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Topological quantum computation encodes quantum information nonlocally by nucleating non-Abelian
anyons separated by distances L, typically spanning the qubit device size. This nonlocality renders topological
qubits exponentially immune to dephasing from all sources of classical noise with operator support local on the
scale of L. We perform detailed analytical and numerical analyses of a time-domain Ramsey-type protocol for
noisy Majorana-based qubits that is designed to validate this coveted topological protection in near-term devices
such as the so-called “tetron” design. By assessing dependence of dephasing times on tunable parameters, e.g.,
magnetic field, our proposed protocol can clearly distinguish a bona fide Majorana qubit from one constructed
from semilocal Andreev bound states, which can otherwise closely mimic the true topological scenario in local
probes. In addition, we analyze leakage of the qubit out of its low-energy manifold due to classical-noise-induced
generation of quasiparticle excitations; leakage limits the qubit lifetime when the bulk gap collapses, and hence
our protocol further reveals the onset of a topological phase transition. This experiment requires measurement of
two nearby Majorana modes for both initialization and readout—achievable, for example, by tunnel coupling to
a nearby quantum dot—but no further Majorana manipulations, and thus constitutes an enticing prebraiding
experiment. Along the way, we address conceptual subtleties encountered when discussing dephasing and
leakage in the context of Majorana qubits.
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I. INTRODUCTION

Developing a scalable quantum computing architecture
that can withstand decoherence to the extent necessary for
real-world applications poses an enormous scientific and tech-
nological undertaking. One path forward pursues Majorana-
based topological qubits. These promise to provide robust pro-
tection against decoherence at the hardware level by storing
quantum information nonlocally, specifically in a fermion-
parity degree of freedom in a topological phase [1,2]. Since
2012, remarkable experimental progress [3–16] (see Ref. [17]
for a recent review) has established the potential existence
of Majorana zero modes in devices following the popular
recipe [18,19] of engineering topological superconductivity
[20] by interfacing s-wave superconductors with spin-orbit-
coupled semiconducting nanowires subjected to modest mag-
netic fields.

Most of these laboratory efforts have, however, focused on
end-of-wire tunneling conductance spectroscopy, a local mea-
surement which may have difficulty differentiating bona fide
well-separated Majorana zero modes in a topological phase
[1] from near-zero-energy Andreev bound states (ABSs) aris-
ing in a trivial phase. One might naively expect that the latter
should not “stick” near zero energy upon variation of system
parameters such as magnetic field, chemical potential, etc. Im-
portant theoretical and numerical work [21–33] has neverthe-
less shown that seemingly quite reasonable spatial variations

in the potentials can trap ABSs—even deep in the trivial
phase—that exhibit a high propensity to reside near zero
energy (at least within the energy resolution of transport ex-
periments). Andreev states, i.e., ordinary (complex) fermionic
modes, can always be described in terms of two Majorana op-
erators. Oftentimes, near-zero-energy ABSs are semilocal in
that they consist of two Majorana operators separated in space
by a finite distance, albeit one much less than the physical wire
length [25,28,30,31,33]; the corresponding coupling strength
between the constituent Majorana operators can thus be very
small. This property endows semilocal ABSs with the (rather
unfortunate) ability to masquerade as true Majorana zero
modes even with respect to more detailed local-probe charac-
teristics such as 2e2/h zero-bias-peak conductance quantiza-
tion [26,28] and 4π Josephson periodicity [34]. ABSs induced
by local potential inhomogeneities arguably describe much of
the experimental data as compellingly as true Majorana zero
modes. While states encoded through semilocal ABSs might
still furnish qubits with some degree of protection [30], such
a situation is clearly suboptimal.

Various schemes have been proposed to distinguish
Majorana zero modes from Andreev levels: (1) Detecting the
bulk topological phase transition accompanying the onset of
Majorana modes, e.g., through bulk-gap closure and reopen-
ing [35,36], surely provides an unambiguous fingerprint; see
Ref. [37] for an experiment in this direction. Recently studied
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multiterminal N-S-N devices provide an appealing platform
for revealing the bulk phase transition via nonlocal conduc-
tance measurements [38–41]. (2) Majorana modes generate
correlations in conductance measured at the two ends of a
wire, whereas ABSs localized to each end generically produce
no such correlations [25]. (3) Sensitivity of the energy to local
perturbations, such as a quantum dot [13,42,43] or sharp edge
potential [29], is expected to differ sharply for ABSs and
Majorana modes due to the nonlocal, and hence energetically
rigid, nature of the latter (see also Ref. [44]). (4) The current-
phase relation in a Cooper-pair transistor has been shown to
also differ qualitatively for these two scenarios [45]. (5) On
the more challenging end, demonstration of inherently robust
non-Abelian braiding operations is possible only with true
Majorana zero modes.

We add to this list by analyzing in detail a time-domain
protocol that not only unambiguously differentiates ABSs
from Majorana modes, but further reveals important device
characteristics (notably qubit lifetimes and precise Majorana-
hybridization energies), exposes the topological phase transi-
tion, and clearly elucidates the enormous benefit of Majorana-
based qubits insofar as robustly protecting quantum informa-
tion. The main idea is to use noise sensitivity of a prototype
qubit to validate (or invalidate) its topological nature. Similar
ideas were originally put forth in Sec. IV of Ref. [46] in
a related context. As we will see, in our framework ABSs
that arise over a restricted parameter regime before the onset
of well-separated Majorana modes in fact become a feature
rather than a bug; their presence allows one to benchmark the
quality of a bona fide topological qubit within a single device.

The remainder of this paper is organized as follows.
Section II provides an executive summary of our main re-
sults. Section III introduces the microscopic models that we
employ and also outlines our numerical simulation strategy.
The Ramsey-type protocol that we use to probe the qubit dy-
namics is detailed in Sec. IV. Section V analytically estimates
dephasing and leakage times for the qubit, while Sec. VI
extracts these quantities from explicit time-dependent numer-
ical simulations. We conclude with a discussion in Sec. VIII.
Appendices provide supplemental calculational details.

II. EXECUTIVE SUMMARY

For concreteness, we focus on the so-called “tetron”
Majorana qubit design shown in Fig. 1 [47–49] (equivalent
for our purposes to the “loop qubit” [49]). This prototype
topological qubit consists of two parallel semiconducting
nanowires (gray) each proximitized by an s-wave supercon-
ductor and tuned to the topological phase with an external
magnetic field (orange denotes topological superconductors).
The concomitant four Majorana zero modes—defined through
instantaneous eigenstates of the microscopic, time-dependent
Hamiltonian—are denoted γ1,2,3,4. A trivial superconductor
(blue) bridges the two wires. In a real physical implementa-
tion, the entire mesoscopic device is floating so as to protect
against quasiparticle poisoning events from the outside via
charging energy [48]. For the nontopological ABS qubit1

1For more parallel terminology, one can view the ABS qubit as a
superficial, hardly topological tetron (SHT tetron).

γ1 γ2

γ3 γ4

QD

γ1 γ2

γ3 γ4

QD

Topological tetron qubit

Non-topological ABS qubit

FIG. 1. Schematics of the topological tetron qubit (top) and a
nontopological qubit arising from Andreev bound states (ABSs)
residing near zero energy (bottom). Both cases consist of two
parallel semiconducting nanowires (gray) proximity coupled to s-
wave superconductors (orange and green, in the topological and
nontopological scenarios, respectively); a trivial superconducting
bridge connects the two parallel superconducting segments. As
described in the text, the spatial separation of the low-energy
Majorana modes γ1,2,3,4 is qualitatively distinct in the two scenarios.
The two leftmost such modes, i.e., γ1 and γ3, are coupled to a
nearby quantum dot (QD), allowing initialization and readout of the
respective Majorana parity iγ1γ3 = ±1.

that we wish to contrast against, γ1,2,3,4 instead represent a
maximally localized set of Majorana operators that weakly
hybridize at the left end of the device as illustrated in the
bottom of Fig. 1. Unless specified otherwise, our discussion
below pertains to both types of qubits.

Assuming that we are working on timescales much less
than the characteristic poisoning time, and additionally that
the system is confined to the low-energy, nearly degenerate
ground-state manifold with high probability—e.g., the tem-
perature and characteristic noise frequencies are well below
the bulk excitation gap (see below)—we can encode logical
qubit states by |0〉 ≡ |iγ1γ2 = +1〉 and |1〉 ≡ |iγ1γ2 = −1〉.
[Here global fermion parity is fixed to (iγ1γ2)(iγ3γ4) = +1,
so that specifying iγ1γ2 automatically specifies iγ3γ4.] In
this basis, we can identify Pauli operators Z ≡ iγ1γ2, X ≡
iγ1γ3, and Y ≡ −iγ1γ4. Suppose that γ1 and γ2 couple with
hybridization energy ε12(t ) that is time dependent due to
noise, and that γ3 and γ4 similarly couple with energy ε34(t ).
The time-averaged couplings decay asymptotically with the
intrawire Majorana separation as an oscillatory exponential:
ε12 ∼ cos(ktopLtop)e−Ltop/ξtop and ε34 ∼ cos(kbotLbot )e−Lbot/ξbot ,
where k is related to the Fermi wave vector of the wire, ξ

is the effective superconducting coherence length [50], and
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“top”/“bot” refers to the top and bottom wires of the tetron.
For the topological qubit, Ltop/bot are given by the wire length
L—thus taking full advantage of the exponential suppression.
By contrast, for the ABS qubit Ltop/bot is on the scale of the
coherence length or smaller, and hence the splitting need not
conform to such an exponential. In principle, couplings be-
tween Majoranas on different wires, such as ε14, ε23, etc., can
also be present. However, since the separation between these
Majorana modes generally exceeds that between Majorana
modes on the same wire, these couplings will be significantly
smaller than the intrawire hybridization energies—at least
if the superconducting bridge connecting the two wires is
sufficiently long and well gapped. In this case, their primary
effect is to reduce the amplitude of qubit oscillations and
slightly shift the qubit precession frequency while leaving the
qualitative features unaffected. We can therefore safely ignore
such subdominant terms and write the Hamiltonian governing
the dynamics of the qubit as

H (t ) =
i

2
[ε12(t )γ1γ2 + ε34(t )γ3γ4]

=
1

2
[ε12(t ) + ε34(t )]Z ≡

1

2
E (t )Z. (1)

Finally, a quantum dot (ignored thus far) sits proximate to
the left ends of the nanowires, thereby allowing a joint parity
readout [48,51,52] of nearby Majoranas γ1 and γ3, i.e., the
Pauli X operator.

Our proposed protocol is conceptually very simple: (1)
Initialize the system into an X eigenstate by measuring iγ1γ3;
(2) let the system evolve unitarily for a wait time t ; and finally
(3) remeasure X . Assuming the unitary evolution is governed
by Eq. (1), which ignores interwire Majorana hybridization as
well as higher-energy excitations, the qubit precesses about
the z axis on the equator of the Bloch sphere. Let us write the
instantaneous qubit splitting defined through Eq. (1) as E (t ) =
h̄ω0 + δE (t ). Here, ω0 is the time-averaged qubit precession
frequency while δE (t ) encodes the effects of classical noise
and is responsible for dephasing. Note that we assume here
that δE (t ) fluctuates around zero mean. Taking the initial state
to be an eigenstate of X = iγ1γ3 with eigenvalue +1, noise
averaging the X readout measurement gives

〈ψ (t )|X |ψ (t )〉 = cos(ω0t ) f (t/T2), (2)

where the envelope function f (t/T2) decays on a timescale
given by the dephasing time T2. This experiment therefore
simultaneously probes ω0 (and thus reveals the mean Majo-
rana hybridization energy) as well as T2—both critical device
characteristics that differ starkly for topological and ABS
qubits. We note that the described protocol is similar in
spirit to the so-called Ramsey sequence [53,54]. The main
differences are that we (1) do not include an external driving
field transverse to Z and (2) initialize and read out the qubit
with projective X measurements in contrast to utilizing π/2
pulses and Z initialization/readout2

2A related sequence involving Z initialization, two π/2 rotations
about the x axis buttressing a wait time t , followed by a final Z

measurement was proposed in Ref. [46], as appropriate for the qubit
design presented therein.

A particularly advantageous feature of Majorana-based
topological qubits is that, due to their inherently nonlocal
encoding, the splitting E remains exponentially small—and
thus also “exponentially flat”—in response to changes in all

local Hamiltonian couplings (e.g., chemical potential, Zeeman
field, etc.). This property endows topological qubits with ex-
ponential protection from all classical noise sources, yielding
the following nontrivial scaling relation that connects time-
averaged splitting and dephasing [46]:

1

ω0
∼ T a

2 ∼ eL/ξ . (3)

Here, a is an order-one number dependent on details of
the noise. In other words, as the topological qubit becomes
“perfect,” the splitting vanishes and the dephasing time di-
verges in a correlated fashion. For comparison, the transmon
qubit [55] benefits similarly from an exponential protection
from charge noise, but not other noise sources; additionally,
there the qubit splitting need not be exponentially small. The
prebraiding protocol sketched above and analyzed in detail
below is capable of probing the scaling relation in Eq. (3),
which can for practical purposes be taken as a definition of
a topologically protected quantum memory. Note also that as
the qubit quality improves (i.e., as L/ξ increases) the splitting
h̄ω0 becomes more difficult to resolve in transport [9,56] yet
easier to resolve in the time-domain measurements employed
in our protocol.

The trivial ABS qubit exhibits qualitatively different be-
havior. First, since the requisite “accidental” low-energy
Andreev bound states would emerge due to some local,
nonuniversal features in the potential landscapes near the
ends of the wires, the ABS qubit would clearly not exhibit
exponential protection against arbitrary local noise sources.
Moreover, neither ω0 nor T2 will vary appreciably with wire
length L, in sharp contrast to the scaling relation in Eq. (3)
that uniquely identifies the topological qubit.

While it would be ideal to perform experiments at dif-
ferent L, keeping all other parameters fixed in this process
has its practical challenges. We nevertheless argue that one
can compellingly distinguish the two scenarios in a single

prototype qubit at fixed L by carrying out the protocol at
different field strengths B. Numerous numerical simulations
[24,25,28,30,31,33] indicate a tendency for low-energy An-
dreev bound states to form over an extended field interval
below the onset of a topological phase hosting true Majorana
zero modes. In such a scenario, upon increasing B from zero,
the system first realizes an ABS qubit, then encounters a
topological phase transition at a critical field Bc, and finally
forms a topological qubit.

The behavior of ω0 and T2 during this evolution reveals
a wealth of information. In the ABS regime there is likely
no clear universal behavior present, though the measured
coherence times would provide a useful baseline. When B

approaches Bc, the bulk gap becomes close to zero. Here, even
low-frequency noise can efficiently excite the qubit out of the
computational subspace, causing a precipitous reduction in
the qubit lifetime. (Below we denote the characteristic “leak-
age” time associated with such excitations by Tleak .) Hence,
our protocol provides a means of detecting the topological
phase transition. As B increases beyond Bc, the gap reopening
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FIG. 2. Qubit coherence time defined as min(T2, Tleak ) (top) and
qubit precession period 2π/ω0 (bottom) as a function of Zeeman
energy Vz for tetron qubits constructed from the spinful nanowire
model of Eq. (5) at different wire lengths L. For V ′

zc < Vz < Vzc,
the qubit is of the nontopological ABS variety (Fig. 1, bottom
panel), while for Vz > Vzc, the qubit is topological (Fig. 1, top panel).
In the top panel, solid curves indicate that the qubit lifetime is
dephasing limited (T2 < Tleak), while dashed curves indicate that
the qubit lifetime is leakage limited (Tleak < T2). These calculations
were performed using the quasianalytic methods of Sec. V; for
more details, including the specific parameters chosen, please see
Sec. VI B.

and concomitant appearance of robust Majorana zero modes
rapidly boost the qubit’s coherence time—ideally to values
exceeding the ABS-qubit lifetime by orders of magnitude.
The scaling relation in Eq. (3), which should now be viewed
in terms of field-induced variation of ξ at fixed L, becomes
operative in this topological regime. The topological-qubit
frequency ω0 additionally exhibits characteristic oscillations
with magnetic field, reflecting oscillatory overlap of the Ma-
jorana wave functions [50], in turn yielding out-of-phase
oscillations in the dephasing time T2 [46]. Further increasing
B eventually suppresses the gap for the topological phase
and hence increases ξ , thereby diminishing 1/ω0 and T2 in
accordance with Eq. (3). Note also that for sufficiently long
topological wires, the exponentially long dephasing time T2 is
eventually cut off by the leakage time Tleak (which is set by the
L-independent excitation gap).

The above points are demonstrated in Fig. 2, where we
show concrete calculations of the qubit coherence time de-
fined as min(T2, Tleak ) and qubit precession period 2π/ω0 for

noisy tetron qubits modeled within the canonical single-band
description of proximitized spin-orbit-coupled nanowires
[18,19]. Here, the horizontal axis denotes the Zeeman energy,
related to the magnetic field B through Vz = 1

2 gμBB, with g the
effective Landé g factor (assumed equivalent for both wires
of the tetron) and μB the Bohr magneton. In these plots, and
in all simulations in this paper, we neglect dependence of
the noise on magnetic field and other parameters. We stress
that although this assumption will undoubtedly be violated to
some degree in experiment, the nonmonotonicity and sheer
magnitude of the effects illustrated in Fig. 2 are unlikely to be
modified significantly by such nonuniversal noise properties.
For more details of the model Hamiltonian, means of calcula-
tion, and chosen physical parameters for the data in Fig. 2, see
Secs. III A, V, and VI B below.

Many previous studies have explored the influence of noise
on Majorana-based qubits from various perspectives (see, e.g.,
Refs. [49,57–67]). We emphasize that here we are proposing
to use noise to our advantage in verifying the topological
nature of a prototype Majorana qubit, and as a by-product
are able to extract crucial device characteristics that would
otherwise be difficult to obtain. Time-domain experiments
of the type that we propose certainly entail significant chal-
lenges, but they are arguably a prerequisite for successful
demonstration of exponentially accurate braiding gates.

III. MICROSCOPIC MODELS AND

THEORETICAL FORMULATION

A. Microscopic Hamiltonians

We exploit two different microscopic Hamiltonians
for the one-dimensional (1D) topological superconductors
comprising our prototype tetron qubits. For a truly minimal
description we appeal to Kitaev’s model [1] for a 1D spinless
p-wave superconductor, given by the Hamiltonian

HK =
L

∑

i=1

[

−μc
†
i ci −

1

2
(Jc

†
i ci+i + 	cici+1 + H.c.)

]

. (4)

Here, μ is the chemical potential, J � 0 is the nearest-
neighbor hopping strength, and 	 is the p-wave pairing
strength (assumed real). The topological phase occurs for
|μ| < J , wherein a chain with open boundary conditions
harbors a pair of Majorana zero modes (MZMs), one at each
end.

For a more realistic treatment, we consider the one-band
spinful model of a Rashba spin-orbit-coupled nanowire prox-
imitized with an s-wave superconductor and subjected to a
Zeeman field [18,19]. The Hamiltonian reads as

HNW =
∫ L

0
dx

[

ψ†

(

−
h̄2∂2

x

2m
− μ+V (x) − iασ y∂x +Vzσ

z

)

ψ

+ 	(x)(ψ↑ψ↓ + H.c.)

]

, (5)

where m is the effective electron mass, μ is the chemical
potential, α is the Rashba spin-orbit strength, Vz = 1

2 gμBB

is the Zeeman energy, 	(x) is the induced s-wave pairing
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amplitude, and Pauli matrices σ y,z act in spin space. Note
that we explicitly included a spatially varying external electric
potential V (x) and also allowed the pairing potential 	(x)
to depend on position: these features are essential for creat-
ing conditions that trap near-zero-energy ABS’s that mimic
MZM’s. A uniform system with V (x) = 0 and 	(x) = 	0

resides in the topological phase provided h >
√

	2
0 + μ2 . For

numerical evaluation we discretize Eq. (5) in a standard way;
when essential, we will specify the lattice spacing used in this
discretization procedure below.

At fixed global fermion parity, we microscopically model
tetron qubits via

H = Htop + Hbot, (6)

where Htop and Hbot take the form of either Eqs. (4) or (5)
and, respectively, describe the top and bottom topological
superconductors in the qubit. Classical noise is readily in-
cluded by endowing parameters in H with stochastic time
dependence. In principle, one should include a “bridge” term
that couples the two superconductors (see Fig. 1). We assume
for simplicity that the bridge yields only small quantitative
effects and thus ignore its presence in our calculations. Both of
our microscopic models describe noninteracting electrons in a
non-number-conserving formulation and thus fail to capture
charging-energy effects that would be present in a laboratory
realization of the tetron (see Sec. II). This simplification is
assumed for obvious computational tractability reasons; how-
ever, the effects of 1/ f charge noise, as was argued to be the
dominant physical source of tetron dephasing in Ref. [49], can
be captured at a rough qualitative level by taking the global
chemical potentials to fluctuate stochastically in Eqs. (4)
and (5).

B. Majorana-operator reformulation

In our microscopic numerical simulations of tetrons, we
find it most convenient to work in the language of local Ma-
jorana operators ai—with {ai, a j} = 2δi j , a

†
i = ai, and (ai )2 =

1—by decomposing the local Dirac fermions in the usual way,
e.g., ci = (a2i−1 − ia2i )/2 in the Kitaev model context [1]. In
this basis, the (quadratic) microscopic tetron Hamiltonian is
represented by an N × N antisymmetric matrix A = −AT :

H =
i

4

N
∑

i, j=1

Ai jaia j =
i

4
aT A a, (7)

with N the total number of local Majorana operators; for
spinless (spin- 1

2 ) models with Nsites physical sites, N = 2Nsites

(N = 4Nsites). It is a relatively straightforward numerical ex-
ercise (see, e.g., Refs. [68–70]) to bring A into so-called
“canonical form” via an orthogonal rotation U :

B = U T AU =
N/2
⊕

k=1

εkiσ y, (8)

such that

H =
i

4
bT B b =

i

2

N/2
∑

k=1

εkb2k−1b2k . (9)

The canonical Majorana modes bi = [b]i are related to the
original local Majoranas ai = [a]i via the orthogonal trans-
formation b = U T a, and εk � 0 are the energies (or instanta-
neous energies when the Hamiltonian depends on time).

Due to Wick’s theorem, any quadratic system can be
completely described by the real, antisymmetric covariance
matrix

Mi j =
−i

2
〈[ai, a j]〉, (10)

where the square brackets denote a commutator and 〈. . . 〉 =
Tr{ρ . . . } a quantum expectation value taken with respect
to density matrix ρ; if ρ = |ψ〉〈ψ | represents a pure state,
one finds M2 = −1. As an example, the ground state of H

corresponds to a covariance matrix

Mg.s. = U My U T , (11)

with

My =
N/2
⊗

k=1

iσ y (12)

a reference covariance matrix in the canonical basis of the
modes bi which encodes ib2k−1b2k = −1 ∀ k = 1, . . . , N/2.
It is straightforward to construct more general states by ap-
propriately toggling elements of My (see Refs. [69,70] and
Sec. IV).

Finally, the Schrödinger equation for Gaussian states takes
the form of the following ordinary matrix differential equation
for the covariance matrix:

dM(t )

dt
= [A(t ), M(t )], (13)

where A(t ) specifies the (possibly time-dependent) Hamilto-
nian [cf. Eq. (7)] and the square brackets denote the matrix
commutator. Any physical observable can then be computed
with knowledge of M(t ); relevant examples of such measure-
ments will be described in the next section.

IV. RAMSEY-TYPE PROTOCOL

A. Qubit definition

In what follows, we assume for concreteness that the
devices in Fig. 1 possess even global fermion parity. We will
encode the qubit in the subspace consisting of the two lowest-
lying instantaneous even-parity eigenstates of the microscopic
Hamiltonian H (t ) that depends on time due to noise. These
presumed nearly degenerate states could arise because the
system either realizes bona fide topological phases yielding
four well-separated Majorana modes (upper panel of Fig. 1),
or exhibits a pair of “accidentally” low-energy Andreev bound
states (lower panel of Fig. 1). Since we will explore platforms
that contain both types of near degeneracies depending on
parameters, it is useful to treat them in a common framework.
To this end we introduce a quartet of maximally localized

(in real-space) Majorana operators γ1,2,3,4(t ) that span the
instantaneous qubit subspace at time t . In the topological
case, residual overlap between Majorana operators splits the
degeneracy by an energy that is exponentially small in their
separation; in the low-energy Andreev-bound-state scenario,
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pairs of Majorana operators sit in close proximity yet happen
to hybridize weakly.

For a more precise definition of the qubit, suppose that

P(t ) ≡ [iγ1(t )γ2(t )][iγ3(t )γ4(t )] = +1 (14)

in the lowest-lying even-fermion-parity states, and define
Pauli operators

Zt = iγ1(t )γ2(t ), Xt = iγ1(t )γ3(t ). (15)

Our logical qubit states are then the minimum-energy many-
body states with Zt = ±1, i.e.,

|0t 〉 ≡ |Zt = +1〉 , |1t 〉 ≡ |Zt = −1〉 . (16)

The subscript t (suppressed in Sec. II) is included here and
below as a reminder that these states are defined with re-
spect to Majorana operators extracted from the instantaneous
Hamiltonian at time t , rather than with respect to a fixed basis.

Some discussion is warranted regarding the definition of
the maximally localized Majorana operators γ1,2,3,4(t ) in our
microscopic numerical simulations. The canonical modes bi

of the quadratic Hamiltonian H defined above [cf. Eqs. (8)
and (9)] are not unique since arbitrary SO(2) rotations O2×2

k
=

exp(iθkσ
y) within each 2 × 2 block of Eq. (8) leave the matrix

B invariant:

B = O B OT , O =
N/2
⊕

k=1

O2×2
k . (17)

Thus, Majorana modes b̃i = [b̃]i defined through

b̃ = OT b = Ũ T a, (18)

with Ũ = U O, also form a canonical set with the same
instantaneous energies, i.e.,

H =
i

4
b̃T B b̃ =

i

2

N/2
∑

k=1

εk b̃2k−1b̃2k . (19)

The Majorana modes γ1,2,3,4(t ) depicted in Fig. 1 refer to
b̃1,2,3,4 with O2×2

k=1,2 chosen such that the associated wave
functions maximally localize at a given time t . Specifically,
we first find a set of canonical near-zero-energy modes b1,2,3,4

by bringing A into canonical form using the software package
presented in Ref. [68]; in the local basis of the ai, these
modes are represented by column vectors of the matrix U , say
Ui, j=1,2,3,4. We then optimize the O2×2

k=1,2 (each characterized
by an angle 0 � θk < 2π ) such that for the resulting Ũ = U O

the fourth moments
∑2

j=1

∑N
i=1 |Ũi j |4 and

∑4
j=3

∑N
i=1 |Ũi j |4

(for k = 1, 2, respectively) are maximized; now, in the local
ai basis, these maximally localized modes b̃1,2,3,4 are given by
column vectors of Ũ , i.e., Ũi, j=1,2,3,4. We order these modes
according to their real-space locations as shown in Fig. 1,
thereby giving the desired γ1,2,3,4(t ).3

As an aside, the numerical procedure spelled out above
is tailored to the situation where the two superconductors

3This method for obtaining maximally localized near-zero-energy
Majorana modes working entirely in the local Majorana representa-
tion parallels that described in Ref. [25] using the more traditional
Bogoliubov–de Gennes (BdG) framework.

comprising the qubit decouple, which again we assume for
simplicity is the case throughout. The Majorana modes γ1,2(t )
[γ3,4(t )] then have support entirely on the top (bottom) wire
of the tetron. In the more realistic scenario in which a nonzero
“bridge” Hamiltonian couples the wires, a physically plausi-
ble definition of γ1,2,3,4(t ) involves instead maximizing the
single fourth moment

∑4
j=1

∑N
i=1 |Ũi j |4 via a single orthog-

onal rotation O4×4 acting on the b1,2,3,4. In the latter case,
γ1,2,3,4(t ) are not generally eigenmodes of the Hamiltonian.

B. Protocol details

Section II summarized our time-domain Ramsey-type pro-
tocol for the physical implementation of the tetron. In the
“ideal” case the protocol involves (1) initializing the system
into, say, the Xt=0 = +1 eigenstate at time t = 0 via energy-
level spectroscopy on the nearby quantum dot which tunnel
couples to γ1 and γ3, (2) letting the system evolve freely for
time t under the influence of classical noise, and (3) reading
out Xt = ±1 with the same quantum dot used for initializa-
tion. (For practical purposes, we will sometimes depart from
this ideal protocol by initializing and measuring with respect
to a fixed basis.) In the remainder of this section, we elaborate
on these steps to set the stage for our analytic treatment of
dephasing and noise in Sec. V and our full time-dependent
microscopic simulations of tetron qubits in Secs. VI and VII.

1. Initialization

We start with initialization via the proximate quantum dot.
At the level of our analysis, we assume that the quantum dot
is “perfect” in the sense that a measurement projects exactly
and instantaneously onto the qubit state

|ψ (0)〉 =
1

√
2

(|0t=0〉 + |1t=0〉) (20)

with Xt=0 = +1 at time t = 0. Under this highly idealized
assumption, we need not explicitly include the quantum dot
in our analysis. In our microscopic simulations of noisy tetron
qubits in Sec. VI, we use the time-averaged Hamiltonian—
specified by an antisymmetric matrix A0—to define the rele-
vant γ1,2,3,4 used for initialization, which we denote γ

(0)
1,2,3,4.

[Obtaining the modes instead using the initial Hamiltonian
A(t = 0) �= A0 for each noise realization, as implied by
Eq. (20), leads to only negligible quantitative differences in
the results presented there; see Sec. VII for more discus-
sion on this point.] Specifically, we bring A0 into canonical
form as described above in Sec. III [see Eq. (9)]; we sub-
sequently find the corresponding set of maximally localized
near-zero-energy Majorana modes, which are encoded in col-
umn vectors of an orthogonal matrix Ũ0. Next, we construct
a reference covariance matrix My(t = 0) [cf. Eqs. (11) and
(12)] in the basis of these modes b̃

(0)
i corresponding to, say,

X0 = iγ
(0)

1 γ
(0)

3 = +1 and iγ
(0)

2 γ
(0)

4 = −1. The global fermion
parity thus reads as (iγ (0)

1 γ
(0)

2 )(iγ (0)
3 γ

(0)
4 ) = +1, which for all

presented simulations coincides with the parity of the absolute
ground state of A0. (Recall that modes b̃i=1,2,3,4 within the
low-energy manifold correspond to the maximally localized
modes γ1,2,3,4, while the remainder b̃i �=1,2,3,4 are equivalent
to the respective original canonical modes bi.) Finally, the
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initial covariance matrix in the ai basis [cf. Eq. (10)] reads
as M(t = 0) = Ũ0 My(t = 0) Ũ T

0 .

2. Unitary evolution

Once initialized, the system undergoes unitary time evolu-
tion with respect to the noisy Hamiltonian H (t ). After time t

the initial state becomes

|ψ (t )〉 = U (t ) |ψ (0)〉
≡ at |0t 〉 + bt |1t 〉 + ct |vt 〉 , (21)

where U (t ) is the time-evolution operator (we discuss the
second line shortly). Our microscopic numerical simulations
are instead carried out in the Heisenberg picture, for which
unitary evolution is encoded in Eq. (13); there, noise is
included through time dependence in A(t ), which is es-
sentially the Hamiltonian expressed in the Majorana basis.
Appendix A details our treatment of noise (e.g., the procedure
we employ for generating individual noise trajectories for a
given realization) and numerical solution of Eq. (13).

We stress that in general |0t 〉 �= U (t ) |0t=0〉 since |0t 〉 is
defined through instantaneous H (t ) eigenstates (and similarly
for |1t 〉).4 In the second line of Eq. (21) we thus expressed the
time-evolved state in terms of qubit states |0t 〉 and |1t 〉 at time
t , and a ket |vt 〉 that signifies dynamically generated excited
states. Generation of weight on the latter via nonzero ct corre-
sponds to “leakage” of the qubit away from the computational
subspace. Leakage can arise from an odd or even number of
fermionic excitations, thus respectively flipping or preserving
P(t ). Using Eq. (21) we can define a qubit leakage time Tleak

by writing

|at |2 + |bt |2 ≡ 1 − f (t/Tleak ), (22)

where the overline indicates noise averaging. On the right
side, f (t/Tleak ) is a system-dependent function that vanishes at
t = 0 and grows—thus shifting weight onto excited states—
on a characteristic timescale Tleak . An alternative leakage
metric can be extracted from

〈ψ (t )| P(t ) |ψ (t )〉 ≡ 1 − f̃ (t/T̃leak ) (23)

with f̃ a different function that grows on a timescale T̃leak . The
latter measures the weight on excited states containing only
odd numbers of fermionic excitations, and thus provides an
upper bound on the leakage time defined above, i.e., Tleak �

T̃leak .
At this point it is worth commenting on an alternative

scheme wherein one defines the qubit in terms of a fixed basis
of maximally localized Majorana operators obtained from,
say, the time-averaged Hamiltonian A0 or, for a given noise
realization, the initial Hamiltonian A(t = 0). For an extreme
case, suppose that H (t ) supports exact instantaneous zero-
energy Majorana modes at any time t , but that adiabatic noise
causes the locations of the Majorana modes to vary with time.
The system will then evolve out of the low-energy subspace

4|0t 〉 and |1t 〉 are the two lowest-energy eigenstates of the instanta-
neous Hamiltonian in the same global parity sector as the evolving
state |ψ (t )〉 (assumed even in this discussion), which may or may not
coincide with the parity of the absolute instantaneous ground state.

spanned by the fixed Majorana operators, whereas the qubit
subspace should clearly be perfectly preserved—as captured
by tracking instantaneous Majorana operators. In general we
expect that employing a fixed basis overestimates qubit errors,
with the difference being most pronounced when the noise is
“slow” and of “large” amplitude. We will quantify such effects
later in Sec. VII.

3. Readout

The final step of the protocol involves readout. We again
assume that the nearby quantum dot can perform this task,
i.e., measure Xt = ±1, instantaneously and without error.
Under this assumption, the relevant physical quantity is the
noise-averaged expectation value of Xt with respect to the
time-evolved state:

〈ψ (t )| Xt |ψ (t )〉 = cos(ω0t ) f (t/T2), (24)

which defines the qubit precession frequency ω0 and dephas-
ing time T2. Compared to Eq. (2), the t subscript on the left
side explicitly indicates that the expectation value is (ideally)
taken with respect to the instantaneous Majoranas at time t .

To calculate the quantum expectation value 〈ψ (t )|X |ψ (t )〉
for a given noise realization in our microscopic simulations,
we basically invert the initialization procedure described
above. Specifically, we conjugate M(t ) with Ũ (which defines
the measurement basis; see below) to arrive at

My(t ) = Ũ T M(t ) Ũ , (25)

from which any 〈iγiγ j〉 can be read off directly. Measurements
involving a product of more than two operators can be eval-
uated with use of Wick’s theorem; an important example is
P(t ), which (partially) probes leakage out of the computa-
tional subspace [recall Eq. (23)].

As with initialization, there exists a choice as to pre-
cisely what is meant by the Majorana operators γ1,2,3,4 being
measured. Namely, these could be defined as (maximally
localized) near-zero-energy modes with respect to, say, the
fixed time-averaged Hamiltonian A0 or the instantaneous

Hamiltonian A(t ).5 Operationally, to measure in the basis
corresponding to the time-averaged Hamiltonian such that
γ1,2,3,4 = γ

(0)
1,2,3,4, we use Eq. (25) with Ũ = Ũ0 (the same

orthogonal matrix used in the initialization procedure). On the
other hand, to measure in the instantaneous basis we need to
find a set of maximally localized modes γ1,2,3,4 = γ1,2,3,4(t )
at every time t , which are encoded in a time-dependent
orthogonal matrix Ũ = Ũ (t ) to be used in Eq. (25). In our
microscopic simulations, we implement both instantaneous
and fixed measurement bases. Employing a fixed basis is
computationally cheaper as it does not require bringing the
Hamiltonian into canonical form and finding maximally lo-
calized modes at each time step. Additionally, there is an
inherent sign ambiguity in the canonical modes (and thus
also maximally localized modes) upon bringing A(t ) into
canonical form numerically, i.e., the Hamiltonian is invariant

5An alternative choice similar to the former case could be to use
modes derived from the fixed initial Hamiltonian A(t = 0) �= A0 for
a given noise realization. We take this approach in Sec. VII.
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upon taking b2k−1 → −b2k−1 and b2k → −b2k for a given k

in Eq. (9). Therefore, measurements in the instantaneous basis
such as 〈iγ1(t )γ3(t )〉 will be plagued by γ1(t ) and γ3(t ) having
arbitrary relative sign for different t . For these reasons, we
use the fixed basis defined by the time-averaged Hamiltonian
for the data presented in Secs. VI. Note that measuring in the
fixed basis corresponding to the time-averaged Hamiltonian
plausibly mimics “imperfect” quantum dot readout that is
slow on the timescale of the typical noise correlation time.
In Sec. VII, we circumvent the sign ambiguity problem in the
instantaneous basis by noise averaging instead 〈iγ1(t )γ3(t )〉2

and are thereby able to directly compare the two measurement
approaches (and thus qubit encodings).

V. ANALYTICAL ESTIMATION OF QUBIT TIMESCALES

In this section we use standard techniques to derive analytic
formulas for the dephasing and leakage times. These estimates
will be compared with timescales extracted from our time-
dependent numerical simulations in Sec. VI.

A. Dephasing time

We first restrict attention to the low-energy subspace, ne-
glecting the quasiparticle continuum above the superconduct-
ing gap. This approximation is justified provided noise is slow
compared to the gap scale. Leakage of the qubit into excited
states will be discussed in the next subsection.

Within the low-energy subspace, we model the qubit by
the minimal two-level Hamiltonian in Eq. (1). Time depen-
dence in the instantaneous energy splitting E (t ) arises due to
stochastic temporal variations in parameters in the “parent”
microscopic Hamiltonian. We denote fluctuations in these
microscopic parameters about their time-averaged values by
λi(t ), which are assumed uncorrelated with one another. This
set can include variations in the electrochemical potential,
magnetic field, etc., in different spatial regions of the device.
For example, if only the global chemical potential varies
in time by an amount δμ(t ), then we simply have λ1(t ) =
δμ(t ); if instead uncorrelated chemical potential variations
arise in the left and right halves of the wires, then we have
λ1(t ) = δμL(t ) and λ2(t ) = δμR(t ); and so on. Assuming the
fluctuations are weak, we Taylor expand the energy to second
order in λi’s, yielding

E (t ) ≈ E0 +
∑

i

λi(t )E ′
i +

1

2

∑

i, j

λi(t )λ j (t )E ′′
i j, (26)

where we defined shorthand notation

E ′
i =

dE

dλi

|λi=0, E ′′
i j =

d2E

dλidλ j

|λi, j=0. (27)

To noise average we will assume that each λi exhibits
Gaussian noise correlations with mean and variance

λi(t ) = 0, (28)

λi(t )λ j (t ′) = δi jSi(t − t ′). (29)

We further take Si(t ) to be Gaussian as a function of time, i.e.,

Si(t ) = D2
i e−t2/(2τi )2

, (30)

corresponding to a power spectrum

Si(ω) = D2
i

√

4π

κ2
i

e−(ω/κi )2
. (31)

In Eqs. (30) and (31), Di and τi ≡ 1/κi, respectively, denote
the fluctuation amplitude and characteristic noise correlation
time for fluctuator λi; note that the frequency scale κi plays
the role of a high-frequency cutoff in the power spectrum. The
qubit precession frequency ω0 then follows from

h̄ω0 = E (t ) = E0 +
1

2

∑

i

D2
i E ′′

ii . (32)

Notice that noise generically shifts the mean energy splitting
h̄ω0 away from the noise-free value E0.

We could in principle also adopt the more realistic case
of 1/ f noise, which leads to similar qualitative conclusions
(see, e.g., Ref. [46] for a discussion in a related context).
However, in the microscopic models discussed below, 1/ f

noise requires the introduction of a high-frequency cutoff
which leads to corrections that make quantitative comparisons
between theoretical and numerical estimates challenging.

In the two-level-system approximation used here, it is
straightforward to evaluate the readout for the Ramsey-type
protocol described in the preceding section. For a particular
noise realization one obtains

Q(t ) ≡ 〈ψ (t )| Xt |ψ (t )〉 = cos

(∫ t

0
dt ′E (t ′)/h̄

)

. (33)

Appendix B noise averages Q(t ); in the long-time limit t � τi

we find

Q(t � τi ) ≈ cos(ω0t )e−t/T2 (34)

with dephasing time

T2 =
h̄2

√
π

⎡

⎣

∑

i

τi(DiE
′
i )2 +

1

2

∑

i j

τiτ j
√

τ 2
i + τ 2

j

(DiE
′′
i jD j )

2

⎤

⎦

−1

.

(35)

(Appendix B also examines the short-time limit t � τi, which
is sometimes relevant for our numerical simulations.) Upon
varying parameters, e.g., to transition between an ABS and
topological qubit, we expect that T2 will vary by far most
dramatically through the E ′

i and E ′′
i j factors. These factors

quantify the rigidity of the qubit splitting with respect to
fluctuations and can be efficiently derived from microscopics
through exact diagonalization of noise-free static Hamiltoni-
ans, in principle containing various bells and whistles. We
will carry out such an analysis in Sec. VI in parallel with our
explicit time-dependent qubit simulations.

B. Leakage time

We will estimate the qubit leakage time by studying just a
single noisy wire in the tetron using Fermi’s golden rule. For
analytical tractability, we will further employ a fixed basis for
Majorana modes in the device; as stressed in Sec. IV B 2, the
analytical estimates that follow should thus be viewed as an
upper bound on the true leakage time that would be obtained
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by following the instantaneous basis of maximally localized
Majorana modes.

Let us describe the system within the spinful-wire model
(extension to the Kitaev-chain description is straightforward).
We write the full microscopic Bogoliubov–de Gennes Hamil-
tonian as H = H0 + δH (t ), where H0 is given by Eq. (5) and
δH (t ) incorporates noise. The static part of the Hamiltonian is
diagonalized upon decomposing the fermion ψσ (x) with spin
σ at position x as

ψσ (x) = �1σ (x)γ (0)
1 + �2σ (x)γ (0)

2 +
∑

E>0

ϕEσ (x) fE . (36)

Here, �1,2σ denote the maximally localized Majorana wave
functions associated with the fixed-basis Majorana operators
γ

(0)
1,2 derived from H0, while ϕEσ denote wave functions for

above-gap excitations created by operators f
†
E . After this

decomposition H0 becomes

H0 =
i

2
ε12γ

(0)
1 γ

(0)
2 +

∑

E>0

E f
†
E fE (37)

with ε12 the noise-free splitting of states with iγ1γ2 = ±1.
We write the noise terms as

δH (t ) =
∑

i

λi(t )
∫ L

0
dx ψ†�i(x)ψ (38)

for some matrices �i(x) dependent on the nature of the
parameter fluctuations λi(t ). For instance, if λ1(t ) = δμ(t )
represents a global chemical potential fluctuation, then �1 =
−I . Note that we neglect noise in the pairing channel for
simplicity, though such terms could be readily incorporated
if desired. Rewriting δH (t ) using Eq. (36) yields

δH (t ) =
∑

E>0

{[

A1E (t )γ (0)
1 + A2E (t )γ (0)

2

]

fE + H.c.
}

+ · · · .

(39)

The ellipsis denotes pieces involving two Majorana operators
or two fE operators, while the coefficients above read as

A1,2E (t ) =
∑

i

λi(t )
∫ L

0
dx �

†
1,2(x)�i(x)ϕE (x). (40)

Next, we introduce the complex fermion f0 = (γ1 + iγ2)/2
and define A±,E (t ) = A1E (t ) ± iA2E (t ) so that

δH (t ) =
∑

E>0

{[A−,E (t ) f0 + A+,E (t ) f
†
0 ] fE + H.c.} + · · · .

(41)

According to Fermi’s golden rule, the noise-averaged leak-
age rates �± out of the ground states with f

†
0 f0 = 0 (�−) and

f
†
0 f0 = 1 (�+) are given by

�± =
2π

h̄

∑

E>0

∫

ω,ω′
A±,E (ω)A∗

±,E (ω′)δ(E ∓ ε12 − h̄ω). (42)

The noise correlations in Eqs. (28) through (31) yield

A±,E (ω)A∗
±,E (ω′) = 2πδ(ω − ω′)

× 2
√

π
∑

j

τ jD
2
j e

−(ωτ j )2
B±, j (E ), (43)

where

B±, j (E ) =
∣

∣

∣

∣

∫

x

[�†
1(x) ± i�

†
2(x)]� j (x)ϕE (x)

∣

∣

∣

∣

2

. (44)

Feeding this expression into �± leads to

�± = 2
√

π
∑

j

τ jD
2
j

h̄2

∑

E>0

B±, j (E )e−[(E∓ε12 )τ j/h̄]2
. (45)

Suppose now that Eg is the bulk gap and ρ(E ) is the density of
states for the above-gap excitations; assuming the coefficients
B±, j vary smoothly with energy, we approximate the leakage
rates as

�± ≈ 2
√

π
∑

j

τ jD
2
j

h̄2 B±, j (Eg)

×
∫ ∞

Eg

dE ρ(E )e−[(E∓ε12 )τ j/h̄]2
. (46)

Leakage will be most important in the vicinity of the
topological phase transition where the bulk gap approaches
zero. In this regime, the excitation spectrum can be viewed
as arising from gapped-out counterpropagating bulk Majorana
fermions with mode velocity v and dispersion

E (k) =
√

(h̄vk)2 + E2
g . (47)

The density of states follows as

ρ(E ) =
L

π h̄v

E
√

E2 − E2
g

(48)

for E > Eg and vanishes otherwise. [We have implicitly
assumed periodic boundary conditions in writing Eq. (47),
though the choice of boundary conditions should not signif-
icantly influence ρ(E ).] Assuming ε12 � Eg, we then obtain

�± ≈
L

h̄v

∑

j

D2
j

h̄
B±, j (Eg)e−(Egτ j/h̄)2

. (49)

The coefficients B±, j (Eg) depend on details of the wave
functions and noise sources. We will use scaling arguments to
roughly quantify these factors in three regimes:

(i) Ultra-short-range noise. Suppose first that a noise
source acts near one of the two Majorana modes, but only
on a very local region of size ξ noise

j � ξ (again, ξ denotes the
spatial extent of the Majorana wave function). In this case,
� j (x) in Eq. (44) has appreciable weight only over a distance
ξ noise

j so that

B±, j (Eg) ∝

(

ξ noise
j√
ξL

)2

=

(

ξ noise
j

ξ

)2
ξ

L
. (50)

The square root in the denominator simply reflects normaliza-
tion factors in the Majorana and above-gap-excitation wave
functions. Note that B+, j = B−, j here, which implies approx-
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imately equal6 leakage rates out of the low-energy states with
iγ1γ2 = ±1.

(ii) Short-range noise. If γ1,2 are separated by a sufficiently
long distance L12, one can envision a short-range-noise sce-
nario wherein ξ < ξ noise

j < L12. That is, the noise source acts
over the entire window of one of the Majorana modes, but
does not influence its partner. (This scenario is reasonable for
bona fide Majorana zero modes separated by the length of the
wire, but is less natural for accidental Andreev bound states.)
Here we get

B±, j (Eg) ∝
(

ξ
√

ξL

)2

=
ξ

L
, (51)

again yielding equal leakage rates out of the iγ1γ2 = ±1
states.

(iii) Long-range noise. Finally, consider a long-range-
correlated noise source with ξ noise

j > L12. The integral in
Eq. (44) now picks up weight from both Majorana wave
functions, yielding similar scaling to the previous case but
with unequal leakage rates for the iγ1γ2 = ±1 states:

B±, j (Eg) ∝ (1 ± η j )
ξ

L
(52)

for −1 < η j < 1. This regime offers the interesting possibility
of a “dark state”: when η j = ±1 the transition rate for one of
the two low-energy states vanishes.

The three cases above can be put on equal footing by
writing

B±, j (Eg) ≈ c j (1 ± η j )

(

ξ noise
j

ξ

)b j

ξ

L
, (53)

the proportionality constant c j , exponent b j , and η j are de-
termined by properties of noise source j. We thereby obtain
leakage times

T ±
leak = 1/�±

≈ h̄2

[

∑

i

ci

ξ

v

D2
i (1 ± ηi)

(

ξ noise
i

ξ

)bi

e−(Egτi/h̄)2

]−1

. (54)

Comparison to the dephasing time in Eq. (35) (first term)
is instructive. We see that the timescale ξ/v appearing in
T ±

leak plays the role of τi in T2; similarly, the exponential
factor e−(Egτi/h̄)2

plays the role of the “energetic rigidity” E ′
i

characterizing the qubit states. Upon approaching the topo-
logical phase transition, either from the Andreev-bound-state
or true Majorana-zero-mode regime, collapse of the bulk gap
Eg readily allows leakage to dominate the qubit lifetime.

VI. NUMERICAL RESULTS

We are now in position to present results on both quasi-
analytic evaluation of the dephasing and leakage times (using
the formulas derived in Secs. V A and V B) as well as full

5We took ε12/Eg = 0 to arrive at Eq. (49); corrections from nonzero
ε12/Eg can still give different leakage rates even with short-range-
correlated noise.

microscopic simulations of noisy tetron dynamics for both the
Kitaev and spinful nanowire models.

A. Kitaev tetron

We first consider a tetron qubit built from two paral-
lel Kitaev chains [Eq. (4)] each consisting of L physical
sites. The time-averaged chemical potentials of the two wires
are offset by a small amount μoffset to break degeneracies
which would occur for identical wires; that is, μ

(0)
top/bot = μ ±

μoffset. We adopt a noise model consisting of two indepen-
dent fluctuators acting on the respective chemical potentials
such that μtop/bot(t ) = μ

(0)
top/bot + δμtop/bot(t ). Each fluctuator

δμtop/bot(t ) obeys Gaussian noise correlations with a Gaussian
noise power spectrum as specified in Eqs. (28) through (31).
For simplicity, we take the amplitude of typical fluctuations D

and noise correlation time τ ≡ 1/κ equal for both fluctuators:
Dtop/bot = δμ

typ
top/bot = δμtyp and κtop/bot = κ .

Given such a setup, it is straightforward to numerically
evaluate the analytic (perturbative) estimates for the dephas-
ing and leakage times as derived above in Sec. V. In addition,
we perform full microscopic numerical experiments of the
noisy tetron dynamics by generating Nreal independent noise
realizations, evolving under the time-dependent Schrödinger
equation [which in terms of the covariance matrix is given by
Eq. (13)] for each realization, and finally noise averaging the
resulting measurements. (Details of our noise generation pro-
cedure and subsequent solution of the evolution equation can
be found in Appendix A.) As spelled out above in Sec. IV, for
our Ramsey-type protocol we initialize the system into a state
corresponding to fixed X0 = iγ

(0)
1 γ

(0)
3 = +1, where the four

near-zero-energy Majorana modes γ
(0)

1,2,3,4 are defined with
respect to the time-averaged Hamiltonian A0. Throughout the
evolution we monitor the expectation values 〈iγ1γ3〉, 〈iγ1γ3〉2

(see Sec. IV B 3), and 〈(iγ1γ2)(iγ3γ4)〉 with γ1,2,3,4 defined
in terms of either the fixed, time-averaged basis used for
initialization [i.e., γ1,2,3,4 = γ

(0)
1,2,3,4] or the basis derived from

the instantaneous Hamiltonian A(t ) [i.e., γ1,2,3,4 = γ1,2,3,4(t )].
Finally, we also track the overlap of the evolving wave func-
tion onto the low-energy subspace, for both the fixed and in-
stantaneous basis, respectively corresponding to |a0|2 + |b0|2
and |at |2 + |bt |2 from Eq. (21).

Within a topological phase, both the qubit precession
period 2π/ω0 and dephasing time T2 are expected to be
exponentially long in the wire length L. Simulating the full
microscopic dynamics over these timescales thus becomes
prohibitive for modest L even for noninteracting electronic
models. Evaluating the relevant timescales using the analytic
perturbative predictions, on the other hand, faces no such lim-
itations as this procedure merely requires computing deriva-
tives of the lowest-energy Majorana hybridization energies,
which are obtainable with a sparse eigensolver applied to the
Hermitian matrix iA.

We present data obtained for numerical experiments per-
formed on a tetron built from two Kitaev wires each contain-
ing L = 10 physical sites, and with varyious μ, κ but all other
parameters fixed according to Jtop/bot = J = 1, 	top/bot =
	 = 0.4, μoffset = 0.01, and, when noise is present, δμtyp =
0.02. (With h̄ = J = 1, energies are in units of J , times are
in units of h̄/J , and frequencies, e.g., κ , are in units of J/h̄.)
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FIG. 3. Energy spectra of the Kitaev tetron as a function of μ for
the configuration used in our microscopic numerical simulations (cf.
Figs. 4, 5, 10, 11, and 12). Here, each wire of the tetron consists of
an L = 10 site Kitaev chain with Jtop/bot = J = 1 and 	top/bot = 	 =
0.4; a slight chemical potential shift of μoffset = 0.01 is introduced
between the two wires to break any associated degeneracies. The
low-energy qubit manifold is highlighted in orange, corresponding
to the energies ε1,2 in Eq. (9). In the inset, we plot the spatial
dependence of the wave-function square modulus for the maximally
localized Majorana modes γ1,2,3,4 (see Sec. IV A) at μ = 0.15.

Figure 3 shows the energy spectra for this qubit configuration
as a function of μ in the noise-free limit. Note that for
this system size the topological “phase transition” near μ =
1 is significantly smeared by finite-size effects. Within the
topological regime at |μ| � 1, however, fairly well-formed
Majorana zero modes arise. The inset plots the spatial profiles
of the near-zero-energy maximally localized Majorana modes
γ1,2,3,4 = γ

(0)
1,2,3,4 at μ = 0.15.

Figure 4 contains simulation results for a noisy system with
μ = 0.15 and κ = 0.05. The top panel shows the evolution
of 〈iγ1γ3〉—defined here in terms of the fixed basis shown
in the inset of Fig. 3—for 10 independent noise realizations.
Also shown for comparison are data for a noiseless run (thick
black curve). The bottom panel shows the results of aver-
aging Nreal = O(103) noise realizations,7 a fit of this noise-
averaged numerical data to the functional form cos(ω0t )e−t/T2 ,
as well as the time dependence predicted8 by the (small-noise-
amplitude) analytic calculations of Sec. V A [cf. Eqs. (34)
and (35)]. We see excellent agreement between the numerical
data and analytical prediction. These parameters yield neg-
ligible leakage (as determined by the relevant measurements
discussed above; not shown) on the timescale of the dephasing
time. That is, Tleak � T2.

Finally, in Fig. 5, we present results of a comprehensive
study varying μ at different values of κ = 0.001, 0.01, 0.05,
and 0.1. The bottom panels plot the qubit precession pe-
riod 2π/ω0 versus μ as obtained by both the microscopic

7Error bars are typically on the order of the symbol size or smaller
for all data that we present.

8Throughout, when evaluating the energy splitting E in Eqs. (35)
and (32) for a given microscopic model, for simplicity we take E =
ε1 + ε2 [with ε1,2 � 0, cf. Eq. (9)] without enforcing a fixed global
parity.
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FIG. 4. Example single noise realizations (top) and noise-
averaged data (bottom) for the (quantum-averaged) quantity 〈iγ1γ3〉
(with γ1,3 = γ

(0)
1,3 ) simulated in the Kitaev tetron of Fig. 3, here at

μ = 0.15. The top panel shows the results of 10 independent noise
realizations (“noisy”; light curves) with κ = 0.05 and δμtyp = 0.02
(one global μ fluctuator on each wire of the tetron), as well as for
a system without noise (“clean”; black curve). In the bottom panel,
we present the noise-averaged signal (“numerics”; solid blue) and
a fit (“fit”; dashed orange) guided by the theoretical prediction of
Eq. (34). The theoretical prediction itself (and its envelope) obtained
using Eqs. (32)–(35) is also plotted (“theory”; dashed gray). The
orange and gray vertical dotted lines indicate the respective T2 times.

numerical simulations (“numerics”) and analytic prediction
(“theory”) [see Eq. (32) and note that the predicted qubit
precession frequency is independent of κ]. The top panels
similarly show the corresponding coherence times T2 and,
in the rightmost plot, Tleak . Numerical T2 data correspond
to fits of the noise-averaged, fixed-basis 〈iγ1γ3〉 data to an
oscillatory exponential, precisely as in Fig. 4. For the analytic
T2 predictions, we show the timescales predicted both in the
limit t � 1/κ (“T2 theory”) and t � 1/κ [“T2 theory (tran-
sient)”]. In the transient case, the decay is expected to follow a
Gaussian instead of an exponential [see Eqs. (B16) and (B17)
in Appendix B]. As a guide, in the left two panels where
the noise is “slow,” the horizontal green lines indicate the
timescale τ = 1/κ . Coherence times falling below that scale
indicate importance of the transient regime. For consistency,
however, we fit the data for all numerical experiments to an
exponential form. Nonetheless, when the coherence times fall
below τ = 1/κ , the extracted timescales from the numerics
track the t � 1/κ prediction reasonably well. To summarize,
when the dephasing time measured in the numerics is much
larger than 1/κ , it matches the (long-time) analytic prediction
very well; and when it dips below 1/κ , it follows the (short-
time, “transient”) analytic prediction.
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FIG. 5. Numerically extracted coherence times (top panels) and qubit precession periods (bottom panels) from full microscopic numerical
simulations of a noisy Kitaev tetron (see Figs. 3 and 4 for details of the setup). For the dephasing timescales, we plot in the top panels both the
values obtained numerically via measurement of 〈iγ1γ3〉 (“T2 numerics”) as well as the analytic predictions of Eqs. (35) and (B17) [“T2 theory”
and “T2 theory (transient),” respectively]; similarly, in the bottom panels, we show both numerically extracted (“numerics”) and analytically
predicted [Eq. (32)] (“theory”) precession periods. From left to right, the four panels correspond to increasing κ = 0.001, 0.01, 0.05, 0.1
(roughly the high-frequency cutoff of the noise power spectrum) or, equivalently, decreasing noise correlation times τ = 1/κ (the dotted green
lines in the two leftmost panels indicate the timescale τ ). For all data, we take independent global chemical potential fluctuators on each wire
of the tetron, each with typical fluctuation amplitude δμtyp = 0.02. Only at κ = 0.1 and near the phase transition out of the topological phase
for μ ∼ 1 does the system exhibit detectable leakage times (“Tleak numerics”); see text for more details.

As in the example presented in Fig. 4, for all of the data
points with κ � 0.05 in Fig. 5, we detect negligible leakage
out of the low-energy qubit subspace over the timescale
of dephasing. Only for κ = 0.1 at μ ∼ 1 upon exiting the
topological phase do we observe appreciable leakage. The
quantities Tleak in the rightmost panel of Fig. 5 were extracted
by fitting |at |2 + |bt |2 [see Eqs. (21) and (22)] to the (phe-
nomenological) form Ae−t/Tleak + (1 − A); only data points for
which A > 0.1 are plotted. We see from the energy spectra
in Fig. 3 that the dip in leakage times for μ � 1 coincides
with the finite-size crossover into the trivial phase on this
small L = 10 site Kitaev tetron, i.e., the point where the gap is
minimal. On the other hand, for small κ � 0.05 the minimum
finite-size gap exceeds κ so that the qubit lifetime is governed
by the dephasing time T2 for all μ.

B. Spinful nanowire tetron

We now turn to tetrons assembled from two spinful
nanowires governed by the Hamiltonian defined in Eq. (5).
Guided by the data presented in Ref. [25], we focus on a set
of parameters that yields low-energy edge ABSs over a sizable
window of Zeeman fields V ′

zc < Vz < Vzc before entering a
topological regime with bona fide Majorana zero modes at
larger fields Vz > Vzc. Above in Fig. 2, we presented data
of qubit coherence times and precession periods for such a
system as a function of Vz evaluated numerically according
to the analytical estimates of Sec. V. The corresponding
(time-averaged) system parameters are as follows: 	(x) =
	0
2 [tanh ( x−x0

�	
) + 1] with 	0 = 0.25 meV, �	 = 0.03 μm,

and x0 = 0.3 μm; V (x) = V0
2 [− tanh ( x−x0

�V
) + 1] with V0 =

3.8	0 and �V = 0.03 μm; m = 0.03me; μ = V0 = 3.8	0

(with top/bottom wire offset μoffset = 0.01 meV); and α =
500 meV Å. For our discretization, we take a lattice spacing
a ≈ 0.01 μm corresponding to Nsites = 100, 200, 300, 400
sites (per wire) for the sequence of sizes L = 1, 2, 3, 4 μm.
In Fig. 6, we show additional data for the L = 2 μm system.
The top panel plots the energy spectrum versus Vz while the
bottom panels illustrate the spatial profiles of the maximally
localized near-zero-energy Majorana modes γ1,2,3,4 at Vz =
0.6 meV (nontopological ABS qubit) and 1.4 meV (topologi-
cal qubit). The chosen noise configuration consists of four in-
dependent fluctuators: one global, spatially constant chemical
potential (μ) and Zeeman field (Vz) fluctuator per wire each
with Gaussian correlated noise with inverse correlation times
κ = 0.05 meV/h̄ and typical fluctuation amplitudes δμtyp =
δVz,typ = 0.01 meV.

Given these parameters, the T2 and ω0 values plotted in
Fig. 2 were obtained by numerically evaluating Eqs. (35)
and (32) via sparse diagonalization of the Hermitian matrix
iA and computing the requisite energy derivatives. (Only
the leading-order terms were included in the evaluations
for the more conceptual Fig. 2, while for Figs. 5 and 8
the second-order terms were also calculated and are in fact
necessary to obtain quantitative agreement with the micro-
scopic numerics.) For Tleak we take a simplified approach
which focuses entirely on the predicted exponential depen-
dence: Tleak ∼ e(Eg/h̄κ )2

. Specifically, we evaluate Eq. (54) at
fixed ci = 1, ηi = 0, bi = 0, v = α/h̄ (= 500 meV Å/h̄), and
ξ = 200 nm (recall Di = δμtyp = δVz,typ = 0.01 meV and
κi = κ = 0.05 meV/h̄). While the analysis of Sec. V B con-
sidered only a single nanowire, it can be safely applied to
the noisy tetron considered here as the wires are taken to be
decoupled and the spatial profiles of all noise sources have
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FIG. 6. Energy spectra (top) and representative near-zero-energy
Majorana wave functions (bottom) for the continuum-limit L =
2 μm spinful tetron configuration analyzed in Fig. 2. The chosen
parameters were inspired by Ref. [25] (see text for all details) to give
a sizable window of a nontopological ABS regime for V ′

zc < Vz < Vzc

before the onset of the topological phase transition at Vzc. In the
bottom panels, we show the square modulus of the wave functions
for the maximally localized Majorana modes γ1,2,3,4 (summing both
spin components) at Vz = 0.6 meV (partially separated ABS qubit)
and Vz = 1.4 meV (topological qubit).

support on only one wire or the other (two global fluctuators
per wire). In evaluating Eq. (54), we thus consider only
two fluctuators, and for the excitation gap Eg, we take an
average of the excitation gaps [ε3,4 from Eq. (9)] for the top
and bottom wires (recall the finite μoffset). This procedure
ignores the complicated dependencies of the (qualitatively
less important) subexponential factors on the wave-function
amplitudes, noise profile details, etc., but it faithfully captures
the dominant exponential dependence and thus suffices for our
purposes here.

As highlighted in Sec. II, Fig. 2 demonstrates several
important points: First, within the ABS regime (V ′

zc < Vz <

Vzc) the qubit coherence time and precession frequency exhibit
weak, nonuniversal dependence on wire length L. Second,
the qubit lifetime drops sharply near the topological phase
transition (Vz ∼ Vzc) due to noise-induced leakage out of the
qubit subspace, leading to a leakage-limited qubit. Third,
deep in the topological phase the system forms an exponen-
tially protected, dephasing-limited topological qubit (though
for still longer wires the topological qubit will eventually
become leakage limited as the bulk excitation gap is roughly
independent of L). Fourth, within the topological phase, the
dephasing time and qubit precession period oscillate out of
phase and eventually decrease upon increasing Vz, reflecting
an enlargment of the coherence length ξ at “large” Vz.
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FIG. 7. Energy spectra (top) and representative near-zero-energy
Majorana wave functions (bottom) for the L = 0.8 μm spinful tetron
configuration studied in Fig. 8; these data are analogous to Fig. 6
but with some parameter changes (see text for all details). Here we
discretize the spinful nanowire model of Eq. (5) onto Nsite = 22 sites
per wire to make subsequent full microscopic simulations of the
noisy dynamics numerically tractable, while still maintaining several
of the qualitative features of the continuum-limit model of Figs. 2
and 6.

Performing full microscopic simulations of such noisy
spinful tetrons containing hundreds of lattice sites in a manner
that parallels the Kitaev simulations presented in Fig. 5 is
numerically intractable. We can, however, construct a small-L
“toy” system far from the continuum limit of Eq. (5) that
is amenable to simulations and exhibits qualitatively similar
features to the systems considered in Fig. 2. For this system,
we choose a set of parameters [including functional forms
of the external potentials V (x) and 	(x)] identical to those
used in Figs. 2 and 6 with the following exceptions: now
α = 400 meV Å, �V = 0.08 μm, and L = 0.8 μm discretized
into Nsites = 22 (per wire) such that the “lattice constant” a =

L
Nsites−1 ≈ 0.038 μm. In Fig. 7, we show the corresponding
energy spectra as a function of external Zeeman field Vz as
well as the wave-function amplitudes for the maximally local-
ized Majorana modes γ1,2,3,4 at Vz = 0.6 meV (ABS qubit)
and 1.4 meV (topological qubit). For the noise setup, we
again take one global μ and Vz fluctuator on each wire of the
tetron with typical fluctuation amplitudes δμtyp = δVz,typ =
0.01 meV and identical inverse correlation times κ .

Using these parameters, we show in Fig. 8 data for a spinful
tetron analogous to the Kitaev tetron results of Fig. 5. Here,
as in Fig. 2, we sweep over Vz; the four panels correspond
to κ = 0.001, 0.01, 0.05, 0.1 meV/h̄. The extraction of the
numerical (fitted) timescales (numerics) and evaluation of
the analytical timescales (theory) were carried out in exactly
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FIG. 8. Numerically extracted coherence times (top panels) and qubit precession periods (bottom panels) from full microscopic numerical
simulations of a noisy spinful nanowire tetron (see text and Fig. 7 for details of the setup). These data are analogous to the Kitaev tetron data
of Fig. 3; and all formatting, conventions, and means of data analysis are identical. Again, the presence of numerically obtained Tleak points
at κ = 0.05, 0.1 meV/h̄ indicate a detectable leakage time via measurement of |at |2 + |bt |2. Importantly, when this timescale drops below the
analytically predicted T2 time, the numerically extracted T2 time (obtained via measurement of 〈iγ1γ3〉) itself gets cut off and drops below the
analytic value.

the same manner as in Fig. 5. Again, in the two leftmost panels
at small κ = 0.001, 0.01 meV/h̄ we (1) see the importance
of the transient regime when comparing numerical T2 times
to the theoretical predictions and (2) observe no detectable
leakage out of the ground-state manifold on the simulated
timescales for all Vz. As seen in Fig. 8, the crossover from the
ABS regime to topological regime occurs near Vz ≈ 0.9 meV
where the excitation gap is minimal. In this vicinity, for κ =
0.05 meV/h̄, we see that the numerically obtained leakage
times become on the order of or smaller than the theoretically
predicted dephasing times. In turn, the numerical dephasing
times drop below the analytic prediction: the noise-averaged
signal 〈iγ1γ3〉 is now damped by both dephasing effects (cf.
Fig. 4) as well as leakage effects in which the amplitude
of oscillations for individual noise realizations also decay
in time (see also Fig. 11). While our theoretical analysis
in Sec. V treated the effects of dephasing and leakage in-
dependently, our full microscopic simulations as presented
here are able to capture both effects simultaneously and faith-
fully. (The same physics is also occurring near the crossover
out of the topological phase in the rightmost panel of
Fig. 5.)

Finally, at κ = 0.1 meV/h̄ in the rightmost panel of Fig. 8,
we observe an intricate interplay between dephasing and
leakage. Here, κ is sufficiently large to cutoff the numerically
extracted T2 time below the pure dephasing limit even in
the ABS regime for Vz � 0.9 meV. In the vicinity of the
crossover we see a sharp reduction in the leakage time due
to gap closing, thereby limiting the qubit lifetime as discussed
above in the context of Fig. 2. (Note that for the particular
qubit simulated in Fig. 8, due to, e.g., the extremely short
wire length, even pure dephasing effects cause a reduction in
coherence times in the topological regime relative to the ABS
one; there is thus a concomitant drop near the corresponding
crossover which is unrelated to the leakage-induced qubit
lifetime reduction due to gap closing.) Within the topologi-

cal phase, for points corresponding to a minimal excitation
gap [for example, at Vz = 1.3, 1.6, 1.9 meV (cf. Fig. 6)],
κ = 0.1 meV/h̄ is again sufficiently large to cause leakage
to largely dictate the qubit coherence time. (In principle,
leakage-limited lifetimes deep within the topological phase
could also occur for sufficiently fast noise in the continuum
limit analytical study of Fig. 2; however, studying these effects
quantitatively in that framework would require a less crude
evaluation of the analytical Tleak prediction.) On the other
hand, for other values of Vz with excitation gaps in excess
of h̄κ = 0.1 meV, the qubit lifetime is limited by dephasing,
and the numerically extracted timescales match the analytic
T2 prediction impressively well.

C. Estimation of coherence times for realistic nanowire models

A key advantage of the approach outlined in Sec. V A
to estimate dephasing times is that it relies purely on the
derivative of the Majorana splitting with respect to the fluc-
tuating variables. Such simple spectral properties can be ob-
tained using sparse diagonalization techniques and are thus
easy to evaluate also for models where a computation of the
full dynamics would be prohibitively expensive. To further
illustrate this point, we perform such an estimate for a more
sophisticated model of a nanowire that includes a realistic
electrostatic potential and several subbands. We closely follow
the approach of Ref. [71], which considers a rectangular
wire of dimensions Lx × Ly × Lz proximitized on the top by
a superconductor of thickness dz; here, z is the direction
transverse to the superconductor and x is the long direction of
the wire, i.e., Lx � Ly, Lz. We simplify the model in two key
ways: First, we ignore the effect of subbands in the y direction.
And second, instead of treating the superconductor explicitly,
we directly induce superconductivity in the semiconductor
through a mean-field pairing term. We perform simulations
with fixed Lz = 60 nm and variable Lx.
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FIG. 9. Dephasing analysis of “slab geometry” nanowire. The
upper panel shows the low-energy spectrum for a single wire, while
the lower panel shows the derivative of the qubit splitting E with
respect to gate voltage Vg. Given some knowledge about the noise
environment, this quantity can be directly related to the dephasing
time T2 via Eq. (35). For a detailed list of parameters used in these
simulations, see main text. We find that also for this more realistic,
multiband model of a nanowire, the qualitative features such as
exponential dependence of dephasing time on the length of the wire
as well as the correlation between splitting amplitude and dephasing
time are preserved.

The first-quantized normal-state Hamiltonian of the system
can be written as

HN = −
1

2m∗

(

∂2
x + ∂2

z

)

−αk̂xσy

+ φ(z)+
μBgB

2
σx, (55)

with m∗ the effective mass, α the strength of spin-orbit cou-
pling, φ(z) the electrostatic potential, g the g factor of the
semiconducting material, B the external magnetic field, and
σα the Pauli matrices acting on spin. We use m∗ = 0.026,
g = −15, α = 0.05 eV nm. Using a Nambu-space notation,
where τα are Pauli matrices acting in particle-hole space, we
can write the Hamiltonian of the superconducting system as

H = HNτz − 	σy ⊗ τy, (56)

where 	 denotes the strength of superconducting pairing,
which we set to 	 = 0.1 meV. The electrostatic potential φ(z)
is obtained from a self-consistent Thomas-Fermi calculation,
where the boundary condition near the superconductor is set
to an assumed band offset of 300 meV, while the boundary
condition at the other end is tuned via an electrostatic gate
with an applied voltage Vg. We use a gate voltage of Vg =
−0.288 V, which tunes the system close to the bottom of a
band and thus favors the formation of a topological phase.

The spectrum is evaluated by employing a finite-difference
approximation, with a regular discretization of a = 2 nm, and
using a shift-and-invert eigensolver. Results are shown in
Fig. 9. Here, we evaluate the derivative of the energy splitting

E with respect to the applied gate voltage Vg. Using Eq. (35),
this estimate can be combined with an estimate for the noise
correlation time as well as typical fluctuation amplitude to
obtain an estimate for the T2 dephasing time. We note that
this calculation can in principle be extended to more realistic
models of the system, including explicit treatment of the
superconductor and even full three-dimensional models of
the device. However, major uncertainty enters the estimates
through the properties characterizing the noise, which can
only be extracted from experiments.

VII. EFFECTS OF FIXED VERSUS INSTANTANEOUS

MEASUREMENT BASIS

In this section, we investigate in more quantitative detail
the effects of encoding and measuring the qubit in the basis
of maximally localized Majorana modes associated with the
instantaneous Hamiltonian, as opposed to using a fixed basis
throughout the time evolution. In our numerical simulations
presented in Sec. VI, we used the fixed basis of maximally
localized Majorana modes γ1,2,3,4 = γ

(0)
1,2,3,4 corresponding to

the time-averaged Hamiltonian specified by A0 to initialize
the qubit. Furthermore, for technical reasons described in
Sec. IV B 3, we often employed this same basis for readout
of quantities such as 〈iγ1γ3〉. For a given noise realization,
the initial Hamiltonian will differ from the time-averaged
one, i.e., A(t = 0) �= A0, and hence this procedure introduces
a sort of “quench” in the dynamics at t = 0, the effects of
which become more pronounced for large typical fluctuation
amplitudes Di. For the small, seemingly reasonable Di chosen
above, this effect is negligible. We expect, however, the dif-
ference in measurement basis choice to manifest itself most
clearly when Di becomes large. Here, it is worth reiterating
an important point made in Sec. IV B 2: Fluctuations, espe-
cially those of large amplitude, may significantly alter the
maximally localized Majorana modes (e.g., their locations),
but in the purely adiabatic limit the qubit subspace is still
preserved provided that one tracks and measures in the in-
stantaneous basis. On the other hand, measuring in a fixed
basis throughout the evolution will naturally underestimate
qubit coherence times, as the noisy dynamics will generically
induce a “leakage” out of the fixed basis over time, even if
the qubit subspace is perfectly preserved by the instantaneous
basis.

Initializing using the time-averaged basis γ
(0)

1,2,3,4 is clearly
problematic for addressing these matters at large Di; e.g., even
at t = 0 the system may have measurable leakage out of the
qubit subspace derived from the instantaneous basis. For this
section, we thus employ a different initialization procedure
from that used in Sec. VI: For each noise realization, we
find a maximally localized set of near-zero-energy Majorana
modes γ1,2,3,4(t = 0) derived from A(t = 0); we subsequently
set iγ1(t = 0)γ3(t = 0) = +1 and iγ2(t = 0)γ4(t = 0) = ±1,
with the latter chosen such that the global fermion parity
is always fixed to +1. We then compare the results of two
different measurement bases: (1) the initial basis defined by
the γ1,2,3,4(t = 0) (which is fixed for each noise realization)
and (2) the instantaneous basis defined by γ1,2,3,4(t ). [For
small enough Di, we have checked that using the former
initial/fixed measurement basis produces results which are
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FIG. 10. Measurements of 〈iγ1γ3〉2 and |a|2 + |b|2 in both the
fixed/initial (solid blue) and instantaneous (dashed orange) basis
for a Kitaev tetron at μ = 0.15, κ = 0.05, 0.1 (increasing left to
right), and δμtyp = 0.02, 0.05, 0.1 (increasing top to bottom); see
text for details of other chosen parameters. Here, we initialize the
system using a procedure based on the initial Hamiltonian encoded
by A(t = 0). For large enough δμtyp, a noticeable difference in the
choice of measurement basis is observed on a timescale on the order
of τ = 1/κ (vertical green dotted lines).

numerically indistinguishable from the initialization/readout
procedure used in Sec. VI based on the γ

(0)
1,2,3,4.]

Figures 10 and 11 present examples of noise-averaged time
dynamics of a Kitaev tetron comparing the results of the two
different measurement bases. We focus on the following two
quantities: 〈iγ1γ3〉2 and |a|2 + |b|2, where for the initial/fixed
measurement basis γi = γi(t = 0) and |a|2 + |b|2 = |at=0|2 +
|bt=0|2, while for the instantaneous basis γi = γi(t ) and |a|2 +
|b|2 = |at |2 + |bt |2. (We consider 〈iγ1γ3〉2 instead of 〈iγ1γ3〉
as the latter would be polluted by the sign ambiguity described
in Sec. IV B 3 in the case of the instantaneous basis; see also
Fig. 12.) The noise model is the same as that considered in
Sec. VI A: one global μ fluctuator on each wire of the tetron
(for a total of two fluctuators), each characterized by typical
amplitude δμtyp and inverse correlation time κ . We perform
simulations with δμtyp = 0.02, 0.05, 0.1 and κ = 0.05, 0.1.
Figure 10 corresponds to μ = 0.15 which is deep in the
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FIG. 11. Data analogous to that presented in Fig. 10 but here
taken at μ = 0.8. Now leakage out of the instantaneous low-energy
qubit subspace is observed at κ = 0.1 (as detected by |at |2 + |bt |2).
For all other data at μ = 0.15 in Fig. 10 and κ = 0.05 here, leakage
out of the instantaneous qubit subspace is negligible. Measuring in
the fixed basis, on the other hand, generically leads to an effective
(topologically unprotected) leakage out of the fixed-basis manifold,
which can become significant for large δμtyp, thereby underestimat-
ing qubit coherence times.

topological phase, while Fig. 11 corresponds to μ = 0.8 near
the crossover into the trivial phase (see Fig. 3). The top panels
show the time dependence of 〈iγ1γ3〉2, while the bottom pan-
els show |a|2 + |b|2; solid blue (dashed orange) curves repre-
sent measurements in the initial/fixed (instantaneous) basis.
In the case of pure dephasing, 〈iγ1γ3〉2 is expected to take the
following form (for times t � 1/κ): 1

2 [cos(2ω0t )e−4t/T2 + 1],
i.e., relative to 〈iγ1γ3〉 [cf. Eq. (34)] it oscillates at twice the
frequency and approaches 1

2 (instead of 0) at four times the
decay rate.

For relatively small δμtyp = 0.02, we see in the first row of
data presented in Figs. 10 and 11 that the chosen measurement
basis negligibly impacts the results.9 This conclusion holds

9The residual oscillations in 〈iγ1γ3〉2 at long times are a conver-
gence artifact associated with noise averaging the square.
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both in the case of (nearly) pure dephasing dynamics (μ =
0.15 at κ = 0.05, 0.1 and μ = 0.8 at κ = 0.05) and dynamics
involving both dephasing and leakage (μ = 0.8 at κ = 0.1).
Note that in the latter case, 〈iγ1γ3〉2 approaches a value less
than 1

2 as the oscillations die out: leakage causes the traces for
individual noise realizations to themselves decay in oscillation
amplitude over time (in contrast to Fig. 4).

As we increase δμtyp in the middle (δμtyp = 0.05) and
bottom (δμtyp = 0.1) rows of Figs. 10 and 11, we see that the
difference in measurement basis becomes more pronounced.
In addition, at fixed δμtyp this difference is most severe for
slow noise; this point is particularly apparent in the bottom
row of Fig. 11 comparing κ = 0.05 to 0.1. Furthermore, for
both considered measurements, we note that the difference be-
comes manifest only after a timescale on the order of the noise
correlation time τ = 1/κ (indicated by vertical green dotted
lines). Ultimately, we can clearly see from this data that the
relevant coherence time diagnostics decay more quickly when
evaluated in a fixed basis.10 These results are fully consistent
with the qualitative picture sketched above in Sec. IV.

VIII. DISCUSSION

In this paper we explored a Ramsey-type protocol that
probes qubit dynamics in proximitized nanowire devices,
which can support either a topological Majorana-based qubit
or a trivial ABS qubit depending on parameters. These two
scenarios are challenging to distinguish in local probes, e.g.,
transport, yet display vastly different noise sensitivity as
quantified by the qubit dephasing time revealed by our pro-
tocol. The required measurements are more challenging than
transport but yield correspondingly more detailed informa-
tion including the qubit lifetime, time-domain detection of
the qubit splitting, and the presence of a topological phase
transition. In our study we employed both analytical estimates
of dephasing and leakage times as well as explicit numerical
simulations of the noisy qubit dynamics. An appealing feature
of the analytical estimates is that they can be readily evaluated
(modulo uncertainties in noise details that require experimen-
tal input) even in state-of-the-art microscopic models. Some
proof-of-concept simulations were presented in Sec. VI C,
and it would be valuable to further quantify the “rigidity” of
the qubit splitting to fluctuations in future modeling efforts.
Another feature highlighted by our study is the distinction
between fixed-basis and instantaneous Majorana modes in
a noisy environment. We argued on general grounds, and
confirmed in our explicit simulations, that examining the
former underestimates the true qubit lifetime, with the effect
becoming increasingly prominent as the noise becomes slower
and of larger amplitude.

In actual experiments, additional imperfections could ob-
fuscate some of the features of the dephasing time discussed
in this paper. For example, due to long-range inhomogeneities
(on a scale longer than the superconducting coherence length)
in the electrostatic potential and other system parameters,

10Although for the qubit and noise model considered here, it is
difficult to find a regime where clear “Ramsey oscillations” of 〈iγ1γ3〉
persist and the basis choice gives rise to a clear difference.

a nanowire may not undergo a topological phase transition
simultaneously at all positions. Instead, the critical field may
vary in space, so that some regions can enter the topological
phase earlier than others. In such cases, the minimal gap when
sweeping the magnetic field does not scale inversely with the
system size, but instead inversely with the size of the largest
contiguous region undergoing the phase transition. However,
the analysis of Sec. V B shows that the relevant regions would
be those whose critical states significantly overlap with the
Majorana wave functions, i.e., regions proximate to the ends
of the wire. Thus, the leakage time near the phase crossover
regime will be determined by the properties of those critical
regions.

Moreover, throughout this paper (e.g., in Fig. 2) we have
ignored magnetic-field-induced suppression of the bulk su-
perconducting gap. Such effects are clearly important in
present-day experiments [10,11] and may ultimately limit the
feasibility of our proposed fixed-length study in those devices.
Nevertheless, we are hopeful that future devices will harbor a
larger window of field strengths over which one can scrutinize
trends in splittings and coherence times.

In practice, the qubit frequency and the dephasing time,
which are both tuned exponentially via the wire length and the
coherence length, need to fall into an appropriate window for
the effects discussed in this paper to be observable. If the wires
are too long, the lifetime of the qubit may become limited by
error processes not included here, for example, quasiparticle
poisoning, which render the effects we discuss unobservable.
Estimates for the quasiparticle poisoning times vary widely,
but can easily exceed one microsecond [72]. Conversely, if
the wires are too short, both the qubit precession period and
its lifetime may be shorter than time-domain experiments can
resolve. This timescale is mostly limited by how quickly the
coupling between the qubit and the measurement dot can be
tuned, which likely limits the resolvable timescales to about
one nanosecond. Given these constraints, the ideal regime
where the effects discussed in this paper can be observed still
encompasses several orders of magnitude in timescale, and
thus a significant window of wire lengths. As future direction,
it would be interesting to develop protocols that can probe an
even broader range of timescales.

Finally, we focused entirely on the minimal “tetron” qubit
design for simplicity. A natural future direction is to extend
our study to hexon devices that allow much more flexibility,
including additional readout channels, measurement-based
braiding, etc. Quantifying the role of noise in such higher-
level applications would be an important and illuminating ex-
ercise. All in all, it is a remarkable feature of hardware-based
topological qubits that we can directly simulate—in the time
domain and with a single simulation—the effects of device-
level noise on topologically protected quantum information.
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APPENDIX A: DETAILS OF NOISY TIME-DEPENDENT

SIMULATIONS AND NOISE GENERATION

We perform time evolution following the Gaussian co-
variance matrix formalism described in Sec. III B. (See also
Refs. [69,73]; for a self-contained overview, see Ref. [70].)
Our numerical implementation is based on the Differential
Equations.jl package in JULIA [74,75].

To generate a noise realization of some fluctuating quantity
λ(t ) with a given noise power spectrum or correlation func-
tion, we use techniques based on fast Fourier transformation.
This approach scales superlinear in the desired total time of
the simulation (Tsim below). While for many types of noise
(e.g., 1/ω and 1/ω2) more efficient ways of generating noise
trajectories are known, in our context we never found this step
to be a computational bottleneck. In addition, this approach
has the advantage of being very general.

Consider a random variable λ(t ) with λ(t ) = 0 and λ2(t ) =
(δλtyp)2, and correlation function λ(t )λ(t ′) = S(|t − t ′|). At
each time, the variable is drawn from a Gaussian distribution
P[λ(t )] ∼ e−λ2/2(δλtyp )2

. We can define the noise in frequency
space λ(ω) as well as the noise power spectrum S(ω) ∝
|λ(ω)|2 as

λ(ω) =
∫ ∞

−∞
dt e−iωtλ(t ), (A1)

S(ω) =
∫ ∞

−∞
dt e−iωt S(t ). (A2)

For a simulation up to some finite time Tsim, we generate a
discrete noise trajectory up to some time Tnoise � Tsim with a
time step 	t = Tnoise/N , i.e., the trajectory is defined on time
slices tn = n	t , n = 0, . . . , N − 1. It is important that 	t �
ωmax, where ωmax is the highest relevant frequency occurring
in the noise. In the example of Gaussian noise characterized
by a high-frequency cutoff κ , it is natural to set ωmax to some
sufficiently large multiple of κ .

To numerically generate a single noise trajectory, we first
create a white noise trajectory Y (tn) by drawing a sample on
each time point from an independent and identical Gaussian
ensemble of variance 1. We then perform a discrete Fourier
transformation

Y (ωk ) =
N−1
∑

n=0

Y (tn)e−iωktn , ωk = k
2π

Tnoise
. (A3)

We can then obtain our desired noise trajectory in Fourier
space by taking

λ(ωk ) =
[

S(ωk )

	t

]1/2

Y (ωk ) (A4)

and finally performing an inverse Fourier transformation to
obtain λ(tn):

λ(tn) =
1

N

N−1
∑

k=0

λ(ωk )eiωktn . (A5)

In all these steps, it is convenient to choose N even so
that the Fourier transformation is real. Furthermore, it is in
many cases important to be able to sample λ(t ) for arbitrary
t , for example, when integrating the Schrödinger equation
with an adaptive time step. To this end, we perform a linear
interpolation between time steps. If 	t is chosen sufficiently
small, this will not incur significant numerical error.

In Fig. 12, we show the time dependence of all quantum-
averaged quantities considered in this work for a single noise
realization of our Ramsey-type protocol over one qubit pre-
cession period for the Kitaev tetron system of Secs. VI A and
VII. We also show data necessary to derive the instantaneous
qubit splitting [1]: the two lowest-lying instantaneous ener-
gies ε1,2 and the determinant of the instantaneous orthogonal
transformation U [see Eqs. (8) and (9)]. The left (right) panel
corresponds to the initialization procedure based on the time-
averaged (initial) Hamiltonian A0 [A(t = 0)] used in Sec. VI A
(Sec. VII). Quantities with the subscript “fixed” denote mea-
surement in a fixed basis throughout the evolution [e.g., γi =
γ

(0)
i in the left panel and γi = γi(t = 0) in the right panel],

while quantities with the subscript “inst” denote measurement
in the instantaneous basis derived from A(t ) [e.g., γi = γi(t )].
The data shown for 〈iγ1γ3〉inst = 〈iγ1(t )γ3(t )〉 are polluted
by the numerical sign ambiguity described in Sec. IV B 3;
we show it here over a single realization to illustrate this
point. Comparing the envelope of 〈iγ1γ3〉inst to 〈iγ1γ3〉fixed

demonstrates that for these parameters the choice of instan-
taneous versus fixed measurement basis does not have any
impact on the results down to the level of each individual
realization. Furthermore, comparing the dephasing diagnos-
tics data in the top panels of Fig. 12 reveals, again for these
chosen parameters, that the choice of initialization procedure
makes negligible difference. For the leakage diagnostics in the
bottom panel, the measurements are very close to unity, and
we thus show an appropriately zoomed-in view. Note the ob-
servable high-frequency components in these measurements
due to the small “quench” at t = 0 when using the A0-based
initialization procedure.

To calculate noise-averaged quantities, we run Nreal =
O(103) independent such individual realizations. While this
approach is relatively numerically demanding (compared, for
example, to the master-equation-based approach of Ref. [61]),
it has multiple advantages: For one, our techniques are com-
pletely general in terms of what noise models can be simulated
and what physical quantities can be measured/noise averaged
(in contrast to the methods of Ref. [61] which are more lim-
iting in these respects); furthermore, our simulation strategy
very closely mimics the actual experimental procedure we
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FIG. 12. Example time dependence of quantum-averaged quantities for a single noise realization our Ramsey-type protocol in the Kitaev
tetron. Here, μ = 0.15, κ = 0.05, and δμtyp = 0.02 with all other parameters and details identical to those in Secs. VI A and VII (see Figs. 3,
4, 5, and 10). In the left (right) panel, we show data obtained with the initialization procedure based on A0 [A(t = 0)] as in Sec. VI A (Sec. VII).
The top panels include the dephasing diagnostics 〈iγ1γ3〉 and 〈iγ1γ3〉2, as well as the (instantaneous) quantities ε1,2 and det U from Eqs. (8)
and (9); the bottom panels show the leakage diagnostics 〈(iγ1γ2)(iγ3γ4)〉 and |a|2 + |b|2. Subscripts in the legends indicate measurement in
either the corresponding fixed or instantaneous (“inst”) basis.

propose (although in experiment noise and quantum averaging
cannot be distinguished).

APPENDIX B: NOISE-AVERAGING ANALYSIS

Here, we provide details on the noise averaging
of Eq. (33) assuming the Gaussian noise correlations
specified in Eqs. (28)–(31). We will specifically evaluate

exp (i
∫ t

0 dt ′E (t ′)) with E (t ′) given by the harmonic approx-
imation in Eq. (26) and h̄ = 1 for notational simplicity; the
noise average of Q(t ) follows straightforwardly from this
quantity. It is convenient to discretize time (for intermediate
stages of the calculation) and write

ei
∫ t

0 dt ′E (t ′ ) =
1

Z

∫

Dλi(t )ei	t
∑t

t ′=0 E (t ′ )

× e− 1
2

∑

t ′t ′′
∑

i S−1
i (t ′−t ′′ )λi (t ′ )λi (t ′′ ). (B1)

Here, 	t is the time interval used for discretization, the
second line is the weighting factor that gives the desired noise
correlations, and Z is a normalization defined as

Z =
∫

Dλi(t )e− 1
2

∑

t ′t ′′
∑

i S−1
i (t ′−t ′′ )λi (t ′ )λi (t ′′ ). (B2)

Next, we introduce

Mi j (t
′, t ′′) = M0

i j (t
′, t ′′) + δMi j (t

′, t ′′), (B3)

where

M0
i j (t

′, t ′′) = δi jS
−1
i (t ′ − t ′′), (B4)

δMi j (t
′, t ′′) =

{

−i	tδt ′,t ′′E ′′
i j, 0 < t ′ < t

0, otherwise
(B5)

and also

vi(t
′) =

{

i	tE ′
i , 0 < t ′ < t

0, otherwise. (B6)

These definitions allow us to write

ei
∫ t

0 dt ′E (t ′ ) =
eiE0t

Z

∫

Dλi(t )e
∑

i

∑

t ′ vi (t ′ )λi (t ′ )

× e− 1
2

∑

i j

∑

t ′t ′′ λi (t ′ )Mi j (t ′,t ′′ )λ j (t ′′ ). (B7)

Note that the t ′, t ′′ sums are unrestricted above. We can now
perform the Gaussian integration to obtain

ei
∫ t

0 dt ′E (t ′ ) = eiE0t e
− 1

2 ln( det M

det M0 )

× e
1
2

∑

i j

∑

t ′t ′′ vi (t ′ )M−1
i j (t ′,t ′′ )v j (t ′′ ). (B8)

To proceed we first expand the log term in Eq. (B8) to
second order in δM:

ln

(

det M

det M0

)

= ln det[I + (M0)−1δM]

≈ Tr[(M0)−1δM] −
1

2
Tr[(M0)−1δM]2

= −it
∑

i

D2
i E ′′

ii

+
1

2

∑

i j

(E ′′
i j )

2
∫ t

0
dt ′dt ′′Si(t

′−t ′′)S j (t
′′−t ′).

(B9)

The third line above encodes the leading shift in the qubit
precession frequency [cf. Eq. (32)]. At long times, t � τi, the
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integrals in the fourth line become
∫ t

0
dt ′dt ′′Si(t

′ − t ′′)S j (t
′′ − t ′) ≈ t

2
√

πτiτ j
√

τ 2
i + τ 2

j

(DiD j )
2.

(B10)

In the second line of Eq. (B8) we simply replace M−1 ≈
(M0)−1; the next-leading correction provides a higher-order
shift to the qubit precession frequency compared to that
captured above. This approximation yields
∑

i j

∑

t ′t ′′

vi(t
′)M−1

i j (t ′, t ′′)v j (t
′′)

≈ −
∑

i

(E ′
i )2

∫ t

0
dt ′dt ′′Si(t

′ − t ′′) ≈ t2
√

π
∑

i

τi(DiE
′
i )2,

(B11)

where on the far right side we again assumed the long-time
limit.

Putting everything together, we find

ei
∫ t

0 dt ′E (t ′ ) = ei(E0+ 1
2

∑

i D2
i E ′′

ii )t

× e
−

√
π

[

∑

i τi (DiE
′
i )2+ 1

2

∑

i j

τiτ j√
τ2
i

+τ2
j

(DiE
′′
i j D j )2

]

t

(B12)

at t � τi. Upon restoring explicit h̄’s, this result indeed recov-
ers the qubit precession frequency and dephasing time quoted
in Eqs. (32) and (35).

The short-time limit t � τi can be easily treated as well.
Here, we can simply write
∫ t

0
dt ′dt ′′Si(t

′ − t ′′)S j (t
′′ − t ′) ≈ t2Si(0)S j (0) = (DiD jt )2,

(B13)
∫ t

0
dt ′dt ′′Si(t

′ − t ′′) ≈ t2Si(0) = (Dit )2 (B14)

in Eqs. (B10) and (B11), so that

ei
∫ t

0 dt ′E (t ′ ) = e
i

(

E0+ 1
2

∑

i D2
i E ′′

ii

)

t

× e− 1
2 [

∑

i (DiE
′
i )2+ 1

2

∑

i j (DiE
′′
i j D j )2]t2

. (B15)

The noise-averaged Q(t ) is then

Q(t � τi ) ≈ cos(ω0t )e−(t/T short time
2 )2

(B16)

with (restoring h̄’s)

T short time
2 = 2h̄2

⎡

⎣

∑

i

(DiE
′
i )2 +

1

2

∑

i j

(DiE
′′
i jD j )

2

⎤

⎦

−1

.
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