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Summary 15 

While recombination is widely recognized to be a key modulator of numerous evolutionary 16 

phenomena, we have a poor understanding of how recombination rate itself varies and evolves 17 

within a species. Here, we performed a comprehensive study of recombination rate (rate of meiotic 18 

crossing over) in two natural populations of Drosophila pseudoobscura from Utah and Arizona, USA. 19 
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We used an amplicon sequencing approach to obtain high-quality genotypes in approximately 8000 20 

individual backcrossed offspring (17 mapping populations with roughly 530 individuals each), for 21 

which we then quantified crossovers. Interestingly, variation in recombination rate within and 22 

between populations largely manifested as differences in genome-wide recombination rate rather 23 

than remodeling of the local recombination landscape. Comparing populations, we discovered 24 

individuals from the Utah population displayed on average 8% higher crossover rates than the 25 

Arizona population, a statistically significant difference. Using a QST-FST analysis, we found that this 26 

difference in crossover rate was dramatically higher than expected under neutrality, indicating that 27 

this difference may have been driven by natural selection. Finally, using a combination of short and 28 

long read whole-genome sequencing, we found no significant association between crossover rate 29 

and structural variation at the 200-400kb scale. Our results demonstrate that (1) there is abundant 30 

variation in genome-wide crossover rate in natural populations, (2) at the 200-400kb scale, 31 

recombination rate appears to vary largely genome wide, rather than in specific intervals and (3) 32 

interpopulation differences in recombination rate may be the result of local adaptation. 33 

 Keywords: recombination rate, evolution, meiosis, quantitative genetics, structural variation, 34 

genetic map, QST-FST, Drosophila pseudoobscura 35 

Introduction 36 

Meiotic recombination is the exchange of genetic material between homologous chromosomes that 37 

occurs during meiosis. This exchange has two major forms, crossing over and non-crossover gene 38 

conversion, both of which are initiated by the formation of a double-strand break during meiosis. 39 

Recombination, particularly crossing over, is a key mediator of chromosome pairing during meiosis, 40 

with most species exhibiting an average of one crossover per chromosome arm [1,2]. 41 

While physical constraints often set a lower bound on rates of recombination, the evolution of 42 

recombination rate and particularly the rate of crossing over (i.e., number of crossovers per 43 

generation in a genomic interval) can have far-reaching effects on nearly every evolutionary 44 

process [2–4]. For example, recombination rates can modulate processes as diverse as adaptation 45 

to a new environment, the evolution of reproductive isolation, and the dynamics of introgression 46 

between populations [5–8]. More generally, recombination rate determines the degree to which an 47 

individual’s parental chromosomes are mixed in their gametes – i.e., how often novel allelic 48 

combinations are generated in their gametes. Increases or decreases in this rate can be favored 49 

https://paperpile.com/c/SyKbde/zekHB+wLHj
https://paperpile.com/c/SyKbde/pxfcK+wLHj+D0j05
https://paperpile.com/c/SyKbde/dJae2+dKCMO+MgJhB+vE2V9
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under different evolutionary or ecological conditions. For example, increasing the rate of 50 

recombination can facilitate adaptation by increasing the probability that adaptive and maladaptive 51 

alleles will be decoupled or that adaptive alleles will be brought together in the same genotype (i.e., 52 

overcome Hill-Robertson interference [9]). Increased rates of recombination are similarly favored 53 

when fitness optima change rapidly between generations, e.g., under fluctuating selection [10]. On 54 

the other hand, lower recombination rates can be favored under scenarios in which adaptive 55 

combinations of alleles are at risk of being broken apart, such as under maladaptive gene flow [11]. 56 

Reduction/suppression also appears to have important consequences for the evolution of 57 

reproductive isolation [11,12] and patterns of introgression and divergence in the genome 58 

[8,13,14]. 59 

While there is a rich theoretical literature focused on the evolution of recombination rate, empirical 60 

studies have lagged somewhat behind. One reason for this may be that recombination rate is 61 

difficult to quantify directly – it generally requires the construction of a linkage map from a genetic 62 

cross and/or cytological visualization of recombination-associated proteins [2,15,16]. Recently, 63 

many studies have attempted to overcome this difficulty by instead estimating a population genetic 64 

quantity known as ⍴, the population scaled recombination rate [17]. This quantity is the product of 65 

four times the effective population size and realized recombination rate (sometimes denoted “c”) 66 

[18]. The general approach to estimating ⍴ is to perform coalescent simulations and fit a simulated 67 

value of ⍴ to observed patterns of linkage disequilibrium (LD) [19–21]. While this approach has 68 

proven successful at recapitulating many of the general features of the recombination landscape in 69 

many species, it is not able to disentangle changes in LD per se (e.g. as a result of selection or 70 

demography) from changes in recombination rate (either locally or genome-wide) [21,22]. Further, 71 

these methods are highly sensitive to increases in LD that occur as a result of gene flow between 72 

populations [22–24]. As such, LD-based methods are likely to be less appropriate for the study of 73 

the evolution of recombination rate than direct estimates of recombination rate. 74 

In spite of methodological difficulties, there has been a recent resurgence of interest in the 75 

empirical study of the evolutionary causes and consequences of recombination rate [2,4,25]. One 76 

key contributor to this resurgence has been the democratization of high throughput genotyping, 77 

which has increased the tractability of creating high density linkage maps in non-model species (e.g. 78 

using pedigreed populations or gametic sequencing, [26,27]). The increased availability of such 79 

linkage maps has in turn led to a growing appreciation of the enormous diversity in recombination 80 

https://paperpile.com/c/SyKbde/foa4U
https://paperpile.com/c/SyKbde/7I09D
https://paperpile.com/c/SyKbde/GV0yq
https://paperpile.com/c/SyKbde/rLiHV+GV0yq
https://paperpile.com/c/SyKbde/xOEoU+2MU3D+vE2V9
https://paperpile.com/c/SyKbde/xOEoU+2MU3D+vE2V9
https://paperpile.com/c/SyKbde/V4aY7+wLHj+ZVy1s
https://paperpile.com/c/SyKbde/4IfT0
https://paperpile.com/c/SyKbde/XxoHn
https://paperpile.com/c/SyKbde/XxoHn
https://paperpile.com/c/SyKbde/gTX0J+pf2cs+ElzsW
https://paperpile.com/c/SyKbde/e57uG+ElzsW
https://paperpile.com/c/SyKbde/e57uG+a7Q0X+dedwL
https://paperpile.com/c/SyKbde/wLHj+D0j05+qjog
https://paperpile.com/c/SyKbde/iQPd+pVNX5
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rate that exists between taxa [25]. This variation can manifest globally, i.e. genome-wide, or locally, 81 

i.e. along a specific tract of a chromosome [25,28]. 82 

Studies using direct estimates of recombination rate have largely focused on describing differences 83 

in recombination between species or sexes [25,29,30]. However, there are surprisingly few studies 84 

focused on directly testing evolutionary hypotheses concerning variation in recombination rate. For 85 

example, a key question that emerges from the theoretical literature is: is variation in 86 

recombination rate shaped by natural selection [5,10,31]? While a tempting research direction, the 87 

difficulty in measuring and manipulating recombination rate makes testing adaptive hypothesis a 88 

non-trivial enterprise [2,4]. One approach may be experimental evolution, in which the proposed 89 

selective agent that favors/disfavors changes in recombination rate is experimentally varied, 90 

evolved differences in recombination rate are quantified, and these differences are then compared 91 

to a null (non-adaptive) expectation [32]. This approach is powerful but highly laborious and 92 

difficult to apply to natural systems. A more broadly applicable method for detecting the influence 93 

of natural selection on a quantitative trait is perhaps the QST-FST approach [33]. Originating in the 94 

quantitative genetics literature, this powerful method is designed to answer the question: are the 95 

observed differences between populations in a quantitative trait greater than expected on the basis 96 

of drift alone [33,34]? This question is formalized as a statistical hypothesis test that compares 97 

variation in a quantitative trait (QST) within and between populations to a null distribution of 98 

variation in neutral genetic markers (FST) within and between populations [34,35]. While the QST-FST 99 

is subject to many of the same limitations and assumptions as other methods for studying natural 100 

selection in the wild  it is also has a number of advantages, including the ability to detect very 101 

recent natural selection and robustness to a variety of common demographic perturbations (e.g. 102 

changes in population size or levels of migration). While the QST-FST method has enjoyed great 103 

success in the quantitative and evolutionary genetics literature, it has not yet been applied to 104 

testing the role of selection in shaping recombination rate. Given its flexibility and applicability to 105 

any quantitative trait, we see QST-FST as an ideal approach to this problem. 106 

Along with quantifying intraspecific variation and the role of natural selection, we also have a poor 107 

understanding of the genetic basis of differences in recombination rate between populations and 108 

species. As is the case for other traits, identifying the genetic architecture of evolutionary changes 109 

in recombination rate allows for a more complete explanation for how and why recombination rate 110 

evolves [36]. One specific question is the degree to which variation in recombination rate manifests 111 

as a local vs. global phenomenon. Local variation in recombination can arise due to structural 112 

https://paperpile.com/c/SyKbde/qjog
https://paperpile.com/c/SyKbde/qjog+wLS0y
https://paperpile.com/c/SyKbde/qjog+OscA+jEIvw
https://paperpile.com/c/SyKbde/dJae2+SD9fI+7I09D
https://paperpile.com/c/SyKbde/D0j05+wLHj
https://paperpile.com/c/SyKbde/3Bcjf
https://paperpile.com/c/SyKbde/KcmLW
https://paperpile.com/c/SyKbde/KcmLW+fruxK
https://paperpile.com/c/SyKbde/fruxK+HMb1
https://paperpile.com/c/SyKbde/i0Y81
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variants that suppress recombination such as inversions and large deletions [37–39]. In contrast, 113 

global variation can arise from mutations in the genes involved in meiosis and/or double-strand 114 

break repair pathways [40]. Modifiers of both global and local rates of recombination have been 115 

identified in laboratory and/or interspecific crosses, but their occurrence in natural populations of 116 

individual species is only just beginning to be explored  [26,29,40–42]. 117 

Here, we performed a comprehensive study of recombination rate (meiotic rates of crossover) in 118 

two natural populations of Drosophila pseudoobscura from Utah and Arizona, USA. We made use of 119 

modern sequencing and genetic map construction methods, along with the QST-FST approach. We first 120 

constructed individual-level genetic maps and discovered ample quantitative genetic variation for 121 

recombination rate within and between populations of D. pseudoobscura. Interestingly, we found 122 

that this variation largely manifested as differences in genome-wide recombination rate rather than 123 

remodeling of the local recombination landscape. Interindividual differences in local genome 124 

structure (e.g. structural variation) did not appear to influence recombination rate at the scale of 125 

measurement, again suggesting that variation in recombination rate is largely governed by global 126 

modifiers. Finally, using the QST-FST  approach, we discovered that between-population differences in 127 

recombination rate are much greater than expected under a pure-drift model, suggesting that 128 

natural selection may have shaped recombination rate variation in D. pseudoobscura. Together, 129 

these results provide direct evidence for genetic variation in global modifiers of recombination and 130 

support the hypothesis that natural selection can and does act to shape recombination rate in 131 

natural populations. 132 

Results 133 

Genome wide recombination rate varies within and between populations 134 

Genome-wide recombination rate varied significantly within and between the D. pseudoobscura 135 

populations we studied. Within lines, there was a range of 4.27–5.86 crossovers per genome, 136 

corresponding to 0.85–1.00 crossovers per chromosome arm on average (Figure 1A). This 137 

between-line variation was statistically significant (p < 2.2×10-16 , Likelihood Ratio Test Statistic= 138 

141.13, df=1, comparison via dropping random effect of inbred line). At the population level, lines 139 

from American Fork Canyon, UT had 5.20 ± 0.17 crossovers per genome on average, while lines 140 

from Madera Canyon, AZ had 4.82 ± 0.21 crossovers per genome on average, a significant difference 141 

https://paperpile.com/c/SyKbde/clHC3+xwoUH+KDEzR
https://paperpile.com/c/SyKbde/0FYx
https://paperpile.com/c/SyKbde/OscA+0FYx+DRmg+iWJw+iQPd
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in genome-wide crossover rate (Figure 1B, Type II Wald Test, p=0.018, df=1; Likelihood Ratio Test, 142 

�21=4.794, p=0.028).  143 

That said, despite genome-wide differences, the local rates of recombination were extremely 144 

similar among individuals and populations (Figure 1C & Figure 2A, R2 = 0.96, correlation test t = 145 

68.866, df = 207, < 2.2×10-16). Indeed, in contrast to the aggregate genome wide difference we 146 

observed in Figure 1B, only 19 of the 209 recombination intervals we assayed displayed significant 147 

population-specific differences at the α = 0.05 level, and none were significant after FDR correction 148 

(Figure S4). That said, some recombination intervals did show a significant effect of inbred line 149 

identity (Figure S5) suggesting that there may be genetic variation for local recombination rates at 150 

the 200-400kb scale. Finally, we found that chromosome-scale recombination rates were highly 151 

correlated within lines, such that there was a strong trend that lines with high recombination rate 152 

on one chromosome tended to also have high recombination on other chromosomes (Figure 2B; 153 

average R2 = 0.78, all correlations significant via correlation tests, p <0.0001). In sum, these results 154 

suggest that phenotypic variation in recombination rate within and between populations largely 155 

manifests at the genome-wide scale. That said, our marker density prevents us from ruling out 156 

finer-scale population-level differences in the recombination landscape (i.e. at the <200kb scale). 157 

Population differences in recombination rate are greater than expected under neutrality 158 

As expected from previous studies, genetic divergence between Madera Canyon, AZ and American 159 

Fork Canyon, UT was very low: genome-wide Weir and Cockerham’s ܨௌ் was approximately 0.0039 160 

(Figure 3A, mean ܨௌ் of 6 591 high quality SNPs, MAF > 0.1, LD > 0.2;  ܨௌ் computed using WGS from 161 

inbred lines was highly similar).  Examining variation in recombination rate, we estimated a within 162 

population (between line) variance component of 0.066 and a between population variance 163 

component of 0.018, yielding an observed ܳௌ் of 0.212 (Figure 3A, dashed arrow). Our parametric 164 

bootstrap simulations of ܳௌ௡்  suggest that this value of ܳௌ்is highly unlikely to be observed under 165 

neutrality (0 of 10,000 ܳௌ௡்  replicates were greater than the observed value of ܳௌ் , thus p < 1.0×10-166 

6). Similarly, the parametric bootstrap estimates of ܳௌ்-ܨௌ்  under neutrality do not overlap with 167 

the parametric bootstrap observed values of ܳௌ்-ܨௌ் , even when taking into account sampling 168 

variance (Figure 3B). Together, these results indicate that while the observed phenotypic difference 169 

in recombination rate between MC and AFC is modest, it greatly exceeds its expected value under 170 

neutrality. This result is consistent with the hypothesis that natural selection has driven the 171 

observed difference in recombination rates between populations. 172 
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Nonsynonymous differences in meiosis genes are correlated with recombination rate 173 

Of the 46 candidate genes examined, 33 had at least one non-synonymous polymorphism. Of these 174 

33 genes, there were a total of 357 codons (out of a total of 29 964) with at least one non-175 

synonymous polymorphism. After controlling for multiple comparisons three of these sites in two 176 

genes (asp and mei-41) were significantly associated with crossover rate (FDR adjusted p-value < 177 

0.05, Figure 4A). Both asp and mei-41play key roles in meiosis and recombination: asp is involved in 178 

spindle pole formation during cell division (both mitotic and meiotic) whereas mei-41 (also known 179 

as ATR) is an important regulator of double strand break repair and meiosis checkpoint activation  180 

[43,44]. Homozygous, nonsynonymous polymorphisms in these genes were associated with a 5%-181 

7% difference in recombination rate between lines (Figure 4B). There was, however, strong LD (r2 182 

> 0.8) between these alleles (e.g. lines with the lowest averaged crossover rates shared genotypic 183 

states for all three genes), and thus disentangling their independent effects on recombination rate 184 

was not possible. We also note that the small number of lines examined here precluded more 185 

powerful association methods (e.g. full GWAS) and further work will be required to experimentally 186 

validate the contribution of these genes to variation in recombination rate. 187 

Structural variation does not explain differences in recombination rate 188 

Both short and long-read sequencing revealed extensive structural variation between inbred lines 189 

of D. pseudoobscura. As expected, the three strategies we used to detect structural variation (GATK 190 

INDELs, PacBio SV and LUMPY/Smoove) varied in the number and relative proportions of the 191 

various classes of structural variant they identified (Figure S6). That said, all three methods 192 

suggested that the most common form of structural variation are small to mid-sized (10-100bp) 193 

INDELs, with larger deletions, insertions, and duplications being much rarer (Figure S6). Consistent 194 

with the observation that AFC and MC are highly similar in their chromosomal arrangements, our 195 

structural variant analysis found no evidence of large-scale chromosomal inversions differentiating 196 

any of the lines. 197 

Structural variation between lines did not co-vary with recombination rate (Figure 5). First, there 198 

was no relationship between recombination rate and the estimated percent sequence homology 199 

between the tester and inbred lines (Figure 5B, likelihood ratio test comparison of GLMMs , df = 3, p 200 

= 0.3989). Second, there was no relationship between recombination rate and the count of 201 

differences in structural alleles between each inbred line and the tester line (Figure 5A, likelihood 202 

ratio test comparison of GLMMs , df = 3, p = 0.7617). This result was consistent across all methods 203 

https://paperpile.com/c/SyKbde/8612+6HMT
https://paperpile.com/c/SyKbde/8612+6HMT


8 

used to identify structural variation (likelihood ratio tests, comparison of GLMMs with and without 204 

method by count/homology interaction effects, all p > 0.3). As such, at the 300kb scale, there is no 205 

evidence that the local differences in recombination rate among inbred lines are a result of 206 

differences in homology or local genome structure. 207 

Discussion 208 

Recombination rate is a key modulator of many evolutionary processes, yet we have a poor 209 

understanding of how recombination rate itself evolves. Here, we studied how recombination rate 210 

varies using strains from two natural populations of D. pseudoobscura from Madera Canyon, AZ and 211 

American Fork Canyon, UT. We directly measured recombination rate in a total of 17 inbred lines 212 

from these populations and found substantial variation for recombination rate both within and 213 

between populations. Interestingly, the population from Madera Canyon, AZ exhibited an ~8% 214 

lower recombination rate on average than the population from American Fork Canyon, UT. Within 215 

and between-population variation in recombination rate manifested largely as differences in 216 

genome-wide recombination rate, rather than changes in the local recombination landscape. This 217 

finding is supported by a general pattern of covariation in recombination rate among chromosomes 218 

within lines. That said, our choice to assay greater numbers of individuals in fewer genomic 219 

intervals prevents us from ruling out the possibility of finer-scale differences in the recombination 220 

landscape between populations and lines. While overall differences in recombination rates between 221 

populations were modest in absolute terms (~8% depending on the interval), a QST-FST analysis 222 

revealed that this difference vastly exceeds the amount of phenotypic divergence expected under 223 

neutral drift. This result is consistent with the hypothesis that local adaptation has driven 224 

differences in recombination rate between these populations. 225 

We explored two possible mechanisms underlying recombination rate differences between lines. 226 

First, we found evidence that some differences in recombination rate between lines may involve 227 

non-synonymous coding changes in meiosis-related genes. Secondly, we found that local variation 228 

in recombination rate between lines does not correlate with local structural variation at the 300kb 229 

scale. These findings suggest that the differences in recombination we observed were driven by 230 

alleles resulting in genome-wide changes in recombination rate rather than local remodeling of the 231 

recombination landscape. Below, we discuss the relevance of our findings for the study of the 232 

evolution of recombination rate and relationships to previous work. 233 
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Recombination rate variation in natural populations 234 

Previous work has shown that recombination can vary between individuals, or between 235 

populations/species  [25,26,45–47].  These studies have ranged from early work on chiasma 236 

frequency in snails  [48] to more recent work leveraging modern human population genomic data  237 

[49,50]. The bulk of this work has focused on describing variation in recombination and its 238 

potential molecular correlates. Further, most studies of natural populations have measured 239 

recombination in uncontrolled environments (e.g. in the wild,  [25]. Our study contributes to this 240 

literature directly examining genetic variation for recombination rate both within and between 241 

natural populations of a single species and performing one of the first tests that this variation is 242 

shaped by natural selection. Together with previous work, our study contributes to a growing body 243 

of evidence that there is ample genetic variation for recombination rate in natural populations, and 244 

that recombination rate is actively evolving on observable timescales. 245 

Secondly, we found that recombination rate varies primarily at the genome-wide scale rather than 246 

via variation in specific genomic regions. Our candidate gene analysis suggests that this variation in 247 

genome-wide recombination rate may be the result of allelic variation in meiosis-related genes (i.e. 248 

asp and mei-41). This is in line with previous work connecting genetic variation in genes regulating 249 

meiosis and/or crossover formation to variation in variation in genome-wide recombination rate  250 

[29,47,49,51,52].  The emerging evidence for natural variation in gene-wide modifiers of 251 

recombination is particularly intriguing given that many theoretical models of recombination 252 

evolution make use of abstract “modifier” alleles that alter genome wide rates of recombination  253 

[5,6]. Further characterization of such modifiers in natural populations may eventually allow direct 254 

tests of theoretical models of recombination evolution [2]. 255 

Local adaptation of recombination rate 256 

Our QST-FST analysis suggests that differences in recombination rate between Drosophila 257 

pseudoobscura populations from AZ and UT may have been driven by natural selection. To our 258 

knowledge, this is the first application of the QST-FST method to the study of recombination, and 259 

among the first evidence for the role of selection acting on genome-wide recombination rate in 260 

natural populations  [40]. However, while our results suggest a role for natural selection, the agent 261 

of selection underlying this change remains unknown. There are a wide variety of possible 262 

explanations for this difference  [2]. For example, differences in recombination between the 263 

https://paperpile.com/c/SyKbde/qjog+RPx9d+dKM2Z+71Zg+iQPd
https://paperpile.com/c/SyKbde/3Odtv
https://paperpile.com/c/SyKbde/5NlF+4yqwz
https://paperpile.com/c/SyKbde/5NlF+4yqwz
https://paperpile.com/c/SyKbde/qjog
https://paperpile.com/c/SyKbde/5NlF+zcYd+71Zg+OscA+TQ4W
https://paperpile.com/c/SyKbde/5NlF+zcYd+71Zg+OscA+TQ4W
https://paperpile.com/c/SyKbde/dJae2+dKCMO
https://paperpile.com/c/SyKbde/dJae2+dKCMO
https://paperpile.com/c/SyKbde/wLHj
https://paperpile.com/c/SyKbde/0FYx
https://paperpile.com/c/SyKbde/wLHj
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populations may be directly favored, or other phenotypic differences may be divergently selected 264 

between the populations that incidentally affect recombination rate (via linkage or pleiotropy). One 265 

intriguing possibility is local differences in climate: recombination rate in Drosophila is known to be 266 

plastic with respect to ambient temperature  [53]. Madera Canyon, Arizona has a mean annual 267 

temperature of approximately eleven degrees Celsius higher than American Fork Canyon, Utah 268 

(10.5C vs 21.6C,  [54]). Assuming that the temperature reaction norm is similar in both 269 

populations, this higher temperature could, for example, cause an increase in realized 270 

recombination rate in the Madera Canyon population in the wild. We speculate that the difference 271 

in recombination rate we observed under constant conditions may be a compensatory response to 272 

an environmentally-induced increase in recombination rate in order to return genome-wide 273 

recombination rate to some optimum value (i.e., a response to maladaptive plasticity,  [55]). 274 

Further work will naturally be needed to connect variation in recombination rates to specific agents 275 

of selection. One obvious extension of our approach would be a greater number of populations, 276 

perhaps existing over a climatic gradient (or paired populations in differing environments). We 277 

hope that our demonstration of the efficacy of the QST-FST method inspires the undertaking of such 278 

eco-evolutionary studies of recombination rate. 279 

One caveat regarding our application of the QST-FST method is that our estimates of recombination 280 

come from F1s, and we were thus only able to observe genetic variation underlain by dominant and 281 

co-dominant effects. This is not ideal, as it potentially alters the distribution of QST relative to FST, 282 

which could bias the outcome of the QST-FST test  [35]. A dedicated simulation study aimed at 283 

understanding the direction and magnitude of this bias would be of great utility for future work on 284 

recombination using inbred lines. 285 

Structural variation as a modulator of recombination rate 286 

We found no association between among-line variation in recombination rate and among-line 287 

variation in the abundance or size of structural variants. An important consideration here is that 288 

this analysis was not intended to test whether average recombination rate (across all lines) is 289 

associated with structural variation – this association is extremely well documented and is 290 

unquestionably present in our data  [56–58]. Instead, our goal was to test if among-line variation in 291 

recombination rate in each genomic interval was explained by among-line structural differences, 292 

using normalized metrics of both recombination rate and structural variation within each genomic 293 

interval (as Z-scores, i.e. statistical controlling for average recombination rate). 294 

https://paperpile.com/c/SyKbde/T5axq
https://paperpile.com/c/SyKbde/MphRI
https://paperpile.com/c/SyKbde/HvsnE
https://paperpile.com/c/SyKbde/HMb1
https://paperpile.com/c/SyKbde/2DcrP+Dsuzm+e8osl


11 

Why was there no detectable association between structural variation and local rates of 295 

recombination? For one, our F1 cross design is not able to detect recessive-acting effects of 296 

structural variation (e.g. those that only affect recombination in homozygous form). Secondly, a key 297 

consideration in interpreting these results is the scale of our recombination estimates: much of the 298 

previous work describing the effects of heterozygous structural variation on crossing-over was 299 

performed at much finer scale, e.g. <1kb in Arabidopsis  [59]. It may be that changes in 300 

recombination resulting from structural variation are restricted to finer genomic scales (i.e. 301 

<300kb) and that other types of regulators (e.g. variation in meiosis genes or the chromatin 302 

landscape) modulate recombination at larger scale  [40]. A notable exception to this is large scale 303 

chromosomal inversions (notably absent in our lines), which are well known to affect 304 

recombination at scales much larger than 300kb – upwards of 10Mb in many cases  [60,61]. 305 

However, inversions likely have outsized recombination suppressing effects compared to other 306 

forms of non-homology because of the loop structures they form during chromosome pairing  307 

[60,62]. Further work will be required to disentangle the relative contribution of structural and 308 

global/trans modifiers of recombination rate at different genomic scales. 309 

Amplicon sequencing as a tool for genetic maps 310 

Our ability to economically sequence hundreds of markers in thousands of individuals was made 311 

possible by the GT-seq amplicon sequencing approach  [63]. This technique is highly scalable, and 312 

in our case, we likely could have sequenced many more markers (and/or individuals) while 313 

maintaining a very high depth per amplicon. This method is an alternative to the increasingly 314 

popular bulk-sequencing approaches, in which sample DNA is pooled prior to sequencing  [64]. GT-315 

seq avoids some of the complexity of these approaches. For one, because it is a PCR-based method, 316 

GT-seq does not require performing extraction, quantification and manual normalization of sample 317 

DNA. This is a non-trivial consideration when individual sample sizes are in the thousands. Further, 318 

unlike bulk-sequencing, amplicon sequencing provides individual-level genotypes. As such, the 319 

occurrence of double/triple/etc. crossovers can be directly resolved, and problematic individuals 320 

identified and removed during analyses. To our knowledge, these are both not currently possible 321 

with bulk sequencing (unless barcodes are employed, limiting the total number of individuals in the 322 

pool). The main drawbacks of amplicon sequencing are a decrease in resolution (number of 323 

markers), and the need to pre-identify mapping informative markers. That said, we believe GT-seq 324 

and amplicon sequencing more generally will be a useful tool for future studies of variation in 325 

https://paperpile.com/c/SyKbde/LfVwC
https://paperpile.com/c/SyKbde/0FYx
https://paperpile.com/c/SyKbde/IBR7Z+ukm3U
https://paperpile.com/c/SyKbde/IBR7Z+qHbcX
https://paperpile.com/c/SyKbde/IBR7Z+qHbcX
https://paperpile.com/c/SyKbde/95uPH
https://paperpile.com/c/SyKbde/tKUNm
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recombination rate and can be readily paired with other approaches depending on the goals of the 326 

study. 327 

Conclusion 328 

Recombination rate plays an important modulatory role in many evolutionary processes, but little 329 

is known about how recombination rate itself evolves. Here, we studied natural variation in 330 

recombination rate within and between two populations of Drosophila pseudoobscura. We found 331 

extensive genetic variation for recombination rate within and between populations, with the 332 

majority of variation detected manifesting as differences in overall genome-wide recombination 333 

rate. This suggests that the differences in recombination we detected between lines may be the 334 

result of genetic variation in trans-acting global regulators of recombination, an idea supported by a 335 

significant association between non-synonymous variation in meiosis-associated genes and 336 

recombination rate. We also found no evidence that among-line differences in local recombination 337 

rate at the 300kb scale were correlated with structural variation within the lines. Finally, we 338 

discovered that the magnitude of phenotypic difference in recombination rate between the two 339 

populations was far greater than expected under a model of neutral trait evolution, suggesting that 340 

the differences may have been driven by natural selection. Our study provides key insights in the 341 

quantitative genetics of recombination rate and lays the groundwork for future research focused on 342 

studying the recombination rate in natural populations. 343 
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Figure Legends (Main Text) 366 

Figure 1 | Recombination rate varies within and between populations of D. pseudoobscura. (A) Variation in 367 

genome-wide crossing over frequency for 17 inbred lines. Lines are colored according to their population of origin 368 

(Green, MC: Madera Canyon, AZ, Red, AFC: American Fork Canyon, UT.). Points depict the mean crossover frequency for 369 

each line with vertical lines representing 95% confidence intervals (n = 384 per line). (B) Differences in crossover 370 

frequency between AFC and MC. Jittered points are individual line means (from A), and larger points are marginal means 371 

derived from mixed model regression coefficients along with 95% confidence intervals (error bars). (C) Variation in 372 

recombination rate across the genome. Each panel depicts recombination rate along a single chromosome arm (columns) 373 

in one of two populations (rows). Thick lines depict population average recombination rates, with lighter lines depicting 374 

rates for individual inbred lines. Note that in D. pseudoobscura the X chromosome takes the place of a chromosome “1”. 375 

See Figure S3 for an example of GLMM model fit diagnostics for this and other statistical comparisons.  376 

  377 

Figure 2 | Recombination rate varies primarily at the genome-wide scale. (A) The correlation between 378 

recombination rate measured in genomic windows (~300kb in size) in the MC and AFC populations. Each dot depicts a 379 

single genomic window (all chromosomes combined). (B) The correlation between chromosome-wide mean 380 

recombination rate between all pairs of chromosomes. Each point represents the recombination rate on two 381 

chromosomes for a single inbred line. Points and lines are colored to indicate the particular pair of chromosomes being 382 
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compared. Positive trends indicate that recombination rates are consistent across chromosomes within lines (i.e. they 383 

vary genome-wide, and not idiosyncratically across chromosomes). See Figure S2 for comparisons of marker orders and 384 

recombination fractions between line-specific genetic maps, and S4 and S5 for more detailed analyses of local variation in 385 

recombination rate. 386 

  387 

Figure 3 | Recombination rate QST-FST exceeds neutral expectations. (A) Weir and Cockerham’s FST from 6591 RADseq-388 

derived SNPs (mean FST = 0.0039). The observed value of QST for recombination rate (0.212) is indicated with an arrow. (B) 389 

Comparisons of the sampling distribution of QST-FST expected under neutrality (green histogram) and the observed value 390 

(yellow histogram). Both distributions were simulated via a parametric bootstrap (see text). Black points with error bars 391 

indicate the mean and 95% confidence interval of the sampling distributions.  392 

  393 

Figure 4 | Non-synonymous substitutions associated with variation in recombination rate. (A) Regression 394 

coefficients from linear models (y-axis) comparing genotype and crossover rate for sites (points) bearing non-395 

synonymous, non-reference polymorphisms in a collection of meiosis-related candidate genes (x-axis). Red points 396 

indicate associations that were significant after adjustment via FDR correction (adjusted p-value < 0.05). (B) Mean 397 

recombination rates (crossovers per chromosome arm) for sites with significant associations (red points in A). Each panel 398 

depicts the mean and 95% confidence interval for crossover rates for each genotypic class (either homozygous reference 399 

or homozygous non-synonymous derived). cs. 400 

  401 

Figure 5 | Structural variation is not correlated with recombination rate at the 300kb scale. (A) The relationship 402 

between normalized recombination rate and the normalized count of structural differences between each inbred line and 403 

the tester line. Each point represents a single recombination interval (all approximately 300kb in length) from one inbred 404 

line. Lines on each plot represent smoothed conditional means and are accompanied by 95% confidence intervals. Each 405 

column depicts the relationship using each of the three methods used to assay structural variation. (B) The relationship 406 

between normalized recombination rate and the difference in total sequence length between each inbred line and the 407 

tester line. See Figure S6 for a detailed summary of the frequency and size of different classes of structural variation.  408 

 409 

Figure 6 | Schematic of the crossing design and one method of interfering crossovers. (a) Isolines from MC and AFC 410 

were individually crossed to tester lines to generate F1s, which were subsequently crossed to a “donor line” sharing the 411 

same genotype as all isolines, but a different genotype than the tester line at all marker loci. Further, all markers were 412 

selected such that only two alleles were found in all lines, with the tester line having one allele (“1”) and all other lines 413 

including the donor line having the other (“0”). This allows for the scoring of crossovers as changes in heterozygosity, as 414 

shown in (b). (c) Example genotypic data from one chromosome showing the number of inferred crossovers. White 415 

genotype states indicate missing data. See also Figure S1 for details on the performance of GT-seq . 416 
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STAR★Methods 417 

LEAD CONTACT AND MATERIALS AVAILABILITY  418 

Further information and requests for resources and protocols should be directed to and will be 419 

fulfilled by the Lead Contact, Dr. Kieran Samuk (ksamuk@gmail.com). This study did not generate 420 

new unique reagents. 421 

 422 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 423 

We collected wild male and female Drosophila pseudoobscura from Madera Canyon, AZ, USA 424 

(31°42'48.9"N, 110°52'22.4"W) and American Fork Canyon, UT, USA (40°26'38.9"N, 425 

111°42'08.5"W) in May and July of 2015 respectively using bucket traps [65]. These populations 426 

were chosen because they were known to share similar karyotypic configurations (e.g. inversions) 427 

but also differ in their ecological context (i.e. xeric vs. sub-alpine). We returned live individuals to 428 

the laboratory, isolated females, and created inbred lines from their offspring (one line per 429 

surviving female). These lines were created by successive crosses between virgin siblings for a 430 

minimum of 14 generations. The inbred lines (and all subsequent lines) were reared in 20C 431 

incubators with 65% relative humidity and photoperiods of 14D:10N. The inbreeding process 432 

resulted in a total of 7 inbred lines from Arizona and 12 from Utah. 433 

METHOD DETAILS 434 

RAD-seq libraries from wild samples 435 

To generate a set of SNPs for estimating FST between the Utah and Arizona populations, we 436 

performed double-digest RAD-seq reduced representation sequencing. To begin, we extracted DNA 437 

from single wild-caught individuals (excluding the females used to initiate the inbred lines) via 438 

phenol-chloroform DNA extraction. We then performed a RAD-seq library preparation protocol 439 

after [66]. The resulting libraries were sequenced in a single lane on an Illumina HiSeq 4000 at the 440 

Duke Center for Genomic and Computational Biology sequencing facility. 441 

https://paperpile.com/c/SyKbde/jGQ0V
https://paperpile.com/c/SyKbde/l9WeN
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Whole genome sequencing of inbred lines 442 

We performed both short read and long read whole genome sequencing on all 17 inbred lines, as 443 

well as our testers line (MV2-25 and Flagstaff-14). The short read libraries were prepared by first 444 

performing phenol-chloroform DNA extractions from pools of 20-30 individual female flies. We 445 

quantified DNA purity and concentration via Nanodrop (Thermofisher Inc.) and Qubit (Qiagen Inc.). 446 

The DNA samples were then submitted for library preparation and sequencing via Illumina 447 

NovaSeq (300-400bp insert, 150bp paired end reads) at the Duke Center for Genomic and 448 

Computational Biology sequencing facility. 449 

The long-read libraries were prepared by first performing high-molecular weight DNA extractions 450 

from pools of 20-30 female flies using Qiagen Midi/Mini Prep DNA extraction kits (Qiagen Inc.). 451 

These were then assessed for fragment size via standard gel electrophoresis and submitted for 452 

sequencing on a PacBio Sequel (4 SMRT cells, 4-5 samples multiplexed per cell) at the Duke Center 453 

for Genomic and Computational Biology sequencing facility. 454 

Whole genome variant calling: short read WGS and RAD-seq data 455 

We identified variants in the short read data (both isoline whole genome sequencing and wild 456 

population RAD-seq) using an analysis pipeline based on the GATK best practices [67,68]. The 457 

complete code for this pipeline is available as a Github repository at 458 

http://github.com/ksamuk/samuk_et_al_curr_biol_2020. All tools were run with default settings 459 

unless otherwise indicated. Briefly, we aligned the reads for each sample to the D. pseudoobscura 460 

reference genome (version 3.04 from FlyBase, 461 

ftp://ftp.flybase.net/genomes/Drosophila_pseudoobscura/) using bwa mem version 0.7.17 [69]. 462 

We marked adapters and duplicates using PicardTools [70], and performed individual-level 463 

genotyping for each set of marked reads using the HaplotypeCaller. We then performed joint 464 

genotyping on the resulting set of GVCFs via GenotypeGVCFs. We filtered SNPs in the resulting VCF 465 

using the GATK Best Practices hard filters (see scripts for details), working in R 3.4.1 [71] with the 466 

vcfR and tidyverse packages [72,73]. 467 

Creation of mapping populations 468 

To estimate variation in crossover rate in our inbred lines, we created backcross-like mapping 469 

populations (crossing scheme shown in Figure 6). We crossed groups of 3-5 males from each isoline 470 

to single virgin females from the D. pseudoobscura reference genome isoline (MV2-25, provided by 471 

https://paperpile.com/c/SyKbde/FD6Q9+neKga
http://github.com/ksamuk/samuk_et_al_curr_biol_2020
http://ftp.flybase.net/genomes/Drosophila_pseudoobscura/
https://paperpile.com/c/SyKbde/aLIxw
https://paperpile.com/c/SyKbde/hpqDr
https://paperpile.com/c/SyKbde/IST6i
https://paperpile.com/c/SyKbde/cFDI7+9aYfl
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Dr. Steve Schaeffer). We then allowed the F1 offspring to develop and collected virgin females from 472 

the resulting offspring. Finally, we crossed these virgin F1 females to males from a second fixed 473 

isoline, Flagstaff-14 (a highly inbred isoline from Flagstaff, AZ). This resulted in a backcross-like 474 

mapping population for each of the AZ and UT lines, in which all BC1 offspring had one maternal 475 

chromosome from their F1 mother and one paternal Flagstaff-14 chromosome with a fixed, known 476 

genotype (Figure 6A). This design allows for straightforward mapping of recombination events that 477 

occurred in F1 females. As such, our estimates are unable to detect any variation in recombination 478 

due to recessive-acting effects and may underestimate total recombination rates (e.g. from 479 

modifiers that act in an additive fashion) in the pure inbred lines. Critically, this potential 480 

underestimation is identical across all F1 families, and thus cannot (in and of itself) generate 481 

systematic differences in recombination rate between lines or populations. 482 

Genotyping of mapping populations 483 

Because our goal was to quantify the number of crossovers per generation rather than their precise 484 

location, we performed low density, genome-wide SNP genotyping using an amplicon sequencing 485 

approach. To do this, we adapted the ‘GT-seq’ method outlined in [63]. A summary of the design and 486 

performance of this method is depicted in Figure S1. To begin, we identified SNPs genotyped in the 487 

whole genome dataset that were unique to the MV2-25 isoline (i.e. fixed for one allele in all 19 488 

inbred lines and Flagstaff-14 and fixed for another allele in MV2-25). Genotyping these markers in 489 

BC1 individuals allows the recovery of genotypic phase simply by examining the genotype of the 490 

marker SNPs – regions with UT or AZ ancestry are represented as runs of heterozygous SNPs and 491 

regions with MV2-25 ancestry are represented as runs of homozygous SNPs (see diagram in Figure 492 

6B). In total, we selected 500 of these SNPs evenly spaced at approximately 300kb intervals along 493 

each chromosome (Figure S1 A & B). Note that this choice of marker density is optimized to detect 494 

small differences in genome wide recombination rate and cannot completely resolve fine scale (i.e. 495 

<300kb) variation in the recombination landscape. 496 

We designed primer pairs to generate ~200-300bp amplicons containing each of our target SNPs. 497 

These primer pairs were optimized to minimize primer-primer interactions during multiplex PCR 498 

(primer design service provided by GT-Seek Ltd., Idaho, USA). With these primers in hand, we 499 

performed two test library preps using the GT-seq protocol described in Campbell et al. (2015). We 500 

sequenced the first test library on a MiSeq (V3 flow cell, Illumina Corp., California, USA), and 501 

identified poorly performing amplicons using the criteria outlined in Campbell et al. (2015), i.e. high 502 

https://paperpile.com/c/SyKbde/95uPH
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dropout, low representation among individuals, evidence of amplicons mapping to duplicate 503 

regions, etc. (service provided by GT-Seek LTD, Idaho, USA). We then prepared a second test library 504 

with the primers for the poor-performing amplicons omitted and sequenced it as above. A final 505 

screen for poor-performing amplicons resulted in a final set of 390 amplicons ranging from 200-506 

300bp, each containing at least one recombination-informative SNP. 507 

After optimizing our panel of amplicons, we used GT-seq to genotype approximately 400 BC1 508 

offspring from each mapping population (400 individuals from each of 19 lines, a total of 509 

approximately 7600 individuals). We created two pools of 40 plates (individuals and plates are 510 

individually barcoded as part of GT-seq library preparation) and submitted these for sequencing on 511 

an Illumina NextSeq 500 (1st pool: High Output Reagent 150 PE Reagent Kit, 2nd Pool: Mid Output 150 512 

PE Kit, Illumina Corp., California) at the Duke Center for Genomic and Computational Biology 513 

sequencing facility. We called SNPs in our sequenced GT-seq amplicons using an identical approach 514 

to our whole genome short read data. The final dataset contained 679 total variants across all 515 

amplicons, sequenced to an average depth of ~200X (Figure S1 C). While there was some variability 516 

in sequencing depth between amplicons (mean coefficient of variation for depth of amplicon 517 

sequence was ~0.75), the overall high depth of sequencing resulted in the vast majority of 518 

amplicons having >100X coverage (Figure S1 C). We performed further quality control on the 519 

resulting SNPs in R using the vcfR and tidyverse packages [72,73]. First, we dropped any markers 520 

that mapped to genomic locations outside our original targeted amplicons. Next, we dropped any 521 

individuals that had an average depth below 10X (19/7600 individuals). Finally, we removed any 522 

markers that displayed any evidence that they were in fact not unique to the tester line. This was 523 

done by removing markers displaying: (1) any evidence of segregation distortion, (2) any evidence 524 

that any of the isolines were in fact polymorphic for the marker or (3) high dropout (i.e. 525 

represented in fewer than 75% of samples). In some cases, the source of marker dropout was 526 

clearly an undetected INDEL polymorphism in the amplified regions, which, for consistency among 527 

lines, we erred on the side of removing rather than recoding as them as markers for mapping. The 528 

final set contained 344 mapping-informative SNPs. After filtering, we recoded all SNP genotypes as 529 

‘0’ for the isoline/donor line state and ‘1’ for the tester line state. Because of the backcross design, 530 

the only possible genotypes were thus ‘0/0’ and ‘0/1’. 531 

https://paperpile.com/c/SyKbde/cFDI7+9aYfl
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Detection of recombination events 532 

We identified crossovers in two steps: (1) ancestry assignment of chromosome segments and (2) 533 

crossover counting. To begin, we updated the genomic ordering of our markers using the genomic 534 

scaffold ordering from [74]. Note that this reordering results in movement and replacement of 535 

contigs between chromosomes, and as such overall physical lengths of the reordered chromosomes 536 

are different from that of the most current D. pseudoobscura reference (version 3.04). After markers 537 

had been reordered, we assigned the ancestry (isoline or tester) of chromosomal segments by 538 

identifying runs of 0/0s and 0/1s. In regions with a single ancestry assignment, we imputed (via 539 

parsimony) across gaps of missing markers (e.g. due to filtration or dropout) shorter than 2 540 

markers (~400kb). After local ancestry was assigned, we counted crossovers by counting the 541 

number of ancestry changes (from 0/0 to 0/1) along each chromosome in each individual using the 542 

function countXO in R/qtl [52]. Following the recommendations in [75], we ignored double 543 

crossovers spanning less than 2 markers (~400kb) and/or individuals displaying more than four 544 

crossovers on a single chromosome: crossover interference should make close range double 545 

crossovers exceedingly rare, and thus these cases likely represent genotyping or marker-order 546 

errors. It is also worth noting that our method of crossover detecting relies on quantifying 547 

crossover events in live-born offspring. As such, any extreme changes in crossover patterns 548 

incompatible with proper chromosome segregation during meiosis will not be observed (i.e. 549 

because they are lethal or lead to gamete degradation). 550 

This crossover counting method assumes that the order of markers on each chromosome is 551 

identical in each line. Differences in marker order could, for example, generate spurious double 552 

crossovers (although ignoring short double crossovers reduces this problem). To directly address 553 

the possibility of different marker orders among lines, we created separate genetic maps for each 554 

isoline using the R packages r/QTL and ASMap [75,76]. Following the general recommendations 555 

from the documentation, these two packages agnostically infer linkage group assignment, marker 556 

order, and genetic distances between markers. Overall, there was high concordance in marker 557 

order between all the individually-inferred maps (Figure S2). Individual recombination rate 558 

estimates within each line were highly similar when using the reference genome marker order or 559 

individually-inferred marker orders (Figure S2, Spearman rank correlation = 0.93, p < 2.2×10-16). We 560 

thus elected to use the reference genome marker order (reordered based on  [74]) for all 561 

subsequent analyses. Individual estimates of crossover events are provided in Table S1 and Table 562 

S2. 563 

https://paperpile.com/c/SyKbde/g3uc
https://paperpile.com/c/SyKbde/HwczC
https://paperpile.com/c/SyKbde/HwczC+NSyFZ
https://paperpile.com/c/SyKbde/g3uc
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Candidate genes associated with recombination differences 564 

We explored the possibility that between-line variation in meiosis-related candidate genes may 565 

underlie between-line differences in recombination rate. We were specifically interested in the 566 

hypothesis that coding changes in meiosis genes underlie any differences in recombination rate 567 

between inbred lines (and act dominantly or additively in the F1s). To do this, we first assembled a 568 

list of candidate genes from Anderson et al. 2009 and Hunter et al. 2016 [29,77] (full list in Table 569 

S3). We then obtained the FASTA sequences for these genes in each line by intersecting the short 570 

read variant calls (including INDELs) with the D. pseudoobscura reference genome CDS for each 571 

candidate gene. To ensure proper alignment, we then performed multiple alignment of the line-572 

level FASTA sequences and the reference CDS using MAFFT version 7.407 [78]. Once the sequences 573 

had been aligned, we identified non-synonymous, non-reference alleles in each line.  574 

Association between local structural variation and recombination rate 575 

Along with the candidate gene approach to examine associations with genome-wide recombination 576 

rate, we also investigated the possibility that small-scale differences in genomic structure between 577 

the inbred lines may explain differences in recombination rate. This may be of particular 578 

importance given that our design required measuring recombination rate in F1 individuals (inbred 579 

line × tester line), and that structural heterozygosity has a well-known negative association with 580 

recombination rate [37,60,79]. 581 

To test if differences in genome structure underlie local differences in recombination rate in our 582 

inbred lines, we first identified structural variants (SVs) using two approaches. First, we used the 583 

SVtools pipeline [80] to identify SVs using paired-end short read data. This pipeline identifies 584 

structural variation using a variety of genomic signatures, particularly split reads (different parts of 585 

a single read mapping to multiple discrete locations) and discordant reads (paired end reads 586 

separated by a much greater genomic distance than expected on the basis of their insert size). 587 

SVtools can identify insertions, deletions, inversions, duplications, and other classes of 588 

rearrangements. The general procedure is to identify split/discordant reads using the tools 589 

SAMBAMBA and SAMBLASTER, which are then analyzed and annotated with the SVtools variant 590 

callers [81,82]. The resulting structural variant VCF was filtered via empirical cut offs using the 591 

guidelines in [80]. Along with SVtools, we separately identified structural variation in the PacBio 592 

long reads dataset using the PacBio structural variant pipeline and tools, pbsv 593 

(https://github.com/PacificBiosciences/pbsv, see also [83]). This involves aligning the long reads 594 

https://paperpile.com/c/SyKbde/dJbpI+OscA
https://paperpile.com/c/SyKbde/Bh2Wg
https://paperpile.com/c/SyKbde/8GsUa+IBR7Z+clHC3
https://paperpile.com/c/SyKbde/CvTcD
https://paperpile.com/c/SyKbde/Kc1cB+XEP1h
https://paperpile.com/c/SyKbde/CvTcD
https://github.com/PacificBiosciences/pbsv
https://paperpile.com/c/SyKbde/AaZ4Y
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with minimap2 (accessed via the pbmm2 wrapper), identifying individual signatures of structural 595 

variation using pbsv, and jointly calling structural variation from the combined set of signatures. 596 

This again results in a VCF containing structural variants, which we filtered using empirical cutoffs 597 

as before. 598 

After identifying structural variants, we next quantified the total difference in sequence homology 599 

between each line and the tester line (MV2-25) for each genomic interval where recombination was 600 

measured (~300kb windows). To do this, we summed the total number of non-shared, non-601 

reference base pairs between each line and the tester line. We included SNPs, inversions, insertions, 602 

deletions, and translocations in this calculation. This method collapses multiple classes of genomic 603 

variation into a single, consistent metric and avoids the ambiguity associated with identifying 604 

shared locations of breakpoints for the structural variants (e.g. needed for per-variant 605 

associations). Further, this method focuses on the most likely biological cause of structurally-606 

mediated recombination suppression, i.e. differences in homology per se, which has been widely 607 

demonstrated in many species [84–86]. We also tabulated the total count of structural variant 608 

alleles (of any type) that differed between each isoline and the tester line for each recombination 609 

interval. We normalized all homology estimates and structural variant counts in each window using 610 

both the total number of genotyped base pairs in each window as well as the mean depth per 611 

isoline. 612 

QUANTIFICATION AND STATISTICAL ANALYSIS 613 

Population differences in recombination rate 614 

We quantified differences in recombination rate between populations using a generalized linear 615 

mixed model fitted with the R package lme4  [87]. This model had the form crossover count ~ 616 

population + (1|inbred line), with a Poisson error distribution and a log link function (in order to 617 

accommodate the non-normal nature of crossover counts). We checked for violations of model fit 618 

for this and all subsequent models using a QQ-plot and a fitted vs. Pearson residuals plot (see 619 

Figure S3 for an example). To test the fixed effect of population, we performed a Type II Wald Test 620 

using the function “Anova” from the car package [88], as well as a Likelihood Ratio Test comparing 621 

models with and without the population term. Note that these two tests focus on a slightly different 622 

hypothesis (i.e. that the populations are significantly different in recombination rate, on the basis of 623 

phenotypic variance alone) than the 𝑄𝑆𝑇-𝐹𝑆𝑇analysis below. 624 

https://paperpile.com/c/SyKbde/ZqgQy+r2JC7+6o6AU
https://paperpile.com/c/SyKbde/JeZa
https://paperpile.com/c/SyKbde/1Lvm
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QST-FST Analysis 625 

To test the hypothesis that population-level differences in recombination rates are driven by 626 

natural selection, we performed a 𝑄𝑆𝑇-𝐹𝑆𝑇 analysis [33,35,89]. We began by computing a point 627 

estimate of 𝑄𝑆𝑇 for genome-wide recombination rate using lm4 by fitting a linear mixed effects 628 

model with the following form: crossover count = intercept + (1|inbred line) + (1|population). We 629 

extracted the variance components for population and inbred line (nested in population) using the 630 

R function varcomp(). Following  [55] we computed 𝑄𝑆𝑇using the following formula: 631 

(1) 𝑄𝑆𝑇 =  
𝜎𝐵𝐺

2

𝜎𝐵𝐺
2  +𝜎𝑊𝐺

2  632 

Where 𝜎𝐵𝐺
2 denotes the between-group (population) variance and 𝜎𝑊𝐺

2 denotes within-group (inbred 633 

line nested in population) variance. Note that the within-group variance term in the denominator is 634 

not multiplied by two in the case of haploids or completely inbred lines [89]. 635 

We computed 𝐹𝑆𝑇 using SNPs genotyped via RAD-seq in wild AZ and UT individuals. To do this, we 636 

converted the GATK VCF to a SNP table using vcfR and the tidyverse package in R ( see analysis 637 

scripts). We then converted the resulting SNP table for manipulation in the R package SNPRelate 638 

[90]. Using SNPRelate, we first performed LD pruning (default settings, r < 0.2) to reduce statistical 639 

non-independence between SNPs [91]. This resulted in a dataset composed of 16 individuals for AZ 640 

and 42 for UT, with a total of 6 591 high quality SNPs. We then computed per-SNP estimates of Weir 641 

and Cockerham’s 𝐹𝑆𝑇  using SNPRelate, requiring filtered sites to have a minimum minor allele 642 

frequency of 0.1. 643 

We assessed the statistical departure from neutrality for each value of 𝑄𝑆𝑇 using the Null-QST 644 

method outlined in [35] and [55] with a modification to accommodate trait data from inbred lines. 645 

The general approach outlined in these two references is to simulate the expected distribution of 646 

for a neutral trait (denoted 𝑄𝑆𝑇
𝑛 , neutral QST) via a parametric bootstrap, and use this distribution as 647 

the basis of a statistical test of the hypothesis 𝑄𝑆𝑇  > 𝑄𝑆𝑇
𝑛 . 648 

To simulate the distribution of 𝑄𝑆𝑇
𝑛 we first estimated the between-group (𝜎𝐵𝐺

2 ) and within-group 649 

(𝜎𝑊𝐺
2 ) variance components. We obtained these values via REML estimation by fitting mixed-effects 650 

linear models using the function lmer in the R package lme4 [87]. These models took the form 651 

crossover count ~ intercept + (1|population) + (1|line). We extracted the variance components 652 

(standard deviations of the random effects) using the function VarComp from lme4. 653 

https://paperpile.com/c/SyKbde/HMb1+KcmLW+QaK0X
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https://paperpile.com/c/SyKbde/fWLI2
https://paperpile.com/c/SyKbde/fWLI2
https://paperpile.com/c/SyKbde/cUjo2
https://paperpile.com/c/SyKbde/JeZa
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We next generated 10 000 (nonparametric) bootstrap estimates of the mean value of Weir and 654 

Cockerham’s 𝐹𝑆𝑇 by resampling the RADseq SNPs with replacement, and computing genome-wide 655 

mean 𝐹𝑆𝑇using SNPRelate. We then generated 10 000 matching parametric bootstrap estimates of 656 

the 𝜎𝑊𝐺
2

  by multiplying the REML point estimate by a random draw from a 𝜒2 distribution with 657 

degrees of freedom equal to the number of inbred families (df = 17). Next, we generated parametric 658 

bootstrap estimates of the expected values of 𝜎𝐵𝐺
2

  for a neutrally evolving trait using the equation:  659 

(2) 𝑏𝑜𝑜𝑡 (𝜎𝐵𝐺
2 ) =  

𝑏𝑜𝑜𝑡(𝐹𝑆𝑇 )𝑏𝑜𝑜𝑡(𝜎𝑊𝐺
2 )

1−𝑏𝑜𝑜𝑡(𝐹𝑆𝑇 )
 ×  𝜒2 (𝑛 = 1, 𝑑𝑓 = 1) 660 

With (2) above being modified from [35] to accommodate complete inbreeding. In equation (2), 661 

“boot” indicates individual bootstrap samples for each quantity, and the 𝜒2 term represents a draw 662 

from a 𝜒2distribution with degrees of freedom equal to the number of populations minus one (one, 663 

in this case). This procedure results in 10 000 bootstrap samples for 𝜎𝐵𝐺
2  and  𝜎𝑊𝐺

2 , from which we 664 

computed 10 000 bootstrap samples of 𝑄𝑆𝑇
𝑛 using equation (1). We finally computed a p-value for 665 

the observed value of 𝑄𝑆𝑇  by determining the number of 𝑄𝑆𝑇
𝑛 values that exceeded the observed 666 

value of 𝑄𝑆𝑇 distribution. We also computed a confidence interval for 𝑄𝑆𝑇 − 𝐹𝑆𝑇 (the difference 667 

between 𝑄𝑆𝑇 and 𝐹𝑆𝑇 , expected to be zero under the neutral model) by subtracting each value the 668 

𝑄𝑆𝑇
𝑛 − 𝐹𝑆𝑇 distribution from the observed value of 𝑄𝑆𝑇 − 𝐹𝑆𝑇 (after  [55]). Note that while we 669 

computed the distribution of 𝐹𝑆𝑇  from the independently-sourced RAD-seq data, the distribution of 670 

𝐹𝑆𝑇  was nearly identical when computed using SNPs derived from the short read whole genome 671 

sequencing of the inbred lines themselves. 672 

Candidate genes associated with recombination differences 673 

Using the candidate gene data from the inbred lines, we tested for associations between inbred line 674 

recombination estimates and genotype at each site where at least one non-synonymous change 675 

occurred in each gene. To this end, we fit linear models with recombination rate as the response 676 

and genotype (at all variable non-synonymous sites) as the predictor. This yielded a p-value for 677 

each genotype vs. recombination comparison. In order to control for the possibility of false 678 

positives, which we adjusted via the FDR approach [92], with FDR < 0.05 adjustments performed 679 

using the function p.adjust in R. A main caveat to this approach is that the small number of lines and 680 

large number of variable sites limits our power and ability to include controls for genetic 681 

background, genotype at “non-meiosis” genes, etc. As such, we consider the function of this analysis 682 

https://paperpile.com/c/SyKbde/PGC6n
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to be mainly hypothesis-generating and to serve as a bridge between our results in previous 683 

molecular work. 684 

Association between local structural variation and recombination rate 685 

We tested the association between normalized sequence homology and recombination rate via a 686 

hierarchical linear model fit using the function glmer from the R package lme4 [87]. This model had 687 

the form: recombination rate ~ method * homology + (1|window identity) + (1|inbred line), with 688 

Poisson-distributed errors and a log link function. Assigning window identity (i.e. genomic region in 689 

which recombination and homology were measured) as a random effect controls for mean local 690 

variation in recombination rate (i.e. normalizes the absolute recombination rates among windows). 691 

Similarly, modelling inbred line identity as a random effect controls for genome-wide differences in 692 

recombination rate, which are unrelated to local variation. We assessed the significance of the 693 

homology term in the model by comparing the full model to a model with only random effects via a 694 

likelihood ratio test in R. We finally repeated this model fitting procedure with the normalized 695 

count of differences in structural variant alleles as the predictor. 696 

DATA AND CODE AVAILABILITY 697 

All analysis code employed throughout the paper is available as a Git repository at: 698 

https://github.com/ksamuk/samuk_et_al_curr_biol_2020  699 

KEY RESOURCES TABLE 700 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Biological Samples     

Flagstaff14 This 

study 

N/A 

https://paperpile.com/c/SyKbde/JeZa
https://github.com/ksamuk/samuk_et_al_curr_biol_2020
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MV2-25 Dr. 

Steven 

Schaeffer 

N/A 

American Fork Canyon Inbred Lines This 

study 

N/A 

Madera Canyon Inbred Lines This 

study 

N/A 

Chemicals, Peptides, and Recombinant Proteins 

Qiagen Plus Multiplex PCR Master Mix Qiagen Cat # 206145 

Charm Biotech Just-A-Plate 96 PCR 

Purification and Normalization Kit 

Charm 

Biotech 

Cat # JN-120-10 

AmpureXP beads Beckman 

Coulter 

Cat # A63881 

Deposited Data 

PacBio Sequel Whole Genome Sequencing This 

paper 

SRA PRJNA610090 

Illumina HiSeq Whole Genome Sequencing This 

paper 

SRA PRJNA610029 
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Illumina HiSeq ddRAD-seq Sequencing This 

paper 

SRA PRJNA610904 

Illumina NovaSeq Amplicon Libraries (High 

Output) 

This 

paper 

Dryad Accession TBD 

Illumina NovaSeq Amplicon Libraries (Mid 

Output) 

This 

paper 

Dryad Accession TBD 

Analysis scripts This 

paper 

https://github.com/ksamuk/samuk_et_al_curr_

biol_2020 

Oligonucleotides 

GT-Seq Primers - See Table S4 This 

paper 

N/A 

Illumina Small RNA sequencing primer 

(CGACAGGTTCAGAGTTCTACAGTCCGACGAT

C) 

Illumina N/A 

Software and Algorithms 

samtools Li et al. 

(2009) 

http://www.htslib.org/ 

Bwa2 Li (2013) https://github.com/lh3/bwa 
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GATK Poplin et 

al. (2017) 

https://gatk.broadinstitute.org/hc/en-us 

R for Statistical Programming R Core 

Team 

(2019) 

https://www.r-project.org/ 

RStudio RStudio 

Team 

(2019) 

https://rstudio.com/ 

tidyverse (R Package collection) Wickham 

et al. 

(2019) 

https://www.tidyverse.org/ 

lme4 (R Package) Bates et 

al. (2015) 

https://cran.r-

project.org/web/packages/lme4/index.html 

r/qtl (R Package) Broman 

(2003) 

https://rqtl.org/ 

ASmap (R Package) Taylor et 

al. (2017) 

https://cran.r-

project.org/web/packages/ASMap/index.html 

vcfR Knaus & 

Grunwald 

(2017) 

https://cran.r-

project.org/web/packages/vcfR/index.html 
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patchwork Pedersen 

(2019) 

https://cran.r-

project.org/web/packages/patchwork/index.ht

ml 

SNPRelate Zheng et 

al. (2012) 

https://github.com/zhengxwen/SNPRelate 

lmerTest Kuznetso

va et al. 

(2019) 

https://cran.r-

project.org/web/packages/lmerTest/index.htm

l 

car (R Package) Fox & 

Weisberg 

(2019) 

https://cran.r-

project.org/web/packages/car/index.html 
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Figure Legends (Supplemental Tables) 702 

Table S1 | Per-chromosome counts of crossover events for all lines. Each row lists the number of 703 

observed crossovers for each chromosome (Columns E-H) in the re-ordered reference genome for a 704 

single F1-Backcross individual (Column D). Population, inbred line and plate information are 705 

provided (AFC = American Fork Canyon, MC = Madera Canyon). Note that for purposes of 706 

comparing recombination rates, the unit of replication is inbred line and not individual.  707 

Table S2 | Fine scale estimates of crossover location for all lines. Each row corresponds to the 708 

observed “crossover state” (whether a crossover was observed between the previous and current 709 

position) for each location on all chromosomes of the re-ordered reference genome. Note that the 710 

total length of this file is greater than the maximum rows displayed by some versions of Microsoft 711 

Excel (i.e. the file will be truncated if viewed in Excel).  712 

Table S3 | D. melanogaster candidate genes and D. pseudoobscura homologues used for the 713 

candidate gene analysis. Each row lists a single D. melanogaster candidate gene (using Flybase Gene 714 
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IDs), along with the corresponding homologous gene in D. pseudooobscura, and its location in the 715 

re-ordered reference genome.  716 

Table S4 | List of PCR primers used in GT-seq library preparation. Each row lists the sequence of a 717 

single primer pair (forward, Column D and reverse, Column E). The primer ID is formatted as:  718 

[Reference Genome Chromosome]_ [PrimerID]_ [Reference Genome Start Coordinate].  719 
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Figure S1| Summary of the design and performance of GT-seq amplicon sequencing. (A) Spacing of amplicons on the four chromosomes of D. pseudoobscura (the 
X chromosome is separated into its two arms, by convention). Each rectangle represents one chromosome in the D. pseudoobscura reference genome, with 
alternating grey and white regions indicating assembly contigs. Contigs are ordered based on Schaeffer et al. (2008). Vertical lines indicate the location of the 
mapping-informative amplicons we designed for use in our GT-seq protocol. (B) The distribution of distances between all amplicons in kilobases. The dotted line 
indicates the median value. (C) Mean sequenced depth per amplicon for each 96-well plate sequenced in the study. Each boxplot depicts the distribution of mean 
depths (in reads) per amplicon for all the individuals in a single plate after alignment to the reference genome. Two separate pools (left and right boxes) were 
sequenced using a high and mid output kit respectively. 
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Figure S2 | Comparison of inferred marker orders in combined vs. individual datasets. (A) Recombination fraction heat maps for four representative maps. The 
combined map was built by pooling all samples before inferring marker order. Lighter colors correspond to larger recombination fractions between pairs of 
markers. (B) Inferred markers orders on Chromosome X for all isolines. Each square point is a single marker on chromosome X, and markers are ordered based on 
their rank (y-axis)  in each isoline-level individual map (x-axis).horizontal lines between points show the position of the same marker in each individual map. The 
color scale indicates the rank inferred from the combined map: major changes in marker order between the combined and individual maps would manifest as 
jumbled colors in the gradient, of which there are none. 
 
 
 



 
 
Figure S3 | Example of diagnostics of model fit for the generalized linear mixed models used throughout the paper. (A) and (B) above are derived from the 
model fitted in order to directly compare population differences in recombination rate. (A) A Q-Q plot showing the fit between sample Poisson quantiles and 
theoretical Poisson quantiles (the expectation is an approximate 1:1 fit, shown by the dashed line). To ensure positivity for plotting purposes, all samples values 
were transformed by adding a constant of +10 prior to plotting. (B) A plot of Pearson residuals vs. the fitted values of the model (the expectation is no trend in the 
mean or change in variance, shown by the dashed line).  
 
 



 
 
 
 
Figure S4 | Differences in recombination rate (AFC minus MC) for individual recombination intervals along the genome (position on x-axis). Each point 
represents the mean difference in rate for a single interval (all inbred lines considered together, n = 12 for all AFC intervals, n = 7 for all MC intervals), with vertical 
lines depicting 95% confidence intervals. Points are colored by their q-value (FDR corrected p-value) for a test comparing the to a null value of zero, with red 
outlines depicting intervals that exceeded intervals where q < 0.05 (of which there are none, in this case). 
 
 



 
 

 
 
Figure S5 | Between line variance (variance in recombination rate for all inbred lines, y-axis) for individual recombination intervals along the genome (x-
axis). Each point represents the interline variance for a single interval (all inbred lines considered together, n = 12 for all AFC intervals, n = 7 for all MC intervals). 
Points are colored by their q-value (FDR corrected p-value) derived from an ANOVA (F-test) with crossover rate as the response and inbred line as the explanatory 
variable, with red outlines depicting intervals where q < 0.05. 
 
 



 

 
 

Figure S6| Summary of the count (A) and size in base pairs (B) of structural variants 
identified via short and long read sequencing. Structural variant classes are: insertions 
(INS), deletions (DEL), complex indels (COMP), duplications (DUP), inversions (INV), 
transposable elements (TE). 

 
 




