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Abstract—This paper focuses on application of subspace
identification methods to predict the thermal dynamics of bio-
implants, e.g. UEA. Recursive subspace identification method
implemented in this paper predicts the temperature readings of
heat sensors in an online fashion within a finite time window
and updates the system parameters iteratively to improve the
performance of the algorithm. Algorithm validation is realized
using COMSOL software simulations as well as using an in vitro
experimental system. Both simulation and experimental results
indicate that the proposed method can accurately predict the
thermal dynamics of the system. The experimental results show
online prediction of the thermal effect with a mean squared
error of 1.569×10−2°C for randomly generated Gaussian inputs
and 3.46×10−3°C for square wave inputs after adaptive filters
converge.

Index Terms—subspace identification, predictive modeling,
implantable medical device, thermal effect

I. INTRODUCTION

Implantable medical devices (IMDs) have become increas-
ingly important in the modern society due to their increased
functionality in monitoring, recording neural signals and
providing required stimulation for medical purposes. Such
improved capabilities of IMDs require higher power con-
sumption and can potentially lead to overheating in the
surrounding tissue of IMDs in certain applications, such
as neural prostheses deep brain stimulators (DBS). Many
neural prostheses need to constantly stimulate the body
with electrode arrays and communicate with external devices
continuously for monitoring and recording purposes. As a
result, continuous operation of such implantable devices for
long periods of time can cause a temperature increase that
is significant. European standards for active IMDs require
that the maximum temperature difference between the outer
surface of the implant and the normal body should not exceed
2°C [1]. An example of the detrimental thermal effect of
neural prostheses discussed in [2] and [3] is that a patient
with implanted DBS suffered a serious brain damage due
to overheating in brain tissue surrounding the DBS and
subsequently died.

Online prediction of the thermal effect caused by an
implantable medical device is essential for the real-time
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thermal management. In [4], finite element analysis (FEA)
and finite difference time domain (FDTD) are proposed to
solve the Pennes bioheat equation which models the thermal
effect of IMDs. The aforementioned numerical methods solve
for the heat dissipation and electromagnetic field for the
whole computational domain for each time instance. Due to
the space and time complexity of these numerical methods,
they are not suitable for applications of real-time thermal
management. In [5] and [6], Chai et al. proposes a recursive
multi-step prediction error minimization method (RMSPEM)
to update the model parameters online and achieve real-time
thermal management of implantable devices. In their work,
the thermal effect of a single heat source is investigated.

In this paper, an alternative method based on subspace
identification is explored for modeling the thermal dynam-
ics of the implantable device with multiple heat sources.
Substantial progress has been made to identify an LTI
state-space model of a dynamic system from system inputs
and corresponding measurements, an example of which is
presented in [7]. Online prediction algorithm used in this
paper is based on the predictor-based subspace identification
(PBSID) method, proposed in [8]. The algorithm presented in
[8] uses the high-order vector auto-regressive with exogenous
inputs (VARX) predictor from [7], since the performance of
the VARX predictor compares favorably to other subspace
identification algorithms [9]. In our application, we imple-
ment this subspace identification algorithm with a first order
VARX predictor to model slowly time-varying parameters
of a multiple-input system. Performance of the algorithm
implemented in this paper is comparable to the performance
of the RMSPEM algorithm proposed in [5] and [6], while
having a relatively lower computational cost.

An implantable neural prosthetics based on UEA is used
to evaluate the implemented online thermal prediction algo-
rithm. UEA is chosen as the bio-implant since it has become
a benchmark for neural recording and its thermal effect has
been investigated in previous literature [10]. As described
in [6], the UEA consists of radio, power, and motherboard
module. Different from the previous work, there exists multi-
ple heat sources whose power consumption can be controlled
through the control input, and multiple temperature sensors



spatially distributed on the motherboard. We consider that
each temperature sensor measures the temperature change
of a subsystem and assume in this paper that the spatial
correlation of the overall system can be implicitly solved by
modeling the overall system as a combination of subsystems
as shown in Figure 1. Thus, it would be possible to investigate
the performance of PBSID algorithm on characterizing the
thermal effect of the implantable devices with multiple heat
sources.

Fig. 1: Illustration of the overall system diagram.

II. ONLINE PREDICTION ALGORITHM

For each subsystem Si, the dynamics can be written as the
following state-space model:

xk+1 = Axk +Buk + wk

yk = Cxk +Duk + vk
(1)

where xk, wk ∈ Rn, uk ∈ Rr, yk, vk ∈ Rl. wk and vk are
process noise and measurement noise vectors respectively.
We assume wk and vk are zero-mean Gaussian sequences.
Using Kalman filter theory, we can correlate the noise vectors
wk and vk via a Kalman gain K. Then, we can re-formulate
(1) into the innovation form as follows

x̂k+1 = Ax̂k +Buk +Kek

yk = Cx̂k +Duk + ek
(2)

where x̂k ∈ Rn denotes the predicted state vector with
expected value of state error equals to zero. ek ∈ Rl denotes
the zero-mean innovation sequence, and K ∈ Rn×l is the
Kalman gain. We use vector auto-regressive with exogenous
inputs (VARX) model for the thermal dynamics of the
multiple-input, single output (MISO) subsystem. One-step-
ahead VARX predictor can be written as

ŷk|k−1 =

p∑
i=0

αiuk−i +

p∑
i=1

βiyk−i (3)

where ŷk|k−1 is the output of the subsystem at time instant
k predicted by the algorithm using a finite window of past
inputs and outputs. p denotes the length of the finite window

of past data. Ξ̄k ∈ Rl×p(r+l)+r consists of VARX paramaters
which need to be estimated.

Ξ̄ :=
[
αp αp−1 ... α0 βp ... β1

]
(4)

Using VARX model, we can estimate Markov parameters of
the system as shown in [11], [8].

A. Regularized Batch Pre-processing

Prior to online prediction, initial values for Markov pa-
rameters of the system are determined by using a batch
of data. This procedure is called batch pre-processing. First
step in batch pre-processing is to construct stacked matrices
U , Y , and Hankel matrices for Ȳp and Ūp as shown in
[8]. Using these stacked matrices, parameters of the linear
VARX predictor in (3) can be estimated using least squares
regression as follows:

Ξ̄ = YΨ†

Ψ =
[
ŪTp UT Ȳ Tp

]T (5)

where (.)† denotes pseudo-inverse of the matrix.
Tikhonov regularization introduced in [12] is applied

to the batch pre-processing by modifying (5) with Ξ̄ =
YΨT (ΨΨT + µI)−1 where µ is the regularization term
selected to minimize the estimation error.

Once the VARX predictor parameters Ξ̄ is computed,
product of the extended observability matrix and state se-
quence, Γ̂X , can be estimated from input-output data using
the extended observability and controllability matrices, Γ̃L
and Γ̃K, that are constructed from Ξ̄. Since the size of our
future window is f = 1, Γ̃L and Γ̃K for our subsystems
would be

Γ̃L =
[
αp αp−1 ... α1

]
Γ̃K =

[
βp βp−1 ... β1

] (6)

Using the matrices in (6), we compute the state sequence
as follows

Γ̂X = W (Γ̃LŪp + Γ̃KȲp) (7)

where W matrix is the weighting matrix. For simplicity, we
assume W = I . We derive the predicted full state sequence
X̂ from Γ̂X sequence by solving the low-rank approximation
with SVD

Γ̂X =
[
Un U⊥

] [Sn 0
0 S

] [
Vn
V⊥

]
X̂ = S

1
2
n Vn

(8)

System matrices A,B,C, D, and the Kalman gain K can
then be computed by solving the second linear problem in
(1) with least squares method

[
C D

]
= Y

[
X̂
U

]†
(9)

With matrices C and D, innovation sequence Ê, i.e. estima-
tion error of the output y, can be calculated by subtracting the
estimated output from the measured output (Ê = Y −(CX̂+



DU)). With the estimation error, the first linear problem in
(1) is solved as follows

[
A B K

]
= X̂ ′ ·

X̂U
Ê

† (10)

where X̂ ′ is the stacked matrix X̂ shifted one time instant
to right to capture the next state.

B. Recursive PBSID with Projection Approximation Sub-
space Tracking (PAST) Method

Recursive predictor-based subspace identification (RPB-
SID) method updates the model parameters iteratively. For
this method, the system matrices and Kalman gain obtained
from batch pre-processing is used for initialization of these
model parameters.

Adaptive filters, more specifically recursive least squares
(RLS) filters, are implemented to track time-varying dynam-
ics of the system, and a forgetting factor is added to ensure
that the weight of the past data is reduced for the current
estimation.

For recursive prediction, VARX predictor in (3) is re-
written in the linear regression form

yk = Ξ̃kψk + ek (11)

where ψ =
[
up
T uk

T yp
T
]T

, up and yp are the vectors
of past p data points at time instant k. Different from batch
pre-processing, Ξ̃ is defined as an adaptive filter of the form

Ξ̃k = Ξ̃k−1 + (yk − Ξ̃k−1ψk)ψk
TPk (12)

Error covariance matrix Pk is initialized at Pi = ( 1
ρ1

)I with
ρ1 > 0 and Pk is updated iteratively with

Pk =
1

λ1
(Pk−1 −Pk−1ψk(λ1I +ψk

TPk−1ψk)−1ψk
TPk−1)

where 1 > λ1 � 0 is the forgetting factor. Common values
for the forgetting factor λ are between 0.95 < λ < 0.995;
thus, λ = 0.99 is selected for all RLS filters in the algorithm.

State vector x̂k can then be estimated from the past input-
output data, i.e. up and yp, using the extended observability
and controllability matrices similar to (7). More specifically,
at time instant k,

x̂k = S(Γ̃Lup + Γ̃Kyp) (13)

where selection matrix S is determined via projection ap-
proximation subspace tracking (PAST) method in [13] and
has an adaptive filter update. From the estimated state vector
x̂k, system matrices Ak, Bk, Ck, Dk, and the Kalman gain
Kk are computed by updating the following two RLS filters[

Ck Dk

]
=
[
Ck−1 Dk−1

]
+ (yk−1 −

[
Ck−1 Dk−1

]
φk−1)φTk−1Mk

(14)[
Ak Bk Kk

]
=
[
Ak−1 Bk−1 Kk−1

]
+ (x̂k−1 −

[
Ak−1 Bk−1 Kk−1

]
θk−1)θTk−1Nk

(15)

where φk =
[
x̂Tk uk

T
]T

and θk =
[
x̂Tk uk

T ek
T
]T

with
estimation error ek = yk −

[
Ck Dk

]
φk. Nk and Mk are

error covariance matrices associated with each RLS filter
with an update similar to Pk.

III. ALGORITHM VALIDATION

A. Simulation Studies

Multiphysics modeling software COMSOL is used to
simulate the thermal dynamics of the UEA. Modelling
of the UEA, presented in [10], with multiple heat
sources is achieved in the COMSOL software as
shown in Figure 2. Simulation board includes two
heat sources (H1 and H2) and six probes, (S1-S6), to
measure the temperature change. The probes are placed at
(x, y, z) = {(−0.025, 0, 0.673), (−0.025,−0.025, 0.673),
(−0.025, 0.025, 0.673), (0.025, 0, 0.673), (0.025,−0.025,
0.673), (0.025, 0.025, 0.673)} surrounding two heat sources.
Temperature readings produced by the COMSOL software
is used as a reference to demonstrate the performance of the
online prediction algorithm.

(a)

(b)

Fig. 2: (a) PCB layout in COMSOL software with sensors
locations in red, (b) illustration of the developed COMSOL
model and its surface temperature distribution in Kelvin.

Two sets of studies were conducted using the aforemen-
tioned COMSOL model: (1) 1800 data samples generated us-
ing two Gaussian distributions within the range of [0, 0.837]
Watt (W) are used for the power inputs in the first simulation;



and (2) for the second simulation, square wave signals of
length 1800 are used to emulate the controller effect on the
power input and evaluate the performance of the prediction
algorithm when controller is implemented. The range of
the Gaussian distributions in study (1) denotes the range of
operating power inputs. In study (2), square wave signals for
both inputs have the same 50% duty cycle and a period of
20 seconds. For each simulation study, two separate runs are
conducted to examine the thermal effect of applying same
vs. different power inputs to the two heat sources. In study
(2), square wave inputs of amplitude 0.25 W are generated
for the case with same inputs. For the case with different
amplitudes in study (2), one of the square wave inputs has
an amplitude of 0.25 W and the other input has an amplitude
of 0.125 W. In Figure 3, comparison results when Gaussian
inputs of different amplitudes are applied, are shown. More
specifically, in Figure 3(a), the power inputs are displayed,
and in Figure 3(b), comparison between results of the online
prediction algorithm (in red) and temperature readings of the
COMSOL model corresponding to each subsystem (in blue)
is shown. Figure 4 shows the corresponding results for the
square wave inputs with different amplitudes.
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Fig. 3: (a) Different randomly generated Gaussian inputs, (b)
Simulation results, and (c) Simulation results (zoomed-in)

The comparison between the results of the online pre-
diction algorithm and the temperature readings obtained in
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Fig. 4: (a) Square-wave inputs with different amplitudes of
0.125 W (green plot) and 0.25 W (blue plot) respectively, (b)
Simulation results, and (c) Simulation results (zoomed-in)

COMSOL shows that the thermal dynamics of bio-implant
with multiple heat sources, i.e. multiple power inputs, can be
predicted by predictor-based subspace identification (PBSID)
methods with relatively high accuracy. Mean square error for
each of these sensor subsystems, indicated as S1, S2 etc., is
summarized in Table I. Similar results are also obtained for
the simulation studies when the same power input is applied
to both heat sources, and the corresponding MSE is also listed
in Table I. From the MSE in Table I, it can be concluded that
the online prediction algorithm with 1st order VARX model
predicts the thermal effect with an average mean squared
error of 4.635 × 10−2°C for randomly generated Gaussian
inputs and 4.368 × 10−2 °C for square-wave inputs. After
convergence of the adaptive filters are achieved, i.e after
approx. 200 seconds for Gaussian inputs and 400 seconds
for square-wave inputs, average mean squared error drops to
1.907× 10−3°C for Gaussian inputs and to 0.813× 10−3 °C
for square-wave inputs.

B. Experiments

Based on the previous hardware testing system used in [6],
a new temperature monitoring and management test vehicle



TABLE I: Results of the simulation studies

Gaussian Input Square-Wave Input
Same Different Same Different

S# Inputs Inputs Inputs Inputs

MSE (x10−2)

S1 10.66 8.21 9.81 10.85
S2 9.52 9.43 7.41 8.48
S3 7.74 6.36 7.37 7.66
S4 0.54 0.79 0.18 0.13
S5 0.50 0.73 0.16 0.12
S6 0.46 0.68 0.14 0.10

(TMTV) is developed, which has seven temperature sensors
(LMT70) and two heat sources emulating the implanted
electronics. This version of the TMTV is smaller compared to
the previous T-shaped version used in [5] and more compact
in size and shape.

A Matlab GUI, integrated with the online prediction
algorithm, is created to display and save the temperature
measurements and prediction results simultaneously. Con-
tinuous temperature data and prediction results for multiple
subsystems can also be displayed simultaneously in the GUI.
This Matlab front-end is connected with an nRF52 board,
which acts as the intermediate layer between the TMTV and
PC interface. The nRF52 board sends control signals to both
heat sources on the TMTV, and captures the temperature
readings from the TMTV and then transmits them to PC.
The current hardware testing system is shown in Figure 5.

Fig. 5: Developed TMTV system

Two sets of experiments were conducted with this hard-
ware testing system to evaluate the performance of the
prediction algorithm. For all experiments, a training data
is used for the batch pre-processing such that the recursive
PBSID updating can be initiated after 10 seconds of the input
and output data are obtained. Heat sources on TMTV admit
PWM inputs within the range of [0, 10000] where 10000
denotes a PWM signal with 0% duty cycle and 0 denotes
a PWM signal with 100% duty cycle. For the first set of
experiments, two separate runs are conducted to examine the
thermal effect of applying same vs. different Gaussian PWM
inputs to the two heat sources. In the first run, 1100 data
samples generated using a Gaussian distribution within the
range of [1620, 10000] are used for both PWM inputs. For
the case of Gaussian PWM inputs with different amplitudes,
2000 data samples are generated using two Gaussian distri-
butions within the range of [5000, 10000] and [7500, 10000]

individually. For the second set of experiments, square wave
inputs of length 2000 are used to evaluate the performance of
the prediction algorithm when controller is implemented in
real applications. Square wave inputs have the same 50%
duty cycle and a period of 20 seconds. The ranges of
the square wave PWM inputs with different amplitudes are
[7500, 10000] and [8750, 10000] respectively. For the PBSID
prediction algorithm, normalized values of the PWM inputs
are used.

Figure 6 shows the experiment results when randomly gen-
erated Gaussian inputs with different amplitudes are applied.
More specifically, in Figure 6(a), PWM inputs and compari-
son between results of the online prediction algorithm (in red)
and temperature readings from the corresponding sensor (in
blue) are displayed, and in Figure 6(b) a zoomed-in version of
results is shown. Results for the second set of experiments are
shown for which square-wave inputs of different amplitudes
are applied in Figure 7; in (a) PWM inputs and experiment
results can be seen, and in (b) a zoomed-in version of results
is displayed to emphasize the performance of the prediction
algorithm.
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Fig. 6: (a) different Gaussian inputs and experiment result,
(b) Experiment result (zoomed-in)

Mean squared error for all MISO subsystems, indicated
as S1, S2 etc., corresponding to each simulation study is
summarized in Table II. From the MSE in Table II, it
can be concluded that the online prediction algorithm with
1st order VARX model predicts the thermal effect with an
average mean squared error of 2.779×10−1◦C for randomly
generated Gaussian PWM inputs with different amplitudes
and 3.277 × 10−1◦C for square-wave PWM inputs with
different amplitudes. After convergence of the adaptive filters
are achieved, i.e after approx. 100 seconds, average mean
squared error drops to 2.179× 10−2◦C for Gaussian inputs,
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Fig. 7: (a) Square-wave inputs with different amplitudes and
experiment result, (b) Experiment result (zoomed-in)

TABLE II: Results of the experiments

Gaussian Input Square-Wave Input
Different Different

S# PWM Inputs PWM Inputs

MSE

S1 0.320 0.406
S2 0.255 0.288
S3 0.292 0.356
S4 0.260 0.283
S5 0.275 0.317
S6 0.282 0.343
S7 0.272 0.301

and to 2.993 × 10−2◦C for square-wave inputs. Although
experiment results have relatively higher mean squared error
values compared with the COMSOL simulation studies, it is
acceptable for our application since the squared error results
are significantly less than the critical temperature increase.

IV. CONCLUSION

With the emergence of complex implantable devices in
medical field, thermal management of such devices has
gained importance to ensure safe operation. In this paper,
we implemented the recursive predictor-based subspace iden-
tification method to predict the temperature increase due
to continuous operation of the implantable medical device
in an online fashion. Different from the previous work,
which focuses mainly on the thermal effect of a single heat
source, our paper examines the prediction of temperature
increases caused by multiple heat sources. The presented
algorithm predicts the temperature increase and iteratively
updates Markov parameters of the system according to the
recent input and output data. To validate the prediction

algorithm, a COMSOL model of the implantable device
is created and an experiment system emulating the neural
prosthesis is built. Both COMSOL simulations and in vitro
experiments demonstrate that the PBSID prediction algorithm
with the 1st order VARX model predicts the thermal effect of
the implantable device with high accuracy. Performance of
the prediction algorithm increases significantly after adaptive
filters converge. As a result, recursive PBSID algorithm with
regularized batch pre-processing can successfully character-
ize the thermal effect of the implantable device with multiple
heat sources.
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