
Zhuo Wang
Department of Mechanical Engineering,

Mississippi State University,
Mississippi, MS 39762

e-mail: zw352@msstate.edu

Pengwei Liu
Department of Mechanical Engineering,

Mississippi State University,
Mississippi, MS 39762;

State Key Laboratory of Advanced Design and
Manufacturing for Vehicle Body,

Hunan University,
Changsha 410082, China

e-mail: liupw789k@hnu.edu.cn

Yaohong Xiao
Department of Mechanical Engineering,

Mississippi State University,
Mississippi, MS 39762

e-mail: yx144@msstate.edu

Xiangyang Cui
State Key Laboratory of Advanced Design and

Manufacturing for Vehicle Body,
Hunan University,

Changsha 410082, China
e-mail: cuixy@hnu.edu.cn

Zhen Hu1
Department of Industrial and Manufacturing

Systems Engineering,
University of Michigan,
Dearborn, MI 48128

e-mail: zhennhu@umich.edu

Lei Chen1
Department of Mechanical Engineering,

Mississippi State University,
Mississippi, MS 39762;

Department of Mechanical Engineering,
University of Michigan,
Dearborn, MI 48128

e-mail: chen@me.msstate.edu

A Data-Driven Approach for
Process Optimization of Metallic
Additive Manufacturing Under
Uncertainty
The presence of various uncertainty sources in metal-based additive manufacturing (AM)
process prevents producing AM products with consistently high quality. Using electron
beam melting (EBM) of Ti-6Al-4V as an example, this paper presents a data-driven frame-
work for process parameters optimization using physics-informed computer simulation
models. The goal is to identify a robust manufacturing condition that allows us to constantly
obtain equiaxed materials microstructures under uncertainty. To overcome the computa-
tional challenge in the robust design optimization under uncertainty, a two-level data-driven
surrogatemodel is constructed based on the simulation data of a validated high-fidelitymulti-
physics AM simulation model. The robust design result, indicating a combination of low pre-
heating temperature, low beam power, and intermediate scanning speed, was acquired
enabling the repetitive production of equiaxed structure products as demonstrated by
physics-based simulations. Global sensitivity analysis at the optimal design point indicates
that among the studied six noise factors, specific heat capacity and grain growth activation
energy have the largest impact on the microstructure variation. Through this exemplar
process optimization, the current study also demonstrates the promising potential of the pre-
sented approach in facilitating other complicate AM process optimizations, such as robust
designs in terms of porosity control or direct mechanical property control.
[DOI: 10.1115/1.4043798]
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1 Introduction
Additive manufacturing (AM), which creates 3D components

layer-by-layer based on the computer-aided design model, offers
a great potential for fabricating component with complex geometry
in a cost- and time-saving manner [1–4]. One of the major hurdles
for the wide application of AM techniques is the variation in the
quality of the manufactured parts [5]. That is, various uncertainty
sources exist in the AM process and cause variability in the
product quality through uncertainty propagation and aggregation,
thus hindering the repetitive manufacturing of products with consis-
tent quality. For example, it has been pointed out that the quality
and properties of deposits can vary greatly even when all producers
used the same materials, processing parameters, and, in some cases,
even the same type of AM machine [6].
Uncertainty quantification (UQ) can help resolve the above issue

by constructing product variation as functions of the contributing

factors and then making effective uncertainty management (UM).
One common strategy is to adjust control factors to dampen the var-
iation caused by noise factors, i.e., type I robust design [7] as illus-
trated in step 3 in Fig. 1. In the case of the AM process, control
factors mainly refer to these AM operating settings, such as preheat-
ing temperature, electron beam (EB) power, and scanning velocity.
Operators can purposely manipulate them, namely, the process opti-
mization, to minimize variability in product quality caused by
random noise factors (uncertainty sources), just like finding out x
= a in the simple case shown in Fig. 1. Of course, the robust
design in this research is much more complicated than the illustra-
tive case. The product quality has a nonlinear dependence on mul-
tiple control factors and noise factors in the AM process, of which
the later includes the fluctuating power absorption and various
uncertain materials properties, as detailed in Sec. 3.1.
Model-based uncertainty quantification [8–10] especially pro-

vides a cheap yet effective way to achieve quality control, with
the development of advanced simulation techniques. Current
model-based UQ in the AM process is however still at its early
stage. Modeling of the entire AM process is a multilevel problem
[11]. The product quality is linked to the operating parameters
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through multiple connected lower-level models (e.g., powder-bed
model and heat source model) and upper-level models (e.g., melt
pool model and solidification model). Nonetheless, most of the
current UQ analysis are limited to the scope of a single level
[6,12–16], especially the variation in the melt pool. Thus, yielding
a guideline toward direct quality control by optimizing operating
parameters is impossible. For instance, Kamath [12] investigated
variability in the melt pool depth associated with uncertain laser
parameters. Lopez et al. [13] also studied the geometrical variation
of melt pool concerned with uncertain laser and materials proper-
ties. A recent study by Haines et al. [14] has revealed the sensitivity
of materials microstructure to alloy composition, thus with the focus
on grain evolution at the solidification level only. A systematic UQ
and UM spanning multilevel of AM process, i.e., correlating
process parameters and uncertain sources arising from different
level to the final product quality, is still lacking.
The main reason for the absence of a systematic UQ and UM is

that few reliable multilevel AM simulation models are currently
available to support a model-based multilevel study. Various phys-
ical phenomena are involved in the entire AM process, hence
greatly inhibiting the development of a high-fidelity AM simulation
model. Existing multilevel models [17–20] usually failed to take
into account, for example, re-melting phenomenon in a layer-wise
building and/or undercooling-controlled grain nucleation. But all
of them indeed influence the formation of final grain structure
[21–23]. Another reason can be related to the multilevel nature,
which indicates a large number of uncertain sources across multiple
levels. For a powder-bed AM process, there are dozens of factors
that may influence the quality of a final manufactured part [24].
Consequently, extensive simulations at numerous points over a
high-dimensional space are required during iterations to find the
optimal point. This fact tends to make a multilevel UQ and UM
computationally intractable, even with a reliable multilevel simula-
tion model in hand.
In this paper, a data-driven process optimization framework is

developed, with application to the uncertainty quantification and
management in electron beam melting (EBM) of Ti-6Al-4V. It
takes advantage of an advanced multiscale AM simulation model
and Kriging surrogate model, allowing effective UQ and UM in a
computationally friendly way. Specifically, as shown in Fig. 1, a
reasonable number of multiscale multiphysics simulations were
first conducted at carefully designed sampling points. This provides
training data for training cheap data-driven surrogate models.
Through crossvalidation, the surrogate models showed great
ability in predicting temperature profile and materials microstruc-
ture at a much cheaper computational cost. The surrogate models
were then utilized to effortlessly carry out uncertainty quantification

and robust design optimization. Based on the UQ analysis, critical
factors in affecting the quantity of interest (QoI), here the grain
structure described by grain length/width ratio, were successfully
identified. Finally, the robust manufacturing condition that makes
QoI inert to the variations of noise factors were found, offering
manufacturing guidelines to minimize product quality variation.

2 Physical Model
The physical model is based on the combination of our recently

developed multiscale multiphysics AM simulation models [25–27].
It spans multilevel by coupling a finite-element (FE)-based heat
transfer model for simulating temperature field development and
grain growth phase-field model (PFM) for simulating microstruc-
ture evolution (more specifically, the prior β-grain structure that
largely determines final mechanical properties [28,29] although
phase transformation occurs upon cooling below β-transus temper-
ature). In the microstructure simulation, it has accounted for the
multiple in-process physical phenomena as mentioned early.
Here, we just provide essential aspects of this model, but readers
interested in greater detail are referred to Refs. [25–27].

2.1 Finite-Element-Based Heat Transfer Model. During the
electron-beam melting process, temperature fields featuring steep
thermal gradient are usually formed within and around the
moving melt pool, which dictate the final grain structure develop-
ment. There are mainly two types of thermal models for predicting
the temperature field during the AM process, i.e., the analytical
model [29–32] (mostly adapted from the early Rosenthal model
[33]) and finite-element-based simulation model [27,34,35]. In
this multiscale model, a finite-element-based heat transfer model
incorporating a moving heat source is utilized to capture the temper-
ature field development during the EBM process. To be specific, the
moving heat source, which stems basically from the thermal inter-
action of the moving electron beam with the deposits, is described
by a Gaussian distribution model [20], as follows:

Qe(x, y, z, t)= η ·P · 4 ln (0.1)
πd2ze

e
4 ln (0.1)((x−v·t)2+y2)

d2 −3
z

ze

( )2

− 2
z

ze

( )
+ 1

{ }

(1)

where η is the absorptive coefficient of the powder, P is the power
of electron beam, d is the electron beam diameter, v is the beam
velocity, and ze is the absolute penetration depth of the electron

Fig. 1 Workflow of the proposed data-driven approach for uncertainty quantification and
management
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beam, calculated by

ze = 2.1× 10−5 ×
v2

ρ
(2)

where ρ is the density of the powder materials.
The initial boundary condition is T= Tpre applied to the substrate

and deposits, where Tpre is the preheating temperature. Convective
and radiative heat transfers are employed at the surface. Adiabatic
conditions are imposed on the sides of the printed part, considering
the limited thermal conductivity of loose powders [36,37]. Note
that, evaporation is ignored in the current model, as commonly
did in AM thermal models [20,34,38]. The above thermal model
is realized in ABAQUS with the help of DFLUX user subroutine [39].
Note that, the current thermal model enables us to capture instan-

taneous temperature field for every microtime step during a
layer-by-layer AM process, but fully coupling two models,
namely, repeatedly extracting the real-time temperature field and
incorporating it into grain growth model, is computationally prohib-
itive.However,we notice the fact that only the high-temperaturefield
enclosed by the isotherm T=Tβ-transus, here denoted as high-
temperature field Tβ (x,z) in 2D case, is the useful temperature field
for β-grain growth; temperatures below Tβ-transus are generally
believed to have a negligible influence on β grain evolution. As
shown in Fig. 2, for most of the time, the aforementioned high-
temperature field Tβ (x,z) would achieve and remain a relatively
steady-state, especially in the bulk section that is exactly of the inter-
est in the current study. By ignoring the short-time unsteady state, the
temperature field evolvement is equivalent to a steady temperature
field moving along with the electron beam. Also, the steady high-
temperature field Tβ (x,z) for different layers are assumed to
change little under a certain manufacturing condition [40]. As
such, once the steady temperature field Tβ (x,z) is known, we can
easily describe the full temperature field evolvement as Tβ (x-v·t,
z-n·Δh) and incorporate it into a grain growth model. In light of
this, a thermal surrogate model, which is able to predict the steady
temperature field developed under any condition, could be just
trained for a fast approximate of the full thermal process. Corre-
spondingly, the FE-based thermal simulation, in this study, is per-
formed mainly to provide training data of stable temperature fields
developed under various conditions. To achieve this, simulating a
single-layer building is enough and thus adopted in current thermal
simulations.

2.2 Thermally Controlled Grain Growth Phase-Field
Model. There are various numerical methods existing for the pre-
diction of microstructure during the AM process, including phase-
field method [25,41], cellular automaton [42], kinetic Monte
Carlo [43], stochastic analysis [34], as well as an analytical micro-
structural model [44]. Among the simulation models, the phase-

field method is especially advantageous in simulating complicated
microstructures by avoiding explicitly tracking the evolving inter-
face/boundary [45]. Here, we have greatly elaborated the basic
grain growth phase-field model for applicability in simulating
grain evolution during the metal-based AM process. For example,
the current PFM uses grain boundary energy κq that increases
with the angle between grain orientation and local thermal gradient
(κq= κq0 × |sin∠(<001>axis, ∇T )|), so as to achieve the selective
growth of optimally aligned grains essentially due to grains’ anisot-
ropy in thermal conductivity, elastic modulus, and surface energy
[46]. Also, in order to incorporate the temperature effect on grain
boundary mobility, a temperature-dependent grain growth kinetic
rate coefficient Lq using a modified Arrhenius type equation is
adopted as follows [47,48]

Lq(T) = L*0 ·
T

Ta

( )b

· exp −
Q

RgT

( )
(3)

where Ta is the ambient temperature, Rg is the gas constant of
8.314 J/mol K, L*0 and b (−1 <m< 1) are the constants, and Q is
the activation energy for β-grain growth of Ti-6Al-4V alloy.
Besides the aforementioned selective grain growth and

temperature-dependent kinetic rate, various physical phenomena
involved in the EBM process are also well incorporated in the
phase-field grain growth simulation (see Fig. 2). First, grain
growth simulation starts with a pre-existing grain structure
serving as the base for building up the layers, which essentially
mimics the “starter plate” during Ti-6Al-4V EBM fabrication
[49]. The new layers are then periodically added to the substrate,
presenting as a layer-by-layer incremental computational domain
in the simulation. A physical phenomenon inherent to the
layer-by-layer building fashion is the re-melting of previous
layers as the electron beam scans the newly deposited powder
layer. In the simulation, grain order parameters are intentionally
set to 0 as the front edge of the melt pool (i.e., the isotherm line
of T= Tliquidus) is sweeping through and then re-evolve when the
trailing edge arrives. Another important phenomenon is the grain
nucleation ahead of the solidification front, which is associated
with local thermal conditions (i.e., thermal gradient G and solidifi-
cation rate R). In general, low G/R values at the pool top will result
in large constitutional undercoolings that encourage grain nucle-
ation [50,51]. The introduction of new grains would directly inter-
rupt the original epitaxial grain growth and even give rise to
equiaxed structures in extreme cases. Regarding its critical role in
the microstructure development, a mathematically rigorous treat-
ment of grain nucleation is thus made in this model, as described
below.
The total undercooling ΔT consists of the constitutional under-

cooling ΔTc, thermal undercooling ΔTt, generated as the solidifica-
tion latent heat, and the curvature undercooling ΔTr. It can be

Fig. 2 Schematic illustration of the coupled thermal model and grain growth model
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expressed as follows [18]:

ΔT = ΔTc + ΔTt + ΔTr = mC0(K − 1)
Iv(Pc)

1 − (1 − k)Iv(Pc)

[ ]

+
Δhv
cp

Iv(Pt) +
2Γ
r

(4)

where m represents the liquidus slope, K is the solid/liquid parti-
tion coefficient, Δhv is the fusion enthalpy per unit volume, cp is
the specific heat, and Γ represents the Gibbs–Thomson coefficient.
The Ivantsov function Iv(P)=Pexp(P)E(P) and the E(P)=�∞
P exp (−t)/tdt. Pc= rR/2D and Pt= rR/2h are, respectively,
the solutal and thermal Peclet numbers, associated with the solute
diffusion coefficient in the liquid D, the thermal diffusivity of the
melt h, and the dendrite tip radius r, which is a function of a
thermal gradient G [19]. Once the local undercooling is calculated
with the local thermal condition informed by the as-coupled temper-
ature field, a Gaussian distribution [52] is used to characterize the
density of nucleation as a function of undercooling

n(ΔT) =
∫ΔT
0

dn

dT ′dΔT
′ =

∫ΔT
0

nmax

ΔTσ




2π

√ exp −
1
2

ΔT ′ − ΔTN
ΔTσ

( )[ ]
dΔT ′

(5)

where ΔTN and ΔTσ are the mean undercooling and standard devia-
tion of undercooling, respectively, nmax is the maximum density of
nucleation sites. Then, the probability of nucleation at each lattice

site can be written as

Pv = δnvVea = {n[ΔT(t)] − n[ΔT(t − Δt)]}dx3 (6)

where Vea= dx3 is the effective volume of each lattice site. A
random number ra within [0, 1] is generated by the computer at
lattice sites within the mushy zone in each time step, and a new
nucleus is formed at lattice sites where ra≤Pv. In this work, the
nmax is 9.0 × 109 m−3, the ΔTN is 42 K, and the ΔTσ is 3.0 K for
Ti-6Al-4V, through an estimation with author’s domain knowledge,
followed by trial-and-error calibrations against previous criticalG/R
line for nucleation happening [23,53,54]. Other parameters used
just follow standards in previous work, as listed in Table 1.
The above grain growth model enables us to get grain microstruc-

ture and detailed morphology developed under any condition.
However, in this research, the grain length/width distribution, i.e.,
the mean and second moment of grain length/width ratio, is just
selected as the microstructure descriptor to facilitate the surrogate
model training. Therefore, the grain length/width ratio information
would be further extracted as training data after microstructure
obtainments. This is expected to correspondingly train a microstruc-
ture surrogate model that can quickly predict the grain’s length/
width ratio distribution and thus the approximate grain structure.

3 Process Parameter Optimization Under Uncertainty
3.1 Uncertainty Sources. Various uncertainty sources or

noise factors exist during the metal-based additive manufacturing
process. A good example is the fluctuation of power absorption.
Power absorption efficiency depends highly on absorbing surface
associated with powder packing [59] as well as melt pool dynamics
or flow behavior [60,61], both of which however show very random
and unstable nature. This fact brings in the power absorption great
uncertainty. For example, the energy absorption coefficient
assumed in previous researches exhibits large difference, from 0.6
[49] to 0.9 [35], both for the electron beam melting of Ti-6Al-4V
using Arcam® S12 machine. Other uncertainty sources include var-
iation of materials properties of powder particles, natural variability
in the temperature boundary condition, etc. [62].
In this study, the following uncertainty sources are considered:

• Fluctuation of the power absorption coefficient of powder
layers η

• and uncertain materials properties of Ti-6Al-4V powders,
including the thermal conductivity k, specific heat capacity
cp, density ρ, grain boundary energy σgb, and thermal activa-
tion energy of grain growth Q.

They all possess great potential for causing great variability in the
material’s microstructure, through directly affecting grain evolution
(i.e., σgb and Q) or influencing the development of temperature
field/melt pool that governs grain evolution. Note that, the manufac-
turing settings, such as EB power and speed, are usually precisely
controlled by advanced control algorithms. Thus, they are consid-
ered as controllable parameters with negligible fluctuations in this
study. As shown in Table 2, the reasonable variation range of
most noise factors are estimated based on different values used in
previous researches. It is noted that thermal conductivity, specific
heat capacity, and density are temperature-dependent (usually
fitted as cubic polynomial relations a0+ a1T+ a2T

2+ a3T
3

Table 2 Variation of different noise factors

Noise factors

Power
absorption, η

[35,49]

Grain boundary
energy, σgb (J/m2)

[64,65]

Grain growth
activation energy,
Q (kJ) [66–68]

Lower bound 0.6 0.8 100
Upper bound 0.9 0.9 170

Table 1 Parameters used in the grain growth phase-field model
[55–58]

Parameter Value

Liquidus slope, m (K/wt%) −0.088
Solid/liquid partition coefficient, K 0.838
Initial alloy concentration, C0 (/wt%) 10
Enthalpy of fusion, Δhv (J/mol) 3.71 × 104

Solute diffusion coefficient in the liquid, D (m2/s) 9.5 × 10−9

Thermal diffusivity of the melt, h (m2/s) 6.0 × 10−6

Gibb–Thomson coefficient, Γ (K m) 1.88 × 10−7

Liquidus temperature, Tliquidus (K) 1928
Solidus temperature, Tsolidus (K) 1878
β phase transus temperature, Tβ-transus (K) 1268

Table 3 Distribution parameters of the coefficients of the polynomial functions

Noise factors

Thermal conductivity,
k (W/m K)

Specific heat capacity,
cp (J/kg K) Density, ρ (kg/m3)

a10 a11 a20 a21 a30 a31

Mean 4.97 4.95 × 10−3 531.11 1.19 × 10−1 4.22 × 103 6.15 × 10−1

Standard deviation 0.20 0.03 × 10−3 10 0.24 × 10−2 40 0.05 × 10−1
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[25,63]), uncertainties of them in this study are thus described by
variations in coefficients a0 and a1 of the respective polynomial
function.
Based on the above observations of the variations of different

variables, Gaussian distributions are assumed for the coefficients
(i.e., a0 and a1) of the polynomial functions of the thermal conduc-
tivity, specific heat capacity, and density. The mean values are the
maximum likelihood estimates of the coefficients, and the standard
deviations are determined by analyzing the confidence intervals of
these coefficients using the data provided in Refs. [25,69]. Table 3
gives the distribution parameters of these polynomial function coef-
ficients. Following that, Table 4 presents the assumed distributions
of η, σgb, and Q. The distribution parameters of these three param-
eters are determined according to the variation intervals presented in
Table 2. The distributions of different random variables given in
Tables 3 and 4 are used only for illustration purpose since the cur-
rently available data are too less to determine an accurate distribu-
tion. Note that the focus of this paper is to demonstrate the
data-driven framework for robust design optimization of process
parameters for given uncertainty sources. The proposed framework
is not limited to the assumed distributions. More accurate distribu-
tions can be used to model these uncertainty sources when related
experimental data are available. Using actual field data to model
the random variables instead of assuming certain distributions
should be pursued in future work.
Next, we discuss how to perform robust design optimization of

the process parameters based on the above information of the uncer-
tainty sources.

3.2 Design Objective. Materials microstructure is the quantity
of interest in this study. In general, the equiaxed grain structure
exhibits preferable mechanical performance compared to the
columnar grain structure. For example, fine equiaxed microstruc-
tures can more easily accommodate strain and promote tearing
[70]. In contrast, large columnar grain structure usually leads to
property anisotropy, premature failure under transverse loading,
and shorter fatigue life [2,28]. Thus, the design objective in this
study is to find out optimal AM process parameters, which enable
us to constantly obtain an equiaxed grain structure under the exis-
tence of various uncertainties.
Specifically, grain structure in this research is described using the

length/width ratio of grains r, which equals 1 for a perfectly
equiaxed grain and takes a much larger value for a columnar
grain. The objective of design optimization is thus to move the
mean value of r closer to one and minimize the standard deviation
of r at the same time. Using this objective function, we then formu-
late the robust design optimization model as below:

min
d

w1(μr(d) − 1)2 + (1 − w1)σ2r (d)

Subject to

d = [Tpre, P, v]

dL ≤ d ≤ du

(7)

where d is a vector of design variables, dL and du are, respectively,
the lower and upper bound of the design variables, Tpre is the pre-
heating temperature, P is the EB power, v is EB scanning speed,
μr(d) and σr(d) are, respectively, the mean and standard deviation
of the length to width ratio, in terms of grains of various materials

microstructures developed under the manufacturing condition d,
and w1 is the weight of the mean value in robust design. w1= 0.5
in this paper since equal weights are assigned to the mean and stan-
dard deviation of r.
For given d, μr(d) and σr(d) are given by

μr(d) =
∫∞
0
rfr,d(r)dr (8)

σ2r (d) =
∫∞
0
(r − μr(d))fr,d(r)dr

=
∫∞
0
r2fr,d(r)dr −

∫∞
0
rfr,d(r)dr

( )2

(9)

in which fr,d(r) is the probability density function (PDF) of r for
given d.
Equations (8) and (9) show that our design objective is achieved

through controlling both mean and variance of r. With updating d in
Eq. (7), the mean μr(d) is driven to approach 1 indicating the
acquirement of equiaxed grain structures, while the standard devia-
tion σr(d) at the same time is minimized to further ensure uniform
grain structure for each product and minimal structure difference
among products. As such, the robust design point eventually
obtained drobust would correspond to the optimal manufacturing
condition that allows the fabrication of products with consistently
equiaxed grain structures.

3.3 Evaluation of the Objective Function. The PDF fr,d(r) is
the unconditional PDF of r by considering various uncertainty
sources including not only the uncertainty sources discussed in
Sec. 3.1 but also the natural variability of r over a structure for a
given realization of the uncertainty sources. Or in other words, r
over a structure is a random variable due to the natural variability
of microstructure over the structure (see Fig. 7), even if we fix
the uncertainty sources at a specific point. fr,d(r) is unknown to us
and needs to be obtained based on the uncertainty propagation of
the uncertainty sources. Defining the random variables in the man-
ufacturing process as θ = [η, σgb, Q, a10, a11, a20, a21, a30, a31], for
given d and θ, we then have

fr,d(r) =
∫
fr,d(r|θ)fθ(θ)dθ (10)

and

μr(θ, d) =
∫∞
0
rfr,d(r|θ)dr (11)

where fr,d(r|θ) and μr(θ, d) are the conditional PDF and mean of r
for given θ and fθ(θ) is the joint PDF of θ.
Plugging Eq. (10) into Eq. (8) yields

μr(d) =
∫∞
0
r

∫
fr,d(r|θ)fθ(θ)dθ dr =

∫
μr(θ, d)fθ(θ)dθ (12)

The above equation can be approximated using Monte Carlo simu-
lation (MCS)-based method as

μr(d) =
∫∫∞

0
rfr|θ,d(r)fθ(θ)dr dθ ≈

1
nMCS

∑nMCS

i=1

μr(θ(i), d) (13)

in which nMCS is the number of MCS samples of θ and θ(i) is the ith
MCS sample.

Table 4 Distribution information of some random variables

Noise factors η σgb Q

Distribution type Gaussian Gaussian Lognormal
Mean 0.75 0.85 130
Standard deviation 0.02 0.01 6
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Similarly, we have σ2r (d) as follows

σ2r (d) =
∫∫∞

0
r2fr|θ,d(r)fθ(θ)dr dθ − μ2r (d)

=
∫∫∞

0
r2fr|θ,d(r)dr fθ(θ)dθ − μ2r (d)

=
∫
mr2(θ, d)dθ − μ2r (d)

(14)

where mr2(θ, d) =
�∞
0 r

2fr,d(r|θ)dr is the second moment of r.
Using the MCS samples of θ, Eq. (14) is approximated as

σ2r (d) ≈
1

nMCS

∑nMCS

i=1

mr2(θ(i), d) −
1

nMCS

∑nMCS

i=1

μr(θ(i), d)

( )2

(15)

Combining Eqs. (13), (15), and (7), the robust design optimization
model can be rewritten as

min
d

w1
1

nMCS

∑nMCS

i=1

μr(θ(i), d) − 1

( )2

+ (1 − w1)

1
nMCS

∑nMCS

i=1

mr2(θ(i), d) −
1

nMCS

∑nMCS

i=1

μr(θ(i), d)

( )2
⎡
⎣

⎤
⎦

Subject to

d = [Tpre, P, v]

dL ≤ d ≤ du

(16)

The above equation indicates that in order to evaluate the objec-
tive function, μr(θ(i), d) and mr2(θ(i), d) need to be evaluated repeat-
edly with i= 1, 2, …, nMCS for given d. A straightforward way of
estimating μr(θ(i), d) and mr2(θ(i), d) is to perform the multiscale
multiphysics AM simulation (as discussed in Sec. 2) by fixing the
random variables θ at θ(i). In that case, the computationally expen-
sive AM simulations need to be performed nMCS times to get an
evaluation of the objective function for a given d. This makes
physics-based robust design of process parameters computationally
intractable. In this paper, the data-driven surrogate models are
employed to overcome the computational challenges in the robust
design optimization.

3.4 Data-Driven Surrogate Models. Considering that both
the melt pool and microstructure simulation models (see Sec. 2)
are computationally expensive, we build two separate surrogate
models to substitute the original simulation models based on the
simulation data obtained from AM simulations. In this paper, the
Kriging surrogate modeling method [71] is employed to build
the surrogate models, since Kriging can effectively capture the non-
linearity of the underlying models and can accommodate the noise

in the data. For the sake of explanation, we partition the random
variables θ = [η, σgb, Q, a10, a11, a20, a21, a30, a31] into two groups,
namely λ = [λ1, λ2, . . . , λ7] = [η, a10, a11, a20, a21, a30, a31] which
are the random variables in the melt pool model and ω = [ω1, ω2] =
[σgb, Q] which are the random variables in the microstructure
model. In what follows, we provide more details of the surrogate
modeling of the AM models.

3.4.1 Surrogate Modeling of Steady Temperature Field. For
given d and λ, the thermal response is a high-dimensional field
response. This makes the surrogate modeling of developed steady
temperature field challenging. To overcome this challenge, a singu-
lar value decomposition (SVD)-based Kriging surrogate modeling
method presented in Ref. [5] is adopted in this paper for the
thermal surrogate modeling. Figure 3 presents the overall flowchart
of the thermal surrogate modeling using the SVD-based Kriging
surrogate modeling method.
Define the steady temperature field for given d and λ as

T(d, λ, s), where s ∈ Ωxyz stands for all the spatial coordinates of
the nodes, we first generate Nt training points for d and λ using
Latin Hypercube sampling approach [72] (see Fig. 3). We then
perform thermal simulation for each of the training points and
obtain the steady temperature field developed under different condi-
tions, T(d(i), λ(i), s), i = 1, 2, . . . , Nt . After that, we approximate
the original simulation data matrix using SVD as follows [73]:

T(d(i), λ(i), s) ≈
∑m
j=1

γj(i)ηj(s), ∀i = 1, 2, . . . , Nt (17)

where γj(i), i= 1, 2, …, Nt, j= 1, 2, …, m are the responses in the
latent space, m is the number of important features used in SVD,
and ηj(s), j = 1, 2, . . . , m are the important features.
Using the training points of d and λ and the corresponding latent

space response, we then build surrogate models in the latent space
as

γj = ĝj(d, λ), j = 1, 2, . . . , m (18)

For any new prediction point d and λ, we have γj(i) ≈ ĝj(d(i), λ(i)),
and thus the surrogate models are used to predict the steady temper-
ature field response at new prediction point as below

T̂(d, λ, s) ≈
∑m
j=1

μĝj (d, λ)ηj(s) (19)

where μĝj (d, λ) is the mean prediction of the jth latent space surro-

gate model and T̂(d, λ, s) is the predicted temperature field response
for given d and λ.
The overall procedure of the thermal surrogate modeling is sum-

marized as Fig. 3. We direct interested readers to Ref. [5] for
detailed derivations and procedure.

3.4.2 Surrogate Modeling of Microstructure Statistical
Moments. In the grain growth model, there are three types of

Fig. 3 Flowchart of surrogatemodeling for themelt pool simula-
tion model

Fig. 4 Flowchart of surrogate modeling for the first-two statisti-
cal moments of the microstructure length/width ratio
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variables: (1) the shared design variables (i.e., control factors)
between the thermal model and the grain growth model that are
denoted as dm, (2) the inputs from the thermal model which are
the latent space responses γ, and (3) the random variables (i.e.,
noise factors) ω that belong to only the grain growth model.
Figure 4 gives the overall flowchart of the grain growth surrogate
modeling. In order to substitute the computationally expensive
grain growth model with cheap data-driven surrogate models, we
first generate Nt2 training points for dm, γ, and ω (see Fig. 4).
For the ith training point, we first transform the latent space

response γ(i)1 , γ
(i)
2 , . . . , γ(i)m into the original temperature field

response as follows:

T̂(i, s) ≈
∑m
j=1

γ(i)j ηj(s), ∀i = 1, 2, . . . , Nt2 (20)

where T̂(i, s) is the temperature field response corresponding to ith
training point. Note that the reconstructed temperature field may not
fully satisfy the physics constraints in some regions due to the pre-
diction errors. In that case, certain corrections to the temperature
field need to be performed to make sure the physical laws are main-
tained. To avoid this burden, the temperature field responses
obtained in Sec. 3.4.1 for melt pool surrogate modeling can be
directly employed as training inputs for the grain growth surrogate
modeling if Nt2≤Nt.

With the input temperature field T̂(i, s) and the training point d(i)m
and ω(i), we then perform grain growth simulation and obtain cor-
responding microstructure statistical moments μ(i)r and m(i)

r2. Based
on the responses of μ(i)r and m(i)

r2, i = 1, 2, . . . , Nt2, we construct sur-
rogate models for μr and mr2 as follows

μr = ĝμr (dm, ω, γ) (21)

mr2 = ĝmr2 (dm, ω, γ) (22)

where ĝμr (·) and ĝmr2 (·) are the Kriging surrogate models.
Next, we discuss how to solve the robust design optimization

model given in Eq. (16) based on the above surrogate models.

3.5 Solution of the Optimization Model After the Surrogate
Modeling. In conclusion, the above surrogate modelings would
basically construct target quantities (i.e., steady T(x), μr, and mr2)
as functions of control factors and respectively associated noise
factors. This enables quick predictions of these quantities at any
given point and thus efficient evaluation of the objective function
for the robust process parameter optimization under uncertainty.
Table 5 presents the pseudocode for the evaluation of the objective
function after the construction of the surrogate models. There are
mainly six steps. After we are able to efficiently evaluate the objec-
tive function for given points, we optimize the control factors or de-
sign variables by solving the optimization model given in Eq. (16).
In this paper, the efficient global optimization method with noise
data [74,75] is employed to solve the optimization model.

4 Results and Discussion
4.1 Physical Simulation and Validation. A sound physical

model serves as the basis of correct uncertainty quantification and
management. Validation of the current multiscale model is made
step-by-step, i.e., in terms of both the FE thermal model and
grain growth model.

4.1.1 Finite-Element-Based Thermal Simulation. Figure 5
shows previous experimentally validated pool predictions [49]
and pool predictions using the current FE thermal model. Here,
we selectively compare pools developed in the extreme cases of
I = 6 mA (v= 0.188 m/s, U= 60 kV) and I= 12 mA (v= 0.608 m/s,
U= 60 kV). It can be found that the pool shape informed by tem-
perature field predicted agrees well with previous predictions.
Specifically, measurements show that pools with the dimen-
sions of L= 2.25 mm, W= 0.70 mm, D= 0.30 mm and L=
3.97 mm, W= 0.68 mm, D= 0.23 mm are, respectively, developed

Table 5 Pseudocode for the evaluation of the objective function
using surrogate models

Step Description

1 For given design variable d and dm ⊂ d, generate random samples of
λ and ω and denote the generated samples as λ(i), ω(i), i= 1, 2, …,
nMCS

For i= 1 to nMCS

2 Obtain the latent space responses γj(i) = ĝj(d, λ(i)), j = 1, 2, . . . , m
using the latent space surrogate models (i.e., Eq. (18))

3 Obtain the prediction of μr using surrogate model μr(i) =
ĝμr (dm, ω(i), γ(i)), where γ(i) = [γ1(i), γ2(i), . . . , γm(i)]

4 Obtain the prediction of μr using surrogate model mr2(i) =
ĝmr2 (dm, ω(i), γ(i)), where γ(i) = [γ1(i), γ2(i), . . . , γm(i)]
End

5 Compute the unconditional mean as μr(d) =
1

nMCS

∑nMCS
i=1 μr(i) and

unconditional second-order moment as mr2 = 1
nMCS

∑nMCS
i=1 mr2(i)

6 Compute σ2r (d) using Eq. (14) and obtain the objective function
evaluation

Fig. 5 Comparison of pool predictions between (a) the current FE thermal model and
(b) previous experimentally validated model [49] and (c) quantitative comparison in
terms of pool dimensions
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under I= 6 mA and I= 12 mA, which also matches closely with
previous results from a quantitative viewpoint.

4.1.2 Grain Growth Phase-field Simulation. Figure 6 shows
columnar-to-equiaxed structure transition P–v map through per-
forming extensive grain growth simulations. It is built just by
taking advantage of the 150 grain growth simulations for generating
training data. A columnar-to-equiaxed transition boundary (the
dashed curve in Fig. 6) can be clearly delineated, although data scat-
tering presents, e.g., columnar points occasionally observed in the
equiaxed region. (Note that the data scattering should not be mis-
taken as prediction errors. It happens due to various uncertain
factors considered and thus uncertainty in the final material’s micro-
structure in current simulations.) The columnar/equiaxed delinea-
tion in Fig. 6 suggests a small-equiaxed region in the space of
low power and high velocity. This is consistent with the previous
experimental observation of finer grains with increasing beam
speed [76], as well as the indication of the classical nucleation cri-
teria [50]. That is, in this P–v space, correspondingly low-thermal
gradient and high solidification rate tend to be developed, thus facil-
itating grain nucleation and equiaxed grain structure formation as
indicated by the classical nucleation criteria. The experimentally
observed columnar structures in Ref. [49] are also successfully
located within the as-predicted columnar region. However, a fully
equiaxed structure that is widely theoretically predicted is still
rarely found in experiments as of now. The current P–v map may
provide partial explanation for this, since in practice, the EBM
machine in automatic mode would adopt certain speed functions
[77] (namely, specific built-in power-velocity combinations
instead of arbitrary user-defined ones) to maintain constant and
appropriate melt pool cross-sectional area (the largest pool area per-
pendicular to the travel velocity direction). According to the cons-
tant pool area P–v map [53], these specific power–velocity
combinations would usually be away from the equiaxed region to
guarantee a sufficiently large pool area. Therefore, besides direct
comparisons with experimental results, the ability to explain the
gap between previous theoretical and experimental findings
further justifies the P–v map, thus basically validating the micro-
structure prediction of the adopted grain growth model.

4.2 Surrogate Model Building and Cross-Validation. To
train a surrogate model, we have run 280 thermal simulations and
150 grain growth simulations at specific training points (each train-
ing point or case corresponding to a specific combination of noise
and control factors, as illustrated in Figs. 3 and 4). Of whom, the
last 20 temperature profile data and 5 microstructure data are set
aside for cross-validation; the remainder is training dataset.

4.2.1 Thermal Surrogate Model. Figure 7 shows partial cross-
validation results of the thermal surrogate model. High-temperature
fields resembling teardrops of different size are developed under
different [d, λ]. By comparing Figs. 7(a) and 7(b), we find that
the thermal surrogate model can predict similar temperature field
development as the physical model under various conditions.
However, running a single FE simulation usually requires about
50 min (based on Xeon CPU E5-2660), while a surrogate model
just takes a couple of seconds for each prediction. Figure 7(c)
shows that relatively large prediction errors mainly occur near the
electron beam focus. This fact, however, affects little on employing
thermal surrogate model for following grain growth simulations,
since grain evolution cares only about the temperature field
bounded by T= Tβ-transus and T= Tliquidus, which is exactly away
from the superheated zone near EB focus. The same happens in
the other 15 cross-validation results, which are thus not shown
here due to the figure size limit. Therefore, in this study, the
thermal surrogate model can be an effective substitute for the com-
putationally costly FE-based thermal model.

4.2.2 Microstructure Surrogate Model. Grain evolution simu-
lation and microstructure data generation are then greatly facilitated,
by using the established thermal surrogate model to quickly know
the high-temperature field that governs grain evolution. Figure 8
shows the cross-validation results of the trained microstructure pre-
diction surrogate model. The comparison shows that the surrogate
model successfully captures the grain structure variation (in terms
of the mean and second moment of grain length/width ratio) with
varying [d, θ]. In part, the acceptable error can be explained by
the fact that the grain evolution is inherently a complex process
that includes some probabilistic phenomenon. The structure predic-
tion based on the grain evolution simulation would thus show a little
random and stochastic characteristics, while the surrogate model
prediction is deterministic.

4.3 Robust Design and Sensitivity Analysis. Robust design
is now readily made with the cheap surrogate models. The design
intervals are, respectively, [Tpre,L, Tpre,U]=[923 K, 1003 K], [PL,
PU]= [360 W, 720 W], and [vL, vU]=[0.188 m/s, 0.608 m/s] for
the preheating temperature, EB power, and scanning speed, based
on the accessible manufacturing condition in practice [18,49]. By
solving the objective function Eq. (7), the optimal operating condi-
tion is found to be Tpre= 946 K, P= 360 W, and v= 0.42 m/s. It
indicates that equiaxed grain structures could be certainly obtained
even with various uncertainty sources, by using a low preheating
temperature, low laser power, and intermediate scanning speed.
The main reason is the introduction of a large number of new
grains and highest survival of them under this manufacturing con-
dition, thus greatly interrupting the original columnar grain
growth. To be specific, low-thermal gradient G that encourages
grain nucleation tend to be formed under a low preheating temper-
ature and low laser power. On the other hand, an intermediate scan-
ning speed could result in sufficiently high solidification rate R that
allows grain nucleation, at the same time, without causing too much
re-melting of new grains in previous layers. A too large speed, in
contrary, would usually lead to a small melt pool accompanying
with a shallow nucleation layer, thus making equiaxed structure for-
mation vulnerable to uncertainty effects. In conclusion, consistently
obtaining equiaxed grain structures during layer-by-layer AM
process requires a delicate balance between different process
parameters, which not only ensures sufficient grain nucleation but

Fig. 6 Columnar-to-equiaxed structure transition P–v map.
(Note that, the data scattering, e.g., the few columnar points
observed in the equiaxed region, should not be mistaken as pre-
diction errors. Instead, it just reflects the variability in the mate-
rial’s microstructure due to various uncertainty sources
present during the AM process.) Previous experiment data [49]
are also plotted. The constant pool area lines are just estimated
based on Ref. [53], for a simple illustration of pool area variation
in the P–v space.
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Fig. 7 Predictions of the steady temperature field developed as a function of control and noise factors [d, λ] by using the
(a) finite-element-based thermal model and (b) thermal surrogate model. (c) Absolute errors of surrogate model predictions com-
pared with finite-element simulations. (Here, each case or training point corresponds to a specific combination of control and
noise factors [d, λ], see Sec. 3.4.).

Fig. 8 Prediction of the grain length/width ratio distribution as a function of control and noise
factors [d, θ], by using the physics-based AM simulation model and microstructure surrogate
model: (a) mean of grain length/width ratio, μ(r) and (b) second moment of grain length/width
ratio, mr2(r). (Here each case or training point corresponds to a specific combination of control
and noise factors, [d, θ], see Sec. 3.4.).
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also guarantees their high survival from re-melting and competitive
growth against existing grains.
To verify the robust design result, 20 physical simulations with

random noise factors were performed at the robust design point.
First five simulation results are shown in Fig. 9(a). Equiaxed

grain structures are indeed constantly produced under the optimal
manufacturing condition obtained, although they show some differ-
ence due to the presence of noise factors or uncertainty sources. For
further verification, we have also performed physical simulations at
other three test points. Test point 1 is generated by increasing the

Fig. 9 Grain structure developments on the optimal manufacturing condition (robust design point) and test manufactur-
ing conditions under uncertainty
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EB speed a little based on the robust design point, test point 2 is
generated by increasing the EB power a little, and test point 3 is
an arbitrary point. Grain structures developed under those condi-
tions are also shown in Figs. 9(b)–9(d ). It is found that the grain
structure changes greatly under noises in all three test cases. Mean-
time, columnar grain structures are usually formed at all test points
although small grains can be observed occasionally. To present all
simulation results and for better comparison, we have collected the
length/width ratio data in terms of all 20 grain structures for differ-
ent manufacturing conditions, as plotted in Fig. 10. It is clearly
shown that, through the robust design, the variation of grain struc-
ture, i.e., the width of r distribution, is greatly narrowed in compar-
ison with the other three. Furthermore, the robust design tends to
push the r distribution to approach r= 1 line (the perfectly equiaxed
grain structure). It is thus proved that the robust design point
obtained represents the optimal manufacturing condition as com-
pared with probably any of others. The precise obtainment of the
robust manufacturing condition, again, demonstrates the capability

of the surrogate model in accurately capturing complex relation-
ships between target quantities and process parameters as well as
noise factors, besides the crossvalidation made earlier.
The global sensitivity analysis [78] is also made to reveal the con-

tribution of different uncertainty sources to the variation of materi-
als microstructure. Figure 11 indicates that the mean of grain length/
width ratio is most sensitive to density and grain boundary energy,
while the variation of grain length/width ratio shows the highest
sensitivity to specific heat capacity and grain growth activation
energy. Thus, reducing the noise level of density and grain bound-
ary energy could make it more likely to obtain equiaxed grain struc-
tures under uncertainty and reducing the noise level of specific heat
capacity and grain growth activation energy would help minimize
the grain structure variation among products. Note that, global sen-
sitivity analysis results will be affected by the random distributions
and distribution parameters of uncertainty sources. Collecting more
data to model the uncertainty sources could further improve uncer-
tainty quantification and sensitivity analysis.

Fig. 10 (a) Grain length/width ratio distribution in terms of 20 different grain structures devel-
oped under the optimal manufacturing condition. They are summarized into one unconditional
PDF distribution curve (the thick line), so as to better characterize the grain structure develop-
ment with uncertainty. (b) Grain length/width ratio distribution (unconditional PDF) for different
manufacturing conditions.

Fig. 11 (a) Sensitivity of mean of length/width ratio to various noise factors and (b) sensitivity of
the variance of length/width ratio to various noise factors

Journal of Manufacturing Science and Engineering AUGUST 2019, Vol. 141 / 081004-11

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/141/8/081004/6419992/m
anu_141_8_081004.pdf?casa_token=bEuM

Q
4C

lG
24AAAAA:h_09Q

6_VC
-2M

W
ti2baY43m

IH
hnuw

yoqN
PAsnD

7W
H

5TtZZqEY4kM
Vln8m

o53I1YYgFK3zyyYf by M
ississippi State U

niversity user on 23 M
ay 2020



4.4 Discussion. In recent years, data-driven approaches (e.g.,
machine learning and statistical learning based) have appeared fre-
quently in the engineering field as powerful data analysis and pre-
dictive modeling tools [79–83]. However, their application in the
AM study is still rare, if any, with the main function as a simple
data fitting tool in terms of low-dimensional inputs and outputs
[84,85]. The current study, to authors’ best knowledge, presents
one of the first efforts to perform multilevel uncertainty quantifica-
tion and management for metal-based AM process, with the aid of
advanced application of the data-driven technique.

4.4.1 Level-by-Level Surrogate Model Building. A special
feature of the current approach is its level-by-level surrogate
model building manner. This brings about several advantages com-
pared with directly treating all connected levels as a single black
box. First, by level-by-level surrogate model building, validation
of corresponding models is also made at each level. Hence, incor-
rect UQ and UM resulting essentially from large prediction errors
of either physical or surrogate models at any level can be found
easily. Also, benefiting from its modular feature, the individual sur-
rogate model established can be potentially linked to other AM
models (either lower or higher levels), thus enabling faster creation
of a different multilevel UQ model in future studies. This helps ulti-
mately construct the full network for uncertainty aggregation in the
AM process [11]. For example, the established thermal surrogate
model can be connected to the lower-level heat source model [59]
and/or higher-level lack-of-fusion porosity predictive model [86].
Another advantage offered is that some noise factors showing
little uncertainty propagation could be suspected early from a UQ
at lower levels. By eliminating them, the whole UQ procedure
would require less physics-based simulations with reduced inputs
than a one-step multilevel UQ. This especially alleviates the compu-
tational burden for a multilevel UQ that abounds with numerous
uncertainty sources from different levels.

4.4.2 Process Optimization and Future Applications. Process
parameters optimization, usually with the aim of controlling local
thermal conditions to enhance grain nucleation [53,54,87], is an
effective way to tailor materials microstructure and achieve quality
improvement. It requires no additional efforts and costs as compared
with, for example, combining rolling deformation [2,88] or adding
inoculating particles [70] to tailor grain structure. The conventional
process optimization, however, may yield optimal manufacturing
condition that leads to unexpected product quality (e.g., columnar
microstructure), due to the existence of various uncertainty sources
in practice. The data-driven approach presented in this study
allows advanced optimization of processing parameters under uncer-
tainty, thus guaranteeing the repetitive production of high-quality
products. It has demonstrated the data-driven technique, with train-
ing data acquired at an acceptable number of training points, can
well capture the complicate relationship betweenAMprocess param-
eters and target quantities or even the high-dimensional temperature
field. This strongly suggests the possibility of facilitating other types
of complicate AM process optimization, like robust design in terms
of porosity control or direct mechanical property control, by using a
similar data-driven approach.

4.4.3 Limitation of the Current Study. Finally, we would like
to emphasize that the quantity of interest in this study is materials
microstructure. Process optimization is made aiming primarily to
improve the microstructure to enhance product quality; other
quality metrics such as the porosity level have not been accounted
for in this research. In this case, the optimal manufacturing condi-
tion mainly for obtaining good microstructures may cause other
problems, such as insufficient pool overlapping and thus
lack-of-fusion porosity [89]. Therefore, this research just selects
the material’s microstructure as an exemplar target quantity, to
bring out the capability of the data-driven technique in facilitating
complicate AM process optimizations. Nonetheless, the current
approach can be readily extended to, for instance, the process

optimization in terms of controlling simultaneously the microstruc-
ture and porosity with reasonable modification, like by further cou-
pling the as-mentioned porosity predictive model. In fact, there are
various AM simulation models that enable the connecting process
to even more quality metrics, such as surface structure [90], residual
stress [91,92], and dimensional accuracy [93]. In this regard, based
on the data-driven approach, efficient multiobjective optimization
could be carried out for a comprehensive control of product
quality in the near future.

5 Conclusion
This paper presents a data-driven AM process optimization

approach, backboned by an advanced multiscale multiphysics
AM simulation model and Kriging surrogate model. Based on
this approach, multilevel uncertainty quantification and manage-
ment are successfully performed with respect to the EBM of
Ti-6Al-4V. Concluding remarks are made as below:

• The two-level surrogate model, which is trained with
simulation-obtained data at an acceptable computational
cost, i.e., 280 thermal simulations and 150 grain growth phase-
field simulations with a total computation time of about
2 weeks, achieves high accuracy in predicting temperature
profile and materials microstructure.

• With the established surrogate models, uncertainty quantifica-
tion analysis is readily conducted, revealing the highest sensi-
tivity of materials microstructure variation to specific heat
capacity and grain growth activation energy.

• Control factors, here AM process parameters, are optimized
through robust design. The optimal combination of process
parameters, i.e., a low preheating temperature, low laser
power, and intermediate scanning speed, is suggested to guar-
antee fabricating products with consistently equiaxed grain
structures. This specific processing condition not only
ensures sufficient nucleation of new grains but also guarantees
their high survival from re-melting and competitive growth
against existing grains.

• The first attempt made by this study, i.e., multilevel uncer-
tainty quantification and management in AM process
through the cooperation of the advanced multiscale AM simu-
lation and surrogate modeling technique demonstrates the
great potential of the data-driven technique to facilitate AM
process optimization in terms of different product qualities
of interest in future studies.
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