
Nonlinearity

PAPER

Stable planar vegetation stripe patterns on sloped
terrain in dryland ecosystems
To cite this article: Robbin Bastiaansen et al 2019 Nonlinearity 32 2759

View the article online for updates and enhancements.

Recent citations
A fast–slow model of banded vegetation
pattern formation in drylands
Punit Gandhi et al

-

Pulse Solutions for an Extended
Klausmeier Model with Spatially Varying
Coefficients
Robbin Bastiaansen et al

-

Spot patterns of the Schnakenberg
reaction–diffusion system on a curved
torus
J C Tzou and L Tzou

-

This content was downloaded from IP address 169.234.199.75 on 23/05/2020 at 19:33

https://doi.org/10.1088/1361-6544/ab1767
http://dx.doi.org/10.1016/j.physd.2020.132534
http://dx.doi.org/10.1016/j.physd.2020.132534
http://dx.doi.org/10.1137/19M1255665
http://dx.doi.org/10.1137/19M1255665
http://dx.doi.org/10.1137/19M1255665
http://iopscience.iop.org/0951-7715/33/2/643
http://iopscience.iop.org/0951-7715/33/2/643
http://iopscience.iop.org/0951-7715/33/2/643


2759

Nonlinearity

Stable planar vegetation stripe patterns  
on sloped terrain in dryland ecosystems

Robbin Bastiaansen1, Paul Carter2 and Arjen Doelman1

1  Mathematisch Instituut, Universiteit Leiden, Niels Bohrweg 1, 2333CA Leiden,  
The Netherlands
2  Department of Mathematics, University of Arizona, 617 N Santa Rita Ave, Tucson, 
AZ 85721, United States of America

E-mail: pacarter@math.arizona.edu

Received 23 November 2018, revised 28 March 2019
Accepted for publication 9 April 2019
Published 17 July 2019

Recommended by Dr Susanna Terracini

Abstract
In water-limited regions, competition for water resources results in the 
formation of vegetation patterns; on sloped terrain, one finds that the 
vegetation typically aligns in stripes or arcs. We consider a two-component 
reaction–diffusion–advection model of Klausmeier type describing the 
interplay of vegetation and water resources and the resulting dynamics of 
these patterns. We focus on the large advection limit on constantly sloped 
terrain, in which the diffusion of water is neglected in favor of advection of 
water downslope. Planar vegetation pattern solutions are shown to satisfy an 
associated singularly perturbed traveling wave equation, and we construct 
a variety of traveling stripe and front solutions using methods of geometric 
singular perturbation theory. In contrast to prior studies of similar models, we 
show that the resulting patterns are spectrally stable to perturbations in two 
spatial dimensions using exponential dichotomies and Lin’s method. We also 
discuss implications for the appearance of curved stripe patterns on slopes in 
the absence of terrain curvature.

Keywords: pattern formation, traveling waves, geometric singular 
perturbation theory, spectral stability, Lin’s method,  
reaction–diffusion–advection equations
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1.  Introduction

Large parts of earth have an arid climate (deserts) with low mean annual precipitation and 
little to no vegetation; even larger parts of earth have a semi-arid climate with somewhat more 
precipitation, which allows (some) vegetation to grow. However, human pressure and global 
climate change have been turning semi-arid climates into arid climates, with severe conse-
quences for life in these areas [24, 53]. This so-called desertification process has been studied 
extensively over the years, from both ecological and mathematical perspectives. These studies 
have shown the importance and omnipresence of spatial patterning of vegetation, which is 
widely recognized as the first step in the desertification process [3, 24, 25, 37, 39, 41, 43, 44]. 
On flat ground, the reported patterns are gaps, labyrinths and spots, while on sloped terrain, 
(curved) banded or striped patterns can form [16, 22, 42, 55]; this article is focused on the 
latter, and in particular the stabilizing effect of terrain slope on striped vegetation patterns.

To understand the formation and dynamics of vegetation patterns in semi-arid climates, 
many conceptual models have been formulated [23, 35, 42, 55]. All of these dryland models 
describe the interplay between the available water and the density of vegetation, in different 
levels of detail. The simplest models only have two components: U, the water in the system 
and V , the vegetation. These two-component models generally have the following (rescaled) 
form:

{
Ut = D∆U + SUx + a− U − G(U,V)V ,
Vt = ∆V − mV + R(V)G(U,V)V .� (1.1)

In (1.1), the movement of water is modeled as a combined effect of diffusion (D∆U ) and 
advection (SUx), where D is the diffusion constant and S is a measure for the slope of the ter-
rain. We assume the terrain is constantly sloped, so that uphill corresponds to the positive x 
direction. The dispersal of plants is described by diffusion (∆V ). The reaction terms describe 
the change in water due to rainfall (+a), evaporation of water (−U) and uptake by plants 
(−G(U,V)V ). Simultaneously, the change of plant biomass is due to mortality (−mV) and 
plant growth (R(V)G(U,V)V ).

In this formulation, G and R are functions that describe, respectively, the amount of water 
that is taken up by the plant’s roots and the density-dependent growth rate of the vegetation. 
Because the presence of vegetation increases the soil’s permeability, G is typically assumed 
to increase with both U and V . The conversion rate R is decreasing with V  and for a specific 
V∗ > 0 we have R(V∗) = 0. This value, V∗, is called the carrying capacity of the system and 
describes the total concentration of vegetation that can be supported at a certain location. In 
light of these ecological intuitions, one expects that the function R(V)G(U,V) should take the 
form as depicted in figure 1 (for fixed U). A simple choice which satisfies these constraints is 
given by R(V) = 1− bV  and G(U,V) = UV , where 1/b is the carrying capacity. For clarity of 
presentation, we fix this choice for the remainder of this paper; however, we emphasize that, 
with minor modifications, the following analysis can be shown to hold for a different choice 
of the functions R and/or G which take the same qualitative form.

Finally, in (1.1), the displacement of water is modeled as a combined effect of diffusion and 
advection. However, in reality banded patterns are mainly observed on sloping grounds, where 
movement of water is dominated by the downhill flow and diffusive motion is of lesser impor-
tance [16, 22, 42, 55]. Note that this agrees with recent studies on ecosystem models that show 
banded vegetation is unstable against lateral perturbations of sufficiently small wavenumber 
when diffusion is large enough (i.e. D large enough compared to S) [48, 50]. Therefore, as a 
first step, we ignore the diffusion of water completely (as in [35]) and set D  =  0. Moreover, 
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due to the separation of scales between movement of water and dispersion of vegetation, we 
take S = 1

ε, where 0 < ε � 1 is a small parameter.
To summarize, the dryland model we consider in this article is given by

{
Ut = 1

εUx + a− U − G(U,V)V ,
Vt = ∆V − mV + R(V)G(U,V)V ,

� (1.2)

where a,m, b > 0, 0 < ε � 1 and the functions R and G are given by

G(U,V) = UV , R(V) = 1− bV .� (1.3)

Remark 1.1.  Notably, one of the first dryland ecosystem models, by Klausmeier [35], takes 
G(U,V) = UV  and R(V) = 1. This corresponds to the assumption that vegetation growth in 
drylands is always water-limited, and hence to the assumption of infinite carrying capacity, i.e. 
taking b  =  0, in our formulation. Therefore in the limit b ↓ 0 our model is the original Klaus-
meier model, and our model can thus be seen as a modified Klausmeier model. We emphasize, 
however, that the results in this article hold only for b  >  0. The limiting case b  =  0 turns out to 
be highly degenerate (see remark 2.12) and requires additional technical considerations; this 
is analyzed in detail in [7].

The model (1.2) admits a spatially homogeneous steady state

(U,V) = (U0,V0) = (a, 0),� (1.4)

corresponding to the desert-state of the system. When am > 2
(
b+

√
1+ b2

)
 there are also 

two additional vegetated steady state solutions, (U1,V1) and (U2,V2), where

U1,2 = m
(
a
m

− V1,2

1− bV1,2

)
= m

a
m + 2 a

mb
2 + 2b±

√
( a
m )

2 − 4
(
1+ a

mb
)

2(1+ b2)
;

V1,2 =

a
m ∓

√
( a
m )

2 − 4
(
1+ a

mb
)

2
(
1+ a

mb
) .

�

(1.5)

For am = 2
(
b+

√
1+ b2

)
 these two steady states coincide. The desert state, (U0,V0), is stable 

against all homogeneous perturbations; the first vegetated state, (U1,V1), is unstable against 
these perturbations and the last steady state, (U2,V2), is stable if V2 >

1
2b—see appendix A. 

V

R(V )G(U, V )

Figure 1.  The qualitative form of R(V)G(U,V) for fixed U based on ecological 
intuition of dryland ecosystems.
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The condition V2 >
1
2b, corresponding to am > 4b+ 1

b, is not strict; however in the following 
analysis of banded vegetation patterns we nonetheless restrict our results to this region.

Remark 1.2.  Ecologically, the parameter a is a measure for the rainfall and m for the mor-
tality of plants. Therefore, am is a natural measure for the amount of resources needed for 
vegetation (patterns) to exist: if m is large, vegetation dies faster and more water is needed to 
maintain vegetation; when m is small, plants die slowly and less water is needed. Hence, am is 
a natural bifurcation parameter. Also note that am usually is taken as a small bifurcation param
eter in studies of the extended-Klausmeier or generalized Klausmeier–Gray–Scott systems  
[2, 19, 48, 54].

In this article we aim to study patterned solutions to (1.2), which arise as traveling wave 
solutions to (1.2).We define the traveling wave coordinate ξ := x− ct, where c is the move-
ment speed. Here, c  <  0 corresponds to downhill movement of the traveling wave and c  >  0 
to uphill movement. Moreover, we set (U,V)(x, y, t) = (u, v)(ξ, y, t), which results in the 
equation

{
ut = 1

εuξ + cuξ + a− u− G(u, v)v,
vt = (∂2

ξ + ∂2
y )v+ cvξ − mv+ R(v)G(u, v)v.� (1.6)

Stationary solutions to (1.6) which are constant in y  correspond to traveling wave solutions of 
(1.2); these solutions satisfy the first order traveling wave ODE



uξ = ε

1+εc (u− a+ G(u, v)v) ,
vξ = q,
qξ = mv− R(v)G(u, v)v− cq.

� (1.7)

This equation has an equilibrium at (u, v, q) = (a, 0, 0) which represents the homogeneous des-
ert state (U0,V0) of (1.2). There are two additional equilibrium points at (u, v, q) = (u1,2, v1,2, 0) 
corresponding to the other homogeneous steady states (U1,2,V1,2) of (1.2).

Based on the parameters of the model, several different patterned solutions to (1.2) can 
emerge that correspond to homoclinic or heteroclinic orbits of (1.7). Single vegetation stripe 
patterns occur as orbits that are homoclinic to the desert state. Similarly, vegetation gap pat-
terns occur as orbits that are homoclinic to the vegetated state (u2, v2, 0). Besides these, there 
are also heteroclinic connections between the vegetated state and the desert state (and vice-
versa) that represent transitions, or infiltration waves, between these uniform stationary states. 
Plots of these patterned solutions are shown in figure 2.

Figure 2.  Shown are the different patterned solutions of (1.2) that are studied in this 
paper. Presented figures show cross-sections of the water, u(x), (blue) and the vegetation, 
v(x), (red) of direct numerical simulations with ε = 0.01, m  =  0.45, b  =  0.5 and 
a  =  1.2 (a) or a  =  2.0 ((b)–(d)). The 2D pattern is a trivial extension of these patterns 
in the y -direction, visualization of which is shown in figure 19. (a) Vegetation stripe. (b) 
Vegetation gap. (c) Vegetation-desert front. (d) Desert-vegetation front.
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In this article, we first establish existence of the aforementioned patterns rigorously. To that 
end, we exploit the scale separation in (1.7) using the methods of geometric singular perturba-
tion theory [21]. Using a fast-slow decomposition, these patterns are shown to correspond to 
the union of trajectories on so-called invariant slow manifolds of (1.7) and fast connections 
between these slow manifolds. Specifically, (1.7) has three slow manifolds: one manifold, 
M� (� for left), consists of states without vegetation and the two others, Mm (middle) and 
Mr (right), consist of states with vegetation. Fast front-type solutions φ† exist which connect 
M� to Mr, and likewise there exist fast front solutions φ� which connect Mr to M�. Using 
these, stripes, gaps and fronts can be constructed for various parameter values. Pulse solu-
tions to (1.2) consist of trajectories on M� and Mr and two fast front-type connections; front 
solutions to (1.2) only possess one fast front-type connection. In figure 3 these patterns are 
shown in the ε = 0 limit, where they are characterized by their speed in a sample bifurcation 
diagram.

a

m

c

vegetation stripe

vegetation gap

desert-to-vegetation front

vegetation-to-desert front

M� Mr

M� Mr

φ†

φ�

φ�

M� Mr

φ†

φ�

M� Mr

φ† V

V

V

D

D

D

D

Figure 3.  A sample singular ε = 0 bifurcation diagram in (a/m, c) parameter space. 
The solid green line indicates stripe solutions, while the solid purple line denotes 
the gap solutions. Vegetation-to-desert fronts are indicated by the dashed green line. 
Finally, desert-to-vegetation front solutions are given by the dashed and solid purple 
lines. Schematic depictions of the associated singular limit geometries are depicted in 
the insets, where the labels D and V  denote the locations of the desert and vegetated 
equilibrium states, respectively. The precise bifurcation structure depends on the value 
of the parameter b; see section 2.4.
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The main theme of this paper is the spectral stability of the patterns. Because the main 
building blocks of all of the patterns are normally hyperbolic slow manifolds and fast front-
type connections between these, we argue that destabilization can, a priori, only be caused 
by a ‘small’ eigenvalue, one of which is created by every front-type connection. However, 
using formal asymptotic computations this possibility is excluded: all described patterns to 
(1.2)—stripes, gaps and fronts—are thus (always) stable against two-dimensional perturba-
tions. These formal arguments are also verified rigorously by carefully constructing eigen-
functions using techniques previously employed to prove stability of traveling pulses in the 
FitzHugh–Nagumo system in [6]; similar arguments were also used in [30, 31]. However, in 
those previous works, only stability with respect to perturbations in one spatial dimension was 
considered. By performing a Fourier decomposition in the transverse (y ) direction, we show 
that these methods can also be used to obtain 2D spectral stability of the full planar traveling 
waves.

Furthermore, in this paper we show that the 2D stability of the (straight) planar vegetation 
patterns implies that slightly curved variants of the same patterns, sometimes called corner 
defect solutions, are also solutions to (1.2) that are—again—2D stable. An example of one of 
these solutions is given in figure 4. Existing techniques developed in [27, 28] can be applied to 
infer that the orientation of these patterns is related to the speed c of their associated straight 
patterns; in particular we predict that when c  >  0 the corresponding corners are oriented con-
vex upslope, and when c  <  0 they are convex downslope.

Besides these mathematical findings, this paper also provides novel insights in the context 
of ecology—and the study of desertification in particular. In simple dryland ecosystem mod-
els, typically vegetation patterns are found where the vegetation stripes (or gaps) have only a 
(very) small width, which is not very realistic [16, 22, 42, 55]. In this article, however, patterns 
are found that do have a more sizable width, that can even be expressed in terms of the model 
parameters. These larger widths are caused by the addition of a carrying capacity in (1.2) 
which limits the amount of vegetation at one place and forces the patterns to become wider 
instead. Moreover, this study indicates the kind of (striped) patterns that are possible based on 
the values of the model parameters; see figure 3. Vegetation stripe patterns only exist in rela-
tively dry conditions (i.e. when am is small). For every so slightly more humid conditions, it is 

Figure 4.  A snapsthot of a straight (a) and slightly bent (b) traveling vegetation stripe 
solution (with c  >  0), obtained via direct numerical simulation of (1.2) with ε = 0.01, 
m  =  0.45, b  =  0.5 and a  =  1.2.

R Bastiaansen et alNonlinearity 32 (2019) 2759
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possible to find vegetation gap patterns and invading front patterns (both invading vegetation 
and invading desert fronts). For even more humid conditions, only invading vegetation fronts 
can be found. Finally, we also found slightly curved variants of the aforementioned planar 
vegetation patterns, an example of which is given in figure 4. In this paper, we show that these 
curved vegetation patterns can be formed through the internal dynamics of (1.2), and provide 
a possible explanation for the observed vegetation arcs—even in the absence of topographic 
mechanisms [22].

Remark 1.3.  In an ecological context, traveling (spatially) periodic orbits are perhaps more 
relevant than the traveling pulse solutions constructed in this paper. However, once these pulse 
solutions are found, the periodic ones typically follow naturally [48]—as is the case here. Fur-
thermore, properties of these periodic orbits are closely related to those of the pulse solutions. 
See also section 2.4.4.

The set-up for the rest of this article is as follows. In section  2, we study (1.7) as a 
slow/fast system in the context of geometric singular perturbation theory. We determine 
the slow manifolds M� , Mm and Mr and the fast connections φ† and φ� that connect the 
manifolds M�  and Mr, which are then used to construct singular stripe, gap and front 
solutions to (1.7). In section 3, we prove the persistence of these solutions for sufficiently 
small ε > 0. Next, in section 4, we compute the essential and point spectra of all these pat-
terns using (formal) asymptotic computations, and show that all patterns are stable against 
all two dimensional perturbations. Subsequently, in section 5 these stability statements are 
made rigorous by carefully constructing eigenfunctions. In section 6 we inspect existence 
and stability of weakly bent (corner) solutions to (1.7). Then, in section 7 we present the 
results of numerical computations on closely related spatially periodic patterns and numer
ical simulations of both straight and bent patterns. We conclude with a brief discussion of 
the results in section 8.

2.  Slow-fast analysis of traveling wave equation

In this section, we study the traveling wave equation (1.7) as a slow-fast system in the singular 
limit ε = 0. A discussion of the critical manifolds is given in section 2.1. In section 2.2, we 
describe the singular layer problem, and we construct families of singular front solutions. We 
describe the reduced flow on the critical manifolds in section 2.3, and we construct singular 
traveling front and stripe solutions in section 2.4, which consist of fast segments that are het-
eroclinic solutions to the singular layer problem and of slow segments that are solutions of the 
reduced flow on the critical manifolds. Finally, section 2.5 contains statements of our main 
existence results.

2.1.  Critical manifolds

The traveling wave ODE (1.7) is a two-fast-one-slow system. We obtain the fast subsystem or 
layer problem by setting ε = 0 in (1.7), which results in the system



u′ = 0,
v′ = q,
q′ = mv− R(v)G(u, v)v− cq,

� (2.1)

or, equivalently, the collection of planar ODEs

R Bastiaansen et alNonlinearity 32 (2019) 2759
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{
v′ = q,
q′ = mv− R(v)G(u, v)v− cq,� (2.2)

parameterized by u. We note that (v, q) = (0, 0) =: p0(u) is always an equilibrium of (2.2); 
there are additional equilibria (v, 0) whenever v satisfies R(v)G(u, v) = m. Thus we see that 
there are additional equilibria p±(u) := (v±(u), 0), where

v±(u) =
1±

√
1− 4bm/u
2b

,� (2.3)

provided u � 4bm. We see that (2.2) admits three equilibria for u  >  4bm, two equilibria for 
u  =  4bm, and a single equilibrium for u  <  4bm.

Denoting the right-hand-side of (2.2) by

F(v, q; u) :=
(

q
mv− R(v)G(u, v)v− cq

)
,� (2.4)

we consider the linearization of (2.2) about each of the three equilibria p0, p± that is given by

D(v,q)F(0, 0; u) =
(
0 1
m −c

)
,� (2.5)

D(v,q)F(v±(u), 0; u) =

(
0 1

u−4mb±
√

u2−4mbu
2b −c

)
.� (2.6)

v+(u)v−(u)

M�
0

v

Mr
0

1
2b

a

0

4bm

Mm
0

p0(a)

u

F

Figure 5.  Shown are the three branches of the critical manifold M0 and the 

associated reduced flow (2.20)–(2.22) in the case a
m < 2

(
b+

√
1+ b2

)
. There is a 

single equilibrium at p 0(a) on the left branch M�
0 corresponding to the desert state 

(u, v, q) = (a, 0, 0).
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For c  >  0, we deduce that the equilibrium p 0(u) is always a saddle. When u  >  4bm, the equi-
librium p −(u) is a stable node or spiral, and the equilibrium p + (u) is a saddle. When u  =  4bm, 
the equilibrium p+(4bm) = p−(4bm) is not hyperbolic.

In the full system, the equilibria of the layer problem (2.2) form critical manifolds, given 
by three normally hyperbolic branches

M�
0 = {v = q = 0},

Mm
0 = { p−(u) : u > 4bm},

Mr
0 = { p+(u) : u > 4bm},

� (2.7)

with the branches Mm
0 ,Mr

0 meeting at a nonhyperbolic fold point F = p+(4bm) = p−(4bm); 
see figure 5. For u1, u2 ∈ R, we will use the notation

M j
0[u1, u2] := M j

0 ∩ {u1 � u � u2}� (2.8)

to refer to a compact segment of one of the critical manifolds M j
0, j = �,m, r.

We recall that there are (up to) three equilibria of the full system, given by (u, v, q) = (a, 0, 0) 
and (u, v, q) = (u1,2, v1,2, 0); see figures 5 and 6. The equilibrium at (u, v, q) = (a, 0, 0) lies on 
the left branch M�

0 and corresponds to p 0(a), while that at (u, v, q) = (u1, v1, 0) corresponds to 
p−(u1) and lies on the middle branch Mm

0 . The location of the equilibrium (u, v, q) = (u2, v2, 0) 
depends on the parameter values: if a/m  <  4b  +  1/b, then it lies on the middle branch Mm

0  
at p−(u2), while if a/m  >  4b  +  1/b, then it lies on the right branch Mr

0 at p+(u2). When 
a/m  =  4b  +  1/b, the equilibrium (u, v, q) = (u2, v2, 0) coincides with the fold F .

M�
0

v

Mr
0

1
2b

0

4bm

Mm
0

p−(u2)

p−(u1)

v+(u)v−(u)

u

F

a

p0(a)

(a)

M�
0

v

Mr
0

1
2b

0

4bm

Mm
0

p+(u2)

v+(u)v−(u)

F

u

a

p0(a)

p−(u1)

(b)

Figure 6.  Shown are the three branches of the critical manifold M0 and the 

associated reduced flow (2.20)–(2.22) in the case am > 2
(
b+

√
1+ b2

)
. The reduced 

problem admits two addtional equilibria corresponding to the vegetated states 

(u, v, q) = (uj, vj, 0), j = 1, 2. The equilibrium (u, v, q) = (u1, v1, 0) corresponds 
to p−(u1) and lies on the middle branch Mm

0 . If a
m < 4b+ 1/b, the equilibrium 

(u, v, q) = (u2, v2, 0) lies on the middle branch Mm
0  and corresponds to 

p−(u2), while if a
m > 4b+ 1/b, it lies on the right branch Mr

0 at p+(u2). (a) 

2
(
b+

√
1+ b2

)
< a

m < 4b+ 1
b. (b) am > 4b+ 1

b.
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2.2.  Layer fronts

In the previous section we have constructed the critical manifolds M�
0, Mm

0  and Mr
0, and 

determined the location of the desert state p 0(a) on M�
0 and the vegetation state p+(u2) on 

Mr
0—under certain conditions on the parameters. In this section, we study the connections 

between the outer manifolds M�
0 and Mr

0—which present themselves as fronts in the fast 
layer problem (2.2) for certain values of u and c. Ultimately, the goal is to construct homo-
clinic and heteroclinic solutions to the equilibrium states p 0(a) and/or p+(u2). Therefore, it is 
necessary to find front solutions that land on these states (because of the instability of these 
points on their respective critical manifolds). As these fronts are characterized by a specific 
speed c, a homoclinic connection can then only be constructed if a front connection going 
the other way can also be found for the same speed c (but possibly different value of u). In 
this section, we first catalogue the possible front connections between M�

0 and Mr
0, and give 

the corresponding speeds. Subsequently, we determine wether we can find a pair of fast front 
connections—one from Mr

0 to M�
0, and one from M�

0 to Mr
0—that exist for the same speed 

c, such that one lands precisely at an equilibrium state and a singular homoclinic connection 
can be found. We first find those relevant pairs that land on p 0(a) and then those that land on 
p+(u2).

2.2.1.  Front connections between M�
0 and Mr

0.  We are interested in fronts between the two 
saddle equilibria p 0(u)  =  (0,0) and p+(u) = (v+(u), 0); equivalently, we search for connec-
tions between the outer branches M�

0,Mr
0. For each value of u  >  4mb, there are two such 

fronts, φ�(ξ; u) = (v�(ξ; u), q�(ξ; u))T  and φ†(ξ; u) = (v†(ξ; u), q†(ξ; u))T, with explicit v 
profiles given by

v�(ξ; u) =
v+(u)
2

(
1− tanh

(
v+

√
ub

2
√
2

ξ

))
,

v†(ξ; u) =
v+(u)
2

(
1+ tanh

(
v+

√
ub

2
√
2

ξ

))
,

�

(2.9)

and wave speeds

c∗�(u) =

√
2bu
2

(v+(u)− 2v−(u))

c∗†(u) = −
√
2bu
2

(v+(u)− 2v−(u)) .
�

(2.10)

The �-fronts connect p + to p 0, while the †-fronts connect p 0 to p + ; see figure 7.
When u  =  4mb, the situation is slightly different as the equilibria p±(u) collide in a sad-

dle-node bifurcation at the fold point F , and the equilibrium p + (u) is no longer a saddle. 
However, it is still possible to find fronts between p 0 and p+(4bm) = p−(4bm). In particular, 
there exists a front connecting p + (4bm) to p 0(4bm) for any

c � c�,crit = b
√
2m (v+(4bm)− 2v−(4bm))

= −
√

m
2
.

� (2.11)

When c = c�,crit this front decays exponentially in backwards time, while for lesser speeds it 
decays only algebraically. Similarly, there exists a front connecting p 0(4bm) to p + (4bm) for 
any
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c � c†,crit = −b
√
2m (v+(4bm)− 2v−(4bm))

=

√
m
2
.

�
(2.12)

When c = c†,crit this front decays exponentially in forwards time, while for greater speeds it 
decays only algebraically.

2.2.2.  Fronts asymptotic to p 0(a).  In particular, provided a  >  4bm, the fronts (2.9) exist when 
u  =  a. Therefore we have a front connecting p + (a) to p 0(a)—the equilibrium (a, 0, 0) of the 
full system (1.7)—when

c = c∗�(a)

=
1

2
√
2b

(
−
√
a+ 3

√
a− 4bm

)
.� (2.13)

We now search for fronts which exist simultaneously for the same speed but different value of 
u, in particular for u � a. We have the following.

Lemma 2.1.  For each am � 9
2b, there exists a pair of fronts φ�(ξ; a),φ†(ξ; u∗(a)) with speed

c = c∗(a) :=
1

2
√
2b

(
−
√
a+ 3

√
a− 4bm

)
.� (2.14)

The front φ�(ξ; a) connects p + (a) to p 0(a) in the layer system (2.2) for u  =  a, while the front 
φ†(ξ; u∗(a)) connects p0(u∗(a)) to p+(u∗(a)) in the layer system (2.2) for u = u∗(a) � a, 
where

u∗(a) :=

{
1
8

(
17a− 18bm− 15

√
a2 − 4abm

)
, 9

2b � a
m < 25

4 b;

4bm, a
m � 25

4 b.
� (2.15)

Proof.  When am = 9
2b, we have c∗�(a) = 0 = c∗†(a). Thus, the layer problem is Hamiltonian 

and therefore both heteroclinic orbits lie simultaneously in the plane u  =  a, forming a hetero-
clinic loop. For values of 92b < a

m < 25
4 b, the second heteroclinic orbit exists for a value of 

4bm  <  u*  <  a given by (2.15), which can be obtained by solving the relation c∗�(a) = c∗†(u) 
for u  =  u*(a).

For a � 25bm
4 , the second heteroclinic orbit occurs when u  =  u*(a)  =  4bm; the decay is 

exponential in forward time when a = 25bm
4 , and algebraic for a > 25bm

4 .� □ 

Figure 7.  Shown are the singular fronts fronts φ�(ξ; u), φ†(ξ; u) of the layer problem 
(2.2). (a) c = c�(u). (b) c = c†(u).

R Bastiaansen et alNonlinearity 32 (2019) 2759



2770

Remark 2.2.  In the case 4b � a
m � 9

2b, there (also) exists a second front φ†(ξ; u∗(a)) with 
speed c  =  c*(a) that connects p0(u∗(a)) to p+(u∗(a)) in the layer system (2.2) for u  =  u*(a), 
where

u∗(a) =
1
8

(
17a− 18bm− 15

√
a2 − 4abm

)
.

However, in this case u*(a)  >  a, which—because of the flow on Mr
0 (see section 2.3)—pre-

vents the existence of a homoclinic connection in the full system.

2.2.3.  Fronts asymptotic to p+(u2).  We recall that for a/m  >  4b  +  1/b, the equilibrium 
p+(u2) on the right branch Mr

0 corresponds to the equilibrium (u2, v2, 0) of the full system 
(1.7). For a/m  =  4b  +  1/b, this equilibrium lies precisely on the fold F . We now search for 
singular fronts to this equilibrium for values of a/m � 4b+ 1/b, and the argument is similar 
as above. When a/m  >  4b  +  1/b, there exists a front connecting p0(u2) to p+(u2) when

c = c∗†(u2)

= − 1
2
√
2b

(
−
√
u2 + 3

√
u2 − 4bm

)
,

�
(2.16)

and when a/m  =  4b  +  1/b this front exists for each c � c†,crit, with exponential decay in for-
ward time for c = c†,crit and algebraic decay when c > c†,crit. We again search for fronts which 
exist simultaneously for the same speed but different value of u, and we have the following 
lemma, analogous to lemma 2.1.

Lemma 2.3.  Concerning the layer problem (2.2), the following hold.

	 (i)	�For each 4b+ 1
b < a

m � 9
2b+

2
b, there exists a pair of fronts φ�(ξ; û2(a)),φ†(ξ; u2) with 

speed ĉ(a) = c∗†(u2). The front φ†(ξ; u2) connects p0(u2) to p+(u2) in the layer system 
(2.2) for u  =  u2, while the front φ�(ξ; û2(a)) connects p+(û2(a)) to p0(û2(a)) in the layer 
system (2.2) for u = û2(a), where

û2(a) :=
1
8

(
17u2 − 18bm− 15

√
u22 − 4u2bm

)
.� (2.17)

	(ii)	�When a/m  =  4b  +  1/b, for each c � c†,crit, there exists a pair of fronts φ†(ξ; u2),φ�(ξ; û(c)), 
where û(c) is an increasing function of c which satisfies û(c†,crit) = û2(4mb+ m/b).

Proof.  For (i), when am = 9
2b+

2
b, we have c∗�(u2) = 0 = c∗†(u2), and therefore both hetero-

clinic orbits lie simultaneously in the plane u  =  u2, forming a heteroclinic loop. For values of 
4b+ 1

b < a
m < 9

2b+
2
b, the second heteroclinic orbit exists for a value of û2 > u2 given by the 

solution of (2.17), which can be obtained by solving the relation c∗�(u) = c∗†(u2) for u = û2.
For (ii), when a/m  =  4b  +  1/b, the equilibrium p+(u2) lies precisely on the fold F  and 

hence we obtain the fronts φ†(ξ; u2) for each c � c†,crit. The facts regarding û(c) follow by 
noticing that the relation

c∗�(u) =

√
2bu
2

(v+(u)− 2v−(u))

=
1

2
√
2b

(
−
√
u+ 3

√
u− 4bm

)�
(2.18)
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defines c∗�(u) as a strictly increasing function of u, and that u2  =  4bm when a/m  =  4b  +  1/b, 
so that û2(4mb+ m/b) = 25bm/4, and c∗�(25bm/4) = c†,crit.� □ 

2.3.  Slow flow

We now examine the slow flow restricted to the critical manifolds M�
0 and Mr

0. We rescale 
τ = εξ and obtain the corresponding slow system



uτ = 1

1+εc (u− a+ G(u, v)v)
εvτ = q
εqτ = mv− R(v)G(u, v)v− cq.

� (2.19)

By setting ε = 0, we obtain the reduced flow on M�
0 as

uτ = u− a,� (2.20)

on Mm
0  as

uτ = u− a+ G(u, v−(u))v−(u),� (2.21)

and on Mr
0 as

uτ = u− a+ G(u, v+(u))v+(u).� (2.22)

See figures 5 and 6 for depictions of the reduced flow, depending on the value of a/m. We 
see that for u  <  a, under the reduced flow on M�

0, u is always decreasing, while on Mr
0, u is 

always increasing, provided a/m  <  4b  +  1/b. When a/m  =  4b  +  1/b, there exists an equilib-
rium of the full system (u2, v2, 0) which coincides with the fold F , which thus takes the form 
of a canard point [36]. As a increases through this value, this equilibrium moves up along 
the right branch Mr

0. In that case, the flow is away from this equilibrium point; that is, u is 
decreasing when u  <  u2 and increasing when u  >  u2.

2.4.  Singular orbits

In the previous sections we have studied the slow flow on the manifolds M�
0 and Mr

0 and the 
dynamics of fast transitions between these manifolds. In this section, we use this knowledge 
to construct families of singular orbits, which will serve as the basis for constructing traveling 
front and pulse solutions to (1.2). These singular orbits are constructed for open regions in 
(a, b,m) parameter space, with the wavespeed c in general determined uniquely by the value 
of (a, b,m). The bifurcation structure, as well as the singular limit geometry of the associated 
solution orbits, is depicted in the bifurcation diagrams in figures 8(a) and (b). These diagrams 
show the dependence of the wave speed c on the value of the quantity a/m, in the regions 
b  <  2/3 and b  >  2/3, as the bifurcation structure changes qualitatively as b crosses through 
the critical value 2/3.

We first consider traveling pulse solutions, which can be thought of as two front-type solu-
tions glued together to create a profile which is bi-asymptotic to one of the equilibrium states 
with a plateau in between. These come in two varieties: vegetation stripe solutions, considered 
in section 2.4.1, which manifest as homoclinic orbits to the desert equilibrium state p 0(a), and 
vegetation gap solutions, considered in section 2.4.2, which arise as homoclinic orbits to the 
equilibrium p+(u2). In both cases, the corresponding homoclinic orbits are composed of two 
portions of the slow manifolds M�

0 and Mr
0 concatenated with two fast jumps in between, 

which exist for the same value of c. The singular limit geometry for these solutions is shown 
in the bifurcation diagrams figures 8(a) and (b) (see also figure 9 for more details), in which 
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the stripe solutions are defined along the upper solid green, and the gap solutions are defined 
along the upper solid purple curve. The distinction between the cases b  <  2/3 and b  >  2/3 is 
related to the manner in which these two curves interact; this is discussed in more detail in 
section 2.4.1.

Next we consider singular front solutions in section 2.4.3, characterized by a sharp trans
ition from the uniform desert state to the uniformly vegetated state or vica versa. In the slow/
fast framework of the traveling wave equation (1.7), these solutions manifest as heteroclinic 
orbits between the equilibria p 0(a) and p+(u2), and are composed of a single slow segment 
along one of the manifolds M�

0 and Mr
0 concatenated with a fast jump to the opposite slow 

manifold. In the diagrams figures 8(a) and (b), these singular front solutions are defined along 
the upper solid and dashed green and purple curves in the region a/m  >  4b  +  1/b. The green 
curves correspond to front solutions in which the vegetated state is downslope of the desert 
state, while the desert state is downslope of the vegetated state along the purple curves.

We briefly discuss periodic orbits in section 2.4.4, and in the following section section 2.5, 
we state our main existence results regarding traveling front, stripe, and gap solutions to (1.2).

2.4.1.  Homoclinic orbits to the desert state p 0(a).  By lemma 2.1, for each am � 9b
2 , there exists 

a pair of fronts φ�(ξ; a),φ†(ξ; u∗(a)) with the same speed

c = c∗(a) :=
1

2
√
2b

(
−
√
a+ 3

√
a− 4bm

)
.� (2.23)

We can concatenate these fronts with portions of the critical manifolds M�,r
0  in order to con-

struct singular homoclinic solutions to the equilibrium p 0(a). However, when a/m  >  4b  +  1/b, 
the equilibrium p+(u2) lies on Mr

0 and can block these orbits. For each am � 9b
2 , we have a 

candidate singular homoclinic orbit to the desert state p 0(a) given by

Hd(a) := M�
0[u

∗(a), a] ∪ φ†(u∗(a)) ∪Mr
0[u

∗(a), a] ∪ φ�(a),� (2.24)

corresponding to a vegetation stripe solution (see figure 9), where the notation M j
0[u1, u2] 

was defined in (2.8). This orbit will be blocked if the equilibrium p+(u2) lies on Mr
0 with 

u∗(a) � u2. There are two cases based on the expression for u*(a) in (2.15). If a/m � 25b/4, 
then this orbit is blocked whenever p+(u2) lies on Mr

0, that is, for any value of a/m � 4b+ 1/b. 
If a/m  <  25b/4, then this orbit is blocked if u2 � u∗(a), which occurs when

a
m

� ādh := 2b+
5
√
3b2

2
√
4+ 3b2

+
8√

12+ 9b2
.� (2.25)

We therefore expect a different singular bifurcation diagram for the cases 4b  +  1/b  >  25b/4 
or 4b  +  1/b  <  25b/4 (i.e. b  <  2/3 respectively b  >  2/3). In the former case the singular front 
φ†(ξ; u∗(a)) can jump precisely onto the fold point F ; in the latter case this is not possible. 
Equivalently, the structure changes depending on whether b  <  2/3 or b  >  2/3 (see figures 8(a) 
and (b)). We define the quantity

ā(b) :=
{
4b+ 1/b b � 2/3
ādh b > 2/3

.� (2.26)

Then for each b,m > 0, we can construct the singular homoclinic orbits Hd(a) for 
9
2b � a

m � ā(b). We note that when b � 2/3 and am ∈ [4b+ 1/b, 25b/4], the front φ†(u∗(a)) 
jumps precisely onto the nonhyperbolic fold point F . While it is possible to construct homo-
clinic orbits in this regime as well as determine the stability of the underlying traveling wave 
solution [4, 9, 6] using geometric blow-up methods, we do not consider this case here. Rather 
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a

m

b <
2
3

9b
2

25b
4

4b+
1
b

9b
2

+
2
b

homoclinic to
desert state

homoclinic to
vegetated state

c

c = c∗(a, b,m)

c = ĉ(a, b,m)

(a)
c

a

m

9b
2

4b+
1
b

9b
2

+
2
b

homoclinic to
desert state

homoclinic to
vegetated state

adh
m

b > 2/3

c = ĉ(a, b,m)

c = c∗(a, b,m)

(b)

Figure 8.  Shown are the singular ε = 0 bifurcation diagrams in (a, c) parameter space 
in the cases b  <  2/3 (a) and b  >  2/3 (b).
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we restrict our attention to orbits which jump on/off normally hyperbolic portions of the criti-
cal manifold. To that end, we define the quantity

āhyp(b) :=
{
25b/4 b � 2/3
ādh b > 2/3

,� (2.27)

and consider only the singular homoclinic orbits Hd(a) for 92b � a
m < āhyp(b).

Remark 2.4.  In addition to the class of homoclinic orbits described above, there also exist 
singular homoclinic orbits to the equilibrium p 0(a) lying entirely in the plane u  =  a. These 
orbits in fact correspond to solutions of the layer problem (2.2) for u  =  a and c  =  0, and they 
are depicted along the lower green curves in the bifurcation diagrams in figures 8(a) and (b). 
As with the singular homoclinic orbits Hd(a) constructed in this section, it is possible to show 
that these layer homoclinic orbits also persist for sufficiently small ε > 0 using geometric 
singular perturbation arguments, and in fact they lie on the same continuation branch; see fig-
ure 16. Furthermore, the bifurcation structure near these orbits is surprisingly rich; a detailed 
analysis is carried out in [8]. However, unlike the orbits Hd(a), the resulting traveling wave 
solutions are typically unstable as solutions to (1.2), and we therefore refrain from analyzing 
these solutions in this work.

2.4.2.  Homoclinic orbits to the vegetated state p+(u2).  Similarly, we can construct singular 
homoclinic orbits to the vegetated state p+(u2), using the fronts from lemma (2.3). By similar 
arguments as above, we obtain singular homoclinic orbits

Hv(a) := Mr
0[u2, û2(a)] ∪ φ�(û2(a)) ∪M�

0[u2, û2(a)] ∪ φ†(u2),� (2.28)

M�
0 Mm

0 Mr
0

v

0

q

u

φ†

φ�

Figure 9.  Shown is the singular orbit Hd(a) homoclinic to the desert state p 0(a). The 
orbit first traverses a portion of the manifold M�

0, then the front φ†(u∗(a)), followed by 
a portion of the critical manifold Mr

0, and finally the front φ�(a).
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corresponding to vegetation gap solutions. For each b,m > 0, these orbits can be constructed 
for parameters ā(b) � a

m � 9
2b+ 2/b.

Remark 2.5.  Additionally, in the case b  <  2/3, using lemma 2.3 (ii), when a  =  4bm  +  m/b, 
we also obtain homoclinic orbits

Ĥv(c) := Mr
0[u2, û(c)] ∪ φ�(û(c)) ∪M�

0[u2, û(c)] ∪ φ†(u2)� (2.29)

for each c†,crit � c � c∗(4bm+ m/b).

Remark 2.6.  Similarly as in section 2.4.1, there exist singular homoclinic orbits p+(u2) 
lying entirely in the plane u  =  u2 for c  =  0; see remark 2.4. These orbits are depicted in  
figures 8(a) and (b) along the lower purple curves. We remark on their presence here, but we 
refer to [8] for a detailed singular bifurcation analysis.

2.4.3.  Heteroclinic orbits connecting desert state p 0(a) and vegetated state p+(u2).  To con-
struct singular heteroclinic solutions that connect the steady state p 0(a) to the steady state 
p+(u2), we can concatenate M�

0 with a front φ† that limits onto the fixed point p+(u2). The 
latter fronts only exist when p+(u2) lies on Mr

0, i.e. when am > 4b+ 1
b. Hence, a singular 

heteroclinic orbit connecting p 0(a) to p+(u2) is given by

Hdv(a) := M�
0[u2, a] ∪ φ†(u2),� (2.30)

the speed of which is c = ĉ(a).
Similarly, a heteroclinic orbit connecting p+(u2) to p 0(a) can be found by concatenating 

Mr
0 with a front φ� that limits onto the fixed point p 0(a). Again, this can only happen when 

a
m > 4b+ 1

b; a candidate orbit is given by

Hvd(a) := Mr
0[u2, a] ∪ φ�(a),� (2.31)

the speed of which is c  =  c*(a).

Remark 2.7.  We note that there exist additional heteroclinic orbits for values of 
2(b+

√
1+ b2) < a

m < 4b+ 1
b . However, in this parameter regime, the steady state (U2,V2) 

corresponding to the equilibrium p+(u2) is unstable (against some non-uniform perturba-
tions) in the original PDE (1.2). Hence a heteroclinic orbit in this regime corresponds to a 
front which invades the unstable vegetated state. We do not analyze such invasion fronts in 
this work; rather, we focus on the bistable regime, corresponding to the singular heteroclinic 
orbits Hvd(a) described above.

2.4.4.  Periodic orbits.  In this section, we comment briefly on periodic orbits. Follow-
ing the construction as for singular homoclinic orbits in section 2.4.1–2.4.2, it is also pos-
sible to construct singular periodic orbits by concatenating portions of the critical manifolds 
M�

0,Mr
0 with fast layer transitions in between, provided the relevant segments of M�

0,Mr
0 

do not contain either of the equilibria p 0(a) or p+(u2). Hence, one expects to find singu-
lar periodic orbits for any value of 9b

2 < a
m < 9b

2 + 2
b, and any value of the wavespeed 

0 < c < min{c∗(a, b,m), ĉ(a, b,m)}. Further, general theory predicts that such periodic orbits 
persist for small ε > 0 [52]; these solutions correspond to wavetrain solutions of (1.2), or 
periodic vegetation stripes. While such solutions are perhaps more ecologically relevant, in 
the following we focus on traveling pulse solutions as the question of stability, particularly in 
two spatial dimensions, is more analytically tractable.
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We remark that periodic wavetrain solutions have been found in a similar slow-fast context 
in the FitzHugh–Nagumo equation [5, 29], and furthermore, their spectral stability (in one 
spatial dimension) has been studied in [20].

2.5.  Main existence results

In this section, we have studied (1.2) in the singular limit ε ↓ 0. Here, we have found several 
singular homoclinic and heteroclinic orbits. These orbits persist for ε > 0, as we will prove 
in section 3. To summarize our findings, we end this section with our main existence results.

Theorem 2.8 (Vegetation stripe solution).  Fix b,m > 0 and a such that 
a
m ∈

( 9
2b, āhyp(b)

)
. There exists ε0 > 0 such that for ε ∈ (0, ε0), (1.2) admits a traveling pulse 

solution φd(ξ; a, ε) = (ud, vd)(ξ; a, ε) with speed

cd(a, ε) = c∗(a) +O(ε)� (2.32)

and satisfying lim|ξ|→∞(ud, vd)(ξ; a, ε) = (U0,V0). The length of the vegetation stripe is giv-
en to leading order by

ε Ld :=
∫ a

u∗(a)

du
u− a+ uv+(u)2

.� (2.33)

Theorem 2.9 (Vegetation gap solution).  Fix b,m > 0 and a such that 
a
m ∈

(
ā(b), 92b+

2
b

)
. There exists ε0 > 0 such that for ε ∈ (0, ε0), (1.2) admits a traveling 

pulse solution φv(ξ; a, ε) = (uv, vv)(ξ; a, ε) with speed

cv(a, ε) = ĉ(a) +O(ε)� (2.34)

and satisfying lim|ξ|→∞(uv, vv)(ξ; a, ε) = (U2,V2). The length of the vegetation gap is given 
to leading order by

ε Lv :=
∫ u2

û2

du
u− a

= log

(
u2(a)− a
û2 − a

)
.� (2.35)

Theorem 2.10 (Desert front solution).  Fix b,m > 0 and a such that 
a
m > 4b+ 1

b. There exists ε0 > 0 such that for ε ∈ (0, ε0), (1.2) admits a traveling front solu-
tion φdv(ξ; a, ε) = (udv, vdv)(ξ; a, ε) with speed

cdv(a, ε) = c∗(a) +O(ε)� (2.36)

and satisfying limξ→−∞(udv, vdv)(ξ; a, ε) = (U0,V0) and limξ→∞(udv, vdv)(ξ; a, ε) =  
(U2,V2).

Theorem 2.11 (Vegetation front solution).  Fix b,m > 0 and a such that 
a
m > 4b+ 1

b. There exists ε0 > 0 such that for ε ∈ (0, ε0), (1.2) admits a traveling front solu-
tion φvd(ξ; a, ε) = (uvd, vvd)(ξ; a, ε) with speed

cvd(a, ε) = ĉ(a) +O(ε)� (2.37)

and satisfying limξ→−∞(uvd, vvd)(ξ; a, ε) = (U2,V2) and limξ→∞(uvd, vvd)(ξ; a, ε) =  
(U0,V0).
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Remark 2.12.  We recall that the case b  =  0 corresponds to the original Klausmeier model 
[35]; see remark 1.1. From the geometry of the critical manifold (see figure 5), the degeneracy 
of the limit b → 0 becomes apparent. In particular, the branch Mr

0 of the critical manifold 
is sent to infinity, and the left branch M�

0 coincides with the hyperbola v = m/u in the plane 
q  =  0. In the current analysis, we will consider only the case b  >  0. However, we note that 
under appropriate rescalings, it is possible to unfold the degenerate case b  =  0 and construct 
traveling wave solutions. Additional complications arise in the singular perturbation analysis 
due to loss of normal hyperbolicity along the critical manifold, for which blow up desingulari-
zation techniques are needed. We refer to [7] for the details.

3.  Persistence of solutions for 0 < ε � 1

In this section, we prove that the singular orbits constructed in section 2.4 perturb to solutions 
of (1.7) for sufficiently small ε > 0 using methods of geometric singular perturbation theory. 
In section 3.1, we prove technical lemmata regarding the transversality of the fast connections 
φ†,�, and we discuss the proofs of theorems 2.8–2.11 in section 3.2.

3.1. Transversality along singular orbits

We consider the layer system (2.1)


u′ = 0
v′ = q
q′ = mv− (1− bv)uv2 − cq.

� (3.1)

As outlined in section 2.2, this system possesses heteroclinic connections φ�,† = (v�,†, q�,†) 
between the left and right critical manifolds M�,r

0 , where the speed c for a given heteroclinic 
orbit depends on the value of u (as well as the other parameters). We define the stable and 
unstable manifolds, W s(M j

0) and Wu(M j
0), of a critical manifold M j

0, j = �, r, as the union 
of the stable and unstable manifolds, respectively, of the corresponding equilibria of the layer 
problem (3.1).

Then an orbit φ† lies in the intersection of Wu(M�
0) and W s(Mr

0), while an orbit φ� lies 
in the intersection of Wu(Mr

0) and W s(M�
0). For a given orbit φ†, which we suppose exists 

for some values of (c, u) = (c0, u0), we aim to determine how this connection breaks as (c, u) 
varies near (c0, u0); that is, we determine the transversality of the intersection of Wu(M�

0) and 
W s(Mr

0) with respect to (c, u). We find the following.

Lemma 3.1.  Consider a heteroclinic orbit φ† which lies in the intersection of Wu(M�
0) 

and W s(Mr
0) for some (c, u) = (c0, u0). Then this intersection is transverse in (c, u), and we 

compute the splitting of Wu(M�
0) and W s(Mr

0) along φ† via the distance function

D†(c̃, ũ) = Mc
†c̃+Mu

†ũ+O(c̃2 + ũ2)� (3.2)

where c̃ := c− c0, ũ := u− u0, and

Mc
† =

∫ ∞

−∞
ec0ξq†(ξ)2dξ > 0,

Mu
† =

∫ ∞

−∞
ec0ξ(1− bv†(ξ))v†(ξ)2q†(ξ)dξ > 0.

�

(3.3)
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Proof.  We use Melnikov theory to compute the distance between Wu(M�
0) and W s(Mr

0) 
to first order in |c  −  c0| and |u  −  u0|. We consider the adjoint equation of the linearization of 
(3.1) about the front φ† given by

ψ′ =




0 −m+ uv†(ξ)(2− 3bv†(ξ))

−1 c


ψ.� (3.4)

The space of bounded solutions is one-dimensional and spanned by

ψ†(ξ) := ec0ξ
(

q′†(ξ)
−v′†(ξ)

)

= ec0ξ
(

q′†(ξ)
−q†(ξ)

)
.

�

(3.5)

Let F0 denote the right hand side of (3.1), and define the Melnikov integrals

Mν
† :=

∫ ∞

−∞
DνF0(φ†(ξ)) · ψ†(ξ)dξ,� (3.6)

for ν = c, u. The quantities Mc
†,M

u
† measure the distance between Wu(M�

0) and W s(Mr
0) to 

first order in |c  −  c0| and |u  −  u0|, respectively. We compute

Mc
† =

∫ ∞

−∞
ec0ξq†(ξ)2dξ > 0,

Mu
† =

∫ ∞

−∞
ec0ξ(1− bv†(ξ))v†(ξ)2q†(ξ)dξ > 0.

As these are nonzero, we deduce that the intersection of Wu(M�
0) and W s(Mr

0) along φ† is 
transverse in both c and u, and we arrive at the distance function (3.2).� □ 

Analogously, we can determine the transversality of the intersection of Wu(Mr
0) and 

W s(M�
0) along an orbit φ�. We have the following lemma, which follows from a similar com-

putation as in the proof lemma 3.1.

Lemma 3.2.  Consider a heteroclinic orbit φ� which lies in the intersection of Wu(Mr
0) 

and W s(M�
0) for some (c, u) = (c0, u0). Then this intersection is transverse in (c, u), and we 

compute the splitting of Wu(Mr
0) and W s(M�

0) along φ� via the distance function

D�(c̃, ũ) = Mc
�c̃+Mu

�ũ+O(c̃2 + ũ2),� (3.7)

where c̃ := c− c0, ũ := u− u0, and

Mc
� =

∫ ∞

−∞
ec0ξq�(ξ)2dξ > 0,

Mu
� =

∫ ∞

−∞
ec0ξ(1− bv�(ξ))v�(ξ)2q�(ξ)dξ < 0.

�

(3.8)

3.2.  Proof of existence results

In this section, we conclude the proof of theorem 2.8. The proof of theorem 2.9 is similar. The 
proofs of theorems 2.10 and 2.11 also follow a similar argument—albeit less involved—and 
we omit the details.
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Proof of theorem 2.8.  Based on the analysis in section 2, we obtain a traveling pulse  
solution of (1.2) as a perturbation from the singular homoclinic orbit Hd(a) (see (2.24) and  
figure 10) within the traveling wave ODE (1.7) for a speed c ≈ c∗(a). We will construct a 
homoclinic orbit for 0 < ε � 1 as an intersection of the stable and unstable manifolds 
W s( p0(a)) and Wu( p0(a)) of the equilibrium p 0(a) corresponding to the desert state.

For ε0 > 0 sufficiently small, from standard methods of geometric singular perturbation 
theory, as the left branch M�

0 of the critical manifold is normally hyperbolic, it persists for 
ε ∈ (0, ε0) as a one-dimensional locally invariant slow manifold M�

ε. Similarly, away from 
the fold F , the right branch Mr

0 of the critical manifold is normally hyperbolic and persists for 
ε ∈ (0, ε0) as a one-dimensional locally invariant slow manifold Mr

ε. The two-dimensional 
(un)stable manifolds Wu(M j

0) and W s(M j
0), j = �, r, persist for ε ∈ (0, ε0) as two-dimen-

sional locally invariant manifolds Wu(M j
ε) and W s(M j

ε), j = �, r.
As the equilibrium p 0(a) is repelling with respect to the reduced flow on M�

0 (see sec-
tion 2.3), for sufficiently small ε > 0, the two-dimensional unstable manifold Wu( p0(a)) of 
p 0(a) coincides with Wu(M�

ε). The equilibrium p 0(a) also admits a one-dimensional stable 
manifold W s( p0(a)) which precisely corresponds the strong stable fiber of W s(M�

ε) with 
basepoint p 0(a). We note that for ε = 0 and c  =  c*(a), the manifold W s( p0(a)) is precisely 
the singular front φ�(a).

Using the results of lemma 3.1 for c0 = c∗(a), u0 = u∗(a), for each fixed c ≈ c∗(a) the 
two-dimensional manifolds Wu(M�

0) and W s(Mr
0) intersect transversely along the front 

φ†(u∗(a)). This transversality persists for sufficiently small ε > 0, and using the fact that 
Wu( p0(a)) = Wu(M�

ε), we deduce the transverse intersection of Wu( p0(a)) and W s(Mr
ε) 

for each c ≈ c∗(a) and each sufficiently small ε > 0. We now track Wu( p0(a)) as it passes 
near Mr

ε; by the exchange lemma [32, 47], there is a constant η > 0 such that Wu( p0(a)) 
aligns C1-O(e−η/ε)-close to Wu(Mr

ε) upon exiting a neighborhood of Mr
ε near the front 

φ�(a).
Using lemma 3.2 for c0 = c∗(a), u0 = a, we can compute the distance between Wu(Mr

ε) 
and W s( p0(a)) along the singular front φ�(a) using the distance function (3.7). In order to 
find a homoclinic orbit, we are interested in intersections of Wu( p0(a)) and W s( p0(a)). 
By the C1-O(e−η/ε)-closeness of Wu( p0(a)) and Wu(Mr

ε), the resulting distance function 
differs only by O(e−η/ε) terms. Hence we compute the distance between Wu( p0(a)) and 
W s( p0(a)) along φ�(a) as

D(c̃, ũ, ε) = Mc
�c̃+O(ε+ c̃2),� (3.9)

where Mc
� �= 0 and c̃ = c− c∗(a). We solve for D(c̃, ũ, ε) = 0 when

c = cd(a, ε) = c∗(a) +O(ε),� (3.10)

which corresponds to an intersection of Wu( p0(a)) and W s( p0(a)) along a homoclinic orbit 
of (1.7).� □ 

4.  Stability

In the previous sections we have constructed several different localized solutions to (1.6): 
homoclinics to the desert state (u, v) = (U0,V0) = (a, 0), homoclinics to the vegetated 
state (u, v) = (U2,V2)—see (1.5)—and heteroclinics connecting these states. In this sec-
tion  we study the linear stability of these solutions using formal arguments; rigorous 
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proofs follows in section 5. We denote a steady state solution to (1.6) by (us, vs)—without 
specifying yet which steady state solution—and we linearize around this state by setting 
(u, v)(ξ, t) = (us, vs)(ξ) + eλt+i�y(ū, v̄)(ξ). The linear stability problem then reads

{
λū = 1+εcs

ε ūξ −
(
1+ v2s

)
ū− 2usvsv̄,

λv̄ = v̄ξξ + csv̄ξ +
(
−m− �2 + (2− 3bvs)usvs

)
v̄+ (1− bvs)v2s ū.

� (4.1)

Here, cs denotes the speed of the steady state under consideration. With the introduction of 
q̄ := v̄ξ we can write this stability problem in matrix form as


ūξ
v̄ξ
q̄ξ


 = A



ū
v̄
q̄


 , where A =




ε
1+εcs

[
1+ λ+ v2s

]
ε

1+εcs
2usvs 0

0 0 1
−(1− bvs)v2s m+ �2 + λ− (2− 3bvs)usvs −cs


 .

� (4.2)
The rest of this section is devoted to finding the spectrum Σ of this eigenvalue problem for 

the different stationary solutions to (1.6), using formal computations. The spectrum consists 
of an essential spectrum Σess and a point spectrum Σpt, which can each be interpreted in rela-
tion to the eigenvalue problem (4.2). The essential spectrum, which we consider in section 4.1, 
can be determined from properties of the asymptotic matrices obtained by taking the limit 
ξ → ±∞ in (4.2). We then study the point spectrum in section 4.2, which consists of eigenval-
ues for which (4.2) admits exponentially localized eigenfunctions. In section 4.3 we formulate 
theorems based on our findings, the proofs of which are given in section 5.

4.1.  Essential spectrum

The essential spectrum consists of all eigenvalues λ such that an asymptotic matrix of (4.2) 
has a spatial eigenvalue with real part zero. Depending on the type of steady state solution we 

M�
0 Mm

0 Mr
0

v

0

q

u

Figure 10.  The traveling pulse solution of theorem 2.8 is obtained for 0 < ε � 1 as a 
perturbation of the singular homoclinic orbit Hd(a).
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are inspecting, the asymptotic matrix or matrices might be different. However, since we are 
only considering steady state solutions that limit to either the desert state (u, v) = (a, 0) or 
the vegetated state (u, v) = (U2,V2), there are only two possible asymptotic matrices; when 
(us, vs) limits to (a, 0) (for either ξ → ∞ or ξ → −∞) we have Ad as asymptotic matrix and 
when (us, vs) limits to (U2,V2) we have Av, where these matrices are given by

Ad(λ; �) =




ε
1+εcs

[1+ λ] 0 0
0 0 1
0 m+ �2 + λ −cs


� (4.3)

Av(λ; �) =




ε
1+εcs

[
1+ λ+ V2

2

]
ε

1+εcs
2U2V2 0

0 0 1
−(1− bV2)V2

2 m+ �2 + λ− (2− 3bV2)U2V2 −cs


 ,

� (4.4)
where the values for U2 and V2 are given in (1.5).

Lemma 4.1.  Concerning the asymptotic matrices Ad,Av defined in (4.3)–(4.4), we have the 
following.

	 (i)	�The matrix Ad is hyperbolic for all λ ∈ C satisfying

Reλ > −min{m+ �2, 1}.� (4.5)

	(ii)	�For values of a,m, b > 0 satisfying am > 4b+ 1
b, the matrix Av is hyperbolic for all λ ∈ C 

satisfying

Reλ > −min


1+

1
4b2

,
2m

(
b
√

a2 − 4m(m+ ab)− m
)

2m+ ab− b
√
a2 − 4m(m+ ab)

+ �2


 < 0.

� (4.6)
Proof.  For (i), a straightforward computation reveals that Ad is non-hyperbolic when 
λ ∈ {λ ∈ C : Reλ = −1} ∪ {λ = −m− �2 − k2 + icsk; k ∈ R}; see figure 11.

For (ii), we compute that Av is non-hyperbolic when
(

ε

1+ εcs

(
1+ λ+ V2

2

)
− iν

)(
iνcs − ν2 − m− �2 − λ+ (2− 3bV2)U2V2

)

− ε

1+ εcs
2U2V2(1− bV2)V2

2 = 0,

�

(4.7)

for some ν ∈ R. We note that

Re
(
iνcs − ν2 − m− �2 − λ+ (2− 3bV2)U2V2

)
< 0� (4.8)

whenever

Reλ > −m− �2 + (2− 3bV2)U2V2.� (4.9)

Furthermore, using the expressions (1.5), when am > 4b+ 1
b, we have that V2 >

1
2b and

−m− �2 + (2− 3bV2)U2V2 = −
2m

(
b
√

a2 − 4m(m+ ab)− m
)

2m+ ab− b
√
a2 − 4m(m+ ab)

− �2

< 0
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for all � ∈ R. By rearranging (4.7), we deduce that Av is non-hyperbolic when

λ = −1− V2
2 +

2U2V2(1− bV2)V2
2

(iνc− ν2 − m− �2 − λ+ (2− 3bV2)U2V2)
+ iν

1+ εcs
ε

.

�

(4.10)

Taking real parts of (4.10) in the region

Reλ > −
2m

(
b
√
a2 − 4m(m+ ab)− m

)

2m+ ab− b
√
a2 − 4m(m+ ab)

− �2,� (4.11)

we have that Reλ < −1− V2
2, and noting V2 >

1
2b, the result follows.� □ 

Thus, since both Ad and Av stay hyperbolic for all λ with Reλ � 0 for the relevant param
eter values, the essential spectrum of all of the types of steady state solutions found in sec-
tion 2 is located in the left half-plane.

4.2.  Point spectrum

In this section we study the point spectrum Σpt using formal perturbation theory. Here we 
focus on 1D stability, that is � = 0. Rigorous proofs of the statements in this section, and the 
extension to all � ∈ R, follow in section 5.

We observe that the slow manifolds M�,r
0  are hyperbolic (away from the fold point F ) 

and consist entirely of saddle equilibria of the fast layer problem (2.1). Hence, we expect that 
these slow manifolds do not contribute any eigenvalues; the only eigenvalues come from the 
contribution of the fast fronts φ† and φ�. That is, eigenvalues in the point spectrum lie close 
to the eigenvalues of the fast-reduced subsystem (2.1). Since φ† and φ� are fronts and (2.1) 
is translational invariant, standard Sturm–Liouville theory indicates that they carry an eigen-
value λ = 0 and possibly several other eigenvalues that are all real and negative. Therefore, 
if there are potentially unstable eigenvalues in the point spectrum Σpt they need to lie close to 
λ = 0. Specifically, there are as many eigenvalues close to 0 as there are fronts in the steady 
state solution (us, vs) under consideration.

Because the full system (1.6) is translational invariant, λ = 0 is an eigenvalue of the full 
system. When we study the stability of a heteroclinic connection (connecting the desert state 
p 0(a) to the vegetated state p+(u2) or vice-versa) this is the only eigenvalue close to 0; in 
particular Σpt\{0} ⊂ {λ ∈ C : Reλ < 0}. On the other hand, when we study the stability of a 
homoclinic connection (connecting either the desert state p 0(a) or the vegetated state p+(u2) 
to itself), there is an additional eigenvalue close to 0. This eigenvalue—of the homoclinic 
steady state solutions—can, in principle, move either to the left or to the right (making the 
steady state unstable). In this section, we use perturbation theory to track this movement and 
pinpoint the location of the second eigenvalue formally.

4.2.1.  Formal computation of small eigenvalues.  Let (us, vs) be an exact solution to (1.6). The 
linearized stability problem (4.1) can be recast to the following form

L(�)
(
ū
v̄

)
= λ

(
ū
v̄

)
, L(�) :=

(
ε−1(1+ εcs)∂ξ − (1+ v2s ) −2usvs

(1− bvs)v2s ∂2
ξ + cs∂ξ − m− �2 + (2− 3bvs)usvs

)
.

�
(4.12)

For simplicity, we focus on the operator L(0) corresponding to the case � = 0; the case of 
� ∈ R is similar and is carried out in detail in section 5.

R Bastiaansen et alNonlinearity 32 (2019) 2759



2783

Since we are looking for a small (order O(ε)) eigenvalue closely related to the derivatives 
of the fast fronts (u†, v†)T  and (u�, v�)T , in particular at leading order, (4.12) is satisfied in the 

fast ξ-fields by any linear combination of (u′†, v
′
†)

T  and (u′�, v′�)T . We denote the fast region 
with the front (u†, v†)T  by I† and the fast region with the front (u�, v�)T  by I�. Then, to find 
the small eigenvalues we therefore use regular expansion and determine the eigenvalues with 
a Fredholm solvability condition. In particular, we first focus on the fast fields and we expand 
the eigenvalue and (ū, v̄)T  in these fast regions as

(
ū
v̄

)
= αj

(
u′†
v′†

)
+ ε

(
ūj,1
v̄j,1

)
+O(ε2), (ξ ∈ Ij, j = †, �)� (4.13)

λ = 0 + ελ̃ +O(ε2),� (4.14)

where α†,� are constants to be determined. Moreover, we also need to expand the exact solu-
tion (us, vs)T  as well as the speed cs:

(
us
vs

)
=

(
uj
vj

)
+ ε

(
uj,1
vj,1

)
+O(ε2), (ξ ∈ Ij, j = †, �)� (4.15)

cs = c0 + εc1 +O(ε2),� (4.16)

where (uj, vj)T ( j = †, �) and c0 are the leading order approximations of the exact solutions as 
constructed in section 2.5, theorems 2.8 and 2.9. Substitution in (4.12) leads at order O(ε) to 
the following equation (the O(1) equations are automatically satisfied):
{
ū′j,1 = 2αjujvjv′j ,

Lr
j v̄j,1 =

(
λ̃− c1∂ξ − [2− 6bvj] ujvj,1 − [2− 3bvj] vjuj,1

)
αjv′j − [1− bvj] v2j ūj,1,

(ξ ∈ Ij, j = †, �)

� (4.17)
where

Lr
j := ∂2

ξ + c0∂ξ − m+ (2− 3bvj)ujvj.� (4.18)

In (4.17) terms with c1, vj,1 and uj ,1 appear, and to determine these, we expand the existence 
problem (1.7) in ε as well. In the fast fields the order O(ε) terms read

Σess

Reλ

Imλ

−m−1

Figure 11.  Shown is the essential spectrum Σess associated with the desert state 
(u, v) = (a, 0) in the case � = 0.
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{
u′j,1 = uj − a+ ujv2j ,
Lr
jvj,1 = −(1− bvj)vjuj,1 − c1v′j

(ξ ∈ Ij, j = †, �).� (4.19)

Taking the derivative with respect to ξ of the second equation then yields

Lr
jv

′
j,1 = (−c1∂ξ − [2− 6bvj] ujvj,1 − [2− 3bvj] vjuj,1) v′j − [1− bvj] v2j u

′
j,1.

�
(4.20)

Substitution in (4.17) then reduces the core stability problem to
{
ū′j,1 = 2αjujvjv′j ,

Lr
j v̄j,1 = αjLr

jv′j,1 + λ̃αjv′j + [1− bvj] v2j
(
αju′j,1 − ūj,1

) (ξ ∈ Ij, j = †, �).

�

(4.21)

From this equation it is clear that ūj,1 can be found by integration (regardless of the value of 
λ̃, α† and α�). However, since Lr

j  has a non-trivial kernel, we have to impose a solvability 
condition on v̄j,1. We define v∗j  as a solution to the adjoint equation (Lr

j )
∗v∗j = 0 and note that

v∗j (ξ) = ec0ξv′j(ξ), (ξ ∈ Ij, j = †, �).� (4.22)

Thus we obtain the following Fredholm solvability condition

0 = αjλ̃

∫ ∞

−∞
(v′j)

2ec0ξdξ +
∫ ∞

−∞
[1− bvj] v2j e

c0ξv′j
(
αju′j,1 − ūj,1

)
dξ ( j = †, �).� (4.23)

We observe from (4.17) and (4.19) that αju′j,1 − ūj,1 is constant in the fast fields Ij ( j = †, �). 
Thus the Fredholm condition reduces to

0 = αjλ̃

∫ ∞

−∞
(v′j)

2ec0ξdξ +
(
αju′j,1 − ūj,1

) ∫ ∞

−∞
[1− bvj] v2j e

c0ξv′j dξ ( j = †, �).� (4.24)

Note that we thus have two solvability conditions. Only when both are satisfied simultane-
ously, it is possible to find (ū, v̄)T  that solve (4.12). The terms in (4.24) change depending on 
the type of steady state solution we are considering, and in particular, to which equilibrium 
state these solutions are homoclinic, as this determines the value of αju′j,1 − ūj,1.

4.2.2.  Homoclinics to desert state.  In this situation, u′�,1(ξ) → 0 for ξ → ∞ in I�, since the 
jump here is onto the fixed point. Moreover, ̄u�,1(ξ) → 0 for ξ → ∞ in I� to ensure integrabil-
ity of the eigenfunction. Thus, the condition in I� is

α�λ̃Md
�,λ = 0,� (4.25)

where

Md
�,λ :=

∫ ∞

−∞
v′�(ξ)

2ec
∗(a)ξ dξ > 0.� (4.26)

Therefore, either λ̃ = 0 or α� = 0. The former gives us back the translational invariant eigen-
value with eigenfunction (ū, v̄)T = (u′s, v′s)T, so we focus on the latter possibility. Note that 
α� = 0 implies that ̄u�,1 = 0 in the fast field I�. Thus, this provides a matching condition for the 
equations in the slow field between the fast fields I† and I�. By expanding the slow field equa-
tion in the slow variable, it immediately follows, from this fact, that the eigenfunction must be 
0 in the slow field between I† and I� as well. Hence we conclude that ū†,1(ξ) → 0 for ξ → ∞ 
in I† as well. Moreover, u†,1(ξ) → u† − a− u†v+(u†)2 = u∗(a)− a+ u∗(a)v+(u∗(a))2 for 
ξ → ∞ in I†—see equation  (4.19) and theorem 2.8. Thus the second solvability condition 
becomes
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α†

[
λ̃Md

†,λ +Md
†,ε

]
= 0,� (4.27)

where

Md
†,λ :=

∫ ∞

−∞
v′†(ξ)

2ec
∗(a)ξ dξ > 0,� (4.28)

Md
†,ε :=

[
u∗(a)− a+ u∗(a)v+(u∗(a))2

] ∫ ∞

−∞
(1− bv†(ξ))v†(ξ)2ec

∗(a)ξv′†(ξ) dξ > 0.� (4.29)

The signs of these are positive, since v† is increasing with ξ, and the quantity (
u∗(a)− a+ u∗(a)v+(u∗(a))2

)
 is positive per construction. Because taking α† = 0 

leads to the trivial solution (on R), we therefore obtain the additional eigenvalue 

λ = ελ̃ = −ε
Md

†,ε
Md

†,λ
< 0, which indicates that the eigenvalue λ close to zero has moved into the 

stable half-plane {λ ∈ C : Reλ < 0}. A plot of the corresponding eigenfunction, computed 
numerically, is given in figure 13(b).

4.2.3.  Homoclinics to the vegetated state.  This case is very similar. However, now the solu-
tion in I† limits to the fixed point of (1.7). Using similar arguments, we then find the following 
condition in I†:

α†λ̃Mv
†,λ = 0,� (4.30)

where

Mv
†,λ :=

∫ ∞

−∞
v′†(ξ)

2eĉ(a)ξ dξ > 0.� (4.31)

This time we need to take α† = 0. Similar to before, matching through the slow field yields 
ū†,1(ξ) → 0 and u�,1 → u� − a = û2(a)− a for ξ → ∞ in I�. Therefore the second condition 
for this steady state reads

α�

[
λ̃Mv

�,λ +Md
�,ε

]
= 0,� (4.32)

where

Mv
�,λ :=

∫ ∞

−∞
v′�(ξ)

2eĉ(a)ξ dξ > 0,� (4.33)

Mv
�,ε := [û2(a)− a]

∫ ∞

−∞
(1− bv�(ξ))v�(ξ)2eĉ(a)ξv′�(ξ) dξ > 0.� (4.34)

Because û2(a)− a < 0 and v� is decreasing with ξ, the sign of all these terms are positive 

again. Therefore we obtain the additional eigenvalue λ = ελ̃ = −ε
Mv

�,ε
Mv

�,λ
< 0, and again the 

eigenvalue has moved into the stable half-plane.

4.3.  Main stability results

In the previous sections  we have formally determined the spectrum of the various steady 
state solutions to (1.6). The computations in these sections  hold for 1D perturbations of 
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the steady state in question. We do, however, also want to understand the stability of these 
steady states under 2D perturbations. For that, we linearize around this state by setting 
(u, v)(ξ, y, t) = (us, vs)(ξ) + eλt+i�y(ū, v̄)(ξ), where � ∈ R is the transverse wavenumber, 
which results in the family of linearized PDE operators

L(�) :=
(
ε−1(1+ εcs)∂ξ − 1− v2s −2usvs

(1− bvs)v2s ∂2
ξ + �2 + cs∂ξ − m+ (2− 3bvs)usvs

)
.

�

(4.35)

Linear stability is then determined by the corresponding family of eigenvalue problems

L(�)
(
U
V

)
= λ

(
U
V

)
, � ∈ R.� (4.36)

Introducing Ψ := (ū, v̄, v̄′)T  we write the eigenvalue problem (4.36) as the first order non-
autonomous ODE

Ψ′ = A(ξ;λ, �, ε)Ψ, A(ξ;λ, �, ε) =




ε
1+εcs

[
1+ λ+ v2s

]
ε

1+εcs
2usvs 0

0 0 1
−(1− bvs)v2s m+ λ+ �2 − (2− 3bvs)usvs −cs


 .

� (4.37)
The essential spectrum associated with this problem was treated in section 4.1. By introducing 
λ̃ = λ+ �2 the previous formal computations for the point spectrum in section 4.2 still hold 
up to leading order by replacing λ with λ̃. To summarize our findings, we formulate several 
stability theorems for the various types of steady state solutions (also see figure 12); these are 
proved rigorously in section 5.

Theorem 4.2 (Spectrum of traveling front solutions).  Let a, b,m, ε as in theorem 
2.10 or 2.11 and let φh denote a traveling front solution as in the same theorem. Then, the 
following hold.

	 (i)	�The spectrum of the operator L(0) is contained in the set {λ ∈ C : Reλ < 0} ∪ {0}, and 
the spectrum of the operator L(�), � �= 0 is contained in the set {λ ∈ C : Reλ < 0}.

	(ii)	�The eigenvalue λ0(0) = 0 of L(0) is simple and continues to an eigenvalue of 
L(�), |�| � LM for some LM � 1, satisfying λ′

0(0) = 0 and

λ0(�) = −�2 +O(|ε log ε|2), λ′′
0 (�) = −2+O(|ε log ε|2), |�| � LM .

�
(4.38)

Figure 12.  Shown are the results of theorem 4.3. The left panel depicts the spectrum 
of the � = 0 operator L(0), corresponding to 1D stability. The point spectrum contains 
two critical eigenvalues λ0,λc close to the origin, while the remainder of the spectrum 
is bounded away from the imaginary axis in the left half plane. The right panel depicts 
a schematic of the continuation of the critical eigenvalue λ0 for |�| > 0.
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	(iii)	�The remaining spectrum of L(�) is bounded away from the imaginary axis uniformly in 
ε > 0 sufficiently small and � ∈ R.

Theorem 4.3 (Spectrum of vegetation stripe solutions).  Let a, b,m, ε as in theorem 
2.8 and let φd be a traveling pulse ‘stripe’ solution as in theorem 2.8. Then, the following hold.

	 (i)	�The spectrum of the operator L(0) is contained in the set {λ ∈ C : Reλ < 0} ∪ {0}, and 
the spectrum of the operator L(�), � �= 0 is contained in the set {λ ∈ C : Reλ < 0}.

	(ii)	�The eigenvalue λ0(0) = 0 of L(0) is simple and continues to an eigenvalue of 
L(�), |�| � LM for some LM � 1, satisfying λ′

0(0) = 0 and

λ0(�) = −�2 +O(|ε log ε|2), λ′′
0 (�) = −2+O(|ε log ε|2), |�| � LM .

�
(4.39)

	(iii)	�The operator L(�), |�| � LM admits an additional critical eigenvalue

λc(�) = −�2 −
Md

†,ε

Md
†,λ

ε+O(|ε log ε|2), |�| � LM ,� (4.40)

		 where Md
†,λ and Md

†,ε are as defined in (4.28) and (4.29).
	(iv)	�The remaining spectrum of L(�) is bounded away from the imaginary axis uniformly in 

ε > 0 sufficiently small and � ∈ R.

Theorem 4.4 (Spectrum of vegetation gap solutions).  Let a, b,m, ε as in theorem 
2.9 and let φv be a travelling pulse ‘gap’ solution as in theorem 2.9. Then, the following hold.

	 (i)	�The spectrum of the operator L(0) is contained in the set {λ ∈ C : Reλ < 0} ∪ {0}, and 
the spectrum of the operator L(�), � �= 0 is contained in the set {λ ∈ C : Reλ < 0}.

	(ii)	�The eigenvalue λ0(0) = 0 of L(0) is simple and continues to an eigenvalue of 
L(�), |�| � LM for some LM � 1, satisfying λ′

0(0) = 0 and

λ0(�) = −�2 +O(|ε log ε|2), λ′′
0 (�) = −2+O(|ε log ε|2), |�| � LM .

�
(4.41)
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Figure 13.  Shown is the numerically computed 1D spectrum (left panel) associated 
with a traveling pulse solution of (1.2) found for a = 1.61, b = 0.6,m = 0.5, ε = 0.003. 
The v profile of the solution is shown in the right panel, along with the eigenfunction 
corresponding to the critical eigenvalue λc.

R Bastiaansen et alNonlinearity 32 (2019) 2759



2788

	(iii)	�The operator L(�), |�| � LM admits an additional critical eigenvalue

λc(�) = −�2 −
Mv

�,ε
Mv

�,λ
ε+O(|ε log ε|2), |�| � LM ,� (4.42)

		 where Mv
�,λ and Mv

�,ε are as defined in (4.33) and (4.34).
	(iv)	�The remaining spectrum of L(�) is bounded away from the imaginary axis uniformly in 

ε > 0 sufficiently small and � ∈ R.

5.  Rigorous proof for stability theorems

The theorems in section 4.3 are based on computations of the essential spectrum in section 4.1 
and a formal computation of the point spectrum in section 4.2. The former directly provides 
proof for the theorem statements concerning the essential spectrum. The latter, however, does 
not provide a rigorous proof for the theorem statements concerning the point spectrum; to 
that end, in this section we provide the rigorous justification for the formal point spectrum 
computations in section 4.2. We restrict ourselves to the study of the traveling pulse ‘stripe’ 
solution φd as in theorems 2.8 and 4.3. The setup and proof for the traveling ‘gap’ solution 
φv as in theorems 2.9 and 4.4 is similar; the setup and proofs for the traveling heteroclinic 
orbits φvd and φdv as in theorems 2.10, 2.11 and 4.2 are also very similar, though less involved. 
Therefore, the details of these are omitted.

To analyze the point spectrum, we search for exponentially localized solutions to the fam-
ily of eigenvalue problems (4.37) parametrized by the transverse wavenumber � ∈ R. To this 
end, we use exponential dichotomies/trichotomies and Lin’s method to construct potential 
eigenfunctions, based on similar techniques used in the study of stability of traveling pulses 
in the FitzHugh–Nagumo equation [6]. We briefly review the notions of exponential dichoto-
mies/trichotomies in section 5.1.

To determine eigenvalues of (4.37), it is useful to split the complex plane in several regions. 
For M � 1 and δ � 1 fixed independent of ε, we define the following regions (see figure 14)

R1(δ) := {ζ ∈ C : |ζ| � δ}
R2(δ,M) := {ζ ∈ C : δ < |ζ| < M, Re ζ > −δ}
R3(M) := {ζ ∈ C : |ζ| > M, | arg(ζ)| < 2π/3}.

�
(5.1)

In section 5.2, we first show that large wavenumbers � do not contribute eigenvalues, and 
hence it suffices to restrict to a region of bounded �. We then set λ̃(�) := λ+ �2 and study the 
behavior of solutions to (4.37) for λ̃ in the various regions (5.1). The region R3 is considered in 
section 5.3. In section 5.4, we collect preliminary results in order to set up the analysis for λ̃(�) 
in the regions R1 and R2, which are analyzed in section 5.5 and 5.6, respectively. We briefly 
conclude the proof of theorem 4.3 in section 5.7.

5.1.  Exponential dichotomies/trichotomies

Exponential dichotomies extend the notion of hyperbolicity to nonautonomous linear systems 
such as (4.37) by separating the dynamics into subspaces of solutions which satisfy exponen-
tial growth/decay estimates. Consider a linear system

Ψξ = A(ξ)Ψ, Ψ ∈ Cn� (5.2)
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and let T(ξ, ξ̂) denote the corresponding evolution operator. Let I ⊆ R denote an interval. 
The system (5.2) is said to admit an exponential dichotomy on I with constants C,µ > 0 and 
projections Pu,s(ξ), ξ ∈ I  if the following hold for all ξ, ξ̂ ∈ I

Pu(ξ) + Ps(ξ) = 1

T(ξ, ξ̂)Pu,s(ξ̂) = Pu,s(ξ)T(ξ, ξ̂)

|T(ξ, ξ̂)Ps(ξ̂)|, |T(ξ̂, ξ)Pu(ξ)| � Ce−µ(ξ−ξ̂), ξ � ξ̂.

We will sometimes write Tu,s(ξ, ξ̂) := T(ξ, ξ̂)Pu,s(ξ̂) to denote the corresponding stable/unsta-
ble evolution operators.

Exponential trichotomies allow for a ‘center’ subspace which does not satisfy the same 
exponential decay estimates required for an exponential dichotomy. The system (5.2) is said to 
admit an exponential trichotomy on I with constants C  >  0 and µ1 > µ2 > 0 and projections 
Pu,c,s(ξ), ξ ∈ I if the following hold for all ξ, ξ̂ ∈ I

Pu(ξ) + Pc(ξ) + Ps(ξ) = 1

T(ξ, ξ̂)Pu,c,s(ξ̂) = Pu,c,s(ξ)T(ξ, ξ̂)

|T(ξ, ξ̂)Ps(ξ̂)|, |T(ξ̂, ξ)Pu(ξ)| � Ce−µ1(ξ−ξ̂), if ξ � ξ̂

|T(ξ, ξ̂)Pc(ξ̂)| � Ceµ2|ξ−ξ̂|.

Our analysis will make use of exponential di-/trichotomies in order to build exponentially 
localized eigenfunctions, and in particular we will make use roughness properties, which 
guarantee that exponential di-/trichotomies persist under small perturbations of the linear sys-
tem (5.2). For more information on dichotomies and their properties, as well as their applica-
tions to stability analysis, see [13, 40, 46].

5.2.  Reduction to region of bounded |�|

In this section, we show that it suffices to consider bounded wavenumbers |�| � LM for some 
LM � 1.

5.2.1. The region |�| � 1.  We first consider the region of large transverse wavenumber, that is 
we consider (λ, �) such that λ ∈ R1(δ) ∪ R2(δ,M) ∪ R3(M) and |�| � LM for a fixed constant 
1 � LM � M independent of ε. In this region, we perform a rescaling of the stability problem 
(4.37) and show that the rescaled problem is a small perturbation of a constant coefficient 
problem which admits exponential di/trichotomies and no exponentially localized solutions.

We rescale ξ̄ =
√
λ+ �2ξ, q̄ = q/

√
λ+ �2 , which results in the system

dΨ
dξ̄

= Ā(ξ̄;λ, �, ε)Ψ, Ā(ξ̄;λ, �, ε) = Ā1(λ, �, ε) + Ā2(ξ̄; �, ε)� (5.3)

where Ā1(λ, �, ε) is the constant coefficient matrix

Ā1(λ, �, ε) =




ε
1+εcs

λ√
λ+�2

0 0

0 0 1

0 λ+�2

|λ+�2| 0



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and

Ā2(ξ̄; �, ε) = O
(

1√
λ+ �2

)

uniformly in ξ̄, ε. We consider |�| � LM for some sufficiently large, fixed constant LM. We can 
compute the eigenvalues of Ā1(λ, �, ε) explicitly as

ν± = ±

√
λ+ �2

|λ+ �2|
, νε =

ε

1+ εcd

λ√
λ+ �2

.

For λ ∈ R1(δ) ∪ R2(δ,M) ∪ R3(M) for any δ � 1 and M � LM, we note that the pair of eigen-
values ν± have absolute real part greater than 1/2, because | arg

√
(λ+ �2)/|λ+ �2|| < π/3. 

One of these eigenvalues has negative real part and the other positive real part.
For the third eigenvalue νε, there are three cases: Re νε > 1/4, |Re νε| � 1/4, or 

Re νε < −1/4. If Re νε > 1/4, then, by roughness, (5.3) admits exponential dichotomies 
and hence no exponentially localized solutions. If |Re νε| � 1/4, by roughness (5.3) admits 
exponential trichotomies with one-dimensional center subspace. Any bounded solution must 
lie entirely in the center subspace. By continuity, the eigenvalues of the asymptotic matrix 
Ā±∞(λ, �, ε) = limξ̄→±∞ Ā(ξ̄;λ, �, ε) are separated so that only the eigenvalue νε has abso-
lute real part less than 1/4+ κ for some small κ > 0. For λ to the right of the essential spec-
trum, we have that Re νε > 0. Let Ψc be the corresponding eigenvector. Any solution Ψ(ξ) 
in the center subspace satisfies limξ→±∞ Ψ(ξ)e−νεξ = ζ±Ψc for some ζ± ∈ C \ {0}, which 
contradicts the fact that Ψ(ξ) is bounded. Finally we note that the case Re νε < −1/4 cannot 
occur for λ to the right of the essential spectrum since in this region the asymptotic matrix 
Ā±∞(λ, �, ε) has two eigenvalues of positive real part and one of negative real part.

Figure 14.  Sketch of the regions R1(δ), R2(δ,M) and R3(M) as considered in the 
analysis of the point spectrum.
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Thus we conclude that for |�| � LM and any λ ∈ R1(δ) ∪ R2(δ,M) ∪ R3(M) to the right of 
the essential spectrum, (4.37) admits no exponentially localized solutions.

5.2.2.  Setup for |�| � LM.  In the following sections, we will consider the region where |�| is 
bounded. We begin by setting λ̃ = λ̃(�) := λ+ �2. Under this transformation, (4.37) becomes

Ψ′ = Ã(ξ; λ̃, �, ε)Ψ,� (5.4)

where

Ã(ξ; λ̃, �, ε) := A(ξ; λ̃− �2, �, ε) =




ε
1+εcs

[
1+ λ̃− �2 + v2s

]
ε

1+εcs
2usvs 0

0 0 1
−(1− bvs)v2s m+ λ̃− (2− 3bvs)usvs −cs


 .

� (5.5)
In the following we characterize all eigenvalues λ ∈ C such that

(λ̃, �) ∈ R1(δ) ∪ R2(δ,M) ∪ R3(M)× [−LM , LM].� (5.6)

This characterizes all eigenvalues λ ∈ C with Reλ > −�2 − δ and thus all eigenvalues λ ∈ C 
with Reλ > −δ . In particular, all potential unstable eigenvalues with Reλ � 0 are captured 
by this characterization.

5.3. The region (λ̃(�), �) ∈ R3(M)× [−LM , LM ]

In this region, we follow a similar strategy to that in section 5.2.1 and perform the rescaling 

ξ̂ =
√
|λ̃|ξ, q̂ = q/

√
|λ̃|, which results in the system

dΨ

dξ̂
= Â(ξ̂; λ̃, �, ε)Ψ, Â(ξ̂; λ̃, �, ε) = Â1(λ̃, �, ε) + Â2(ξ̂; λ̃, �, ε)� (5.7)

where Â1(λ̃, �, ε) is the constant coefficient matrix

Â1(λ̃, �, ε) =




ε
1+εcs

λ̃√
|λ̃|

0 0

0 0 1

0 λ̃
|λ̃| 0




and

Â2(ξ̂; λ̃, �, ε) = O


 1√

|λ̃|


 ,

uniformly in ξ̂, ε, and |�| � LM, where we recall that 1 � LM � M. The remainder of the 
argument follows analogously as in section 5.2.1, and we conclude that for any fixed LM, any 
sufficiently large M and any (λ̃(�), �) ∈ R3(M)× [−LM ,LM] with λ = λ̃− �2 to the right of 
the essential spectrum, (4.37) admits no exponentially localized solutions.

5.4.  Setup for the region (λ̃(�), �) ∈ R1(δ) ∪ R2(δ,M)× [−LM , LM ]

In the previous section we have deduced that all eigenvalues need to be located in the region 
(λ̃(�), �) ∈ R1(δ) ∪ R2(δ,M)× [−Lm, Lm]. The analysis in this region is more involved and we 
need a specific set-up for this region, the details of which are explained in the next subsections.
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5.4.1.  Estimates from the existence analysis.  To study the stability of the traveling pulse solu-
tion φd, we need to be able to approximate it pointwise by its singular limit, and bound the 
resulting error terms. The following theorem establishes these estimates.

Theorem 5.1.  For each ν > 0 sufficiently large, there exists ε0 > 0 such that the follow-
ing holds. Let φd(ξ) = (ud(ξ), vd(ξ))T  be a traveling-pulse solution as in theorem 2.8 for 
0 < ε < ε0, and define Lε := −ν log ε and Φd(ξ) := (ud(ξ), vd(ξ), v′d(ξ))

T. There exists 
0 < Zε = O(1/ε) such that:

	 (i)	�For ξ ∈ I� := (−∞,−Lε], Φd(ξ) is approximated by the left slow manifold M�
0 with

d(Φd(ξ),M�
0) = O(ε).

	(ii)	�For ξ ∈ I† := [−Lε, Lε], Φd(ξ) is approximated by the front φ†(ξ) = (v†(ξ), q†(ξ))T  with
∣∣∣∣Φd(ξ)−

(
u∗(a)
φ†(ξ)

)∣∣∣∣ = O(εlog ε),
∣∣∣∣Φ′

d(ξ)−
(

0
φ′
†(ξ)

)∣∣∣∣ = O(εlog ε).

	(iii)	�For ξ ∈ Ir := [Lε, Zε − Lε], Φd(ξ) is approximated by the right slow manifold Mr
0 with

d(Φd(ξ),Mr
0) = O(ε).

	(iv)	�For ξ ∈ I� := [Zε − Lε,∞), Φd(ξ) is approximated by the front φ�(ξ) = (v�(ξ), q�(ξ))T 
with

∣∣∣∣Φd(ξ)−
(

a
φ�(ξ − Zε)

)∣∣∣∣ = O(εlog ε),
∣∣∣∣Φ′

d(ξ)−
(

0
φ′
�(ξ − Zε)

)∣∣∣∣ = O(εlog ε).

Proof.  The proof is similar to theorem 4.3 in [6]. The estimates are based on the proximity 
of the solution to the singular limit; along each of the slow manifolds, and along each of the 
fast jumps outside small neighborhoods of the slow manifolds, these estimates follow directly 
from the existence analysis, and Φd(ξ) is within O(ε) of the corresponding singular profile. 
The regions in between, i.e. where Φd(ξ) transitions from a fast jump to a slow manifold or 
vice versa, are more delicate and require corner-type estimates, which result in the O(ε log ε) 
errors; see, e.g. [6, theorem 4.5] or [20, 30].� □ 

5.4.2.  Weighted eigenvalue problem.  In this section we introduce a small exponential weight 
to the stability problem (5.4). This weight is introduced to deal with the inconvenience that 
arises due to the fact that when ε = 0, along the critical manifolds M�

0,Mr
0 the matrix A 

admits three spatial eigenvalues: one negative, one positive, and a zero eigenvalue which cor-
responds to the slow direction. On the other hand, for ε > 0 the asymptotic matrix Ad is 
hyperbolic with two positive spatial eigenvalues and one negative eigenvalue. In the follow-
ing, we will construct exponential dichotomies for (5.4) along each of the slow manifolds 
M�

ε,Mr
ε and each of the fast jumps, and for the following computations it will be convenient 

to preserve this dichotomy splitting at ε = 0 and preserve the exponential decay in forward 
(resp. backward) time within the corresponding stable (resp. unstable) dichotomy subspaces. 
To this end, for each η � 0 we consider the weighted eigenvalue problem

Ψ′ = Aη(ξ; λ̃, �, ε)Ψ,� (5.8)
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where

Aη(ξ; λ̃, �, ε) := Ã(ξ; λ̃, �, ε) + ηI =




ε
1+εc

[
1+ λ̃− �2 + v2d

]
+ η ε

1+εc2udvd 0

0 η 1
−(1− bvd)v2d m+ λ̃− (2− 3bvd)udvd η − c


 .

� (5.9)
The effect of introducing the weight η is to shift the spectrum (i.e. the spatial eigenvalues) of 
the matrix Ã(ξ; λ̃, �, ε) to the right. For any λ̃ chosen so that λ = λ̃− �2 lies to the right of the 
essential spectrum of L, the asymptotic matrix Ã±∞(λ̃, �, ε) = limξ→∞ Ã(ξ; λ̃, �, ε) admits 
two eigenvalues of positive real part and one of negative real part. Provided η is chosen so that 
A±∞
η (λ̃, �, ε) = limξ→∞ Aη(ξ; λ̃, �, ε) retains this spectral splitting, the original eigenvalue 

problem (4.37) admits a nontrivial exponentially localized solution Ψ(ξ) if and only if the 
weighted problem (5.8) admits a solution given by eηξΨ(ξ).

We proceed by determining η > 0 such that the spectrum of the coefficient matrix 
Aη(ξ; λ̃, �, ε) of (5.8) has a consistent splitting into one unstable and two stable eigenvalues 
for any λ̃ ∈ R1(δ) ∪ R2(δ,M) such that λ = λ̃− �2 lies to the right of the essential spectrum 
of L and any ξ ∈ I� ∪ Ir, where I�, Ir are as in theorem 5.1. This consistent splitting will be 
used to construct exponential dichotomies for (5.8) on the intervals I�, Ir. This is the content 
of the following proposition.

Proposition 5.2.  There exists C,µ, η, ε0 > 0 such that for ε ∈ (0, ε0), (5.8) admits expo-
nential dichotomies on the intervals I� = (−∞,−Lε] and Ir = [Lε, Zε − Lε) with constants 
C,µ > 0, and the associated projections Qu,s

�,r(ξ; λ̃, ε) are analytic in λ̃ ∈ R1(δ) ∪ R2(δ,M) 
and satisfy
∥∥∥[Qs

� − P](−Lε; λ̃, ε)
∥∥∥ ,

∥∥∥[Qs
r − P](Lε; λ̃, ε)

∥∥∥ ,
∥∥∥[Qs

r − P](Zε − Lε; λ̃, ε)
∥∥∥ � C|εlog ε|,

where P(ξ; λ̃, ε) denotes the spectral projection onto the stable eigenspace of the coefficient 
matrix Aη(ξ; λ̃, �, ε) in (5.8).

Proof.  By theorem 5.1, for ξ ∈ I� ∪ Ir, the pulse solution is O(ε)-close to the slow mani-
folds M�

ε and Mr
ε, respectively. For |�| � LM bounded and any λ̃ ∈ R1(δ) ∪ R2(δ,M), on I� 

the matrix Aη(ξ; λ̃, �, ε) has slowly varying coefficients and is an O(ε) perturbation of the 
constant-coefficient matrix

A�
η(ξ; λ̃, �, ε) =



η 0 0
0 η 1
0 m+ λ̃ η − c∗(a)


 .� (5.10)

For any sufficiently small η > 0 fixed independently of ε and λ̃ ∈ R1(δ) ∪ R2(δ,M), this ma-
trix is hyperbolic with two eigenvalues with positive real part and one with negative real part 
and a spectral gap with lower bound independent of λ̃ ∈ R1(δ) ∪ R2(δ,M). By continuity 
this also holds for Aη(ξ; λ̃, �, ε) for ξ ∈ I�, and since Aη(ξ; λ̃, �, ε) has slowly varying coef-
ficients on this interval (see [13, proposition 6.1]), as in the proof of [6, proposition 6.5], 
we can construct exponential dichotomies for (5.8) on I� with constants C,µ independent of 
λ̃ ∈ R1(δ) ∪ R2(δ,M) and all sufficiently small ε.

We proceed similarly along Ir, noting that here the matrix Aη(ξ; λ̃, �, ε) again has slowly 
varying coefficients but is now an O(ε) perturbation of the matrix
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Ar
η(ξ; λ̃, �, ε) =




η 0 0
0 η 1

−(1− bvd)vd m+ λ̃− (2− 3bvd)udvd η − c∗(a)




�

(5.11)

where (ud, vd) lies within O(ε) of the set {(u, v) = (u, v+(u)) : u ∈ [u∗(a), a]} where v+ is 
as in (2.3). On this set, we note that since m = (1− bv+(u))uv+(u), u  >  0 and v+(u) � 1

2b, 
we have that

m− (2− 3bv+(u))uv+(u) = (−1+ 2bv+(u))uv+(u) � 0.� (5.12)

Hence for δ > 0 sufficiently small Ar
η(ξ; λ̃, �, ε) is hyperbolic with two eigenvalues with posi-

tive real part and one with negative real part and a spectral gap with lower bound independent 
of λ̃ ∈ R1(δ) ∪ R2(δ,M). The existence of exponential dichotomies for Aη(ξ; λ̃, �, ε) on Ir then 
proceeds similarly to the case of I� above.� □ 

5.5. The region (λ̃(�), �) ∈ R1(δ)× [−LM , LM ]

The argument below is based on the analysis in [6] regarding the stability of traveling pulse 
solutions in the FitzHugh–Nagumo equation. The fundamental idea is to construct potential 
eigenfunctions as solutions to (4.37) using Lin’s method: the solutions are constructed along 
three separate intervals which form a partition of the real line and are matched at two loca-
tions corresponding to the two fast jumps in the layer problem; see figure 15. The resulting 
matching conditions give bifurcation equations which can be solved using the eigenvalue λ as 
a free parameter, and to leading order these conditions correspond to the Fredholm conditions 
(4.25) and (4.27).

5.5.1.  Reduced eigenvalue problems along fast jumps.  We consider the reduced eigenvalue 
problems

Ψ′ = Aj,η(ξ)Ψ, Aj,η(ξ) :=




η 0 0
0 η 1

−(1− bvj(ξ))vj(ξ)2 m− (2− 3bvj(ξ))ujvj(ξ) η − c∗(a)


 , j = †, �,

� (5.13)
obtained by considering (5.8) with ε = λ̃ = 0 and approximating φd by the fast front solutions 
φj, j = †, � , and we denote the corresponding evolutions by Tj(ξ, ξ̂) for j = †, �. In (5.13), vj(ξ) 
denotes the v-component of φj(ξ), and u† = u∗(a), u� = a. Hence, for ξ ∈ I† = [−Lε, Lε], 
(5.8) can be written as the perturbation

Ψ′ =
(
A†,η(ξ) + B†(ξ; λ̃, �, ε)

)
Ψ, B†(ξ; λ̃, �, ε) := Aη(ξ; λ̃, �, ε)− A†,η(ξ)

� (5.14)
and for ξ ∈ [−Lε,∞), (5.8) can be written as the perturbation

Ψ′ =
(
A�,η(ξ) + B�(ξ; λ̃, �, ε)

)
Ψ, B�(ξ; λ̃, �, ε) := Aη(ξ + Zε; λ̃, �, ε)− A�,η(ξ).� (5.15)

We note by theorem 5.1 (ii) and (iv) that the perturbation matrices B†,B� satisfy

‖B†(ξ; λ̃, �, ε)‖ � C(ε|log ε|+ |λ̃|), ξ ∈ [−Lε, Lε],

‖B�(ξ; λ̃, �, ε)‖ � C(ε|log ε|+ |λ̃|), ξ ∈ [−Lε,∞).
� (5.16)
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Next, we note that (5.13) has a lower triangular block structure and leaves the 
two-dimensional subspace {0} × C2 ⊂ C3 invariant, the dynamics on which are given by

ψ′ = Cj,η(ξ)ψ, Cj,η(ξ) :=
(

η 1
m− (2− 3bvj(ξ))ujvj(ξ) η − c∗(a)

)
, j = †, �.� (5.17)

The space of bounded solutions of (5.17) is one-dimensional and spanned by

ψj(ξ) := eηξφ′
j(ξ), j = †, �.� (5.18)

Likewise, the associated adjoint system

ψ′ = −Cj,η(ξ)
∗ψ, j = †, �,� (5.19)

has a one-dimensional space of bounded solutions spanned by

ψj,ad(ξ) :=
(

q′j(ξ)
−v′j(ξ)

)
e(c

∗(a)−η)ξ, j = †, �.� (5.20)

Note the similarities with (4.22) in the formal computation. The system (5.17) admits expo-
nential dichotomies on both half-lines, which can be extended to the full system (5.13) by 
exploiting the lower triangular block structure and using variation of constants formulae. This 
is the content of the following proposition.

Proposition 5.3.  There exist C,µ > 0 such that the following hold.

	 (i)	�The system (5.17) admits exponential dichotomies on R± with constants C,µ > 0, pro-

jections Πu,s
j,±(ξ), and corresponding (un)stable evolutions Su,sj,±(ξ, ξ̂), j = †, �. The projec-

tions can be chosen so that

R(Πs
j,+(0)) = Span(ψj(0)) = R(Πu

j,−(0)), R(Πu
j,+(0)) = Span(ψj,ad(0)) = R(Πs

j,−(0)), j = †, �.
� (5.21)

	(ii)	�The system (5.13) admits exponential dichotomies on R± with constants C,µ > 0, pro-

jections Qu,s
j,±(ξ), j = †, �, and (un)stable evolutions Tu,s

j,±(ξ, ξ̂). We have that

Qs
j,+(ξ) =

(
0 0

−
∫ ξ

0 e−η(ξ−ξ̂)Ssj,+(ξ, ξ̂)Fj(ξ̂)dξ̂ Πs
j,+(ξ)

)
= 1− Qu

j,+(ξ), ξ � 0,

Qs
j,−(ξ) =

(
0 0

−
∫ ξ

−∞ e−η(ξ−ξ̂)Ssj,−(ξ, ξ̂)Fj(ξ̂)dξ̂ Πs
j,−(ξ)

)
= 1− Qu

j,−(ξ), ξ � 0,

�

(5.22)

		 where Fj(ξ) :=
(
0,−(1− bvj(ξ))vj(ξ)2

)
T . Furthermore, the projections satisfy

R(Qu
j,+(0)) = Span(ωj,ad(0),Ψ0), R(Qs

j,+(0)) = Span(ωj(0)),

R(Qu
j,−(0)) = Span(ωj(0),Ψj,∞), R(Qs

j,−(0)) = Span(ωj,ad(0)),
� (5.23)

		 where

ωj(ξ) :=
(

0
ψj(ξ)

)
, ωj,ad(ξ) :=

(
0

ψj,ad(ξ)

)
, Ψ0 :=



1
0
0


 , Ψj,∞ := Qu

j,−(0)Ψ0, j = †, �,

� (5.24)
		 with ψj(ξ) and ψj,ad(ξ) defined in (5.18) and (5.20), respectively.
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Proof.  For (i), we refer to [6, proposition 6.6]. The exponential dichotomies in (ii) can be 
constructed from those in (i) using variation of constants formulae, by exploiting the block 
triangular structure in (5.13); see [6, corollary 6.7].� □ 

5.5.2.  Construction of eigenfunctions.  In this section, we use the exponential dichotomies 
from proposition 5.3, variation of constants formulae, and the estimates from theorem 5.1 to 
construct potential eigenfunctions. These eigenfunctions are constructed in three pieces along 
the intervals (−∞, 0], [0, Zε], [Zε,∞) (see figure 15), and then matched together at ξ = 0, Zε; 
the associated matching conditions can then be solved to find eigenvalues λ̃. We begin with 
the following proposition, which describes potential eigenfunctions along each of the three 
intervals.

Proposition 5.4.  Let Bj  be as in (5.14) and (5.15), and ωj,Ψ0,Ψj,∞ as in (5.24) for j = †, �. 
There exists δ, ε0,C, q > 0 such that for λ̃ ∈ R1(δ) and ε ∈ (0, ε0), the following hold.

	 (i)	�Any solution Ψ†,−(ξ, λ̃) to (5.8), which decays exponentially in backward time, satisfies

Ψ†,−(0, λ̃) = β†,−ω†(0) + ζ†,−Ψ†,∞ + β†,−

∫ 0

−Lε
Ts
†,−(0, ξ̂)B†(ξ̂; λ̃, �, ε)ω†(ξ̂)dξ̂ +H†,−(β†,−, ζ†,−),

� (5.25)

		 for some β†,−, ζ†,− ∈ C, where H†,− is a linear map satisfying

‖H†,−(β†,−, ζ†,−)‖ � C
(
(ε|log ε|+ |λ̃|)|ζ†,−|+ (ε|log ε|+ |λ̃|)2|β†,−|

)
.

M�
0 Mm

0 Mr
0

ξ = 0

v

0

q

ξ = Zε

u

Figure 15.  Shown is the geometric setup for the construction of potential eigenfunctions 
using Lin’s method. The solutions are constructed along the three intervals 
(−∞, 0], [0, Zε], [Zε,∞) and are then matched at ξ = 0 and ξ = Zε corresponding to 
the two fast jumps in the layer problem (2.2).
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	(ii)	�Any solution Ψsl(ξ, λ̃) to (5.8) which is bounded along the slow manifold Mr
ε satisfies

Ψsl(0, λ̃) = β†ω†(0) + β†

∫ 0

Lε
Tu
†,+(0, ξ̂)B†(ξ̂; λ̃, �, ε)ω†(ξ̂)dξ̂ +H†(β†,β�, ζ�),

�

(5.26)

Ψsl(Zε, λ̃) = β�ω�(0) + ζ�Ψ�,∞ + β�

∫ 0

−Lε
Ts
�,−(0, ξ̂)B�(ξ̂; λ̃, �, ε)ω�(ξ̂)dξ̂ +H�(β†,β�, ζ�),

� (5.27)
		 for some β†,β�, ζ� ∈ C, where H† and H� are linear maps satisfying

‖H†(β†,β�, ζ�)‖ � C
(
(ε|log ε|+ |λ̃|)2|β†|+ e−q/ε(|β�|+ |ζ�|)

)
,

‖H�(β†,β�, ζ�)‖ � C
(
(ε|log ε|+ |λ̃|)|ζ�|+ (ε|log ε|+ |λ̃|)2|β�|+ e−q/ε|β†|

)
.

	(iii)	�Any solution Ψ�,+(ξ, λ̃) to (5.8) which decays exponentially in forward time satisfies

Ψ�,+(Zε, λ̃) = β�,+ω�(0) + β�,+

∫ 0

∞
Tu
�,+(0, ξ̂)B�(ξ̂; λ̃, �, ε)ω�(ξ̂)dξ̂ +H�,+(β�,+),� (5.28)

		 for some β�,+ ∈ C, where H�,+ is a linear map satisfying

‖H�,+(β�,+)‖ � C(ε|log ε|+ |λ̃|)2|β�,+|.

Moreover, the functions Ψ†,−(ξ, λ̃), Ψsl(ξ, λ̃), and Ψ�,+(ξ, λ̃) are analytic in λ̃.

Proof.  Using the exponential dichotomies from propositions 5.2 and 5.3(ii), the proof is 
nearly identical to the proofs of propositions 6.8–6.10 in [6].� □ 

It remains to solve the matching conditions which arise when attempting to glue together 
the three solutions from proposition 5.4 (i)–(iii) at ξ = 0 and ξ = Zε, in order to construct an 
exponentially localized eigenfunction.

Theorem 5.5.  There exists δ, ε0 > 0 such that for ε ∈ (0, ε0) and |�| � LM, the eigenvalue 
problem (5.8) has precisely two eigenvalues λ̃0(�), λ̃c(�) ∈ R1(δ) given by

λ̃0(�) = O(|εlog ε|2), λ̃c(�) = −
Md

†,ε

Md
†,λ̃

ε+O
(
|εlog ε|2

)
,

where

Md
†,λ̃ :=

∫ ∞

−∞
v′†(ξ; a)

2ec
∗(a)ξ dξ > 0,� (5.29)

Md
†,ε :=

[
u∗(a)− a+ u∗(a)v+(u∗(a))2

] ∫ ∞

∞
(1− bv†(ξ))v†(ξ)2ec

∗(a)ξv′†(ξ) dξ > 0.� (5.30)

The derivatives of λ̃0(�) with respect to � satisfy the same estimates, and λ̃0(0) = λ̃′
0(0) = 0.

Proof.  We recall from proposition 5.4 that any exponentially localized solution must satisfy 
the conditions (5.25)–(5.28) at ξ = 0, Zε for some β†,−, ζ†,−,β†,β�, ζ�,β�,+ ∈ C. Therefore, 
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to obtain an exponentially localized solution to (5.8) we match the solutions Ψ†,−,Ψsl at ξ = 0 
and the solutions Ψsl,Ψ�,+ at ξ = Zε, which results in matching conditions which must be 
satisfied by λ̃ and ε which can be solved to find eigenfunctions. Since the projections Qu,s

j,+(0) 
associated with the exponential dichotomy of (5.13) established in proposition 5.3(ii) satisfy

Qu
j,+(0) + Qs

j,+(0) = I, j = †, �,

this is equivalent to ensuring that the differences Ψ†,−(0, λ̃)−Ψsl(0, λ̃) and 
Ψsl(Zε, λ̃)−Ψ�,+(Zε, λ̃) vanish under the projections Qu,s

†,+(0) and Qu,s
�,+(0), respectively.

We first note that we must have β† = β†,− and β� = β�,+. This can be seen by applying 
Qs

j,+(0), j = †, �, to the differences Ψ†,−(0, λ̃)−Ψsl(0, λ̃) and Ψsl(Zε, λ̃)−Ψ�,+(Zε, λ̃), re-
spectively, using the expressions (5.25)–(5.28).

We next recall the vectors ωj,ad(0) and Ψ0 defined in (5.24). By (5.23) the vectors Ψ0 and

Ψj,⊥ := ωj,ad(0)−

(∫ 0

−∞
eηξ 〈ψj,ad(ξ),Fj(ξ)〉 dξ

)
Ψ0, Fj(ξ) =

(
0

−(1− bvj(ξ))vj(ξ)2

)
, j = †, �,

span R(Qu
j,+(0)). Hence we aim to show that the inner products of the differences 

Ψ†,−(0, λ̃)−Ψsl(0, λ̃) and Ψsl(Zε, λ̃)−Ψ�,+(Zε, λ̃) with Ψ0 and Ψj,⊥ vanish for j = †, �, 
respectively. Using (5.25)–(5.28) we first project along along Ψ0, whereby

0 =
〈
Ψ0,Ψ†,−(0, λ̃)−Ψsl(0, λ̃)

〉
= ζ†,− +O

((
ε|log ε|+ |λ̃|

)
(|β†|+ |ζ†,−|) + e−q/ε(|β�|+ |ζ�|)

)
,

0 =
〈
Ψ0,Ψsl(Zε, λ̃)−Ψ�,+(Zε, λ̃)

〉
= ζ� +O

((
ε|log ε|+ |λ̃|

)
(|β�|+ |ζ�|) + e−q/ε|β†|

)
,� (5.31)

where we used theorem 5.1 (ii) and (iv), and (5.16). Provided |λ̃|, ε > 0 are sufficiently small, 
we can solve (5.31) for ζ†,− and ζ� to obtain

ζ†,− = O
(
(ε|log ε|+ |λ̃|)|β†|+ e−q/ε|β�|

)

ζ� = O
(
(ε|log ε|+ |λ̃|)|β�|+ e−q/ε|β†|

)
.

�

(5.32)

We substitute (5.32) into (5.25)–(5.28) and noting Ψj,⊥ ∈ Ker (Qu
j,−(0)

∗) =
R(Qs

j,−(0)
∗) ⊂ R(Qu

j,+(0)
∗) for j = †, �, we obtain the final conditions by projecting with 

Ψj,⊥, j = †, �, whereby

0 =
〈
Ψ†,⊥,Ψ†,−(0, λ̃)−Ψsl(0, λ̃)

〉

= β†

∫ Lε

−Lε

〈
T†(0, ξ)∗Ψ†,⊥,B†(ξ; λ̃, �, ε)ω†(ξ)

〉
dξ

︸ ︷︷ ︸
=:I†

+O
((

ε|log ε|+ |λ̃|
)2

|β†|+ e−q/ε|β�|
)
,

� (5.33)

0 =
〈
Ψ�,⊥,Ψsl(Zε, λ̃)−Ψ�,+(Zε, λ̃)

〉

= β�

∫ ∞

−Lε

〈
T�(0, ξ)∗Ψ�,⊥,B�(ξ; λ̃, �, ε)ω�(ξ)

〉
dξ

︸ ︷︷ ︸
=:I�

+O
((

ε|log ε|+ |λ̃|
)2

|β�|+ e−q/ε|β†|
)
,

� (5.34)

where we recall that Tj(ξ, ξ̂) denotes the evolution for the reduced system (5.13).
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To estimate the integrals Ij for j = †, � appearing in (5.33)–(5.34), we note that Tj(0, ξ)∗Ψj,⊥ 
is the solution to the adjoint equation

Ψ′ = −A∗
j,ηΨ� (5.35)

of (5.13) satisfying Ψ(0) = Ψj,⊥; hence we calculate

Tj(0, ξ)∗Ψj,⊥ =

(
−
∫ ξ

−∞

〈
ψj,ad(ξ̂),Fj(ξ̂)

〉
dξ̂

ψj,ad(ξ)

)
=



−
∫ ξ

−∞ e(c
∗(a)−η)ξ̂(1− bvj(ξ̂))vj(ξ̂)2v′j(ξ̂)dξ̂

e(c
∗(a)−η)ξq′j(ξ)

−e(c
∗(a)−η)ξv′j(ξ)


 ,

� (5.36)
for ξ ∈ R  and j = †, �. We now approximate Ij by first extracting the leading order λ̃ contrib
ution, whereby we obtain

I† =
∫ Lε

−Lε

〈
eηξT†(0, ξ)∗Ψ†,⊥,B†(ξ; 0, �, ε)φ′

d(ξ)
〉
dξ

︸ ︷︷ ︸
=:J†

−Md
†,λ̃λ̃+O

(
|εlog ε|(|λ̃|+ |εlog ε|)

)

� (5.37)

I� =

∫ ∞

−Lε

〈
eηξT�(0, ξ)∗Ψ�,⊥,B�(ξ; 0, �, ε)φ′

d(ξ + Zε)
〉
dξ

︸ ︷︷ ︸
=:J�

−Md
�,λ̃λ̃+O

(
|εlog ε|(|λ̃|+ |εlog ε|)

)
,

� (5.38)
where

Md
†,λ̃ :=

∫ ∞

−∞
ec

∗(a)ξ (v′†(ξ)
)2

dξ =

∫ Lε

−Lε
ec

∗(a)ξ (v′†(ξ)
)2

dξ +O(ε)� (5.39)

Md
�,λ̃ :=

∫ ∞

−∞
ec

∗(a)ξ (v′�(ξ))
2 dξ =

∫ ∞

−Lε
ec

∗(a)ξ (v′�(ξ))
2 dξ +O(ε),� (5.40)

where we used the fact that the integrands decay exponentially to estimate the tails of the 
integrals. Finally, in order to obtain the leading order ε contribution, it remains to estimate the 
integrals Jj for j = †, � which appear in the expressions (5.37)–(5.38). To do this, we note 
that the derivative Φ′

d(ξ) = (u′d(ξ), v
′
d(ξ), q

′
d(ξ))

T  of the pulse solution solves the linearized 
equations when � = 0, and therefore satisfies

Φ′′
d (ξ) = (A†,0(ξ) + B†(ξ; 0, 0, ε)) Φ′

d(ξ), ξ ∈ [−Lε, Lε]� (5.41)

and

Φ′′
d (ξ + Zε) = (A�,0(ξ) + B�(ξ; 0, 0, ε)) Φ′

d(ξ + Zε), ξ ∈ [−Lε,∞).� (5.42)

In particular, for ξ ∈ [−Lε, Lε], we obtain

B†(ξ; 0, �, ε)Φ′
d(ξ) = [∂ξ − A†,0(ξ) + B†(ξ; 0, �, ε)− B†(ξ; 0, 0, ε)] Φ′

d(ξ)

=




0

[∂ξ − C†,0(ξ)]

(
v′d(ξ)
q′d(ξ)

)

+




u′′d (ξ)− ε�2

1+εcd
u′d(ξ)

0
(1− bv†(ξ))v†(ξ)2u′d(ξ)




and similarly
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B�(ξ; 0, �, ε)Φ′
d(ξ + Zε) = [∂ξ − A�,0(ξ) + B�(ξ; 0, �, ε)− B�(ξ; 0, 0, ε)] Φ′

d(ξ + Zε)

=




0

[∂ξ − C�,0(ξ)]

(
v′d(ξ + Zε)
q′d(ξ + Zε)

)

+




u′′d (ξ + Zε)− ε�2

1+εcd
u′d(ξ + Zε)

0
(1− bv�(ξ))v�(ξ)2u′d(ξ + Zε)




for ξ ∈ [−Lε,∞). Using the fact that ψj,ad(ξ) solves (5.19), we have

[∂ξ − Cj,0(ξ)]
∗ (eηξψj,ad(ξ)

)
= 0, j = †, �,� (5.43)

and we therefore obtain

J† =

∫ Lε

−Lε

〈
eηξT†(0, ξ)∗Ψ†,⊥,




u′′d (ξ)− ε�2

1+εcd
u′d(ξ)

0
(1− bv†(ξ))v†(ξ)2u′d(ξ)



〉
dξ

= −
∫ Lε

−Lε

(
ec

∗(a)ξv′†(ξ)(1− bv†(ξ))v†(ξ)2u′d(ξ) + u′′d (ξ)
∫ ξ

−∞
ec

∗(a)ξ̂(1− bv†(ξ̂))v†(ξ̂)2v′†(ξ̂)dξ̂

)
dξ

+
ε�2

1+ εcd

∫ Lε

−Lε

(
u′d(ξ)

∫ ξ

−∞
ec

∗(a)ξ̂(1− bv†(ξ̂))v†(ξ̂)2v′†(ξ̂)dξ̂

)
dξ +O(ε2),

where we used the fact that the integrands decay exponentially. Integrating by parts, we have 
that

J† = −
∫ Lε

−Lε

d
dξ

(
u′d(ξ)

∫ ξ

−∞
ec

∗(a)ξ̂(1− bv†(ξ̂))v†(ξ̂)2v′†(ξ̂)dξ̂

)
dξ

+
ε�2

1+ εcd

[
ud(ξ)

∫ ξ

−∞
ec

∗(a)ξ̂(1− bv†(ξ̂))v†(ξ̂)2v′†(ξ̂)dξ̂

]Lε

−Lε

− ε�2

1+ εcd

∫ Lε

−Lε
ud(ξ)ec

∗(a)ξ(1− bv†(ξ))v†(ξ)2v′†(ξ)dξ +O(ε2)

= −u′d(Lε)
∫ Lε

−∞
ec

∗(a)ξ(1− bv†(ξ))v†(ξ)2v′†(ξ)dξ +O(ε2|log ε|)

= −ε
[
u∗(a)− a+ u∗(a)v+(u∗(a))2

] ∫ ∞

−∞
ec

∗(a)ξ(1− bv†(ξ))v†(ξ)2v′†(ξ)dξ +O(ε2|log ε|),

where we again used the fact that the integrands decay exponentially, and we estimated 
ud(ξ) = u∗(a) +O(ε log ε) for ξ ∈ [−Lε, Lε] and

u′d(Lε) = ε
[
ud(Lε)− a+ ud(Lε)v′d(Lε)

2]

= ε
[
u∗(a)− a+ u∗(a)v+(u∗(a))2 +O(|εlog ε|)

]
,

using theorem 5.1. Hence we have that

J† = −Md
†,εε+O(ε2|log ε|),� (5.44)

where

Md
†,ε :=

[
u∗(a)− a+ u∗(a)v+(u∗(a))2

] ∫ ∞

−∞
ec

∗(a)ξ(1− bv†(ξ))v†(ξ)2v′†(ξ)dξ > 0.� (5.45)
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Performing a similar computation for J�, we arrive at

J� = − lim
ξ→∞

u′d(Zε + ξ)

∫ ∞

−∞
ec

∗(a)ξ(1− bv†(ξ))v†(ξ)2v′†(ξ)dξ +O(ε2) = O(ε2),� (5.46)

due to the fact that u′d(Zε + ξ) → 0 as ξ → ∞.
Substituting the expressions for Ij,Jj, j = †, �, into the remaining conditions (5.33)–(5.34), 

we find the following linear system of equations for (β†,β�), solutions of which correspond 
to eigenfunctions of (5.8):

M(λ̃, ε)
(
β†
β�

)
= 0,� (5.47)

where

M(λ̃, ε) :=


−λ̃Md

†,λ̃ −Md
†,εε+O

(
(ε|log ε|+ |λ̃|)2

)
O(e−q/ε)

O(e−q/ε) −λ̃Md
�,λ̃ +O

(
(ε|log ε|+ |λ̃|)2

)

 .

�
(5.48)

Since the solutions Ψ†,−,Ψsl,Ψ�,+ from proposition 5.4 and the matrices Bj  are analytic in λ̃, 
all entries in the matrix M(λ̃, ε) (5.48), and furthermore its determinant D(λ̃, ε), are analytic 
in λ̃. Note that the quantities Md

†,ε and Md
j,λ̃
, j = †, � are nonzero and independent of λ̃, ε. 

Hence, provided δ, ε > 0 are sufficiently small, we have

|D(λ̃, ε)− λ̃Md
�,λ̃(λ̃M

d
†,λ̃ + εMd

†,ε)| < |λ̃Md
�,λ̃(λ̃M

d
†,λ̃ + εMd

†,ε)|.

for λ̃ ∈ ∂R1(δ) = {λ̃ ∈ C : |λ̃| = δ}, and by Rouché’s theorem D(λ̃, ε) has precisely two 
roots λ̃0, λ̃1 in R1(δ) which are O(|εlog ε|2)-close to the roots

λ̃ = 0, λ̃ = −
Md

†,ε

Md
†,λ̃

ε

of λ̃Md
�,λ̃(λ̃M

d
†,λ̃ + εMd

†,ε). We deduce that (5.8) has two real eigenvalues in the region R1(δ) 

given by

λ̃0(�) = O(|εlog ε|2), λ̃c(�) = −
Md

†,ε

Md
†,λ̃

ε+O(|εlog ε|2),

and by implicitly differentiating the characteristic equation of (5.48), we furthermore obtain 
that the derivatives of λ̃0(�) with respect to � satisfy the same estimates. We note that the 
derivative Φ′

d of the pulse solution is an eigenfunction with eigenvalue 0 when � = 0 due to 
translation invariance, hence λ0(0) = 0. Furthermore, since (5.48) depends on � only via the 
quantity �2, we obtain that λ̃′

0(0) = 0.� □ 

5.6. The region (λ̃(�), �) ∈ R2(δ,M)× [−LM , LM ]

We now consider the final remaining region, λ̃(�) ∈ R2(δ,M) for |�| bounded. The funda-
mental idea is the same as for the region R1(δ); using exponential dichotomies along the fast 
jumps and the slow manifolds, we attempt to construct potential eigenfunctions. However, 
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in this region it is possible to construct exponential dichotomies along each of the intervals 
I�, I†, Ir, I�, and by comparing their projections at the endpoints of these intervals we obtain 
estimates which preclude the existence of a nontrivial exponentially localized eigenfunction. 
We note that the exponential dichotomies along Ir and I� are guaranteed by proposition 5.2. 
The existence of exponential dichotomies along I† and I� is due to the fact that the associated 
reduced problems along each of the fast jumps admit no eigenvalues for λ̃(�) ∈ R2(δ,M).

To see this, proceeding in a similar fashion as in section 5.5, we consider the following 
reduced problems along I† and I� obtained for ε = 0 and λ̃ ∈ R2(δ,M).

ψξ = Aj,η(ξ; λ̃)ψ, Aj,η(ξ; λ̃) :=




η 0 0
0 η 1

−(1− bvj(ξ))vj(ξ)2 m+ λ̃− (2− 3bvj(ξ))ujvj(ξ) η − c∗(a)


 .

� (5.49)
Here j = †, �, where again vj(ξ) denotes the v-component of φj(ξ), and u† = u∗(a), u� = a. 
As in section 5.5, the lower triangular structure allows us to restrict to a two-dimensional 
invariant subspace with dynamics

ψ′ = Cj,η(ξ; λ̃)ψ, Cj,η(ξ; λ̃) :=
(

η 1
m+ λ̃− (2− 3bvj(ξ))ujvj(ξ) η − c∗(a)

)
, j = †, �.

� (5.50)
We note that the front profiles v†(ξ) and v�(ξ) are solutions to the scalar equations

vt = vξξ + c∗(a)vξ − mv+ (1− bv)ujv2, j = †, �,

and critically, the linear system (5.50) is precisely the (weighted) eigenvalue problem one obtains 
by considering their stability with eigenvalue parameter λ̃. Since the derivatives v′j(ξ), j = †, � 
define exponentially localized eigenfunctions with no zeros when λ̃ = 0, Sturm–Liouville the-
ory precludes the existence of eigenvalues in R2(δ,M), provided δ is sufficiently small. Thus 
(5.50) admits exponential dichotomies, which can be extended to the full system (5.49) using 
variation of constants formulae. Finally, these exponential dichotomies can be extended to the 
stability problem (5.8) on the intervals I† and I� using roughness results.

Once exponential dichotomies are established along each of the intervals I�, I†, Ir, I�, it remains 
to compare their projections at the endpoints of each interval. Using the estimates in theorem 5.1 
combined with repeated use of a technical lemma [30, lemma 6.10], it is possible to show that each 
pair of projections is sufficiently close at each endpoint, and further that any exponentially local-
ized solution to (5.8) must be trivial. This is summarized in the following proposition.

Proposition 5.6.  Fix M  >  0. There exists δ > 0 such that for each sufficiently small ε > 0 
and each λ̃ ∈ R2(δ,M), the eigenvalue problem (5.8) admits no nontrivial exponentially local-
ized solutions.

The proof of proposition 5.6 follows the argument as outlined above, and is similar to the 
proof of [6, proposition 6.20]. For completeness, we include this in appendix B.

5.7.  Proof of theorem 4.3

Proof of theorem 4.3.  This is a direct consequence of the analysis in sections 4.1, 5.2 
and 5.3, in combination with theorem 5.5 and proposition 5.6. The fact that the translational 
eigenvalue λ̃0(0) = 0 is simple follows from a similar argument as in [6, proposition 6.14].
� □ 
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6.  Defects and curved vegetation pattern solutions

In this section we consider (1.2) with a small diffusion term added to the water component.
{
ut = D∆u+ 1

εux + a− u− G(u, v)v,
vt = ∆v− mv+ R(v)G(u, v)v,

� (6.1)

where D � 1. The reason for this is mainly technical, in order to draw on results concerning 
planar interface propagation in parabolic equations. However, to accurately describe water 
movement on flat terrains a diffusion term is necessary [54]—see also the upcoming discus-
sion in section 8.

The results of theorems 2.8–2.11 and theorems 4.2–4.4 concern the existence and stability 
of straight stripe, gap, and front solutions; that is, the traveling patterns are constant in the 
direction transverse to the slope and are essentially one-dimensional patterns. We reiterate that 
these patterns are, however, stable to perturbations in two spatial dimensions.

We now consider the system (6.1) for which, by a perturbation argument, the results of 
theorems 2.8–2.11, and furthermore the results of theorems 4.2–4.4, are expected to hold 
for sufficiently small D  >  0. Within this system, we are able to call on general results on 
the existence and stability of corner defects in planar wave propagation [27, 28]. In essence, 
considering a straight vegetation stripe, gap, or front solution satisfying certain hypotheses 
(see below), for nearby wave speeds there exist stripe solutions at slightly offset angles. Two 
oppositely angled such stripes can meet at a corner defect, forming a ‘curved’ stripe solu-
tion, which can be oriented convex upslope (exterior corner) or downslope (interior corner). 
Further, some of these solutions can be shown to be stable. In particular, we will argue using 
the results of [27, 28] that nearby vegetation stripe, gap, or front solutions of (6.1), there exist 
stable interior corner defects, and in the case of certain front solutions, there exist stable exte-
rior corner defects.

Consider a traveling wave solution (u, v)(x, y, t) = (us, vs)(ξ) of (6.1) with speed c  =  cs, 
and ξ = x− ct . An almost planar interface σ-close to (us, vs)(ξ) with speed c is a solution of 
the form

(u, v)(x, y, t) = (us, vs)(ξ + h(y)) + (ũ, ṽ)(ξ, y),� (6.2)

where h ∈ C2(R) and

sup
y∈R

|h′(y)| < σ, sup
y∈R

‖(ũ, ṽ)(·, y)‖H1(R,R2) < σ, |c− cs| < σ.� (6.3)

This solution is a planar interface if h′′ = 0 and a corner defect if h′′ �≡ 0, and h′(y) → η± as 
y → ∞. A corner defect can be classified depending on the asymptotic orientations η± as an 
(i) interior corner (η+ < η−), (ii) exterior corner (η− < η+), (iii) step (η+ = η− �= 0), or (iv) 
hole (η+ = η− = 0).

Depending on the original traveling wave solution (us, vs)(ξ), it may be possible to deter-
mine which type(s) of defects can arise. As stated above, a corner defect is essentially com-
posed of slightly angled stripe solutions meeting along an interface. An angled stripe solution 
can be written as a traveling wave

(u, v)(x, y, t) = (u, v)(ξ), ξ = x cosϕ+ y sinϕ− ct� (6.4)

where the case ϕ = 0 corresponds to a solution which is constant in the direction transverse 
to the slope as before. Substituting this ansatz into (6.1) results in the traveling wave ODE
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{
−cuξ = Duξξ + cosϕ

ε uξ + a− u− G(u, v)v,
−cvξ = vξξ − mv+ R(v)G(u, v)v.� (6.5)

By setting ε̃ = ε/ cosϕ, we see that (6.5) is the same traveling wave equation one obtains in 
the case of ϕ = 0, except with ε replaced by ε̃. For small values of ϕ, we have that

ε̃ = ε(1+O(ϕ2))� (6.6)

and (6.5) can therefore be solved to find an angled traveling wave solution when

c = c(ϕ) = cs +O(εϕ2).� (6.7)

The quantity c(ϕ) is called the nonlinear dispersion relation and relates the speed of propaga-
tion and angle of the traveling wave solution. A related quantity

d(ϕ) :=
c(ϕ)
cos(ϕ)

� (6.8)

called the directional dispersion, or flux, relates the angle to the speed of propagation in the 
direction of the original traveling wave (us, vs), i.e. the x-direction. The flux near ϕ = 0 is said 
to be convex if d′′ > 0, concave if d′′ < 0, and flat if d′′ ≡ 0 for small |ϕ|. In [27], the authors 
related the convexity of the flux to the type of corner defect which is selected: in particular 
when d is convex, there exist interior corner defects for nearby speeds c  >  cs, while for d con-
cave there exist exterior corner defects for speeds c  <  cs.

In the case of (6.5), the directional dispersion is computed as

d(ϕ) := cs

(
1+

ϕ2

2

)
+O

(
εϕ2,ϕ4) ,� (6.9)

from which we find that

d′′(ϕ) := cs +O
(
ε,ϕ2) ,� (6.10)

that is, to leading order the convexity is determined by the speed of propagation of the origi-
nal traveling wave (us, vs). In particular, for sufficiently small ε, the directional dispersion is 
convex for cs  >  0 and concave for cs  <  0. Hence in the setting of theorems 2.8, 2.9, or 2.10, 
one expects to see nearby interior corner solutions, but not exterior corner solutions. That is, 
the resulting curved vegetation stripe, gap, or front is oriented convex downslope. However, in 
the setting of theorem 2.11, the convexity depends on the value of a/m as the speed cs can be 
negative if a is large enough. In particular, one expects interior corner solutions if am < 9b

2 + 2
b, 

but exterior corners (oriented convex upslope) if am > 9b
2 + 2

b.

7.  Numerics

In this section we present numerical results related to theorems 2.8–2.11 and theorems 4.2–4.4 
regarding the existence and stability of front, stripe, and gap pattern solutions of (1.2) . In 
particular, we discuss the results of numerical continuation of stripe and gap traveling wave 
solutions, and direct numerical simulation of planar stripe, gap, and front solutions, as well as 
corner defect solutions as discussed in section 6.
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7.1.  Continuation of traveling stripes and gaps

Theorems 2.8 and 2.9 predict the existence of traveling stripe and gap solutions to (1.2) which 
solve the traveling wave ODE (1.7). These solutions were constructed as perturbations of 
singular homoclinic orbits, organized by the singular bifurcations diagrams in figures 8(a) 
and (b), corresponding to the cases of b  <  2/3 and b  >  2/3, respectively. Figure 16 depicts the 
results of numerical continuation of speed c versus a for traveling stripes and gaps, conducted 
in AUTO for the parameter values ε = 3 · 10−4, m  =  0.5, and values of b = 0.6, 0.7 on either 
side of the critical value b  =  2/3. The continuation curves corresponding to vegetation stripe 
solutions are depicted in green, while those corresponding to gap solutions are in purple, with 
the relevant singular bifurcation curves depicted as dashed lines.

We note that the upper branches of the bifurcation curves for both stripes and gaps continue 
towards c  =  0 and eventually turn back onto lower branches which persist for a range of a values 
and small speeds c � 1. These waves arise as perturbations of a family of fast planar homoclinic 
orbits, as discussed in remark 2.4, and we expect they are unstable (even to 1D perturbations) as 
traveling wave solutions of (1.2). Interestingly, the lower branch of stripe solutions continues for 
increasing a, while the lower branch of gap solutions eventually turns back near the canard value 
a
m = 4b+ 1/b due to interaction of the equilibrium p+(u2) with the fold point F .

Remark 7.1.  We also remark that in the case of b  <  2/3, depicted in the left panel of  
figure 16, that the upper branch of gap solutions also approaches the canard point. Here this 
branch transitions into a ‘double-gap’ solution, resembling two copies of the primary homo-
clinic orbit. This transition is similar to canard transitions observed in systems such as the 
FitzHugh–Nagumo equation [10, 11, 26], albeit with a somewhat different mechanism due to 
the presence of the additional equilibrium p 0(a).

We also depict the results of continuation of both stripe and gap solutions for fixed values 
of rainfall a  =  1.2 (stripes) and a  =  2 (gaps), with m = 0.45, b = 0.5, and ε = 0.01. As dis-
cussed in section 2.4.4, it is expected that nearby the single traveling stripe or gap solutions 
are periodic wave train solutions corresponding to repeating vegetation patterns which exist 
for a range of wave speeds, and that these patterns can similarly be constructed by perturbing 
from singular periodic orbits in the traveling wave equation (1.7). We verify this prediction by 
numerically continuing the stripe (and gap) solutions as periodic orbits for decreasing period, 
the results of which are depicted in figure 17. We observe that in general the wave speed c 

decreases as the period T decreases, as do the total biomass B :=
∫ T
0 v dx  and the maximum 

value of v over one period, denoted by vmax. Lastly the results of continuation of periodic 
orbits in (a, k)-space for fixed wave speeds c = {0.15, 0.2, 0.25, 0.3, 0.35} are depicted in fig-
ure 18; here k denotes the wavenumber of the corresponding pattern.

These numerical results align with previous work on (similar) ecosystem models; simi-
lar trends are found in, for instance, studies on the Klausmeier vegetation model [49], on 
extended Klausmeier models [2, 3, 51], on the Klausmeier–Gray–Scott model [48] and the 
Rietkerk model [14]. Moreover, measurements on the speed of migrating vegetation patterns, 
indeed, show vegetation patterns with higher wavelength move faster [3, 15]. Finally, recent 
in situ measurement on the above ground biomass in the Horn of Africa corroborate displayed 
trends in biomass [3].

7.2.  Direct simulations

In this section we present direct numerical simulations of the various traveling wave solutions 
predicted by theorems 2.8–2.11. To that end, we have spatially discretized the PDE (1.2) with 

R Bastiaansen et alNonlinearity 32 (2019) 2759



2806

a uniformly spaced grid in both x and y  directions, which was integrated using a Runge–
Kutta solver. In all simulations, the initial conditions were constructed using the approximate 
expressions derived in the previous sections of this article.

First, we have tested the existence and 2D stability of straight (i.e. non-curved) patterns. 
The results for b  =  0.5  <  2/3 are given in figure 19 and for b  =  0.75  >  2/3 in figure 20. In 
both cases, all solutions from theorems 2.8–2.11 could be obtained easily and were (2D) sta-
ble in our simulations (and in fact all seem to have a quite large domain of attraction).

Moreover, we numerically inspected corner solutions as described in section  6. Again, 
numerical simulations corroborate theoretical predictions—see figure  21. In fact, we were 
able to find corner-type solutions for each front or pulse in theorems 2.8–2.11. When the speed 
of the straight pattern is positive, i.e. cs  >  0, it is possible to find curved patterns which are 
oriented convex downslope (interior defect) and when cs  <  0 the curved pattern is oriented 
convex upslope (exterior defect); recall that upslope corresponds to the direction of increasing 
x. This matches the prediction given by the directional dispersion, as outlined in section 6.

8.  Discussion

In this paper we constructed planar traveling stripes, gaps and front-type solutions to the mod-
ified Klausmeier model (1.2). We proved their existence rigorously using geometric singular 
perturbation methods for a wide range of system parameters a, b,m in the large advection limit 
ε → 0. We showed that vegetation stripes exist for smaller a/m values, while vegetation gap 
patterns and front solutions can be found for larger values of a/m. For the largest a/m values, 
stripes and gaps no longer persist, and we find only front-type solutions that correspond to 
invading vegetation. Contrary to the typical pulse patterns constructed in similar dryland mod-
els [2, 48], the stripes and gaps found in (1.2) are not thin, but have sizable widths—aligning 
better with observations of real dryland ecosystems [16, 22, 42, 55].

Furthermore, we showed that all such solutions are 2D spectrally stable, using exponential 
dichotomies and Lin’s method, based on similar stability analysis of traveling pulse solutions 
to the FitzHugh–Nagumo equations in [6]. We note that, to our knowledge, there are currently 
no direct results which guarantee nonlinear stability based on spectral stability of traveling 
wave solutions to (1.2). Multidimensional nonlinear stability of traveling wave solutions in 
reaction–diffusion systems, however, has been studied previously [33]. By adding a small dif-
fusion term, as in (6.1), we obtain a system which fits into the framework of planar interface 
propagation studied in [27, 28]. We expect our results still hold for (6.1) using a perturbation 
argument, provided D � ε � 1. Further, results relating spectral and nonlinear stability have 
been found to hold in mixed parabolic-hyperbolic equations such as (1.2) for perturbations in 
one spatial dimension [45], and we expect that similar results may hold in higher dimensions.

As far as we are aware, ours is the first construction of 2D linearly stable traveling stripes 
in a reaction–diffusion–advection model of vegetation pattern formation. Typically in this 
class of models, one finds that stripe solutions are stable in 1D, but destabilize for some range 
of (small) wavenumbers in 2D [17, 38, 48, 50]. We attribute this phenomenon to the stabiliz-
ing effect of the large advection term, as well as the destabilizing effect of water diffusion. 
By ignoring the diffusion of water and allowing the advection to dominate, the lateral com-
petition for water resources is diminished, and 2D stability can essentially be reduced to 1D 
stability. This is reflected in our stability analysis in which the critical part of the 2D spectrum 
is bounded to the left of the 1D spectrum: in order to compute the 2D spectrum, a Fourier 
decomposition in the transverse variable y  results in a family of 1D eigenvalue problems 
parameterized by the transverse wavenumber �. These eigenvalue problems can then be solved 
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using the methods of [6], and we find that eigenvalues occurring for � �= 0 can be bounded to 
the left of those occurring for � = 0, corresponding to the 1D spectrum. In fact we find that 
the correspondence is approximately λ → λ− �2.
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Figure 16.  Shown are numerically computed bifurcation diagrams of vegetation stripes 
(green curves) and gaps (purple curves) for the parameter values m = 0.5, ε = 0.0003, 
and b  =  0.6 (left panel), b  =  0.74 (right panel). The solutions were obtained via parameter 
continuation in AUTO for the traveling wave equation  (1.7). Also plotted in dashed 
black are the curves c  =  c*(a) and c = ĉ(a). The vertical dashed curve denotes the 
location of ā in each panel.

Figure 17.  Results of numerical continuation of periodic stripe ((a)–(c)) and gap 
((d)–(f)) pattern solutions for decreasing wavelength for the parameter values 
m = 0.45, b = 0.5, ε = 0.01 and a  =  1.2 (stripes), a  =  2 (gaps). Shown are plots of 

speed c of the pattern versus period T (left panels), biomass B :=
∫ T
0 v dx  versus period 

T (middle panels), and vmax versus the period T, where vmax denotes the maximum of v 
over one period (right panels).
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An important question is how and why the addition of water diffusion and reduction in the 
magnitude of the advection term results in instabilities in the resulting patterns. This matches 
intuition, as water diffusion allows for lateral competition for water resources, which—if suf-
ficiently large—could manifest in lateral instabilities. From the mathematical point of view, 
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Figure 18.  Results of numerical continuation of periodic stripe/gap patterns for 
spatial wavenumber k versus a for fixed b = 0.5,m = 0.45, ε = 0.01 and wave speeds 
c = {0.15, 0.2, 0.25, 0.3, 0.35}.

Figure 19.  Results of direct numerical simulation of the PDE (1.2) for b  =  0.5, 
m  =  0.45, ε = 0.01 and a  =  1.2 ((a), (f)), a  =  2.0 ((b)–(d), (g)–(i)) or a  =  3.0 ((e), 
(j)). Figures (a)–(e) show the evolution of a cross section of v, i.e. for constant y  and 
figures (f)–(j) show the v(x, y) pattern at a specific time. Simulations are run on a finite 
grid of size Lx  =  200, Ly   =  100, accompanied with Neumann boundary conditions 
for the y -direction and either periodic ((a)–(b), (f)–(g)) or Neumann ((c)–(e), (h)–(j)) 
boundary conditions in the x-direction. (a) Stripe. (b) Gap. (c) Vegetation front. (d) 
Desert front. (e) Desert front. (f) Stripe. (g) Gap. (h) Vegetation front. (i) Desert front. 
(j) Desert front.
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Figure 20.  Results of direct numerical simulation of the PDE (1.2) for b  =  0.75, 
m  =  0.45, ε = 0.01 and a  =  1.75 ((a), (f)), a  =  2.4 ((b), (g)), a  =  2.5 ((c)–(d), (h)–(i)) 
or a  =  3.0 ((e), (j)). Figures (a)–(e) show the evolution of a cross section of v, i.e. for 
constant y  and figures f–j show the v(x, y) pattern at a specific time. Simulations are 
run on a finite grid of size Lx  =  200, Ly   =  100, accompanied with Neumann boundary 
conditions for the y -direction and either periodic ((a)–(b), (f)–(g)) or Neumann ((c)–(e), 
(h)–(j)) boundary conditions in the x-direction. (a) Stripe. (b) Gap. (c) Vegetation front. 
(d) Desert front. (e) Desert front. (f) Stripe. (g) Gap. (h) Vegetation front. (i) Desert 
front. (j) Desert front.

Figure 21.  v(x, y) configuration of corner solutions in direct numerical simulations of 
the PDE (1.2) for m  =  0.45, ε = 0.01, b  =  0.5 ((a)–(e)) or b  =  0.75 ((f)–(j)) and various 
a-values. Simulations are done on a finite grid of various sizes, accompanied with either 
periodic boundary conditions ((a)–(b), (f)–(g)) or Neumann boundary conditions ((c)–
(e), (h)–(j)) in the x-direction and the boundary conditions vy(x, Ly)− αvx(x, Ly) = 0 
and vy(x, 0) + αvx(x, 0) = 0 in the y -direction to accommodate corner solutions, with 
α = −1 ((a)–(d), (f), (h)–(i)), α = −0.5 (g) α = +1 (e, j). (a) Stripe. (b) Gap. (c) 
Vegetation front. (d) Desert front. (e) Desert front. (f) Stripe. (g) Gap. (h) Vegetation 
front. (i) Desert front. (j) Desert front.
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the onset of these instabilities is not well understood, though we note that one indeed finds 
lateral instabilities, both numerically and analytically, in similar models where both advec-
tion and diffusion are present [17, 38, 48, 50]. A natural direction for future research lies in 
understanding this transition, and in particular the precise relation between the water diffusion 
and advection which determines the boundary for stability. This is likely to be challenging, 
given that the singular geometries in the advection-dominant case (as in this paper) versus 
the diffusion-dominant case are wholly distinct. The traveling wave solutions constructed in 
this work are all based off of singular fast front-type jumps between one-dimensional slow 
manifolds, much like one finds in the classic FitzHugh–Nagumo equation. However, typically 
in the diffusion-dominant regime traveling stripe solutions are constructed as perturbations of 
fast homoclinic orbits which depart and return to the same two-dimensional slow manifold 
in a four-dimensional singularly perturbed traveling wave equation [18, 48]. Hence, even the 
existence of stripe solutions in an intermediate regime is far from clear, as one must under-
stand how the transition between these two geometries occurs.

Also novel to our results are the implications for the appearance of curved solutions, 
even in the absence of terrain curvature. These arise as corner defect solutions [27, 28], 
which resemble two angled planar traveling wave solutions which meet along an interface. 
We find that the speed of the straight planar traveling wave predicts whether the associ-
ated corner solutions are oriented convex upslope or downslope. In particular, since all 
of the traveling stripe and gap solutions we constructed travel in the uphill direction, the 
corresponding curved stripes and gaps are oriented convex downslope. The planar front 
solutions, however, can be oriented either convex downslope or upslope depending on 
parameters. An interesting direction for future research lies in determining the effect of 
alternative topographies, in particular topographies which can be viewed as perturba-
tions of constantly sloped terrain, which we expect can be studied using similar methods. 
A natural question is whether such topographies can destabilize stripe patterns or affect 
the curvature of these patterns. There are several numerical and observational results in 
this direction [22], but little is known analytically. A first analytical step towards this can 
be found in [1], in which the impact of non-trivial topographies on 1D stripe patterns is 
studied.

Finally, we remark on the implications of our results for Klausmeier’s original equa-
tion [35], which corresponds to infinite carrying capacity, or setting b  =  0 in (1.2). As dis-
cussed in section 2.1 (see remark 2.12), the limit b → 0 is highly singular, and our results 
no longer hold in this regime. Existence of traveling stripes in this case has been obtained 
in [7] using geometric singular perturbation theory and blow-up methods to account for 
passage near a nonhyperbolic slow manifold. Pulse solutions in that setting consist of por-
tions of two slow manifolds, along with a single fast jump. Stability, however, is not known; 
this is due to the fact that several rescalings and coordinate transformations are required to 
recover a slow-fast structure in the corresponding traveling wave equation. The result is that 
the associated reduced eigenvalue problem across the fast jump can no longer be interpreted 
in terms of the simpler scalar problem for the corresponding front as in section 5.6, which 
precludes the application of Sturm–Liouville theory. However, we expect stability to con-
tinue to hold in this regime. In particular, the existence of a single fast jump should result 
in one matching condition, and hence a single critical eigenvalue λ = 0 due to translation 
invariance. This intuition supported by the fact that the second critical eigenvalue λ̃c of 
theorem 5.5 satisfies λ̃c → −∞, when naively taking the limit b → 0 for fixed ε. Rigorous 
verification of the stability of traveling stripes in the Klausmeier equation is the subject of 
ongoing work.
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Appendix A.  Stability of steady states

To understand the stability of steady states, (1.4) and (1.5), against homogeneous perturbations, 
we linearize (1.2) around the steady states by setting (U,V)(x, t) = (U∗,V∗) + eλt(Ū, V̄), 
where (U∗,V∗) is the steady state solution. For the desert-state (U0,V0) = (a, 0) this gives 
the linearized system

λ

(
Ū
V̄

)
=

(
−1 0
0 −m

)(
Ū
V̄

)
.

Thus the corresponding eigenvalues are λ = −1 < 0 and λ = −m < 0. Both eigenvalues are 
negative and thus the desert-state (U0,V0) = (a, 0) is stable against homogeneous perturba-
tions for all parameter values.

Linearization around the other steady states (U1,2,V1,2) yields the eigenvalue problem

λ

(
Ū
V̄

)
= M

(
Ū
V̄

)
; M :=

(
−1− V2

1,2 −2U1,2V1,2

(1− bV1,2)V2
1,2 −m+ (2− 3bV1,2)U1,2V1,2

)
.

�

(A.1)

The determinant of the matrix on the right-hand side can be computed as

detM =
−1+ 2bV1,2 + V2

1,2

1− bV1,2
m.

From this, it can be found that the determinant is negative when V1,2 < −b+
√
1+ b2 and posi-

tive when V1,2 > −b+
√
1+ b2. Using (1.5), one can readily obtain that V1 < −b+

√
1+ b2  

and V2 > −b+
√
1+ b2 . Hence the uniform steady state (U1,V1) necessarily has a positive 

eigenvalue and therefore this steady state is unstable. To determine the stability for (U2,V2) 
we need to determine the trace of the matrix M. Straightforward computation using the expres-
sions (1.5) yields:

Tr M = −1− V2
2 + m

1− 2bV1,2

1− bV2
,

which we note is always negative if V2 >
1
2b, corresponding to the condition am > 4b+ 1

b, and 
hence the state (U2,V2) is stable to homogeneous perturbations in this regime.

Appendix B.  Absence of point spectrum in R2(δ,M)

In this section, we complete the proof of proposition 5.6, and show that the region R2(δ,M) 
contains no eigenvalues λ̃ of (5.8).

Proof of proposition 5.6.  Following the argument outlined in section 5.6, we note that 
eηξφ′

j(ξ) is an exponentially localized solution to (5.50) at λ̃ = 0, which admits no zeros. There-
fore, by Sturm–Liouville theory [34, theorem 2.3.3], (5.50) admits no bounded solutions for 
λ̃ ∈ R2(δ,M). Thus, for λ̃ ∈ R2(δ,M) (5.50) admits an exponential dichotomy on R with con-
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stants C,µ > 0 independent of λ̃ ∈ R2(δ,M). Exploiting the lower triangular structure of sys-

tem (5.49) the exponential dichotomy of (5.50) can be extended to the system (5.49) using vari-

ation of constants formulae. We denote the corresponding projections by Qu,s
j (ξ; λ̃) for j = †, �.

We now consider the eigenvalue problem (5.8) as a perturbation of (5.13). By theorem 5.1, 
we have that

|Aη(ξ; λ̃, �, ε)− A†,η(ξ; λ̃)| = O(ε|log ε|), ξ ∈ [−Lε, Lε],

|Aη(Zε + ξ; λ̃, �, ε)− A�,η(ξ, λ̃)| = O(ε|log ε|), ξ ∈ [−Lε,∞).
� (B.1)

Denote by Pu,s
j,±(λ̃) the spectral projection onto the (un)stable eigenspace of the asymptotic 

matrices A±∞
j,η (λ̃) = limξ→±∞ Aj,η(ξ; λ̃) of (5.13). We note that Aj,η(ξ; λ̃) converges at an ex-

ponential rate to the asymptotic matrix A∞
j,η(λ̃) as ξ → ∞. Hence, the projections Qu,s

j (±ξ, λ̃) 
satisfy

‖Qu,s
j (±ξ, λ̃)− Pu,s

j,±(λ̃)‖ � Ce−µ̃ξ, j = †, �,� (B.2)

for ξ � 0 for some µ̃ > 0 (see for instance [40, lemma 3.4]). Using (B.1) and roughness [12, 
theorem 2], we obtain exponential dichotomies for (5.8) on I† and I� with constants C, µ2 > 0 
independent of λ̃ ∈ R2(δ,M) and projections Qu,s

j (ξ; λ̃, ε), which satisfy

‖Qu,s
† (ξ; λ̃, ε)− Qu,s

† (ξ, λ̃)‖ � Cε|log ε|,

‖Qu,s
� (Zε + ξ; λ̃, ε)− Qu,s

� (ξ, λ̃)‖ � Cε|log ε|,
� (B.3)

for |ξ| � Lε.
By proposition 5.2 system (5.8) admits exponential dichotomies on I� = (−∞,−Lε] and 

Ir = [Lε, Zε − Lε] with projections Qu,s
r,�(ξ; λ̃, ε), which satisfy

∥∥∥[Qs
� − P](−Lε; λ̃, ε)

∥∥∥ ,
∥∥∥[Qs

r − P](Lε; λ̃, ε)
∥∥∥ ,

∥∥∥[Qs
r − P](Zε − Lε; λ̃, ε)

∥∥∥ � Cε|log ε|,� (B.4)

where P(ξ; λ̃, ε) denotes the spectral projection onto the stable eigenspace of Aη(ξ; λ̃, �, ε).
We now compare the exponential dichotomies for (5.8) constructed on each of the intervals 

I�, I†, Ir, I� at the endpoints of the intervals. Recall that Aj,η(ξ; λ̃) converges at an exponential 
rate to the asymptotic matrix A±∞

j,η (λ̃) as ξ → ±∞ for j = †, �. Recalling (B.1), we have that

|Aη(±Lε; λ̃, �, ε)− A±∞
†,η (λ̃)|, |Aη(Zε − Lε; λ̃, �, ε)− A−∞

�,η (λ̃)| � Cε|log ε|.

By continuity the same bound holds for the spectral projections associated with these matri-
ces. Combining this with (B.2)–(B.4) we obtain
∥∥∥[Qu,s

� −Qu,s
† ](−Lε; λ̃, ε)

∥∥∥ ,
∥∥∥[Qu,s

r −Qu,s
† ](Lε; λ̃, ε)

∥∥∥ ,
∥∥∥[Qu,s

r −Qu,s
� ](Zε − Lε; λ̃, ε)

∥∥∥ � Cε|log ε|.
�

(B.5)
Let ψ(ξ) be an exponentially localized solution to (5.8) at some λ̃ ∈ R2(δ,M). This implies 

Qs
�(−Lε; λ̃, ε)ψ(−Lε) = 0. By for instance [30, lemma 6.10] or [6, lemma 6.19], we have that

|Qs
r(Lε; λ̃, ε)ψ(Lε)| � Cε|log ε||Qu

r (Lε; λ̃, ε)ψ(Lε)|,� (B.6)

using (B.5). Again using [6, lemma 6.19] and (B.5) to obtain a similar inequality at Zε − Lε, 
we obtain

|Qs
�(Zε − Lε; λ̃, ε)ψ(Zε − Lε)|| � Cε|log ε||Qu

�(Zε − Lε; λ̃, ε)ψ(Zε − Lε)| = 0,
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since we assumed ψ(ξ) is exponentially localized. Hence, any exponentially localized solu-
tion ψ(ξ) to (5.8) is the trivial solution.� □ 
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