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Time crystals form when arbitrary physical states of a periodically driven system spontaneously break

discrete time-translation symmetry. We introduce one-dimensional time-crystalline topological super-

conductors, for which time-translation symmetry breaking and topological physics intertwine—yielding

anomalous Floquet Majorana modes that are not possible in free-fermion systems. Such a phase exhibits a

bulk magnetization that returns to its original form after two drive periods, together with Majorana end

modes that recover their initial form only after four drive periods. We propose experimental implementa-

tions and detection schemes for this new state.
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Introduction.—Periodically driven quantum systems

evade certain constraints imposed in equilibrium. For

instance, “time crystals” that spontaneously break time-

translation symmetry in the sense envisioned in Refs. [1,2]

cannot arise in equilibrium [3], yet can emerge with

periodic driving. In periodically driven time crystals any

physical (i.e., noncat) state evolves with a subharmonic of

the drive frequency [4–6]. The canonical realization con-

sists of disordered Ising spins that collectively flip after

each drive period, thereby requiring two periods to recover

their initial state. Experiments have detected signatures of

time crystallinity both in driven cold atoms [7,8] and solid-

state spin systems [9–11].

As a second, deeply related example, consider a one-

dimensional (1D) free-fermion topological superconductor

hosting Majorana end modes [12], each described by a

Hermitian operator γ. If γ adds energy E then γ† adds −E,
while Hermiticity requires that these be equivalent. In

equilibrium the unique solution is E ¼ 0—corresponding

to the well-studied Majorana zero modes. Periodically

driving with frequency Ω additionally permits “Floquet

Majorana modes” carrying E ¼ Ω=2 since energy is then

only conserved mod Ω [13]. Floquet Majorana modes

have been proposed to facilitate more efficient quantum

information processing compared to equilibrium systems

[14–16]. Moreover, they encode a topological flavor of

time-translation symmetry breaking in that Floquet

Majorana operators change sign each drive cycle, thus

also requiring two periods to recover their initial form.

We merge the phenomena above by exploring periodi-

cally driven 1D topological superconductors generated upon

coupling Cooper-paired electrons to doubled-periodicity

time-crystalline Ising spins. Such “time-crystalline topo-

logical superconductors” intertwine bulk time-translation

symmetry breaking and topological physics—yielding

anomalous quadrupled-periodicity Floquet Majorana modes

that categorically cannot arise in free-fermion platforms. We

propose implementation via quantum-dot arrays (see Fig. 1)

reminiscent of setups utilized in Refs. [17–19] for engineer-

ing equilibrium Majorana zero modes. We derive and

analyze an exactly solvable, physically intuitive model for

time-crystalline topological superconductivity and show that

probing junctions between time-crystalline and static topo-

logical superconductors reveals the Floquet Majorana

modes’ quadrupled periodicity.

Model and setup.—Time-crystalline topological super-

conductors closely relate to equilibrium topological

superconductors that spontaneously violate electronic

time-reversal symmetry T , which importantly satisfies

T 2 ¼ −1. We thus begin by modeling the latter. Our setup,

FIG. 1. Proximitized quantum-dot array coupled to Ising spins.

The Ising spins polarize the dot electrons—effectively producing

a system of spinless fermions cj. In any Ising configuration, the

fermions can realize topological superconductivity with unpaired

Majorana zero modes γ1;2 that intertwine with the adjacent spins.
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sketched in Fig. 1, consists of a superconductor coupled to a

chain of quantum dots indexed by sites j, each hosting one

active spinful level described by operators fjσ (σ ¼ ↑;↓

denotes spin, which we implicitly sum over whenever

suppressed); we assume that charging energy is quenched

by coupling to the superconductor and can thus be neglected.

A chain of Ising spins described by Pauli matricesmz
j resides

proximate to the quantum-dot array. We model the setup

with a T -symmetric Hamiltonian H ¼ H0 þHf, where

H0 ¼
X

j

ð−Jmz
jm

z
jþ1

− Kmz
jf

†
jσ

zfjÞ; ð1Þ

Hf ¼
X

j

½−μf†jfj − tðf†jfjþ1 þ H:c:Þ

þ αðif†jσxfjþ1 þ H:c:Þ þ Δðfj↑fj↓ þ H:c:Þ�: ð2Þ

In H0, J > 0 ferromagnetically couples neighboring Ising

spins andK > 0 couples the Ising and dot spins. Terms inHf

describe the chemical potential (μ), hopping (t), spin-orbit
coupling (α), and proximity-induced pairing (Δ) for the

quantum-dot electrons.

Suppose that the K term dominates and energetically

enforces alignment of each electron spin with the nearest

Ising spin. Only one of the two spinful levels in each dot

remains active at low energies—effectively creating a

system of spinless fermions described by operators

cj ¼
1

2
½ð1þmz

jÞfj↑ þ ð1 −mz
jÞfj↓�; ð3Þ

as Fig. 1 illustrates. Time-reversal T sends mz
j → −mz

j and

cj → mz
jcj, thus satisfying time-reversal symmetry. This

intertwinement between spinless fermions and Ising spins

is unavoidable; without it, cj has no way of acquiring the

required minus sign upon two applications of T .

In the Supplemental Material [20], we projectH onto the

spinless-fermion subspace by integrating out high-energy

fermionic modes, yielding an effective Hamiltonian

Heff ¼
X

j

½−Jmz
jm

z
jþ1

− μ0c†jcj

þ ðt0mz
j
;mz

jþ1

c†jcjþ1 þ Δ
0
mz

j
;mz

jþ1

cjcjþ1 þ H:c:Þ�: ð4Þ

Here μ0 ¼ −ðK þ μÞ is a renormalized chemical poten-

tial, while t0mz
j
;mz

jþ1

¼ aþ a�mz
jm

z
jþ1

and Δ
0
mz

j
;mz

jþ1

¼ bmz
j −

b�mz
jþ1

denote Ising-spin-dependent effective hopping and

p-wave pairing amplitudes, with a ¼ ð−tþ iαÞ=2 and

b ¼ ð−tþ iαÞΔ=ðK − μÞ. The real part of a sets the

hopping strength between sites with aligned Ising spins,

which is directly inherited from spin-conserving tunneling

in Eq. (2); the imaginary part similarly fixes the hopping

when Ising spins antialign, which is instead mediated by

spin-orbit coupling α. Pairing in Heff follows from second-

order processes that involve virtual excitations out of the

spinless-fermion subspace—hence the K − μ energy

denominator in b. Depending on the Ising configuration,

either spin-conserving hopping or spin-orbit coupling

virtually creates a doubly occupied site of f fermions that

then Cooper pair via the original s-wave Δ term, effectively

mediating p-wave pairing of spinless fermions.

Phase diagram.—Equation (4) describes a strongly inter-

acting system of Ising spins and fermions. Nevertheless, for

any given Ising configuration the model reduces to free

fermions. Consider first uniformly polarized all-up or all-

down Ising spins. Here Eq. (4) maps to the familiar Kitaev

chain [12] with uniform hopping strength 2jaj cosϕa and

pairing �2ijbj sinϕb, where a ¼ jajeiϕa and b ¼ jbjeiϕb .

(Our derivation above yielded ϕa ¼ ϕb, though it will be

useful to now keep these phases independent.) Accordingly,

the chain hosts edge Majorana zero modes provided the

chemical potential intersects the band and pairing is finite,

i.e., for jμ0j < 4jajj cosϕaj and sinϕb ≠ 0 as sketched in

Fig. 2(a).

To examine the fermionic ground state with random

Ising spins—which is our main interest—we compute the

correlation length ξ using the transfer-matrix technique;

see, e.g, Ref. [21] and the Supplemental Material [20].

This method allows us to map out phase boundaries by

numerically searching for diverging ξ as we vary ϕa;b; for

our purposes a regular 400 × 400 grid of ϕa and ϕb values

in the interval ½−π=2; π=2� is sufficient. [Exploiting

(a) (b)

FIG. 2. Phase diagram for Eq. (4) assuming (a) fully polarized

and (b) random Ising spins. In (a) a nonzero chemical potential

μ0 ¼ jaj generates the trivial phase, and the system is gapless

along the thick black lines. Data in (b) were generated from

transfer-matrix simulations at μ0 ¼ jbj ¼ jaj=4 with 106 sites.

Data points indicate sharp peaks in the localization length, as

expected at a topological phase transition. The red diagonal line

ϕa ¼ ϕb is relevant for the physical quantum-dot setup from

Fig. 1. As the dashed arrow illustrates, the topological phase

along this line can be deformed to the zero-correlation-length

limit with ϕa ¼ π=4, ϕb ¼ −π=4 (and also jaj ¼ jbj, μ0 ¼ 0)

without crossing a phase boundary. Increasing the magnitude of

μ0 tends to thicken the trivial regions, while altering the relative

magnitudes of jaj and jbj shifts the boundaries separating the

topological and trivial phases.
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ξðϕa;ϕbÞ ¼ ξð−ϕa;−ϕbÞ halves the number of simula-

tions]. Figure 2(b) illustrates representative results obtained

for μ0 ¼ jbj ¼ jaj=4 and N ¼ 106 sites. The data points

indicate local maxima where ξ is typically of order 102 or

larger, while it is of order unity elsewhere. We expect

these peaks to represent true divergences in ξ when ϕa or

ϕb are tuned continuously in the thermodynamic limit.

Topological regions are easily identified via exact diago-

nalization on smaller systems and confirming the presence

of edge Majorana zero modes. In the Supplemental

Material we analytically capture the topological phase

for a restricted window of ϕa;b via the Born approximation.

For our quantum-dot setup, we expect ϕa ¼ ϕb [red line

in Fig. 2(b)] and also jaj ≫ jbj since p-wave pairing

encoded in b appears at second order in perturbation

theory. Starting from the topological phase in this physical

regime, Fig. 2(b) strongly suggests that we can deform

parameters to ϕa ¼ π=4 and ϕb ¼ −π=4, jaj ¼ jbj, and
μ0 ¼ 0 without encountering a divergent ξ. (See the

Supplemental Material [20] for additional evidence.)

This special point corresponds to the model’s zero-corre-

lation-length limit. Here it is convenient to decompose the

spinless fermions in terms of Majorana operators ηA;Bj via

cj ¼ e−iðπ=4Þm
z
jðηBj þ iηAjÞ, whereupon Eq. (4) becomes

H0
eff ¼

X

j

ð−Jmz
jm

z
jþ1

− iκsmz
j
;mz

jþ1

ηAjηBjþ1Þ; ð5Þ

with smi;mj
¼ð1−miþmjþmimjÞ=2¼�1 and κ ¼ 4

ffiffiffi

2
p

jaj.
For any choice of mz

js the Majorana operators dimerize

nontrivially as shown in Fig. 1, yielding Majorana zero

modes

γ1 ≡ ηB1 ¼ eiðπ=4Þm
z
1c1 þ H:c:;

γ2 ≡ ηAN ¼ −ieiðπ=4Þm
z
NcN þ H:c:; ð6Þ

at the leftmost and rightmost sites. Notice the spin-fermion

intertwinement inherent in the zero modes, which con-

sequently evolve under T via

γ1 → mz
1
γ1; γ2 → −mz

Nγ2; ð7Þ

again consistent with T 2 ¼ −1. All Hamiltonian eigen-

states are at least fourfold degenerate in this limit: one

factor of 2 arises because T flips all Ising spins, while

the other reflects topological degeneracy encoded in the

Majorana zero modes. The topological degeneracy of the

fermionic ground states given a static Ising configuration

persists even away from the special limit examined above,

due to the finite gap for fermionic excitations. Moreover,

the Supplemental Material [20] shows that Eq. (7) holds

even when the zero-mode wave functions extend over

many sites.

Adiabatic cycle.—Next we generalize Eq. (1) to

H0
0
¼

X

j

½−Jðn̂ ·mjÞðn̂ ·mjþ1Þ − Kðn̂ ·mjÞf†j n̂ · σfj�;

ð8Þ

where m, σ denote vectors of Pauli matrices and the unit

vector n̂≡ cos θẑþ sin θŷ determines the easy axis for the

Ising spins. At either θ ¼ 0 or π, H0
0
reduces to Eq. (1).

Suppose that we again deform to the zero-correlation-

length limit (which is possible for any θ) and then imple-

ment the following cycle: (i) start with an arbitrary Ising

spin configuration at θ ¼ 0, (ii) initialize the fermions into

one of the topological-superconductor ground states, and

finally (iii) adiabatically rotate the easy axis by winding θ

from 0 to π.

Although the Hamiltonian returns to its original form,

the wave functions do not. Rather, the cycle slowly rotates

all Ising spins by π, while the fermions follow their

instantaneous minimum-energy configuration given the

adiabaticity. The initial ground state thereby transforms

into its time-reversed counterpart. One rotation sends

mz
j→−mz

j, fj→eiðπ=2Þσ
x

fj, and hence cj → icj. Majorana

zero modes thus transform as γ1 → mz
1
γ1 and γ2 → mz

Nγ2,

similar to the action of T . Interestingly, two cycles return

the Ising spins to their original form whereas four cycles are

required to recover the initial zero-mode operators, e.g.,

γ1 → mz
1
γ1 → −γ1 → −mz

1
γ1 → γ1: ð9Þ

Time-crystalline topological superconductivity and

detection.—We now promote the adiabatic ground-state

phenomenon described above to a dynamic phenomenon

applicable to arbitrary physical states. To this end we apply

a variation of the preceding cycle periodically with period

T, thus generating time-crystalline topological supercon-

ductivity. We specifically consider a binary drive such that

the Floquet operator that evolves the system over a single

period reads

UT ¼ e
−iðπ=2−ϵÞ

P

j
ðmx

j
þc†

j
cjÞe−iTH

dis
eff : ð10Þ

The right exponential evolves the system with respect to a

disordered, static Hamiltonian Hdis
eff that is the same as

Eq. (4) but with J, a, b replaced with random site-

dependent couplings Jj, aj, bj. We neglect randomness

in the phases of aj, bj and treat Jj, aj, bj as independent

random variables with magnitudes drawn from uniform

distributions ½J̄−δJ;J̄þδJ�;½ā−δa;āþδa�;½b̄−δb;b̄þδb�.
Disorder crucially introduces many-body localization

(MBL) into the dynamics and prevents heating to infinite

temperatures [22–26]. The left exponential in Eq. (10)

performs an instantaneous “kick” that (at least approxi-

mately) flips the Ising spins via a transverse magnetic field
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pulse and applies a potential to the spinless fermions—

thereby mimicking evolution from our adiabatic cycle

without the adiabaticity requirement.

The dynamics is analytically tractable at ϵ ¼ 0 and when

Hdis
eff reduces to Eq. (5) with random couplings Jj, κj.

Starting from any Ising configuration, the “perfect” kick in

UT sends mz
j → −mz

j and thus flips all spins, signifying

period-doubling time crystallinity in the spin sector. In the

fermionic sector, γ1;2 in Eq. (6) continue to commute with

Hdis
eff despite the randomness. The kick, however, non-

trivially transforms the Majorana edge operators so that

UTγ1U
†
T ¼ mz

1
γ1 and UTγ2U

†
T ¼ mz

Nγ2. Precisely as illus-

trated in Eq. (9), γ1;2 therefore require four drive periods to

recover their initial form, i.e., they form the hallmark

quadrupled-periodicity Floquet Majorana modes. Shaded

regions of Fig. 3 summarize the evolution.

Quadrupled periodicity can be experimentally probed in

junctions between time-crystalline and static topological

superconductors as in the right side of Fig. 3, wherein γ3
and γ4 denote time-independent Majorana zero modes.

Electron tunneling across the junction couples γ2 with γ3,

producing a Hamiltonian termH23 ¼ iλγ2γ3 for some λ that

may depend on the adjacent Ising spins. Consequently, the

junction’s energy density (among other local properties)

directly manifests the quadrupled-periodicity built into the

anomalous Floquet Majorana mode γ2.

Rigidity against “imperfect” drives is a crucial feature of

time-crystalline phases [4–6,27]. Here, such imperfection

arises from taking ϵ ≠ 0 and Hdis
eff away from the zero-

correlation-length limit, which spoils exact solvability and

prompts us to turn to numerics.

Numerics.—We employ time-evolving block decimation

(TEBD), using a maximum bond dimension of χ ¼ 50, on a

20-site system with random Ising spins and parameters

appropriate for our quantum-dot setup: ϕa ¼ ϕb ¼ π=8,

b̄ ¼ ā=2, J̄ ¼ ā=4, μ0 ¼ 0, δa ¼ δb ¼ δJ ¼ ā=8. Our

simulations incorporate a decoupled, static zero-energy

fermion c0 that functions similarly to the static topological

superconductor in Fig. 3. We initialize into a state that

entangles the static fermion with the rest of the system. We

then simulate the Floquet operator in Eq. (10) with āT ¼ 2

and āT ¼ 0.2, and with the kick shifted away from

commensurability by ϵ ¼ 0.2 [28]. Despite the rather small

system size, in both cases the bond dimension quickly

saturated, and the truncation error was relatively coarse. To

check robustness of our numerics we repeated the compu-

tations for maximum bond dimension χ ¼ 25, and the

results agreed with those at χ ¼ 50.

e
− iTH

dis
eff

kick

e
− iTH

dis
eff

kick

e
− iTH

dis
eff

kick

e
− iTH

dis
eff

kick

m
z

1 1 m
z

N 2

Time-crystalline topo SC Static topo SC

− m
z

1 1 − m
z

N 2

1 2 3 4

3

− 1 − 2 3

3

31 2

t

0

T

2T

3T

4T

e
− iTH

dis
eff

kick

5T

4

4

4

4

FIG. 3. Time evolution for the time-crystalline topological

superconductor generated by Eq. (10) at ϵ ¼ 0. Each period T
globally flips all Ising spins, yielding doubled-periodicity bulk

response, whereas the Floquet Majorana modes γ1;2 exhibit

quadrupled-periodicity response that can be probed in the

junction with the static topological superconductor on the right.

The inner Majorana modes γ2;3 hybridize with coupling strength

λ. Since γ3 is static while γ2 evolves nontrivially after each

period T, the junction’s energy inherits the latter’s quadrupled

periodicity.

FIG. 4. Fourier transform of the quantities shown in the legend

following time evolution via Eq. (10) with ϵ ¼ 0.2 and param-

eters specified in the main text. Data are normalized by setting

the maximum of each Fourier spectrum to 1, and frequency ω on

the horizontal axis is normalized by Ω ¼ 2π=T, with T the drive

period. Here mz
10

represents an Ising spin at the center of the

chain, c0 is an auxiliary zero-energy static fermion that enables

probing the Floquet Majorana mode periodicity, and c1 is the

fermion at the left end of the quantum-dot chain. For initialization

we use random Ising configurations and random fermionic states

that entangle c0 with the rest of the system. Runs were repeated

150 times for disorder averaging with maximum bond dimension

χ ¼ 50; similar results were obtained with χ ¼ 25. For āT ¼ 2

sharp peaks persist at Ω=2 and 3Ω=4—despite “imperfect”

driving generated by ϵ ≠ 0—indicating “rigid” doubled-perio-

dicity Ising spins and quadrupled-periodicity Floquet Majorana

modes characteristic of time-crystalline topological supercon-

ductivity. For āT ¼ 0.2, the imperfect drive pushes the peak

frequencies away from these quantized values, indicating a loss

of rigid time crystallinity.
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Over a run of 60 Floquet evolutions and 150 disorder

averages, we measure the Ising spin hmz
j¼10

i in the middle

of the system as well as hc†
0
c1i, where c1 corresponds to the

leftmost quantum dot. The former probes bulk time

crystallinity while the latter probes the Floquet Majorana

modes. Figure 4 plots the Fourier transform of both

quantities as a function of frequency ω normalized by

Ω ¼ 2π=T. For āT ¼ 2 the data show the rigidity charac-

teristic of a time crystal: despite the imperfect drive, the

bulk magnetization and edge fermion bilinear, respectively,

remain peaked at ω ¼ Ω=2 and ω ¼ 3Ω=4 (as expected for

doubled-periodicity Ising spins and quadrupled periodicity

Floquet Majorana modes). By contrast, in our āT ¼ 0.2

simulations both peaks clearly shift due to nonzero ϵ,

indicating an absence of rigid time-crystallinity for this

case. We also ran exact numerics on a seven-site system and

measured the level-spacing statistics of the UT eigenvalues.

At āT ¼ 2 the mean level spacing was approximately 0.39,

close to the Poisson value 0.386 expected for MBL [29].

Discussion.—The admixture of symmetry breaking and

topology is known to generate new physics in static

systems; examples include 8π-periodic Josephson effects

[30,31] and enrichment of Majorana braiding and fusion

[32]. Our work establishes that driven systems can be

similarly enriched by “decorating” topological phases with

spontaneous time-translation symmetry breaking. We spe-

cifically showed that 1D time-crystalline topological super-

conductors engineered from quantum-dot arrays host novel

Floquet Majorana modes that display anomalously long

periodicity not possible with free fermions. Exotic states of

this type are not captured by the cohomology classification

of interacting topological Floquet phases [33–37]. Our

work opens up the possibility of harnessing time crystals to

enrich other “designer” phases of matter. One could

envision promoting spinless fermions to spinful fermions

coupled to magnetic degrees of freedom in systems such as

driven spinless 2D pþ ip superconductors [38–40].

Subtleties regarding MBL in two dimensions can be

avoided by focusing on prethermal regimes, possibly

leading to new higher-dimensional adiabatic cycles and

time-crystalline topological phases.
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