(x, L) — avy(x,Ly) =0
and vy(x,0) + av,(x,0) = 0 in the y-direction to accommodate corner solutions, with
a=—1 ((a—(d), (), (h)-(1)), a=-0.5 (g) a=+1 (e, j). (a) Stripe. (b) Gap. (c)
Vegetation front. (d) Desert front. (e) Desert front. (f) Stripe. (g) Gap. (h) Vegetation
front. (i) Desert front. (j) Desert front.
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the onset of these instabilities is not well understood, though we note that one indeed finds
lateral instabilities, both numerically and analytically, in similar models where both advec-
tion and diffusion are present [17, 38, 48, 50]. A natural direction for future research lies in
understanding this transition, and in particular the precise relation between the water diffusion
and advection which determines the boundary for stability. This is likely to be challenging,
given that the singular geometries in the advection-dominant case (as in this paper) versus
the diffusion-dominant case are wholly distinct. The traveling wave solutions constructed in
this work are all based off of singular fast front-type jumps between one-dimensional slow
manifolds, much like one finds in the classic FitzHugh—Nagumo equation. However, typically
in the diffusion-dominant regime traveling stripe solutions are constructed as perturbations of
fast homoclinic orbits which depart and return to the same two-dimensional slow manifold
in a four-dimensional singularly perturbed traveling wave equation [18, 48]. Hence, even the
existence of stripe solutions in an intermediate regime is far from clear, as one must under-
stand how the transition between these two geometries occurs.

Also novel to our results are the implications for the appearance of curved solutions,
even in the absence of terrain curvature. These arise as corner defect solutions [27, 28],
which resemble two angled planar traveling wave solutions which meet along an interface.
We find that the speed of the straight planar traveling wave predicts whether the associ-
ated corner solutions are oriented convex upslope or downslope. In particular, since all
of the traveling stripe and gap solutions we constructed travel in the uphill direction, the
corresponding curved stripes and gaps are oriented convex downslope. The planar front
solutions, however, can be oriented either convex downslope or upslope depending on
parameters. An interesting direction for future research lies in determining the effect of
alternative topographies, in particular topographies which can be viewed as perturba-
tions of constantly sloped terrain, which we expect can be studied using similar methods.
A natural question is whether such topographies can destabilize stripe patterns or affect
the curvature of these patterns. There are several numerical and observational results in
this direction [22], but little is known analytically. A first analytical step towards this can
be found in [1], in which the impact of non-trivial topographies on 1D stripe patterns is
studied.

Finally, we remark on the implications of our results for Klausmeier’s original equa-
tion [35], which corresponds to infinite carrying capacity, or setting » = 0 in (1.2). As dis-
cussed in section 2.1 (see remark 2.12), the limit b — O is highly singular, and our results
no longer hold in this regime. Existence of traveling stripes in this case has been obtained
in [7] using geometric singular perturbation theory and blow-up methods to account for
passage near a nonhyperbolic slow manifold. Pulse solutions in that setting consist of por-
tions of two slow manifolds, along with a single fast jump. Stability, however, is not known;
this is due to the fact that several rescalings and coordinate transformations are required to
recover a slow-fast structure in the corresponding traveling wave equation. The result is that
the associated reduced eigenvalue problem across the fast jump can no longer be interpreted
in terms of the simpler scalar problem for the corresponding front as in section 5.6, which
precludes the application of Sturm-Liouville theory. However, we expect stability to con-
tinue to hold in this regime. In particular, the existence of a single fast jump should result
in one matching condition, and hence a single critical eigenvalue A = 0 due to translation
invariance. This intuition supported by the fact that the second critical eigenvalue A of
theorem 5.5 satisfies A, — —co, when naively taking the limit » — O for fixed . Rigorous
verification of the stability of traveling stripes in the Klausmeier equation is the subject of
ongoing work.
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Appendix A. Stability of steady states

To understand the stability of steady states, (1.4) and (1.5), against homogeneous perturbations,
we linearize (1.2) around the steady states by setting (U, V)(x,) = (U*, V*) + e (U, V),
where (U*, V*) is the steady state solution. For the desert-state (Up, Vy) = (a,0) this gives
the linearized system

(5= S)6)

Thus the corresponding eigenvalues are A = —1 < 0 and A = —m < 0. Both eigenvalues are
negative and thus the desert-state (Up, Vp) = (a,0) is stable against homogeneous perturba-
tions for all parameter values.

Linearization around the other steady states (U, ,, V) yields the eigenvalue problem

U U -1V —2U1,Vin
Mo)=M{|_); M= 1.2 - ) ALl
(V) <V> ((1 — bVl’z)Vlzgz —m + (2 — 3bV1’2)U1,2V1’2 ( )

The determinant of the matrix on the right-hand side can be computed as

—1+2bVi,+ Vi,

det M =
¢ 1~ bVis

From this, it can be found that the determinant is negative when V; , < —b + v/1 + b2 and posi-
tive when Vi, > —b + v/1 + b2. Using (1.5), one can readily obtain that V| < —b + /1 + b?
and V, > —b + /1 + b%. Hence the uniform steady state (Uj, V) necessarily has a positive
eigenvalue and therefore this steady state is unstable. To determine the stability for (Uy, V2)
we need to determine the trace of the matrix M. Straightforward computation using the expres-

sions (1.5) yields:
1 —2bVy,
TTM=—-1-V; +m———=,
r M 2 +m = sz

which we note is always negative if V, > zib, corresponding to the condition = > 4b + %, and

hence the state (U, V) is stable to homogeneous perturbations in this regime.

Appendix B. Absence of point spectrum in Rx(4, M)

In this section, we complete the proof of proposition 5.6, and show that the region R;(d, M)
contains no eigenvalues A of (5.8).

Proof of proposition 5.6. Following the argument outlined in section 5.6, we note that
et ¢;(£) is an exponentially localized solution to (5.50) at X = 0, which admits no zeros. There-
fore, by Sturm—Liouville theory [34, theorem 2.3.3], (5.50) admits no bounded solutions for
A € Ry(8,M). Thus, for A € Ry(8, M) (5.50) admits an exponential dichotomy on R with con-
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stants C, ;¢ > 0 independent of e R, (8, M). Exploiting the lower triangular structure of sys-
tem (5.49) the exponential dichotomy of (5.50) can be extended to the system (5.49) using vari-

ation of constants formulae. We denote the corresponding projections by Q;’S(§ ; ;\) for j =1,0.
‘We now consider the eigenvalue problem (5.8) as a perturbation of (5.13). By theorem 5.1,
we have that

A(E A Le) = Apy (& N)] = Olellogel), € € [~Le, Le],

~ B (B.1)
An(Ze + €M) — Aoy (€] = Oefloge]), € € [~Le.0).

Denote by J“i(j\) the spectral projection onto the (un)stable eigenspace of the asymptotic
matrices Aj,in‘x’ (A) =lime 100 Aj (6 A) of (5.13). We note that A; (& X\) converges at an ex-
ponential rate to the asymptotic matrix APs(X) as § — oo. Hence, the projections Q" (%€, A)
satisfy

103 (£6,X) = PEL (V|| < Ce ™, j=1,0, (B.2)

for ¢ > 0 for some i > 0 (see for instance [40, lemma 3.4]). Using (B.1) and roughness [12,
theorem 2], we obtain exponential dichotomies for (5.8) on I; and I, with constants C, % >0

independent of = R>(d, M) and projections QJ‘»”S(E N, €), which satisfy
195 (€5 0, 2) — 0U(E V)

| < Celloge|,
Q8% (Z + &M, 8) — Q8 (&, V)|

(B.3)

NN

Celloge|,

for|¢| < L.
By proposition 5.2 system (5.8) admits exponential dichotomies on Iy = (—oo, —L,| and

I, = [Le, Z. — L] with projections Q;’j(ﬁ A, €), which satisfy

>

Qi - Pi(-L::A,)

i@ - Piaide)

'[Qi = Pl(Z: — Le; S\’E)H < Cellogel, (B.4)

where P(¢; A, ¢) denotes the spectral projection onto the stable eigenspace of A, (&; WA e).
We now compare the exponential dichotomies for (5.8) constructed on each of the intervals

Iy, 11,1, 1, at the endpoints of the intervals. Recall that A;,, (& 5\) converges at an exponential
rate to the asymptotic matrix Afn‘x’()\) as £ — too for j = T,¢. Recalling (B.1), we have that

An(£Le; X 4 e) — AL (V)] Ay (Ze — Les M L e) — AS 0 (V)] < Cellogel.

By continuity the same bound holds for the spectral projections associated with these matri-
ces. Combining this with (B.2)—(B.4) we obtain

- (B.5)
Let () be an exponentially localized solution to (5.8) at some A € Ry (4, M). This implies

Q5 (—Le; A, €)Y (—Le) = 0. By for instance [30, lemma 6.10] or [6, lemma 6.19], we have that

| Q8 (Les N €)Y (Le)| < Celloge|| QY (L A €)th(L:), (B.6)

using (B.5). Again using [6, lemma 6.19] and (B.5) to obtain a similar inequality at Z. — L.,
we obtain

[EAREACEPON N (AR (DY

[Qi — Qu*(Z. — Lg;mH < Cellogel.

|Q5(Z: — LeQS\’ e)(Ze — Le)|| < Celloge||Qg(Z: — Ls;j"g)@/’(zs —L;)[=0,
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since we assumed () is exponentially localized. Hence, any exponentially localized solu-
tion ¢ (€) to (5.8) is the trivial solution. O
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