
PHYSICAL REVIEW A 100, 042101 (2019)

Coherent multiple-period states of periodically modulated qubits
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We consider multiple-period states in systems of periodically modulated qubits. In such states the discrete
time-translation symmetry imposed by the modulation is broken. We explicitly show how multiple-period states
emerge in the simplest quantum system, a single qubit subjected to a pulsed resonant modulation and/or a pulsed
modulation of the transition frequency. We also show that a qubit chain with the qubit coupling modulated at
twice the qubit frequency has symmetry that allows mapping it on the Kitaev chain and thus provides an example
of a topologically nontrivial Floquet system. An explicit solution for a two-qubit system illustrates the effect of
resonant period doubling for coupled qubits, whereas in a long chain period doubling is topologically protected.
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I. INTRODUCTION

Breaking of the discrete time-translation symmetry
(DTTS) is well known in classical physics. The simplest
example is a parametric oscillator, which vibrates at half the
frequency of the field that modulates the oscillator eigenfre-
quency [1]. Another example is the period doubling route to
chaos in nonlinear dynamical systems, including periodically
modulated systems [2–4]. DTTS breaking in driven classical
systems due to many-body effects, including phase-transition-
like features of the onset of such symmetry breaking, has been
also known [5–7].

Recently much attention has attracted DDTS breaking
in driven many-body quantum systems, sometimes called
the time-crystal effect; see [8–17] and papers cited therein.
In principle, the occurrence of subharmonics in a quantum
multiple-state system is not surprising. Indeed, suppose one
projects all Floquet eigenvalues (quasienergies) εn onto the
first Brillouin zone −h̄ωF/2 � εn < h̄ωF/2, where n enumer-
ates the states and ωF is the drive frequency. For a large
number of states, the band will be filled almost densely
[18,19]. One can then find a pair of states |n1〉 and |n2〉 with
the quasienergy difference εn1 − εn2 ≈ h̄ωF/N with an integer
N > 1. If the system is in a superposition of these states, the
expectation values of the dynamical variables oscillate at the
frequency ωF/N . However, the amplitude of such oscillations
is determined by the overlap integral of |n1〉 and |n2〉 and is
often exponentially small. In addition, preparing the corre-
sponding superposition is not necessarily trivial.

With the rapid progress in making highly coherent and
well-controlled systems of qubits, a natural question to ask
is: How simple is it to achieve time-translation symmetry
breaking in a quantum system? One of the goals of this paper
is to show explicitly that a multiple-period superposition of
states with an arbitrary multiplicity can emerge already in
the simplest coherent quantum system, a periodically driven
qubit. Achieving this goal requires finding an appropriate
driving protocol that would be easy to implement in the ex-
periment. The argument of the previous paragraph regarding
almost dense quasienergy spectrum does not apply to a qubit,

as it has only two states. On the other hand, by construction
the overlap integral of the corresponding states is of order
unity, which should facilitate an observation of the symmetry
breaking.

Another problem addressed in the paper is a qubit chain
with the modulated coupling between the qubits. We consider
modulation close to twice the qubit eigenfrequencies. Looking
for time-symmetry breaking in such a system is motivated
by the symmetry breaking that occurs in a parametrically
modulated classical oscillator. Unexpectedly, we find that the
dynamics of a modulated qubit chain maps onto that of the
Kitaev chain. This is a consequence of the symmetry of
the modulated spin system. A solution that would explicitly
demonstrate the underlying symmetry should be sought first
for two coupled qubits. For a long chain, on the other hand,
we seek to establish the relation between the familiar onset of
Majorana fermions in the topologically nontrivial regime and
the onset of period doubling.

Our analysis refers to the regime where the transition
frequency of the qubit(s) ω0 is large compared to the Rabi
frequency, for a single qubit, and compared to the qubit cou-
pling in the frequency units, for the qubit chain. This suggests
separating the time scales and analyzing the dynamics in slow
time compared to 2π/ω0, i.e., in the rotating frame. However,
the quasienergy is defined in the laboratory frame. Therefore
to describe the time-symmetry breaking, the results of the
analysis have to be projected back to this frame.

II. A PERIODICALLY DRIVEN QUBIT

We start with a single periodically modulated qubit. The
modulation includes a resonant drive with a modulated ampli-
tude and a low-frequency modulation of the interlevel spacing
of the qubit. The Hamiltonian in the laboratory frame is

Hlab = 1
2 [ω0 + ν(t )]σ z + F (t )σ x cosωFt, (1)

with |ωF − ω0| � ωF . We have set h̄ = 1; σ x,y,z are the Pauli
matrices. The wave functions and the quasienergy spectrum
of the spin with a time-dependent Hamiltonian have been
found in several limiting cases, in particular, for a sinusoidal
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modulation [F (t ) = const, ν(t ) = 0] [20]; see also [21,22]
and references therein.

We assume that ν(t ) and F (t ) have the form of periodic
pulses,

ν(t ) = ν1
∑
n

δ(t − nT ),

F (t ) = F0 + F1
∑
n

δ(t − nT ). (2)

Here, the period T is a multiple of the drive period, T =
2πn/ωF with integer n � 1; in this case the Hamiltonian Hlab

as a whole is periodic with period T . We use the notation δ(t )
for a function, which is smooth on the time scale ∼1/ωF , but
looks like a δ function on the scale ∼min(T, |ωF − ω0|−1)
and has unit area

∫ ∞
−∞ dtδ(t ) = 1. The pulses can be applied

independently to the level spacing and to the driving force
amplitude, but when both parameters are modulated, we as-
sume that they are modulated with the same period. The pulse
strengths ν1,F1 are dimensionless (to incorporate h̄, we have
to replace ν1 → h̄ν1,F1 → h̄F1).

If the modulation is comparatively weak, so that
|ν(t )|, |F (t )| � ωF , one can go to the rotating frame using
the transformation U (t ) = exp(−iωFtσz/2). In the rotating
wave approximation (RWA) the Hamiltonian becomes

HRWA = 1

2
�σ z + 1

2
F0σ

x + 1

2
gσ

∑
n

δ(t − nT ),

� = ω0 − ωF , gx = F1, gz = ν1, gy = 0. (3)

Here we have taken into account that, in slow time, the func-
tion δ(t ) becomes a δ function. The components of the vector
g are determined by the modulation strength. We emphasize
that the Hamiltonian HRWA depends on time and, as Hlab, is
periodic with period T .

The time-independent part of HRWA describes a spin in
an effective magnetic field with z and x components being
� and F0. It is convenient to rotate the qubit in such a
way that the new z axis is pointing along this field, σ z +
iσ x = exp(iφ)(σ̃ z + iσ̃ x ). The rotation angle φ is given by the
familiar equation tan φ = F0/�. Then the RWA Hamiltonian
becomes

HRWA = 1

2

σ̃ z + 1

2
g̃σ̃

∑
n

δ(t − nT ), (4)

where 
 = (�2 + F 2
0 )

1/2 is the Rabi frequency in the absence
of the pulses and g̃z + ig̃x = exp(−iφ)(gz + igx ), i.e., g̃ is the
rotated vector g.

Prior to analyzing the dynamics in the rotating frame
described by the RWA Hamiltonian HRWA, Eq. (4), we note
that the Floquet eigenstates of this time-periodic Hamiltonian
are also Floquet eigenstates of the Hamiltonian Hlab in the
laboratory frame. Indeed, if ψ (t ) is a Floquet eigenstate of
HRWA with a rotating-frame quasienergy ε, this means that

iψ̇ = HRWAψ, ψ (t + T ) = exp(−iεT )ψ (t ). (5)

Taking into account the form of the transformation to the rotat-
ing frame U (t ), we see that the corresponding wave function
in the laboratory frame ψlab(t ) = U (t )ψ (t ) also satisfies the

Floquet-eigenstate condition,

ψlab(t + T ) = U (t + T )ψ (t + T ) = e−iωF Tσz/2 e−iεTψlab(t )

≡ exp(−iεT − iπn)ψlab(t ),

where we used that ωFT = 2πn. The quasienergy ε in the
rotating frame corresponds to the quasienergy ε + nπT−1

in the laboratory frame projected on the Brillouin zone of
quasienergies (−π/T, π/T ). For an even n such a projection
gives ε, whereas for an odd n it gives ε − (π/T ) sgn ε, pro-
vided −π/T � ε < π/T . In what follows we use the term
“rotating-frame quasienergy” for the quasienergy defined by
Eq. (5).

A. Finding the Floquet eigenstates in the rotating frame

To find the Floquet wave functions we start by choosing
an arbitrary instant t0 within a period of HRWA. We solve the
time-dependent Schrödinger equation iψ̇ = HRWAψ with the
initial condition ψ (t0) = ψ0 to find ψ (t + t0). We then find
the explicit form of ψ0 so that the solution meets the condition
ψ (T + t0) = exp(−iεT )ψ0. This gives both ψ0 and the value
of the rotating-frame quasienergy ε. Clearly, ψ0 depends on
the chosen t0, since the Floquet state is time dependent, but ε

does not.
Since all periods are on equal footing, we can choose t0

such that 0 < t0 < T [equivalently, we can choose kT < t0 <

(k + 1)T with an arbitrary integer k]. A Floquet eigenstate at
time t0 can be written as a superposition

ψ (t0) ≡ ψ0 = α|1̃〉 + β|0̃〉,
where |1̃〉 and |0̃〉 are the eigenstates of σ̃ z with eigenvalues
1 and −1, respectively; these eigenstates form a complete set,
which justifies the form of ψ (t0).

The evolution of the wave function in the interval (t0,T −
ε) is controlled by the time-independent part of HRWA; we
formally consider the limit ε → +0; on physical grounds,
ε � T,
−1. At the time T − ε the wave function becomes

ψ (T − ε) = α exp[−i
(T − t0)/2]|1̃〉
+ β exp[i
(T − t0)/2]|0̃〉 (ε → +0). (6)

During the pulse, the evolution of the wave function is
controlled by the term ∝ g̃, which is much larger than the
time-independent part of HRWA. The eigenfunctions of g̃σ̃ can
be chosen in the form

ψ± = ζ±|1̃〉 + η±|0̃〉, g̃σ̃ψ± = ±gψ±, (7)

where g = |g| ≡ |g̃| and the real coefficients ζ±, η± are given
by the equation

ζ+ + iζ− = exp(−iθ ), iη+ + η− = exp(iθ );

tan θ = g̃x/(g+ g̃z ). (8)

The functions ψ± also form a complete set. Therefore
one can write ψ (T − ε) = C+ψ+ +C−ψ− and express the
coefficientsC± as linear combinations of the coefficients α, β

of the initial wave function ψ0 with the weighting factors that
depend on the parameters θ and 
(T − t0), cf. Eqs. (6) and
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FIG. 1. The quasienergy ε1 of a qubit in the rotating frame.
The qubit is driven at its eigenfrequency, ωF = ω0. The driving
amplitude is pulsed with period T � 2π/ωF , the dimensionless area
of a pulse is F1. The blue, magenta, green, and red curves (the
curves from bottom to top, for F1 = 2π ) refer to the Rabi frequency

 = 2T −1, T −1, 0.5T −1, and 0.05T −1.

(7). From Eqs. (4) and (7) we see that, immediately after the
pulse, the wave function is ψ (T + ε) = C+ψ+ exp(−ig/2) +
C−ψ− exp(ig/2). This wave function can be again written in
the basis of the functions |1̃〉 and |0̃〉, ψ (T + ε) = αT |1̃〉 +
βT |0̃〉. The coefficients αT , βT are linear combinations of C±
and ultimately are linear combinations of α, β.

The evolution of ψ (t ) in the interval (T + ε,T + t0)
is again controlled by the Hamiltonian 
σ̃ z/2, with
ψ (T + t0)= αT exp(−i
t0/2)|1̃〉+ βT exp(i
t0/2)|0̃〉. This
expression relates ψ (T + t0) to ψ (t0). The condition
(5) with t = t0 now reads αT exp(i
t0/2) = α exp(−iεT ),
βT exp(−i
t0/2) = β exp(−iεT ). Given that αT , βT are lin-
ear combinations of α, β, this gives a homogeneous system
of linear equations for α, β, which is the eigenvalue problem
for the quasienergy ε. In fact, the corresponding characteristic
equation is an equation for exp(−iεT ). It has two solutions
with equal cos(εT ) and opposite in sign sin(εT ).

The values of the rotating-frame quasienergy ε1,2 obtained
this way can be chosen in the form

ε1,2 = ±T−1 arccos

[
cos

g

2
cos


T

2
− cos 2θ sin

g

2
sin


T

2

]
.

(9)

They correspond to two Floquet eigenstates of the qubit in the
rotating frame,ψ j (t + T ) = exp(−iε jT )ψ j (t ) ( j = 1, 2), and
thus to two Floquet eigenstates in the laboratory frame.

In Fig. 1 we show the quasienergy in the case where only
the amplitude of the resonant field F (t ) is pulsed, whereas the
frequency of the qubit is not modulated, ν1 = 0. As seen from
the figure and also from Eq. (9), the quasienergy is a periodic
function of the intensity (area) of the pulses F1 = g with
period 4π . It is also a periodic function of the Rabi frequency

 with period 4π/T . The magnitude of the oscillations of ε1
with F1 is maximal for 
T = nπ with an integer n.

A linear combination �(t ) = Aψ1(t ) + Bψ2(t ) is not a
Floquet eigenstate, �(t + T ) �= exp(−iεT )�(t ) with a real
ε for AB �= 0. However, if ε1 − ε2 = 2ε1 = 2πM/NT with
integer M,N and N > |M| � 1, we have �(t + NT ) =
exp(−iMπ )�(t ). Physical observables in such a state are
oscillating with period NT . The amplitude of the oscillations
is ∝ |AB| and therefore can be of order 1. Another single-

particle system where the difference of the quasienergies can
be made equal to 2π/NT (with N = 2 and 3) while keeping
the overlap of the corresponding wave functions ∼1 is a
resonantly modulated nonlinear oscillator [23–25].

B. Observing multiple-period states of a qubit

A particularly simple way to obtain multiple-period states
is to pulse the level spacing of a qubit, ω0 → ω0 + ν(t ),
with ν(t ) of the form given by Eq. (2). The periodic pulsing
leads to an increment of the phase difference between the
states |1〉 and |0〉 by ν1 each period T . It is obvious without
calculation that, for ω0 = 2πn/T with an integer n, the states
|1〉 and |0〉 are quasienergy states in the laboratory frame
with the quasienergies ±[ω0/2 + (ν1/2T )] projected onto the
Brillouin zone (−π/T, π/T ). Because of the relation between
the quasienergies in the laboratory and rotating frames, this
expression coincides with what follows from Eq. (9). To see
this one should set in Eq. (9) 
 = θ = φ = 0, g = ν1, which
then gives ε1,2 = ±T−1 arccos[cos(ν1/2)].

The pulsing-induced phase shift can be revealed in a stan-
dard way using Ramsey fringes. The measurement is done in
the following way. If the qubit with a pulsed level spacing
is in the state |0〉, one applies a π/2 resonant (at frequency
ω0) pulse at some time t = ti. This pulse drives the qubit into
a superposition of the quasienergy states with equal weights.
If at a time t f there is applied another resonant π/2 pulse at
frequency ω0, the population of the excited state, which is
given by the projection of the wave function after the pulse
�(t f ) on the wave function of the excited state |1〉, becomes

|〈1|�(t f )〉|2 = cos2[ν1
(t f − ti )/T �/2],
where 
x� is the integer part of x. For ν1 = 2πM/N this
population is a periodic function of t f − ti with period NT .

Another example is where the qubit is driven only by
a close to resonance field F (t ) cosωFt with a pulsed enve-
lope, F (t ) = F1

∑
n δ(t − nT ). In particular, for exact res-

onance, ωF = ω0, we have in Eq. (9) φ = 
 = 0, θ =
π/4, g = F1, and then ε1,2 = ±T−1 arccos[cos(F1/2)]. The
quasienergy wave functions in the rotating frame are ψ± =
(|0〉 ± |1〉)/√2. If in the laboratory frame the qubit is initially
(t = ti) in the ground state |0〉lab, the occupation of the excited
state |1〉lab ≡ U (t )|1〉 at time t f is

|〈1|�(t f )〉|2 = sin2[F1
(t f − ti )/T �/2].
If the pulse area is a simple fraction of 2π , F1 = 2πM/N , the
state population varies in time periodically with period NT .

In both examples, establishing the broken DTTS is reduced
to the standard operation of detecting the occupation of the
excited state of a qubit. We emphasize again that the pulses
must be smooth on the scale ω−1

0 but short on the scale T .

III. A QUBIT CHAIN WITH A RESONANTLY
MODULATED COUPLING

An interesting behavior, including the possibility of DTTS
breaking, is provided by a system of coupled qubits with a
resonantly modulated coupling. We consider here a sinusoidal
modulation at frequency ωF close to twice the qubit transition
frequency ω0, i.e., |ωF − 2ω0| � ω0. The Hamiltonian of a
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chain of coupled qubits with nearest-neighbor coupling and
with one of the coupling parameters, Jxx, being modulated has
the form

H (chain)
lab = 1

2
ω0

∑
n

σ z
n − Jxx(t )

∑
n

σ x
n σ x

n+1

− Jyy
∑
n

σ y
nσ

y
n+1, Jxx = J (0)xx + 2F cosωFt .

(10)

Controllable xx coupling has been implemented in several
types of flux qubits, cf. [26] and references therein, although
we are not aware of the experiments where the coupling was
modulated at frequency ∼2ω0. However, we do not immedi-
ately see physical constraints that would prohibit such a mod-
ulation, although its implementation could be accompanied by
a decrease of the coherence time. The results below apply also
to the case where both coupling parameters, Jxx and Jyy, are
modulated.

In many implementations, the qubit coupling is weak
compared to the qubit transition energy, |Jxx|, |Jyy| � ω0,
which we assume to be the case. Then, as shown below,
resonant driving can lead to strong effects even where it is
comparatively weak, |F | � ω0. For small |Jxx|, |Jyy|, |F | the
dynamics can be conveniently analyzed by switching to the
rotating frame at frequency ωF/2. The transformation is

U (chain)(t ) = exp

[
− i(ωFt/4)

∑
n

(
σ z
n + In

)]
,

where In is the identity operator for an nth spin, i.e., the 2 × 2
unit matrix operating in the nth spin Hilbert space; as will be
seen below, particularly when the problem is formulated in
terms of the fermion operators, introducing the operators In
intoU (chain)(t ) simplifies the analysis.

In the rotating wave approximation the Hamiltonian be-
comes

H (chain)
RWA = −1

2
μ

∑
n

σ z
n − 1

4
J

∑
n

(σ+
n σ−

n+1 + σ+
n+1σ

−
n )

− 1

4
F

∑
n

(σ+
n σ+

n+1 + σ−
n+1σ

−
n ), μ = 1

2
ωF − ω0.

(11)

Here J = J (0)xx + Jyy and σ±
n = σ x

n ± iσ y
n . In the rotating frame,

the frequency detuning μ plays the role of the scaled magnetic
field along the z axis. The detuning is small compared to
ω0, but can be of the same order of magnitude as the cou-
pling parameter J and the modulation amplitude F . In the
expression for H (chain)

RWA we left out the identity operator in the
spin-chain Hilbert space −(ωF/4)

∑
n In, as it does not affect

the dynamics.
The Hamiltonian H (chain)

RWA is independent of time. There-
fore, in contrast to the previously considered case of the pulse-
modulated single qubit, the eigenvalues and eigenfunctions in
the rotating frame in the RWA are given by the solution of the
stationary problem,

H (chain)
RWA ψ = εψ.

The rotating-frame eigenfunction ψ with an RWA eigenvalue
ε evolves in time as

ψ (t + T ) = e−iεTψ (t ). (12)

This equation holds for an arbitrary T , but in what follows
we will be interested in T being the modulation period,
T = 2π/ωF .

To relate ε to the quasienergy in the laboratory frame, we
introduce the parity operator P,

P = exp

[
−i

π

2

∑
n

(
σ z
n + In

)]
,

[
P,H (chain)

RWA

] = 0. (13)

Clearly, P = P† and P2 = ∏
n In. The eigenvalues of P are

±1. The parity operator P commutes not only with H (chain)
RWA ,

but also with the Hamiltonian in the laboratory frame,
[P,H (chain)

lab ] = 0. The parity conservation is not a consequence
of the RWA.

Related to the parity conservation is another symmetry of
the time-dependent Hamiltonian H (chain)

lab . It is best seen if we
incorporate the parity operator into the time-dependent term
of H (chain)

lab and write this term as

−F
∑
κ=±

e−iκωF t/2P
∑
n

σ x
n σ x

n+1Pe
−iκωF t/2.

Formally, this expression can be written without the P opera-
tors but with the time treated as an operator,

t → t + κπω−1
F

∑
n

(
σ z
n + In

)
(in the right-hand side, t is a c number; setting κ = + or
κ = − gives the same result). This discrete time-translation
symmetry underlies the results obtained below for the specific
systems.

With the account taken of the explicit form of the unitary
transformation U (chain)(t ) and Eq. (12), we see that the wave
function ψlab(T ) = U (chain)(t )ψ (t ) in the laboratory frame
transforms over the period as

ψlab(t + T ) = exp

[
−i(ωFT/4)

∑
n

(σ z
n + In)

]
e−iεTψlab(t )

= exp(−iεT )Pψlab(t ).

Therefore for even-parity states, i.e., where the eigenvalue of
P is 1, the rotating-frame quasienergy ε is also the quasienergy
in the laboratory frame, whereas for odd-parity states, where
the eigenvalue of P is −1, the quasienergy in the laboratory
frame is ε − (ωF/2) sgn ε, i.e., it is shifted from ε by half the
Brillouin zone.

Importantly, the eigenstates of H (chain)
RWA with different parity

can have the same eigenvalue ε; there is no level repulsion
between such states. From this general argument, it is clear
that, if we prepare the system in a combination of states
with the same ε in the rotating frame, but with different
parity, so that in the laboratory frame the wave function is
U (chain)(t )[αevenψeven(t ) + αoddψodd(t )], the expectation val-
ues of dynamical variables in this state will have period 2T .
In other words, this state will have broken time-translation
symmetry.
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FIG. 2. The rotating-frame energies of a two-qubit system with
the coupling periodically modulated at frequency ωF close to twice
the qubit transition frequency ω0, Eq. (14). The dashed and solid
curves refer to the states 1, 2 and 3, 4, respectively. The fre-
quency detuning is 1

2ωF − ω0 ≡ μ = 0.6J . The green circles indi-
cate where the rotating-frame quasienergies in the laboratory frame
differ by ωF/2. There is no anticrossing between the corresponding
quasienergy levels.

A. A two-qubit chain

To illustrate the occurrence of the breaking of the time-
translation symmetry in a modulated chain we start with a
particularly simple case of two qubits, i.e., we assume that
n = 1, 2 in Eq. (11). The eigenfunctions and eigenvalues of
the operator H (chain)

RWA in this case are

ψ1,2 = cosφ1,2|00〉 + sin φ1,2|11〉,
ψ3,4 = (|01〉 ± |10〉)/

√
2,

ε1,2 = ±(μ2 + F 2)1/2, ε3,4 = ∓J, (14)

where tan φ1,2 = (μ − ε1,2)/F . The eigenvalue of the parity
operator on the functions ψ1,2 is 1, whereas on the functions
ψ3,4 it is −1.

The quasienergies in the rotating frame, Eq. (14), as func-
tions of the driving amplitude F are shown in Fig. 2. Only
the values of ε1,2, which refer to the even-parity states, vary
with F . If |μ| < |J| (for concreteness, we assume J > 0), by
varying F one can make the rotating-frame quasienergies of
the states with different parity coincide, so that ε1 = ε4 and
ε2 = ε3. In this case, as explained above, linear combinations
αevenψ1 + αoddψ4 and α′

evenψ2 + α′
oddψ3 are period-2 states in

the laboratory frame.
The analysis immediately extends to the case where the

qubit frequencies are slightly different. The parity is still
conserved in this case. One can easily check that the rotating-
frame quasienergies of the different-parity states become
equal simultaneously for two pairs of states, as in the case
of equal qubit frequencies.

To observe the period doubling one can prepare the system
in a superposition of states contained in ψ1,2 and ψ3,4, for
example, in a superposition of states |01〉 and |00〉. Then if the
driving is tuned so that (μ2 + F 2)1/2 = |J|, the expectation
values of physical observables will oscillate with period 2T ,
the period doubling effect.

B. Topologically nontrivial Floquet regime

In the case of a longer modulated qubit chain, the analysis
of the dynamics can be conveniently done using the Jordan-

0 1.5 3
0

1

2

( F − 2 0)/2J

2
J

(b)

0 1.5 3
0

0.5

1

1.5

( F − 2 0)/2J

1
J

(a)

FIG. 3. The rotating-frame energies of the first (a) and second
(b) lowest excited states of the qubit chain with a resonantly mod-
ulated coupling. The energies are given by the eigenvalues of the
Hamiltonian (15) for a 16-site chain of fermions. The chemical
potential of the fermions μ is given by the frequency detuning (ωF −
2ω0)/2; see Eq. (11). The blue, magenta, and green curves (the
lowest to the highest curves) correspond to the scaled modulation
amplitude F/J = 0.3, 1.2, and 3.

Wigner transformation from spins to spinless fermions. If the
creation and annihilation operators of a fermion on site n are
a†n and an, respectively, the Hamiltonian (11) becomes the
Hamiltonian of the Kitaev chain,

HK = − μ
∑
n

(
a†nan − 1

2

)
− J

∑
n

(a†nan+1 + a†n+1an)

− F
∑
n

(a†na
†
n+1 + an+1an). (15)

In the fermion representation in the rotating frame, the role of
the chemical potential μ is played by the frequency detuning
(ωF/2) − ω0, cf. Eq. (11).

In the fermion representation, the parity operator (13) takes
a simple form,

P = exp

(
−iπ

∑
n

a†nan

)
, [P,HK ] = 0. (16)

The eigenvalues of P are −1 and 1 for odd and even number
of fermions, respectively.

The properties of the Kitaev chain are well known [27,28].
The considered Floquet system is topologically nontrivial for
|μ| ≡ | 12ωF − ω0| < 2|J|. Interestingly, this condition on the
detuning of the drive frequency or the strength of the qubit
coupling is less restrictive than the condition |μ| < |J| that
must be met, as seen from Eq. (14), to obtain period-2 states in
a system of two qubits. Both conditions can be met for a given
qubit system by tuning the drive frequency closer to 2ω0.

For completeness, the familiar behavior of excitations in
the Kitaev chain is illustrated in Fig. 3 for a comparatively
short modulated qubit array. The data are obtained using
the method [29] and show the evolution of the first and
second excited states in the rotating frame with the changing
modulation frequency ωF . The lowest excited state for small
|μ/J| corresponds to the excitation localized at the edges of
the chain and is described by the Majorana physics [27]. As
expected, its energy becomes extremely small for small |μ/J|.
For example, for the chain of 16 qubits in Fig. 3, ε1/J < 4 ×
10−5 for |μ/J| < 1 and F/J = 0.3, and ε1/J < 2 × 10−7 for
|μ/J| < 1 and F/J = 1.2; for small F/J the boundary effects
make ε1/J oscillate with |μ/J| with a very small amplitude.
From the point of view of obtaining small ε1 for |μ/J| ∼ 1,
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the optimal range of the driving amplitude is where F/J is
close to 1; this range depends on the chain length.

The considered implementation of the Kitaev chain is
based on resonant modulation of a qubit system and is thus
qualitatively different from the proposed implementations
that use flux qubits or other Josephson-junction based qubit
systems with no time-periodic modulation; see [30,31] and
references therein. It is also different from the supercon-
ducting cold-atom quantum wire where, for a periodically
stepwise modulated chemical potential, there emerge two
pairs of localized Majorana fermions with the quasienergy
difference equal to π/T , with T being the modulation period
[32]. Bound states with 0 and π effective quasienergies were
found also in a linear optical system that mimics a periodically
modulated system [33]. Not only does our analysis refer to a
system of a different type, but as we have shown, resonant
modulation of a qubit chain essentially automatically “builds
in” a pair of Majorana fermions with the quasienergy shifted
from the ground state by ωF/2.

Implementing the Floquet-Kitaev chain (15) with qubits
is advantageous in terms of simulating Majorana fermions
and obtaining a topologically protected period-2 state in a
controlled way. The ground state of the spin chain in the
absence of the driving corresponds to all spins aligned along
the z axis, with the expectation value of σ z

n being −1 for all n.
It corresponds to the vacuum state of the fermions, 〈a†nan〉 =
0 for all n. The lowest excited state of the chain without
driving has an opposite parity. In a finite-length chain the
driving can be adiabatically turned on without destroying the
nomenclature of the states. In particular, the driving does not
change the parity. A superposition of the ground and the first
excited states is then not an eigenstate of the parity operator
P. If the driving frequency is brought close to resonance,
ωF ≈ 2ω0, so that the energy of the excited state in the RWA
is extremely small, the superposition of the states has broken
time-translation symmetry if measured on the time scale small
compared to ε−1

1 . This time is exponentially long for small
|(ωF/2) − ω0|. The period doubling is thus topologically
protected.

IV. CONCLUSIONS

The results of this paper explicitly show that, in the quan-
tum regime, subharmonics, including high-order ones, can be
displayed already by the simplest driven quantum system, a
qubit. The proposed protocol is to drive the qubit by periodic
pulses of a resonant field and/or by dc pulses that modulate
the spacing between the qubit energy levels. The period of
the pulses should be much longer than the reciprocal qubit
transition frequency ω−1

0 . Such driving relies on the driving
conventionally used to perform qubit gate operations. The
symmetry-broken states can be detected using conventional
measurement protocols. Therefore an experiment on the sym-

metry breaking can be done with any qubits that have a high
transition frequency.

The “price” for the simplicity of the system is that, for-
mally, the effect requires fine tuning of the parameters of the
drive. However, given that qubits have a finite coherence time,
one can establish periodicity of the dynamical variables of a
qubit only with a limited precision. This limitation leads to a
finite width of the parameter range within which the measured
period is seen as a multiple of the drive period.

The other system considered in the paper is a qubit chain
with periodically modulated qubit coupling. The results re-
fer to qubits with the transition frequency ω0 much higher
than the coupling energy divided by h̄, and to a resonant
modulation with frequency ωF close to 2ω0. Such a chain
preserves the parity of the total number of spin excitations. We
found that, even for two spins, the quasienergies of states with
opposite parity can differ by ωF/2, so that the superposition
of these states is periodic with period 4π/ωF .

A resonantly modulated qubit chain has a nontrivial time-
translation symmetry and maps onto the Kitaev chain with the
parameters controlled by the modulation. In a long chain, the
state with a broken symmetry of time translation by 2π/ωF

is topologically protected. Speaking more broadly, such a
qubit chain allows one to address, in a controlled experiment,
several important problems of the Majorana physics. One of
them is the effect of disorder [34]. The site disorder can be
emulated just by making the transition frequencies of the
qubits slightly different. By making the coupling constants
Jxx, Jyy and the modulation amplitude F site dependent, one
can emulate hopping and pairing disorder. If the system allows
incorporating the zz coupling, for example, if the Hamiltonian
has the term

∑
n σ z

nσ
z
n+1, one can also explore the effects of

the fermion-fermion coupling.
Quantum simulations with modulated qubit chains are

invaluable in terms of studying the aforementioned effects.
Fluxonium qubits [35] may be advantageous, since modula-
tion at frequency ∼2ω0 will not lead to resonant transitions
in such qubits. This will allow one to avoid leaving the com-
putational subspace and the associated heating of the qubit
system, which is of potential concern for transmon qubits,
for example. A chain of ∼30 qubits may already demonstrate
the involved physics. On the other hand, the full dynamics of
a 30-qubit chain is presumably beyond what can be studied
in the near future with classical computers, as it requires
diagonalizing a 230 × 230 Hamiltonian matrix, cf. [36].
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