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15 Summary

16~ While recombination is widely recognized to be a key modulator of numerous evolutionary

17 phenomena, we have a poor understanding of how recombination rate itself varies and evolves

18  within a species. Here, we performed a comprehensive study of recombination rate (rate of meiotic
19  crossing over) in two natural populations of Drosophila pseudoobscura from Utah and Arizona, USA.
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We used an amplicon sequencing approach to obtain high-quality genotypes in approximately 8000
individual backcrossed offspring (17 mapping populations with roughly 530 individuals each), for
which we then quantified crossovers. Interestingly, variation in recombination rate within and
between populations largely manifested as differences in genome-wide recombination rate rather
than remodeling of the local recombination landscape. Comparing populations, we discovered
individuals from the Utah population displayed on average 8% higher crossover rates than the
Arizona population, a statistically significant difference. Using a Q.-F.: analysis, we found that this
difference in crossover rate was dramatically higher than expected under neutrality, indicating that
this difference may have been driven by natural selection. Finally, using a combination of short and
long read whole-genome sequencing, we found no significant association between crossover rate
and structural variation at the 200-400Kkb scale. Our results demonstrate that (1) there is abundant
variation in genome-wide crossover rate in natural populations, (2) at the 200-400kb scale,
recombination rate appears to vary largely genome wide, rather than in specific intervals and (3)

interpopulation differences in recombination rate may be the result of local adaptation.

Keywords: recombination rate, evolution, meiosis, quantitative genetics, structural variation,

genetic map, Q«-Fs, Drosophila pseudoobscura

Introduction

Meiotic recombination is the exchange of genetic material between homologous chromosomes that
occurs during meiosis. This exchange has two major forms, crossing over and non-crossover gene
conversion, both of which are initiated by the formation of a double-strand break during meiosis.
Recombination, particularly crossing over, is a key mediator of chromosome pairing during meiosis,

with most species exhibiting an average of one crossover per chromosome arm [1,2].

While physical constraints often set a lower bound on rates of recombination, the evolution of
recombination rate and particularly the rate of crossing over (i.e.,, number of crossovers per
generation in a genomic interval) can have far-reaching effects on nearly every evolutionary
process [2-4]. For example, recombination rates can modulate processes as diverse as adaptation
to a new environment, the evolution of reproductive isolation, and the dynamics of introgression
between populations [5-8]. More generally, recombination rate determines the degree to which an
individual’s parental chromosomes are mixed in their gametes - i.e., how often novel allelic

combinations are generated in their gametes. Increases or decreases in this rate can be favored
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under different evolutionary or ecological conditions. For example, increasing the rate of
recombination can facilitate adaptation by increasing the probability that adaptive and maladaptive
alleles will be decoupled or that adaptive alleles will be brought together in the same genotype (i.e.,
overcome Hill-Robertson interference [9]). Increased rates of recombination are similarly favored
when fitness optima change rapidly between generations, e.g., under fluctuating selection [10]. On
the other hand, lower recombination rates can be favored under scenarios in which adaptive
combinations of alleles are at risk of being broken apart, such as under maladaptive gene flow [11].
Reduction/suppression also appears to have important consequences for the evolution of
reproductive isolation [11,12] and patterns of introgression and divergence in the genome

[8,13,14].

While there is a rich theoretical literature focused on the evolution of recombination rate, empirical
studies have lagged somewhat behind. One reason for this may be that recombination rate is
difficult to quantify directly - it generally requires the construction of a linkage map from a genetic
cross and/or cytological visualization of recombination-associated proteins [2,15,16]. Recently,
many studies have attempted to overcome this difficulty by instead estimating a population genetic
quantity known as p, the population scaled recombination rate [17]. This quantity is the product of
four times the effective population size and realized recombination rate (sometimes denoted “c”)
[18]. The general approach to estimating p is to perform coalescent simulations and fit a simulated
value of p to observed patterns of linkage disequilibrium (LD) [19-21]. While this approach has
proven successful at recapitulating many of the general features of the recombination landscape in
many species, it is not able to disentangle changes in LD per se (e.g. as a result of selection or
demography) from changes in recombination rate (either locally or genome-wide) [21,22]. Further,
these methods are highly sensitive to increases in LD that occur as a result of gene flow between
populations [22-24]. As such, LD-based methods are likely to be less appropriate for the study of

the evolution of recombination rate than direct estimates of recombination rate.

In spite of methodological difficulties, there has been a recent resurgence of interest in the
empirical study of the evolutionary causes and consequences of recombination rate [2,4,25]. One
key contributor to this resurgence has been the democratization of high throughput genotyping,
which has increased the tractability of creating high density linkage maps in non-model species (e.g.
using pedigreed populations or gametic sequencing, [26,27]). The increased availability of such

linkage maps has in turn led to a growing appreciation of the enormous diversity in recombination
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rate that exists between taxa [25]. This variation can manifest globally, i.e. genome-wide, or locally,

i.e. along a specific tract of a chromosome [25,28].

Studies using direct estimates of recombination rate have largely focused on describing differences
in recombination between species or sexes [25,29,30]. However, there are surprisingly few studies
focused on directly testing evolutionary hypotheses concerning variation in recombination rate. For
example, a key question that emerges from the theoretical literature is: is variation in
recombination rate shaped by natural selection [5,10,31]? While a tempting research direction, the
difficulty in measuring and manipulating recombination rate makes testing adaptive hypothesis a
non-trivial enterprise [2,4]. One approach may be experimental evolution, in which the proposed
selective agent that favors/disfavors changes in recombination rate is experimentally varied,
evolved differences in recombination rate are quantified, and these differences are then compared
to a null (non-adaptive) expectation [32]. This approach is powerful but highly laborious and
difficult to apply to natural systems. A more broadly applicable method for detecting the influence
of natural selection on a quantitative trait is perhaps the Q.-F.: approach [33]. Originating in the
quantitative genetics literature, this powerful method is designed to answer the question: are the
observed differences between populations in a quantitative trait greater than expected on the basis
of drift alone [33,34]? This question is formalized as a statistical hypothesis test that compares
variation in a quantitative trait (Q.) within and between populations to a null distribution of
variation in neutral genetic markers (F.) within and between populations [34,35]. While the Q«-Fs
is subject to many of the same limitations and assumptions as other methods for studying natural
selection in the wild it is also has a number of advantages, including the ability to detect very
recent natural selection and robustness to a variety of common demographic perturbations (e.g.
changes in population size or levels of migration). While the Q.-F.: method has enjoyed great
success in the quantitative and evolutionary genetics literature, it has not yet been applied to
testing the role of selection in shaping recombination rate. Given its flexibility and applicability to

any quantitative trait, we see Q«-F«as an ideal approach to this problem.

Along with quantifying intraspecific variation and the role of natural selection, we also have a poor
understanding of the genetic basis of differences in recombination rate between populations and
species. As is the case for other traits, identifying the genetic architecture of evolutionary changes
in recombination rate allows for a more complete explanation for how and why recombination rate
evolves [36]. One specific question is the degree to which variation in recombination rate manifests

as a local vs. global phenomenon. Local variation in recombination can arise due to structural
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variants that suppress recombination such as inversions and large deletions [37-39]. In contrast,
global variation can arise from mutations in the genes involved in meiosis and/or double-strand
break repair pathways [40]. Modifiers of both global and local rates of recombination have been
identified in laboratory and/or interspecific crosses, but their occurrence in natural populations of

individual species is only just beginning to be explored [26,29,40-42].

Here, we performed a comprehensive study of recombination rate (meiotic rates of crossover) in
two natural populations of Drosophila pseudoobscura from Utah and Arizona, USA. We made use of
modern sequencing and genetic map construction methods, along with the Q.-F. approach. We first
constructed individual-level genetic maps and discovered ample quantitative genetic variation for
recombination rate within and between populations of D. pseudoobscura. Interestingly, we found
that this variation largely manifested as differences in genome-wide recombination rate rather than
remodeling of the local recombination landscape. Interindividual differences in local genome
structure (e.g. structural variation) did not appear to influence recombination rate at the scale of
measurement, again suggesting that variation in recombination rate is largely governed by global
modifiers. Finally, using the Q«-F. approach, we discovered that between-population differences in
recombination rate are much greater than expected under a pure-drift model, suggesting that
natural selection may have shaped recombination rate variation in D. pseudoobscura. Together,
these results provide direct evidence for genetic variation in global modifiers of recombination and
support the hypothesis that natural selection can and does act to shape recombination rate in

natural populations.

Results

Genome wide recombination rate varies within and between populations

Genome-wide recombination rate varied significantly within and between the D. pseudoobscura
populations we studied. Within lines, there was a range of 4.27-5.86 crossovers per genome,
corresponding to 0.85-1.00 crossovers per chromosome arm on average (Figure 1A). This
between-line variation was statistically significant (p < 2.2x10-16, Likelihood Ratio Test Statistic=
141.13, df=1, comparison via dropping random effect of inbred line). At the population level, lines
from American Fork Canyon, UT had 5.20 + 0.17 crossovers per genome on average, while lines

from Madera Canyon, AZ had 4.82 + 0.21 crossovers per genome on average, a significant difference
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in genome-wide crossover rate (Figure 1B, Type Il Wald Test, p=0.018, df=1; Likelihood Ratio Test,
?12,=4.794, p=0.028).

That said, despite genome-wide differences, the local rates of recombination were extremely
similar among individuals and populations (Figure 1C & Figure 2A, R2 = 0.96, correlation test t =
68.866, df = 207, < 2.2x10-16). Indeed, in contrast to the aggregate genome wide difference we
observed in Figure 1B, only 19 of the 209 recombination intervals we assayed displayed significant
population-specific differences at the a = 0.05 level, and none were significant after FDR correction
(Figure S4). That said, some recombination intervals did show a significant effect of inbred line
identity (Figure S5) suggesting that there may be genetic variation for local recombination rates at
the 200-400kb scale. Finally, we found that chromosome-scale recombination rates were highly
correlated within lines, such that there was a strong trend that lines with high recombination rate
on one chromosome tended to also have high recombination on other chromosomes (Figure 2B;
average R2 = 0.78, all correlations significant via correlation tests, p <0.0001). In sum, these results
suggest that phenotypic variation in recombination rate within and between populations largely
manifests at the genome-wide scale. That said, our marker density prevents us from ruling out

finer-scale population-level differences in the recombination landscape (i.e. at the <200kb scale).

Population differences in recombination rate are greater than expected under neutrality

As expected from previous studies, genetic divergence between Madera Canyon, AZ and American
Fork Canyon, UT was very low: genome-wide Weir and Cockerham'’s Fgr was approximately 0.0039
(Figure 3A, mean Fgp of 6 591 high quality SNPs, MAF > 0.1, LD > 0.2; Fsr computed using WGS from
inbred lines was highly similar). Examining variation in recombination rate, we estimated a within
population (between line) variance component of 0.066 and a between population variance
component of 0.018, yielding an observed Qg of 0.212 (Figure 34, dashed arrow). Our parametric
bootstrap simulations of Q¢ suggest that this value of Qgris highly unlikely to be observed under
neutrality (0 of 10,000 Q¢; replicates were greater than the observed value of Qg7, thus p < 1.0x10-
6). Similarly, the parametric bootstrap estimates of Qsr-Fsr under neutrality do not overlap with
the parametric bootstrap observed values of Q¢r-Fsr, even when taking into account sampling
variance (Figure 3B). Together, these results indicate that while the observed phenotypic difference
in recombination rate between MC and AFC is modest, it greatly exceeds its expected value under
neutrality. This result is consistent with the hypothesis that natural selection has driven the

observed difference in recombination rates between populations.
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Nonsynonymous differences in meiosis genes are correlated with recombination rate

Of the 46 candidate genes examined, 33 had at least one non-synonymous polymorphism. Of these
33 genes, there were a total of 357 codons (out of a total of 29 964) with at least one non-
synonymous polymorphism. After controlling for multiple comparisons three of these sites in two
genes (asp and mei-41) were significantly associated with crossover rate (FDR adjusted p-value <
0.05, Figure 4A). Both asp and mei-41play key roles in meiosis and recombination: asp is involved in
spindle pole formation during cell division (both mitotic and meiotic) whereas mei-41 (also known
as ATR) is an important regulator of double strand break repair and meiosis checkpoint activation
[43,44]. Homozygous, nonsynonymous polymorphisms in these genes were associated with a 5%-
7% difference in recombination rate between lines (Figure 4B). There was, however, strong LD (r2
> 0.8) between these alleles (e.g. lines with the lowest averaged crossover rates shared genotypic
states for all three genes), and thus disentangling their independent effects on recombination rate
was not possible. We also note that the small number of lines examined here precluded more
powerful association methods (e.g. full GWAS) and further work will be required to experimentally

validate the contribution of these genes to variation in recombination rate.
Structural variation does not explain differences in recombination rate

Both short and long-read sequencing revealed extensive structural variation between inbred lines
of D. pseudoobscura. As expected, the three strategies we used to detect structural variation (GATK
INDELSs, PacBio SV and LUMPY/Smoove) varied in the number and relative proportions of the
various classes of structural variant they identified (Figure S6). That said, all three methods
suggested that the most common form of structural variation are small to mid-sized (10-100bp)
INDELSs, with larger deletions, insertions, and duplications being much rarer (Figure S6). Consistent
with the observation that AFC and MC are highly similar in their chromosomal arrangements, our
structural variant analysis found no evidence of large-scale chromosomal inversions differentiating

any of the lines.

Structural variation between lines did not co-vary with recombination rate (Figure 5). First, there
was no relationship between recombination rate and the estimated percent sequence homology
between the tester and inbred lines (Figure 5B, likelihood ratio test comparison of GLMMs , df = 3, p
= 0.3989). Second, there was no relationship between recombination rate and the count of
differences in structural alleles between each inbred line and the tester line (Figure 5A, likelihood

ratio test comparison of GLMMs , df = 3, p = 0.7617). This result was consistent across all methods
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used to identify structural variation (likelihood ratio tests, comparison of GLMMs with and without
method by count/homology interaction effects, all p > 0.3). As such, at the 300kb scale, there is no
evidence that the local differences in recombination rate among inbred lines are a result of

differences in homology or local genome structure.

Discussion

Recombination rate is a key modulator of many evolutionary processes, yet we have a poor
understanding of how recombination rate itself evolves. Here, we studied how recombination rate
varies using strains from two natural populations of D. pseudoobscura from Madera Canyon, AZ and
American Fork Canyon, UT. We directly measured recombination rate in a total of 17 inbred lines
from these populations and found substantial variation for recombination rate both within and
between populations. Interestingly, the population from Madera Canyon, AZ exhibited an ~8%
lower recombination rate on average than the population from American Fork Canyon, UT. Within
and between-population variation in recombination rate manifested largely as differences in
genome-wide recombination rate, rather than changes in the local recombination landscape. This
finding is supported by a general pattern of covariation in recombination rate among chromosomes
within lines. That said, our choice to assay greater numbers of individuals in fewer genomic
intervals prevents us from ruling out the possibility of finer-scale differences in the recombination
landscape between populations and lines. While overall differences in recombination rates between
populations were modest in absolute terms (~8% depending on the interval), a Q«-F. analysis
revealed that this difference vastly exceeds the amount of phenotypic divergence expected under
neutral drift. This result is consistent with the hypothesis that local adaptation has driven

differences in recombination rate between these populations.

We explored two possible mechanisms underlying recombination rate differences between lines.
First, we found evidence that some differences in recombination rate between lines may involve
non-synonymous coding changes in meiosis-related genes. Secondly, we found that local variation
in recombination rate between lines does not correlate with local structural variation at the 300kb
scale. These findings suggest that the differences in recombination we observed were driven by
alleles resulting in genome-wide changes in recombination rate rather than local remodeling of the
recombination landscape. Below, we discuss the relevance of our findings for the study of the

evolution of recombination rate and relationships to previous work.
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Recombination rate variation in natural populations

Previous work has shown that recombination can vary between individuals, or between
populations/species [25,26,45-47]. These studies have ranged from early work on chiasma
frequency in snails [48] to more recent work leveraging modern human population genomic data
[49,50]. The bulk of this work has focused on describing variation in recombination and its
potential molecular correlates. Further, most studies of natural populations have measured
recombination in uncontrolled environments (e.g. in the wild, [25]. Our study contributes to this
literature directly examining genetic variation for recombination rate both within and between
natural populations of a single species and performing one of the first tests that this variation is
shaped by natural selection. Together with previous work, our study contributes to a growing body
of evidence that there is ample genetic variation for recombination rate in natural populations, and

that recombination rate is actively evolving on observable timescales.

Secondly, we found that recombination rate varies primarily at the genome-wide scale rather than
via variation in specific genomic regions. Our candidate gene analysis suggests that this variation in
genome-wide recombination rate may be the result of allelic variation in meiosis-related genes (i.e.
asp and mei-41). This is in line with previous work connecting genetic variation in genes regulating
meiosis and/or crossover formation to variation in variation in genome-wide recombination rate
[29,47,49,51,52]. The emerging evidence for natural variation in gene-wide modifiers of
recombination is particularly intriguing given that many theoretical models of recombination
evolution make use of abstract “modifier” alleles that alter genome wide rates of recombination
[5,6]. Further characterization of such modifiers in natural populations may eventually allow direct

tests of theoretical models of recombination evolution [2].

Local adaptation of recombination rate

Our Q«-F.: analysis suggests that differences in recombination rate between Drosophila
pseudoobscura populations from AZ and UT may have been driven by natural selection. To our
knowledge, this is the first application of the Q«-F. method to the study of recombination, and
among the first evidence for the role of selection acting on genome-wide recombination rate in
natural populations [40]. However, while our results suggest a role for natural selection, the agent
of selection underlying this change remains unknown. There are a wide variety of possible

explanations for this difference [2]. For example, differences in recombination between the
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populations may be directly favored, or other phenotypic differences may be divergently selected
between the populations that incidentally affect recombination rate (via linkage or pleiotropy). One
intriguing possibility is local differences in climate: recombination rate in Drosophila is known to be
plastic with respect to ambient temperature [53]. Madera Canyon, Arizona has a mean annual
temperature of approximately eleven degrees Celsius higher than American Fork Canyon, Utah
(10.5°Cvs 21.6°C, [54]). Assuming that the temperature reaction norm is similar in both
populations, this higher temperature could, for example, cause an increase in realized
recombination rate in the Madera Canyon population in the wild. We speculate that the difference
in recombination rate we observed under constant conditions may be a compensatory response to
an environmentally-induced increase in recombination rate in order to return genome-wide
recombination rate to some optimum value (i.e., a response to maladaptive plasticity, [55]).
Further work will naturally be needed to connect variation in recombination rates to specific agents
of selection. One obvious extension of our approach would be a greater number of populations,
perhaps existing over a climatic gradient (or paired populations in differing environments). We
hope that our demonstration of the efficacy of the Q«-F. method inspires the undertaking of such

eco-evolutionary studies of recombination rate.

One caveat regarding our application of the Q«-F.: method is that our estimates of recombination
come from F1s, and we were thus only able to observe genetic variation underlain by dominant and
co-dominant effects. This is not ideal, as it potentially alters the distribution of Q.. relative to Fs,
which could bias the outcome of the Q«-F. test [35]. A dedicated simulation study aimed at
understanding the direction and magnitude of this bias would be of great utility for future work on

recombination using inbred lines.

Structural variation as a modulator of recombination rate

We found no association between among-line variation in recombination rate and among-line
variation in the abundance or size of structural variants. An important consideration here is that
this analysis was not intended to test whether average recombination rate (across all lines) is
associated with structural variation - this association is extremely well documented and is
unquestionably present in our data [56-58]. Instead, our goal was to test if among-line variation in
recombination rate in each genomic interval was explained by among-line structural differences,
using normalized metrics of both recombination rate and structural variation within each genomic

interval (as Z-scores, i.e. statistical controlling for average recombination rate).

10
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Why was there no detectable association between structural variation and local rates of
recombination? For one, our F1 cross design is not able to detect recessive-acting effects of
structural variation (e.g. those that only affect recombination in homozygous form). Secondly, a key
consideration in interpreting these results is the scale of our recombination estimates: much of the
previous work describing the effects of heterozygous structural variation on crossing-over was
performed at much finer scale, e.g. <1kb in Arabidopsis [59]. It may be that changes in
recombination resulting from structural variation are restricted to finer genomic scales (i.e.
<300kb) and that other types of regulators (e.g. variation in meiosis genes or the chromatin
landscape) modulate recombination at larger scale [40]. A notable exception to this is large scale
chromosomal inversions (notably absent in our lines), which are well known to affect
recombination at scales much larger than 300kb - upwards of 10Mb in many cases [60,61].
However, inversions likely have outsized recombination suppressing effects compared to other
forms of non-homology because of the loop structures they form during chromosome pairing
[60,62]. Further work will be required to disentangle the relative contribution of structural and

global/trans modifiers of recombination rate at different genomic scales.

Amplicon sequencing as a tool for genetic maps

Our ability to economically sequence hundreds of markers in thousands of individuals was made
possible by the GT-seq amplicon sequencing approach [63]. This technique is highly scalable, and
in our case, we likely could have sequenced many more markers (and/or individuals) while
maintaining a very high depth per amplicon. This method is an alternative to the increasingly
popular bulk-sequencing approaches, in which sample DNA is pooled prior to sequencing [64]. GT-
seq avoids some of the complexity of these approaches. For one, because it is a PCR-based method,
GT-seq does not require performing extraction, quantification and manual normalization of sample
DNA. This is a non-trivial consideration when individual sample sizes are in the thousands. Further,
unlike bulk-sequencing, amplicon sequencing provides individual-level genotypes. As such, the
occurrence of double/triple/etc. crossovers can be directly resolved, and problematic individuals
identified and removed during analyses. To our knowledge, these are both not currently possible
with bulk sequencing (unless barcodes are employed, limiting the total number of individuals in the
pool). The main drawbacks of amplicon sequencing are a decrease in resolution (number of
markers), and the need to pre-identify mapping informative markers. That said, we believe GT-seq

and amplicon sequencing more generally will be a useful tool for future studies of variation in

11
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326 recombination rate and can be readily paired with other approaches depending on the goals of the

327  study.
328 Conclusion

329  Recombination rate plays an important modulatory role in many evolutionary processes, but little
330  is known about how recombination rate itself evolves. Here, we studied natural variation in

331  recombination rate within and between two populations of Drosophila pseudoobscura. We found
332 extensive genetic variation for recombination rate within and between populations, with the

333 majority of variation detected manifesting as differences in overall genome-wide recombination
334 rate. This suggests that the differences in recombination we detected between lines may be the

335  result of genetic variation in trans-acting global regulators of recombination, an idea supported by a
336  significant association between non-synonymous variation in meiosis-associated genes and

337  recombination rate. We also found no evidence that among-line differences in local recombination
338 rate at the 300kb scale were correlated with structural variation within the lines. Finally, we

339  discovered that the magnitude of phenotypic difference in recombination rate between the two

340  populations was far greater than expected under a model of neutral trait evolution, suggesting that
341  the differences may have been driven by natural selection. Our study provides key insights in the
342 quantitative genetics of recombination rate and lays the groundwork for future research focused on

343  studying the recombination rate in natural populations.

344 Acknowledgements

345  Funding for this project was provided by National Science Foundation grants DEB-1545627,

346 1754022, and 1754439 to MAFN. KMS was additionally supported by a Natural Sciences and

347  Engineering Research Council of Canada Postdoctoral Fellowship. The tester line (MV2-25) was
348  generously provided by Dr. Steven Schaeffer. We thank Dr. Noah Whiteman and Dr. John Chaston
349  for assistance during fieldwork. Dr. Katharine Korunes, Dr. Jenn Coughlan, members of the Noor
350  Lab and three anonymous reviewers provided valuable feedback on the manuscript. Dr. Andrew
351  MacDonald provided guidance on statistical analyses. Dr. Armin Topfer provided advice on the use

352  of the pbsv software.

12



353

354
355
356
357

358

359

360

361
362
363
364
365

366

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

Author Contributions

Conceptualization, MAFN and KS; Methodology KS, BMW, KRR and MAFN; Software KS, Formal
Analysis KS; Investigation KS, BMW and KRR; Resources MAFN and BMW; Data Curation, KS;
Writing - Original Draft, KS. Writing - Review & Editing, KS, MAFN, BMW, KRR. Visualization, KS;
Supervision, MAFN; Project Administration, KS and BMW; Funding Acquisition, MAFN and KS.

Declaration of Interests
The authors declare no competing interests.
Supplemental Information

Document S1; Supplemental Figures S1-6.

Table S1 - Per-chromosome counts of crossover events for all lines.

Table S2 - Fine scale estimates of crossover location for all lines.

Table S3 - List of D. melanogaster candidate genes and D. pseudoobscura homologues.

Table S4 - List of primers used in GT-seq library preparation.

Figure Legends (Main Text)

Figure 1 | Recombination rate varies within and between populations of D. pseudoobscura. (A) Variation in
genome-wide crossing over frequency for 17 inbred lines. Lines are colored according to their population of origin
(Green, MC: Madera Canyon, AZ, Red, AFC: American Fork Canyon, UT.). Points depict the mean crossover frequency for
each line with vertical lines representing 95% confidence intervals (n = 384 per line). (B) Differences in crossover
frequency between AFC and MC. Jittered points are individual line means (from A), and larger points are marginal means
derived from mixed model regression coefficients along with 95% confidence intervals (error bars). (C) Variation in
recombination rate across the genome. Each panel depicts recombination rate along a single chromosome arm (columns)
in one of two populations (rows). Thick lines depict population average recombination rates, with lighter lines depicting
rates for individual inbred lines. Note that in D. pseudoobscura the X chromosome takes the place of a chromosome “1”.

See Figure S3 for an example of GLMM model fit diagnostics for this and other statistical comparisons.

Figure 2 | Recombination rate varies primarily at the genome-wide scale. (A) The correlation between
recombination rate measured in genomic windows (~300kb in size) in the MC and AFC populations. Each dot depicts a
single genomic window (all chromosomes combined). (B) The correlation between chromosome-wide mean
recombination rate between all pairs of chromosomes. Each point represents the recombination rate on two

chromosomes for a single inbred line. Points and lines are colored to indicate the particular pair of chromosomes being
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compared. Positive trends indicate that recombination rates are consistent across chromosomes within lines (i.e. they
vary genome-wide, and not idiosyncratically across chromosomes). See Figure S2 for comparisons of marker orders and
recombination fractions between line-specific genetic maps, and S4 and S5 for more detailed analyses of local variation in

recombination rate.

Figure 3 | Recombination rate Q«-Fs:exceeds neutral expectations. (A) Weir and Cockerham’s Fs: from 6591 RADseq-
derived SNPs (mean Fs; = 0.0039). The observed value of Qs: for recombination rate (0.212) is indicated with an arrow. (B)
Comparisons of the sampling distribution of Qs-Fs: expected under neutrality (green histogram) and the observed value
(yvellow histogram). Both distributions were simulated via a parametric bootstrap (see text). Black points with error bars

indicate the mean and 95% confidence interval of the sampling distributions.

Figure 4 | Non-synonymous substitutions associated with variation in recombination rate. (A) Regression
coefficients from linear models (y-axis) comparing genotype and crossover rate for sites (points) bearing non-
synonymous, non-reference polymorphisms in a collection of meiosis-related candidate genes (x-axis). Red points
indicate associations that were significant after adjustment via FDR correction (adjusted p-value < 0.05). (B) Mean
recombination rates (crossovers per chromosome arm) for sites with significant associations (red points in A). Each panel
depicts the mean and 95% confidence interval for crossover rates for each genotypic class (either homozygous reference

or homozygous non-synonymous derived). cs.

Figure 5 | Structural variation is not correlated with recombination rate at the 300kb scale. (A) The relationship
between normalized recombination rate and the normalized count of structural differences between each inbred line and
the tester line. Each point represents a single recombination interval (all approximately 300kb in length) from one inbred
line. Lines on each plot represent smoothed conditional means and are accompanied by 95% confidence intervals. Each
column depicts the relationship using each of the three methods used to assay structural variation. (B) The relationship
between normalized recombination rate and the difference in total sequence length between each inbred line and the

tester line. See Figure S6 for a detailed summary of the frequency and size of different classes of structural variation.

Figure 6 | Schematic of the crossing design and one method of interfering crossovers. (a) Isolines from MC and AFC
were individually crossed to tester lines to generate F1s, which were subsequently crossed to a “donor line” sharing the
same genotype as all isolines, but a different genotype than the tester line at all marker loci. Further, all markers were
selected such that only two alleles were found in all lines, with the tester line having one allele (“1”) and all other lines
including the donor line having the other (“0”). This allows for the scoring of crossovers as changes in heterozygosity, as
shown in (b). (c) Example genotypic data from one chromosome showing the number of inferred crossovers. White

genotype states indicate missing data. See also Figure S1 for details on the performance of GT-seq .
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STAR*Methods

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and protocols should be directed to and will be
fulfilled by the Lead Contact, Dr. Kieran Samuk (ksamuk@gmail.com). This study did not generate

new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We collected wild male and female Drosophila pseudoobscura from Madera Canyon, AZ, USA
(31°42'48.9"N, 110°52'22.4"W) and American Fork Canyon, UT, USA (40°26'38.9"N,
111°42'08.5"W) in May and July of 2015 respectively using bucket traps [65]. These populations
were chosen because they were known to share similar karyotypic configurations (e.g. inversions)
but also differ in their ecological context (i.e. xeric vs. sub-alpine). We returned live individuals to
the laboratory, isolated females, and created inbred lines from their offspring (one line per
surviving female). These lines were created by successive crosses between virgin siblings for a
minimum of 14 generations. The inbred lines (and all subsequent lines) were reared in 20C
incubators with 65% relative humidity and photoperiods of 14D:10N. The inbreeding process

resulted in a total of 7 inbred lines from Arizona and 12 from Utah.

METHOD DETAILS

RAD-seq libraries from wild samples

To generate a set of SNPs for estimating F.. between the Utah and Arizona populations, we
performed double-digest RAD-seq reduced representation sequencing. To begin, we extracted DNA
from single wild-caught individuals (excluding the females used to initiate the inbred lines) via
phenol-chloroform DNA extraction. We then performed a RAD-seq library preparation protocol
after [66]. The resulting libraries were sequenced in a single lane on an Illumina HiSeq 4000 at the

Duke Center for Genomic and Computational Biology sequencing facility.
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Whole genome sequencing of inbred lines

We performed both short read and long read whole genome sequencing on all 17 inbred lines, as
well as our testers line (MV2-25 and Flagstaff-14). The short read libraries were prepared by first
performing phenol-chloroform DNA extractions from pools of 20-30 individual female flies. We
quantified DNA purity and concentration via Nanodrop (Thermofisher Inc.) and Qubit (Qiagen Inc.).
The DNA samples were then submitted for library preparation and sequencing via [llumina
NovaSeq (300-400bp insert, 150bp paired end reads) at the Duke Center for Genomic and

Computational Biology sequencing facility.

The long-read libraries were prepared by first performing high-molecular weight DNA extractions
from pools of 20-30 female flies using Qiagen Midi/Mini Prep DNA extraction kits (Qiagen Inc.).
These were then assessed for fragment size via standard gel electrophoresis and submitted for
sequencing on a PacBio Sequel (4 SMRT cells, 4-5 samples multiplexed per cell) at the Duke Center

for Genomic and Computational Biology sequencing facility.

Whole genome variant calling: short read WGS and RAD-seq data

We identified variants in the short read data (both isoline whole genome sequencing and wild
population RAD-seq) using an analysis pipeline based on the GATK best practices [67,68]. The
complete code for this pipeline is available as a Github repository at

http://github.com /ksamuk/samuk et al curr biol 2020. All tools were run with default settings
unless otherwise indicated. Briefly, we aligned the reads for each sample to the D. pseudoobscura
reference genome (version 3.04 from FlyBase,

ftp://ftp.flybase.net/genomes/Drosophila pseudoobscura/) using bwa mem version 0.7.17 [69].

We marked adapters and duplicates using PicardTools [70], and performed individual-level
genotyping for each set of marked reads using the HaplotypeCaller. We then performed joint
genotyping on the resulting set of GVCFs via GenotypeGVCFs. We filtered SNPs in the resulting VCF
using the GATK Best Practices hard filters (see scripts for details), working in R 3.4.1 [71] with the
vcfR and tidyverse packages [72,73].

Creation of mapping populations

To estimate variation in crossover rate in our inbred lines, we created backcross-like mapping
populations (crossing scheme shown in Figure 6). We crossed groups of 3-5 males from each isoline
to single virgin females from the D. pseudoobscura reference genome isoline (MV2-25, provided by
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Dr. Steve Schaeffer). We then allowed the F, offspring to develop and collected virgin females from
the resulting offspring. Finally, we crossed these virgin F, females to males from a second fixed
isoline, Flagstaff-14 (a highly inbred isoline from Flagstaff, AZ). This resulted in a backcross-like
mapping population for each of the AZ and UT lines, in which all BC1 offspring had one maternal
chromosome from their F, mother and one paternal Flagstaff-14 chromosome with a fixed, known
genotype (Figure 6A). This design allows for straightforward mapping of recombination events that
occurred in F, females. As such, our estimates are unable to detect any variation in recombination
due to recessive-acting effects and may underestimate total recombination rates (e.g. from
modifiers that act in an additive fashion) in the pure inbred lines. Critically, this potential
underestimation is identical across all F, families, and thus cannot (in and of itself) generate

systematic differences in recombination rate between lines or populations.

Genotyping of mapping populations

Because our goal was to quantify the number of crossovers per generation rather than their precise
location, we performed low density, genome-wide SNP genotyping using an amplicon sequencing
approach. To do this, we adapted the ‘GT-seq’ method outlined in [63]. A summary of the design and
performance of this method is depicted in Figure S1. To begin, we identified SNPs genotyped in the
whole genome dataset that were unique to the MV2-25 isoline (i.e. fixed for one allele in all 19
inbred lines and Flagstaff-14 and fixed for another allele in MV2-25). Genotyping these markers in
BC1 individuals allows the recovery of genotypic phase simply by examining the genotype of the
marker SNPs - regions with UT or AZ ancestry are represented as runs of heterozygous SNPs and
regions with MV2-25 ancestry are represented as runs of homozygous SNPs (see diagram in Figure
6B). In total, we selected 500 of these SNPs evenly spaced at approximately 300kb intervals along
each chromosome (Figure S1 A & B). Note that this choice of marker density is optimized to detect
small differences in genome wide recombination rate and cannot completely resolve fine scale (i.e.

<300kb) variation in the recombination landscape.

We designed primer pairs to generate ~200-300bp amplicons containing each of our target SNPs.
These primer pairs were optimized to minimize primer-primer interactions during multiplex PCR
(primer design service provided by GT-Seek Ltd., [daho, USA). With these primers in hand, we
performed two test library preps using the GT-seq protocol described in Campbell et al. (2015). We
sequenced the first test library on a MiSeq (V3 flow cell, [llumina Corp., California, USA), and

identified poorly performing amplicons using the criteria outlined in Campbell et al. (2015), i.e. high
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dropout, low representation among individuals, evidence of amplicons mapping to duplicate
regions, etc. (service provided by GT-Seek LTD, Idaho, USA). We then prepared a second test library
with the primers for the poor-performing amplicons omitted and sequenced it as above. A final
screen for poor-performing amplicons resulted in a final set of 390 amplicons ranging from 200-

300bp, each containing at least one recombination-informative SNP.

After optimizing our panel of amplicons, we used GT-seq to genotype approximately 400 BC1
offspring from each mapping population (400 individuals from each of 19 lines, a total of
approximately 7600 individuals). We created two pools of 40 plates (individuals and plates are
individually barcoded as part of GT-seq library preparation) and submitted these for sequencing on
an [llumina NextSeq 500 (1« pool: High Output Reagent 150 PE Reagent Kit, 2« Pool: Mid Output 150
PE Kit, [llumina Corp., California) at the Duke Center for Genomic and Computational Biology
sequencing facility. We called SNPs in our sequenced GT-seq amplicons using an identical approach
to our whole genome short read data. The final dataset contained 679 total variants across all
amplicons, sequenced to an average depth of ~200X (Figure S1 C). While there was some variability
in sequencing depth between amplicons (mean coefficient of variation for depth of amplicon
sequence was ~0.75), the overall high depth of sequencing resulted in the vast majority of
amplicons having >100X coverage (Figure S1 C). We performed further quality control on the
resulting SNPs in R using the vcfR and tidyverse packages [72,73]. First, we dropped any markers
that mapped to genomic locations outside our original targeted amplicons. Next, we dropped any
individuals that had an average depth below 10X (19/7600 individuals). Finally, we removed any
markers that displayed any evidence that they were in fact not unique to the tester line. This was
done by removing markers displaying: (1) any evidence of segregation distortion, (2) any evidence
that any of the isolines were in fact polymorphic for the marker or (3) high dropout (i.e.
represented in fewer than 75% of samples). In some cases, the source of marker dropout was
clearly an undetected INDEL polymorphism in the amplified regions, which, for consistency among
lines, we erred on the side of removing rather than recoding as them as markers for mapping. The
final set contained 344 mapping-informative SNPs. After filtering, we recoded all SNP genotypes as
‘0’ for the isoline/donor line state and ‘1’ for the tester line state. Because of the backcross design,

the only possible genotypes were thus ‘0/0’and ‘0/1".
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Detection of recombination events

We identified crossovers in two steps: (1) ancestry assignment of chromosome segments and (2)
crossover counting. To begin, we updated the genomic ordering of our markers using the genomic
scaffold ordering from [74]. Note that this reordering results in movement and replacement of
contigs between chromosomes, and as such overall physical lengths of the reordered chromosomes
are different from that of the most current D. pseudoobscura reference (version 3.04). After markers
had been reordered, we assigned the ancestry (isoline or tester) of chromosomal segments by
identifying runs of 0/0s and 0/1s. In regions with a single ancestry assignment, we imputed (via
parsimony) across gaps of missing markers (e.g. due to filtration or dropout) shorter than 2
markers (~400kb). After local ancestry was assigned, we counted crossovers by counting the
number of ancestry changes (from 0/0 to 0/1) along each chromosome in each individual using the
function countXO in R/qtl [52]. Following the recommendations in [75], we ignored double
crossovers spanning less than 2 markers (~400kb) and/or individuals displaying more than four
crossovers on a single chromosome: crossover interference should make close range double
crossovers exceedingly rare, and thus these cases likely represent genotyping or marker-order
errors. It is also worth noting that our method of crossover detecting relies on quantifying
crossover events in live-born offspring. As such, any extreme changes in crossover patterns
incompatible with proper chromosome segregation during meiosis will not be observed (i.e.

because they are lethal or lead to gamete degradation).

This crossover counting method assumes that the order of markers on each chromosome is
identical in each line. Differences in marker order could, for example, generate spurious double
crossovers (although ignoring short double crossovers reduces this problem). To directly address
the possibility of different marker orders among lines, we created separate genetic maps for each
isoline using the R packages r/QTL and ASMap [75,76]. Following the general recommendations
from the documentation, these two packages agnostically infer linkage group assignment, marker
order, and genetic distances between markers. Overall, there was high concordance in marker
order between all the individually-inferred maps (Figure S2). Individual recombination rate
estimates within each line were highly similar when using the reference genome marker order or
individually-inferred marker orders (Figure S2, Spearman rank correlation = 0.93, p < 2.2x10+). We
thus elected to use the reference genome marker order (reordered based on [74]) for all
subsequent analyses. Individual estimates of crossover events are provided in Table S1 and Table

S2.
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Candidate genes associated with recombination differences

We explored the possibility that between-line variation in meiosis-related candidate genes may
underlie between-line differences in recombination rate. We were specifically interested in the
hypothesis that coding changes in meiosis genes underlie any differences in recombination rate
between inbred lines (and act dominantly or additively in the F1s). To do this, we first assembled a
list of candidate genes from Anderson et al. 2009 and Hunter et al. 2016 [29,77] (full list in Table
S3). We then obtained the FASTA sequences for these genes in each line by intersecting the short
read variant calls (including INDELs) with the D. pseudoobscura reference genome CDS for each
candidate gene. To ensure proper alignment, we then performed multiple alignment of the line-
level FASTA sequences and the reference CDS using MAFFT version 7.407 [78]. Once the sequences

had been aligned, we identified non-synonymous, non-reference alleles in each line.
Association between local structural variation and recombination rate

Along with the candidate gene approach to examine associations with genome-wide recombination
rate, we also investigated the possibility that small-scale differences in genomic structure between
the inbred lines may explain differences in recombination rate. This may be of particular
importance given that our design required measuring recombination rate in F, individuals (inbred
line x tester line), and that structural heterozygosity has a well-known negative association with

recombination rate [37,60,79].

To test if differences in genome structure underlie local differences in recombination rate in our
inbred lines, we first identified structural variants (SVs) using two approaches. First, we used the
SVtools pipeline [80]._to identify SVs using paired-end short read data. This pipeline identifies
structural variation using a variety of genomic signatures, particularly split reads (different parts of
a single read mapping to multiple discrete locations) and discordant reads (paired end reads
separated by a much greater genomic distance than expected on the basis of their insert size).
SVtools can identify insertions, deletions, inversions, duplications, and other classes of
rearrangements. The general procedure is to identify split/discordant reads using the tools
SAMBAMBA and SAMBLASTER, which are then analyzed and annotated with the SVtools variant
callers [81,82]. The resulting structural variant VCF was filtered via empirical cut offs using the
guidelines in [80]. Along with SVtools, we separately identified structural variation in the PacBio
long reads dataset using the PacBio structural variant pipeline and tools, pbsv

(https://github.com/PacificBiosciences/pbsv, see also [83]). This involves aligning the long reads
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with minimapZ2 (accessed via the ppmm2 wrapper), identifying individual signatures of structural
variation using pbsv, and jointly calling structural variation from the combined set of signatures.
This again results in a VCF containing structural variants, which we filtered using empirical cutoffs

as before.

After identifying structural variants, we next quantified the total difference in sequence homology
between each line and the tester line (MV2-25) for each genomic interval where recombination was
measured (~300kb windows). To do this, we summed the total number of non-shared, non-
reference base pairs between each line and the tester line. We included SNPs, inversions, insertions,
deletions, and translocations in this calculation. This method collapses multiple classes of genomic
variation into a single, consistent metric and avoids the ambiguity associated with identifying
shared locations of breakpoints for the structural variants (e.g. needed for per-variant
associations). Further, this method focuses on the most likely biological cause of structurally-
mediated recombination suppression, i.e. differences in homology per se, which has been widely
demonstrated in many species [84-86]. We also tabulated the total count of structural variant
alleles (of any type) that differed between each isoline and the tester line for each recombination
interval. We normalized all homology estimates and structural variant counts in each window using
both the total number of genotyped base pairs in each window as well as the mean depth per

isoline.

QUANTIFICATION AND STATISTICAL ANALYSIS

Population differences in recombination rate

We quantified differences in recombination rate between populations using a generalized linear
mixed model fitted with the R package Ime4 [87]. This model had the form crossover count ~
population + (1]inbred line), with a Poisson error distribution and a log link function (in order to
accommodate the non-normal nature of crossover counts). We checked for violations of model fit
for this and all subsequent models using a QQ-plot and a fitted vs. Pearson residuals plot (see
Figure S3 for an example). To test the fixed effect of population, we performed a Type Il Wald Test
using the function “Anova” from the car package [88], as well as a Likelihood Ratio Test comparing
models with and without the population term. Note that these two tests focus on a slightly different
hypothesis (i.e. that the populations are significantly different in recombination rate, on the basis of

phenotypic variance alone) than the Q¢r-Fgranalysis below.
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QST-FST Analysis

To test the hypothesis that population-level differences in recombination rates are driven by
natural selection, we performed a Qgr-Fgr analysis [33,35,89]. We began by computing a point
estimate of Qg for genome-wide recombination rate using Im4 by fitting a linear mixed effects
model with the following form: crossover count = intercept + (1[inbred line) + (1[population). We
extracted the variance components for population and inbred line (nested in population) using the
R function varcomp(). Following [55] we computed Qsrusing the following formula:
1 — aéG

( )QST - Uéa"’"t%va

Where o2, denotes the between-group (population) variance and o, denotes within-group (inbred

line nested in population) variance. Note that the within-group variance term in the denominator is

not multiplied by two in the case of haploids or completely inbred lines [89].

We computed Fgr using SNPs genotyped via RAD-seq in wild AZ and UT individuals. To do this, we
converted the GATK VCF to a SNP table using vcfR and the tidyverse package in R ( see analysis
scripts). We then converted the resulting SNP table for manipulation in the R package SNPRelate
[90]. Using SNPRelate, we first performed LD pruning (default settings, r < 0.2) to reduce statistical
non-independence between SNPs [91]. This resulted in a dataset composed of 16 individuals for AZ
and 42 for UT, with a total of 6 591 high quality SNPs. We then computed per-SNP estimates of Weir
and Cockerham'’s Fgr using SNPRelate, requiring filtered sites to have a minimum minor allele

frequency of 0.1.

We assessed the statistical departure from neutrality for each value of Q¢ using the Null-QST
method outlined in [35] and [55] with a modification to accommodate trait data from inbred lines.
The general approach outlined in these two references is to simulate the expected distribution of
for a neutral trait (denoted Q&, neutral Q..) via a parametric bootstrap, and use this distribution as

the basis of a statistical test of the hypothesis Q¢ > Q.

To simulate the distribution of Q%-we first estimated the between-group (03;) and within-group
(03,) variance components. We obtained these values via REML estimation by fitting mixed-effects
linear models using the function Imer in the R package Ime4 [87]. These models took the form
crossover count ~ intercept + (1[population) + (1/line). We extracted the variance components

(standard deviations of the random effects) using the function VarComp from Ime4.
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We next generated 10 000 (nonparametric) bootstrap estimates of the mean value of Weir and
Cockerham’s Fgr by resampling the RADseq SNPs with replacement, and computing genome-wide
mean Fgrusing SNPRelate. We then generated 10 000 matching parametric bootstrap estimates of
the 0, by multiplying the REML point estimate by a random draw from a y? distribution with
degrees of freedom equal to the number of inbred families (df = 17). Next, we generated parametric

bootstrap estimates of the expected values of g3, for a neutrally evolving trait using the equation:

boot(Fst )boot(oiy¢)
1-boot(Fst)

(2) boot (03;) = X y>(n=1df =1)

With (2) above being modified from [35] to accommodate complete inbreeding. In equation (2),
“boot” indicates individual bootstrap samples for each quantity, and the y? term represents a draw
from a y2distribution with degrees of freedom equal to the number of populations minus one (one,
in this case). This procedure results in 10 000 bootstrap samples for 63, and o3, from which we
computed 10 000 bootstrap samples of Q¢rusing equation (1). We finally computed a p-value for
the observed value of Qg by determining the number of Qg values that exceeded the observed
value of Q¢ distribution. We also computed a confidence interval for Q¢ — Fgr (the difference
between Qs and Fgr, expected to be zero under the neutral model) by subtracting each value the
Q% — Fsr distribution from the observed value of Qg7 — Fsr (after [55]). Note that while we
computed the distribution of Fg; from the independently-sourced RAD-seq data, the distribution of
Fsr was nearly identical when computed using SNPs derived from the short read whole genome

sequencing of the inbred lines themselves.
Candidate genes associated with recombination differences

Using the candidate gene data from the inbred lines, we tested for associations between inbred line
recombination estimates and genotype at each site where at least one non-synonymous change
occurred in each gene. To this end, we fit linear models with recombination rate as the response
and genotype (at all variable non-synonymous sites) as the predictor. This yielded a p-value for
each genotype vs. recombination comparison. In order to control for the possibility of false
positives, which we adjusted via the FDR approach [92], with FDR < 0.05 adjustments performed
using the function p.adjust in R. A main caveat to this approach is that the small number of lines and
large number of variable sites limits our power and ability to include controls for genetic

background, genotype at “non-meiosis” genes, etc. As such, we consider the function of this analysis
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to be mainly hypothesis-generating and to serve as a bridge between our results in previous

molecular work.
Association between local structural variation and recombination rate

We tested the association between normalized sequence homology and recombination rate via a
hierarchical linear model fit using the function glmer from the R package Ime4 [87]. This model had
the form: recombination rate ~ method * homology + (1[window identity) + (1[inbred line), with
Poisson-distributed errors and a log link function. Assigning window identity (i.e. genomic region in
which recombination and homology were measured) as a random effect controls for mean local
variation in recombination rate (i.e. normalizes the absolute recombination rates among windows).
Similarly, modelling inbred line identity as a random effect controls for genome-wide differences in
recombination rate, which are unrelated to local variation. We assessed the significance of the
homology term in the model by comparing the full model to a model with only random effects via a
likelihood ratio test in R. We finally repeated this model fitting procedure with the normalized

count of differences in structural variant alleles as the predictor.

DATA AND CODE AVAILABILITY

All analysis code employed throughout the paper is available as a Git repository at:

https://github.com /ksamuk/samuk et al curr biol 2020

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Flagstaff14 This N/A
study
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MV2-25

Dr.
Steven

Schaeffer

N/A

American Fork Canyon Inbred Lines

This
study

N/A

Madera Canyon Inbred Lines

This
study

N/A

Chemicals, Peptides, and Recombinant Proteins

Qiagen Plus Multiplex PCR Master Mix Qiagen Cat # 206145

Charm Biotech Just-A-Plate 96 PCR Charm Cat #JN-120-10

Purification and Normalization Kit Biotech

AmpureXP beads Beckman | Cat# A63881
Coulter

Deposited Data

PacBio Sequel Whole Genome Sequencing This SRA PRJNA610090
paper

[llumina HiSeq Whole Genome Sequencing This SRA PRJNA610029
paper
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[llumina HiSeq ddRAD-seq Sequencing This SRA PRJNA610904
paper
[llumina NovaSeq Amplicon Libraries (High | This Dryad Accession TBD
Output) paper
[llumina NovaSeq Amplicon Libraries (Mid | This Dryad Accession TBD
Output) paper
Analysis scripts This https://github.com/ksamuk/samuk_et_al_curr_
paper biol_2020
Oligonucleotides
GT-Seq Primers - See Table S4 This N/A
paper
[llumina Small RNA sequencing primer [llumina N/A
(CGACAGGTTCAGAGTTCTACAGTCCGACGAT
C)
Software and Algorithms
samtools Lietal. http://www.htslib.org/
(2009)
Bwa2 Li (2013) | https://github.com/Ih3/bwa
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GATK Poplin et | https://gatk.broadinstitute.org/hc/en-us
al. (2017)
R for Statistical Programming R Core https://www.r-project.org/
Team
(2019)
RStudio RStudio https://rstudio.com/
Team
(2019)
tidyverse (R Package collection) Wickham | https://www.tidyverse.org/
et al.
(2019)
Ime4 (R Package) Bates et https://cran.r-
al. (2015) | project.org/web/packages/lme4/index.html
r/qtl (R Package) Broman https://rqtl.org/
(2003)
ASmap (R Package) Taylor et | https://cran.r-
al. (2017) | project.org/web/packages/ASMap/index.html
vcfR Knaus & https://cran.r-
Grunwald | project.org/web/packages/vcfR/index.html
(2017)
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patchwork Pedersen | https://cran.r-

(2019) project.org/web/packages/patchwork/index.ht
ml

SNPRelate Zheng et | https://github.com/zhengxwen/SNPRelate
al. (2012)

ImerTest Kuznetso | https://cran.r-
va et al. project.org/web/packages/ImerTest/index.htm
(2019) 1

car (R Package) Fox & https://cran.r-
Weisberg | project.org/web/packages/car/index.html
(2019)

701
702 Figure Legends (Supplemental Tables)

703  Table S1 | Per-chromosome counts of crossover events for all lines. Each row lists the number of
704  observed crossovers for each chromosome (Columns E-H) in the re-ordered reference genome for a
705  single F1-Backcross individual (Column D). Population, inbred line and plate information are

706  provided (AFC = American Fork Canyon, MC = Madera Canyon). Note that for purposes of

707  comparing recombination rates, the unit of replication is inbred line and not individual.

708  Table S2 | Fine scale estimates of crossover location for all lines. Each row corresponds to the

709  observed “crossover state” (whether a crossover was observed between the previous and current
710  position) for each location on all chromosomes of the re-ordered reference genome. Note that the
711 total length of this file is greater than the maximum rows displayed by some versions of Microsoft

712 Excel (i.e. the file will be truncated if viewed in Excel).

713 Table S3 | D. melanogaster candidate genes and D. pseudoobscura homologues used for the

714 candidate gene analysis. Each row lists a single D. melanogaster candidate gene (using Flybase Gene
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IDs), along with the corresponding homologous gene in D. pseudooobscura, and its location in the

re-ordered reference genome.

Table S4 | List of PCR primers used in GT-seq library preparation. Each row lists the sequence of a
single primer pair (forward, Column D and reverse, Column E). The primer ID is formatted as:

[Reference Genome Chromosome]_ [PrimerID]_ [Reference Genome Start Coordinate].
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Figure S1| Summary of the design and performance of GT-seq amplicon sequencing. (A) Spacing of amplicons on the four chromosomes of D. pseudoobscura (the
X chromosome is separated into its two arms, by convention). Each rectangle represents one chromosome in the D. pseudoobscura reference genome, with
alternating grey and white regions indicating assembly contigs. Contigs are ordered based on Schaeffer et al. (2008). Vertical lines indicate the location of the
mapping-informative amplicons we designed for use in our GT-seq protocol. (B) The distribution of distances between all amplicons in kilobases. The dotted line
indicates the median value. (C) Mean sequenced depth per amplicon for each 96-well plate sequenced in the study. Each boxplot depicts the distribution of mean
depths (in reads) per amplicon for all the individuals in a single plate after alignment to the reference genome. Two separate pools (left and right boxes) were

sequenced using a high and mid output kit respectively.
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Figure S3 | Example of diagnostics of model fit for the generalized linear mixed models used throughout the paper. (A) and (B) above are derived from the
model fitted in order to directly compare population differences in recombination rate. (A) A Q-Q plot showing the fit between sample Poisson quantiles and
theoretical Poisson quantiles (the expectation is an approximate 1:1 fit, shown by the dashed line). To ensure positivity for plotting purposes, all samples values
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Figure S4 | Differences in recombination rate (AFC minus MC) for individual recombination intervals along the genome (position on x-axis). Each point
represents the mean difference in rate for a single interval (all inbred lines considered together, n = 12 for all AFC intervals, n =7 for all MC intervals), with vertical
lines depicting 95% confidence intervals. Points are colored by their g-value (FDR corrected p-value) for a test comparing the to a null value of zero, with red

outlines depicting intervals that exceeded intervals where q < 0.05 (of which there are none, in this case).
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Figure S5 | Between line variance (variance in recombination rate for all inbred lines, y-axis) for individual recombination intervals along the genome (x-
axis). Each point represents the interline variance for a single interval (all inbred lines considered together, n = 12 for all AFC intervals, n =7 for all MC intervals).
Points are colored by their q-value (FDR corrected p-value) derived from an ANOVA (F-test) with crossover rate as the response and inbred line as the explanatory

variable, with red outlines depicting intervals where q < 0.05.
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Figure S6/ Summary of the count (A) and size in base pairs (B) of structural variants
identified via short and long read sequencing. Structural variant classes are: insertions
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