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Time crystals form when arbitrary physical states of a periodically driven system spontaneously break
discrete time-translation symmetry. We introduce one-dimensional time-crystalline topological super-
conductors, for which time-translation symmetry breaking and topological physics intertwine—yielding
anomalous Floquet Majorana modes that are not possible in free-fermion systems. Such a phase exhibits a
bulk magnetization that returns to its original form after two drive periods, together with Majorana end
modes that recover their initial form only after four drive periods. We propose experimental implementa-

tions and detection schemes for this new state.
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Introduction.—Periodically driven quantum systems
evade certain constraints imposed in equilibrium. For
instance, “time crystals” that spontaneously break time-
translation symmetry in the sense envisioned in Refs. [1,2]
cannot arise in equilibrium [3], yet can emerge with
periodic driving. In periodically driven time crystals any
physical (i.e., noncat) state evolves with a subharmonic of
the drive frequency [4—6]. The canonical realization con-
sists of disordered Ising spins that collectively flip after
each drive period, thereby requiring two periods to recover
their initial state. Experiments have detected signatures of
time crystallinity both in driven cold atoms [7,8] and solid-
state spin systems [9—11].

As a second, deeply related example, consider a one-
dimensional (1D) free-fermion topological superconductor
hosting Majorana end modes [12], each described by a
Hermitian operator y. If y adds energy E then y' adds —E,
while Hermiticity requires that these be equivalent. In
equilibrium the unique solution is £ = O—corresponding
to the well-studied Majorana zero modes. Periodically
driving with frequency Q additionally permits “Floquet
Majorana modes” carrying E = /2 since energy is then
only conserved mod Q [13]. Floquet Majorana modes
have been proposed to facilitate more efficient quantum
information processing compared to equilibrium systems
[14-16]. Moreover, they encode a topological flavor of
time-translation symmetry breaking in that Floquet
Majorana operators change sign each drive cycle, thus
also requiring two periods to recover their initial form.

We merge the phenomena above by exploring periodi-
cally driven 1D topological superconductors generated upon
coupling Cooper-paired electrons to doubled-periodicity
time-crystalline Ising spins. Such “time-crystalline topo-
logical superconductors” intertwine bulk time-translation
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symmetry breaking and topological physics—yielding
anomalous quadrupled-periodicity Floquet Majorana modes
that categorically cannot arise in free-fermion platforms. We
propose implementation via quantum-dot arrays (see Fig. 1)
reminiscent of setups utilized in Refs. [17-19] for engineer-
ing equilibrium Majorana zero modes. We derive and
analyze an exactly solvable, physically intuitive model for
time-crystalline topological superconductivity and show that
probing junctions between time-crystalline and static topo-
logical superconductors reveals the Floquet Majorana
modes’ quadrupled periodicity.

Model and setup.—Time-crystalline topological super-
conductors closely relate to equilibrium topological
superconductors that spontaneously violate electronic
time-reversal symmetry 7, which importantly satisfies
T2 = —1. We thus begin by modeling the latter. Our setup,
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FIG. 1. Proximitized quantum-dot array coupled to Ising spins.
The Ising spins polarize the dot electrons—effectively producing
a system of spinless fermions c;. In any Ising configuration, the
fermions can realize topological superconductivity with unpaired
Majorana zero modes ¥, , that intertwine with the adjacent spins.
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sketched in Fig. 1, consists of a superconductor coupled to a
chain of quantum dots indexed by sites j, each hosting one
active spinful level described by operators f;, (c =1,
denotes spin, which we implicitly sum over whenever
suppressed); we assume that charging energy is quenched
by coupling to the superconductor and can thus be neglected
A chain of Ising spins described by Pauli matrices mj resides
proximate to the quantum-dot array. We model the setup
with a 7-symmetric Hamiltonian H = H, + H;, where

Hy =Y (=Jmimi,, — Kmifio'f;). (1)

J
Hy =Y [-ufifi~
J
+al(iffie i +He) + A(fjpf;, +He)l  (2)

t(f;fjﬂ +H.c.)

In Hy, J > 0 ferromagnetically couples neighboring Ising
spinsand K > O couples the Ising and dot spins. Terms in H ¢
describe the chemical potential (), hopping (), spin-orbit
coupling (@), and proximity-induced pairing (A) for the
quantum-dot electrons.

Suppose that the K term dominates and energetically
enforces alignment of each electron spin with the nearest
Ising spin. Only one of the two spinful levels in each dot
remains active at low energies—effectively creating a
system of spinless fermions described by operators

[(L+m5)f i + (1 =mi)fj], (3)

-
l\)\'—

as Fig. 1 illustrates. Time-reversal 7 sends m; — —mj; and

cj — micj,
intertwinement between spinless fermions and Ising spins
is unavoidable; without it, ¢; has no way of acquiring the
required minus sign upon two applications of 7.

In the Supplemental Material [20], we project H onto the
spinless-fermion subspace by integrating out high-energy

fermionic modes, yielding an effective Hamiltonian

thus satisfying time-reversal symmetry. This

Heff:z[ —Jmim3,, — ,u’cj:cj

+
wi i€ B e e HHe)L (4)

Here y' =
tial, while 7/ .

m ﬂ’l
b m J+1
p-wave pairing amplitudes, with a = (-7 + ia)/2 and
b= (-t+ia)A/(K —u). The real part of a sets the
hopping strength between sites with aligned Ising spins,
which is directly inherited from spin-conserving tunneling
in Eq. (2); the imaginary part similarly fixes the hopping
when Ising spins antialign, which is instead mediated by

—(K + p) is a renormalized chemical poten-
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FIG. 2. Phase diagram for Eq. (4) assuming (a) fully polarized
and (b) random Ising spins. In (a) a nonzero chemical potential
' = |a| generates the trivial phase, and the system is gapless
along the thick black lines. Data in (b) were generated from
transfer-matrix simulations at y’ = |b| = |a|/4 with 10° sites.
Data points indicate sharp peaks in the localization length, as
expected at a topological phase transition. The red diagonal line
¢, = ¢, is relevant for the physical quantum-dot setup from
Fig. 1. As the dashed arrow illustrates, the topological phase
along this line can be deformed to the zero-correlation-length
limit with ¢, = z/4, ¢, = —x/4 (and also |a| = |b|, ¢ = 0)
without crossing a phase boundary. Increasing the magnitude of
u' tends to thicken the trivial regions, while altering the relative
magnitudes of |a| and |b| shifts the boundaries separating the
topological and trivial phases.

spin-orbit coupling a. Pairing in H g follows from second-
order processes that involve virtual excitations out of the
spinless-fermion subspace—hence the K —pyu energy
denominator in b. Depending on the Ising configuration,
either spin-conserving hopping or spin-orbit coupling
virtually creates a doubly occupied site of f fermions that
then Cooper pair via the original s-wave A term, effectively
mediating p-wave pairing of spinless fermions.

Phase diagram.—Equation (4) describes a strongly inter-
acting system of Ising spins and fermions. Nevertheless, for
any given Ising configuration the model reduces to free
fermions. Consider first uniformly polarized all-up or all-
down Ising spins. Here Eq. (4) maps to the familiar Kitaev
chain [12] with uniform hopping strength 2|a|cos ¢, and
pairing +2i|b|sin¢,, where a = |a|e’« and b = |b|e?.
(Our derivation above yielded ¢, = ¢, though it will be
useful to now keep these phases independent.) Accordingly,
the chain hosts edge Majorana zero modes provided the
chemical potential intersects the band and pairing is finite,
i.e., for || < 4|a|| cos¢,| and sin¢, # 0 as sketched in
Fig. 2(a).

To examine the fermionic ground state with random
Ising spins—which is our main interest—we compute the
correlation length & using the transfer-matrix technique;
see, e.g, Ref. [21] and the Supplemental Material [20].
This method allows us to map out phase boundaries by
numerically searching for diverging & as we vary ¢, ,; for
our purposes a regular 400 x 400 grid of ¢, and ¢,, values
in the interval [—z/2,7/2] is sufficient. [Exploiting

096802-2



PHYSICAL REVIEW LETTERS 124, 096802 (2020)

E(pa, P) = E(—¢py, —¢p),) halves the number of simula-
tions]. Figure 2(b) illustrates representative results obtained
for 4’ = |b| = |a|/4 and N = 10° sites. The data points
indicate local maxima where & is typically of order 10? or
larger, while it is of order unity elsewhere. We expect
these peaks to represent true divergences in & when ¢, or
¢, are tuned continuously in the thermodynamic limit.
Topological regions are easily identified via exact diago-
nalization on smaller systems and confirming the presence
of edge Majorana zero modes. In the Supplemental
Material we analytically capture the topological phase
for a restricted window of ¢, , via the Born approximation.

For our quantum-dot setup, we expect ¢, = ¢, [red line
in Fig. 2(b)] and also |a| > |b| since p-wave pairing
encoded in b appears at second order in perturbation
theory. Starting from the topological phase in this physical
regime, Fig. 2(b) strongly suggests that we can deform
parameters to ¢, = z/4 and ¢, = —n/4, |a| = |b|, and
u' =0 without encountering a divergent £ (See the
Supplemental Material [20] for additional evidence.)
This special point corresponds to the model’s zero-corre-
lation-length limit. Here it is convenient to decompose the

spinless fermions in terms of Majorana operators 77, p; via

i(nf4)m; (ngj + ina;), whereupon Eq. (4) becomes

Cjze

Hiy = Z(—ijij - iKsmj,m;H"]AjnBj-i—l)’ (5)

J

with sm,__ml_:(1—m,-+mj+m,»mj)/2::|:l and k = 4v/2|al.
For any choice of mjs the Majorana operators dimerize

nontrivially as shown in Fig. 1, yielding Majorana zero
modes

yi =ng = e "PMic; + He.,
Yo =ENAN = —iei<”/4)mlz‘/CN + H.c., (6)

at the leftmost and rightmost sites. Notice the spin-fermion
intertwinement inherent in the zero modes, which con-
sequently evolve under 7 via

71— miyi, Y2 = —myya, (7)
again consistent with 72 = —1. All Hamiltonian eigen-
states are at least fourfold degenerate in this limit: one
factor of 2 arises because 7 flips all Ising spins, while
the other reflects topological degeneracy encoded in the
Majorana zero modes. The topological degeneracy of the
fermionic ground states given a static Ising configuration
persists even away from the special limit examined above,
due to the finite gap for fermionic excitations. Moreover,
the Supplemental Material [20] shows that Eq. (7) holds
even when the zero-mode wave functions extend over
many sites.

Adiabatic cycle—Next we generalize Eq. (1) to

Hy = [=J(A-m,)(f-m;,) - K(i-m))f}i-6f )],

J

(8)

where m, ¢ denote vectors of Pauli matrices and the unit
vector i = cos #Z + sin Y determines the easy axis for the
Ising spins. At either 6 = 0 or 7, H{, reduces to Eq. (1).
Suppose that we again deform to the zero-correlation-
length limit (which is possible for any ) and then imple-
ment the following cycle: (i) start with an arbitrary Ising
spin configuration at § = 0, (ii) initialize the fermions into
one of the topological-superconductor ground states, and
finally (iii) adiabatically rotate the easy axis by winding 6
from O to z.

Although the Hamiltonian returns to its original form,
the wave functions do not. Rather, the cycle slowly rotates
all Ising spins by sz, while the fermions follow their
instantaneous minimum-energy configuration given the
adiabaticity. The initial ground state thereby transforms
into its time-reversed counterpart. One rotation sends
mi——m’, f,»—»ei(”/z)‘frfj, and hence ¢; — ic;. Majorana
zero modes thus transform as y; — miy, and y, — my7,,
similar to the action of 7. Interestingly, two cycles return
the Ising spins to their original form whereas four cycles are
required to recover the initial zero-mode operators, e.g.,

Y1 = m?]’] iy 4 d —mﬁ’l 71 (9)

Time-crystalline topological superconductivity and
detection.—We now promote the adiabatic ground-state
phenomenon described above to a dynamic phenomenon
applicable to arbitrary physical states. To this end we apply
a variation of the preceding cycle periodically with period
T, thus generating time-crystalline topological supercon-
ductivity. We specifically consider a binary drive such that
the Floquet operator that evolves the system over a single
period reads

Uy = ¢ /00279 22, 0m4eies) il (10)

The right exponential evolves the system with respect to a
disordered, static Hamiltonian HY that is the same as
Eq. (4) but with J, a, b replaced with random site-
dependent couplings J;, a;, b;. We neglect randomness
in the phases of a;, b; and treat J;, a;, b; as independent
random variables with magnitudes drawn from uniform
distributions [J—8J,J+8J],[a—da,a+da),[b—56b,b+5b).
Disorder crucially introduces many-body localization
(MBL) into the dynamics and prevents heating to infinite
temperatures [22-26]. The left exponential in Eq. (10)
performs an instantaneous “kick” that (at least approxi-
mately) flips the Ising spins via a transverse magnetic field
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FIG. 3. Time evolution for the time-crystalline topological

superconductor generated by Eq. (10) at € = 0. Each period T
globally flips all Ising spins, yielding doubled-periodicity bulk
response, whereas the Floquet Majorana modes y;, exhibit
quadrupled-periodicity response that can be probed in the
junction with the static topological superconductor on the right.
The inner Majorana modes y, 3 hybridize with coupling strength
A. Since y5 is static while y, evolves nontrivially after each
period 7', the junction’s energy inherits the latter’s quadrupled
periodicity.

pulse and applies a potential to the spinless fermions—
thereby mimicking evolution from our adiabatic cycle
without the adiabaticity requirement.

The dynamics is analytically tractable at ¢ = 0 and when
H% reduces to Eq. (5) with random couplings J;, «;.
Starting from any Ising configuration, the “perfect” kick in
Ur sends m; — —m} and thus flips all spins, signifying
period-doubling time crystallinity in the spin sector. In the
fermionic sector, y;, in Eq. (6) continue to commute with
HY despite the randomness. The kick, however, non-
trivially transforms the Majorana edge operators so that
Ury, U; = miy; and Ury, UTT = mjyy,. Precisely as illus-
trated in Eq. (9), 7, , therefore require four drive periods to
recover their initial form, i.e., they form the hallmark
quadrupled-periodicity Floquet Majorana modes. Shaded
regions of Fig. 3 summarize the evolution.

Quadrupled periodicity can be experimentally probed in
junctions between time-crystalline and static topological
superconductors as in the right side of Fig. 3, wherein y;
and y, denote time-independent Majorana zero modes.
Electron tunneling across the junction couples y, with y3,
producing a Hamiltonian term H,3 = ily,y3 for some A that
may depend on the adjacent Ising spins. Consequently, the
junction’s energy density (among other local properties)
directly manifests the quadrupled-periodicity built into the
anomalous Floquet Majorana mode y,.

150 Disorder Averages, 20 Sites
i

1.0

Normalized Fourier Transform

FIG. 4. Fourier transform of the quantities shown in the legend
following time evolution via Eq. (10) with ¢ = 0.2 and param-
eters specified in the main text. Data are normalized by setting
the maximum of each Fourier spectrum to 1, and frequency @ on
the horizontal axis is normalized by Q = 2z/T, with T the drive
period. Here mj, represents an Ising spin at the center of the
chain, ¢ is an auxiliary zero-energy static fermion that enables
probing the Floquet Majorana mode periodicity, and ¢, is the
fermion at the left end of the quantum-dot chain. For initialization
we use random Ising configurations and random fermionic states
that entangle ¢, with the rest of the system. Runs were repeated
150 times for disorder averaging with maximum bond dimension
x = 50; similar results were obtained with y = 25. For a7 =2
sharp peaks persist at Q/2 and 3Q/4—despite “imperfect”
driving generated by e # O—indicating “rigid” doubled-perio-
dicity Ising spins and quadrupled-periodicity Floquet Majorana
modes characteristic of time-crystalline topological supercon-
ductivity. For aT = 0.2, the imperfect drive pushes the peak
frequencies away from these quantized values, indicating a loss
of rigid time crystallinity.

Rigidity against “imperfect” drives is a crucial feature of
time-crystalline phases [4-6,27]. Here, such imperfection
arises from taking € # 0 and HY away from the zero-
correlation-length limit, which spoils exact solvability and
prompts us to turn to numerics.

Numerics.—We employ time-evolving block decimation
(TEBD), using a maximum bond dimension of y = 50, on a
20-site system with random Ising spins and parameters
appropriate for our quantum-dot setup: ¢, = ¢, = 7/8,
b=a/2, J=a/4, y =0, éa=5b=35]=a/8. Our
simulations incorporate a decoupled, static zero-energy
fermion ¢ that functions similarly to the static topological
superconductor in Fig. 3. We initialize into a state that
entangles the static fermion with the rest of the system. We
then simulate the Floquet operator in Eq. (10) with aT = 2
and aT = 0.2, and with the kick shifted away from
commensurability by e = 0.2 [28]. Despite the rather small
system size, in both cases the bond dimension quickly
saturated, and the truncation error was relatively coarse. To
check robustness of our numerics we repeated the compu-
tations for maximum bond dimension y = 25, and the
results agreed with those at y = 50.
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Over a run of 60 Floquet evolutions and 150 disorder
averages, we measure the Ising spin (m?_,) in the middle
of the system as well as (cc, ), where ¢, corresponds to the
leftmost quantum dot. The former probes bulk time
crystallinity while the latter probes the Floquet Majorana
modes. Figure 4 plots the Fourier transform of both
quantities as a function of frequency @ normalized by
Q =2z/T. For aT = 2 the data show the rigidity charac-
teristic of a time crystal: despite the imperfect drive, the
bulk magnetization and edge fermion bilinear, respectively,
remain peaked at w = Q/2 and w = 3Q/4 (as expected for
doubled-periodicity Ising spins and quadrupled periodicity
Floquet Majorana modes). By contrast, in our a7 = 0.2
simulations both peaks clearly shift due to nonzero e,
indicating an absence of rigid time-crystallinity for this
case. We also ran exact numerics on a seven-site system and
measured the level-spacing statistics of the U eigenvalues.
At aT = 2 the mean level spacing was approximately 0.39,
close to the Poisson value 0.386 expected for MBL [29].

Discussion.—The admixture of symmetry breaking and
topology is known to generate new physics in static
systems; examples include 8z-periodic Josephson effects
[30,31] and enrichment of Majorana braiding and fusion
[32]. Our work establishes that driven systems can be
similarly enriched by “decorating” topological phases with
spontaneous time-translation symmetry breaking. We spe-
cifically showed that 1D time-crystalline topological super-
conductors engineered from quantum-dot arrays host novel
Floquet Majorana modes that display anomalously long
periodicity not possible with free fermions. Exotic states of
this type are not captured by the cohomology classification
of interacting topological Floquet phases [33-37]. Our
work opens up the possibility of harnessing time crystals to
enrich other “designer” phases of matter. One could
envision promoting spinless fermions to spinful fermions
coupled to magnetic degrees of freedom in systems such as
driven spinless 2D p +ip superconductors [38—40].
Subtleties regarding MBL in two dimensions can be
avoided by focusing on prethermal regimes, possibly
leading to new higher-dimensional adiabatic cycles and
time-crystalline topological phases.
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