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Abstract

We apply the recent proposal for mirrors of nonabelian (2,2) supersymmetric two-
dimensional gauge theories to make predictions for two-dimensional supersymmetric
gauge theories with exceptional gauge groups G2, F4, E6, E7, and E8. We compute
the mirror Landau-Ginzburg models and predict excluded Coulomb loci and Coulomb
branch relations (quantum cohomology). We also discuss the relationship between
weight lattice normalizations and theta angle periodicities in the proposal, and explore
different conventions for the mirrors. Finally, we discuss the behavior of pure gauge
theories with exceptional gauge groups under RG flow, and describe evidence that
any pure supersymmetric two-dimensional gauge theory with connected and simply-
connected semisimple gauge group flows in the IR to a free theory of as many twisted
chiral superfields as the rank of the gauge group, extending previous results for SU ,
SO, and Sp gauge theories.
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1 Introduction

Mirror symmetry is a well-known duality of string theory, whose original form has been
extended in a variety of ways. For two-dimensional abelian gauged linear sigma models,
constructive proofs and various aspects thereof were described in [1, 2]. In particular, the
paper [1] gave an explicit construction of a Landau-Ginzburg model mirror to many abelian
gauged linear sigma models. However, one open problem for many years has been to find an
analogous construction for two-dimensional supersymmetric nonabelian gauged linear sigma
models.

Recently, a proposal was made in [3] for mirrors to two-dimensional supersymmetric non-
abelian gauge theories. Specifically, it gave a construction of Landau-Ginzburg orbifolds for
supersymmetric nonabelian gauge theories. That work checked the proposal against a wide
variety of results for two-dimensional theories with classical gauge groups. To further develop
the underlying machinery, in this paper we will apply the proposed mirror construction of [3]
to two-dimensional supersymmetric nonabelian gauge theories with the exceptional gauge
groups G2, F4, E6,7,8, to make predictions for excluded loci and Coulomb branch relations
(analogues of quantum cohomology relations).

Working through these computations will also allow us to explore some properties of
those mirror superpotentials, which take the form

W =
r∑

a=1

σa

(
N∑
i=1

ρai Yi −
n−r∑
µ̃=1

αa
µ̃ lnXµ̃ − ta

)

+
N∑
i=1

exp (−Yi) +
n−r∑
µ̃=1

Xµ̃. (1.1)

In the expression above, ρai are components of weight vectors for matter representations of
the original gauge theory, and αa

µ̃ are root vectors (here taken to form a sublattice of the
weight lattice). As described in [3], the σs encode theta angles in the Cartan subalgebra of
the original gauge theory, and have periodicities reflecting the weight lattice, or at least the
sublattice generated by the matter representations. However, the weight lattice need not be
normalized in the same way as a charge lattice. It is always possible to find a basis for the
weight lattice (in terms of fundamental weights) so that the coefficients in the σ terms are
all integers, reflecting 2π theta angle periodicities and standard charge lattice conventions,
but one can also consistently work in other bases as well. For the case of G2 gauge theories,
we will use a naive basis which results in nonstandard theta angle periodicities and charge
lattices. For F4, we explain in detail how to use instead a basis of fundamental weights,
which results in standard theta angle periodicities and charge lattice normalizations, and we
will use that convention for all of the other gauge theories discussed in this paper (except
G2, which we retain as an illustrative example).
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In each case, we shall also study the mirror to the pure gauge theory, to follow up
observations in [4]. In particular, [4] argued that two-dimensional pure (2,2) supersymmetric
SU(k) gauge theories flow in the IR to a free theory of k−1 twisted chiral multiplets, which [3]
checked at the level of topological field theory computations and extended to SO(n) theories
with discrete theta angles and to Sp(k) gauge theories. In each case, for one discrete theta
angle, evidence in TFT computations was given that the theory flowed to a pure gauge
theory of as many twisted chiral multiplets as the rank of the gauge group. We shall check
the analogous claim for pure gauge theories with exceptional gauge groups in this paper, at
the level of topological field theory computations, and will find evidence for the same result –
that the pure gauge theories (for simply-connected gauge groups) flow in the IR to a theory
of as many twisted chiral multiplets as the rank of the gauge group.

Combining the results of this paper with those in [3], a simple conjecture emerges: a pure
two-dimensional (2,2) supersymmetric gauge theory with connected and simply-connected
semisimple gauge group flows in the IR to a free theory of as many twisted chiral superfields
as the rank of the gauge group. A check of this conjecture for Spin gauge theories can be
derived from the results for SO gauge theories in [3]. Now, SO groups are not simply-
connected; however, we can apply two-dimensional decomposition [5, 6] and the results for
SO theories with various discrete theta angles to argue that a pure Spin gauge theory flows
in the IR to a free theory of as many twisted chiral superfields as the rank. Combined with
the results in this paper for1 pure two-dimensional supersymmetric G2, F4, and E6,7,8 gauge
theories, we have the conjecture above.

We begin in section 2 by reviewing the nonabelian mirror proposal of [3], which will be
applied in this paper to theories with exceptional gauge groups. In section 3 we compute the
mirror Landau-Ginzburg orbifold of G2 gauge theories with matter in copies of the funda-
mental 7 dimensional representation. In section 4 we compute the mirror Landau-Ginzburg
orbifold of F4 gauge theories with matter in copies of the fundamental 26 representation.
In section 5, we compute the mirror Landau-Ginzburg orbifold of E6 with matter in copies
of the 27 representation. In sections 6, 7 we perform the same analysis for E7 and E8 with
matter fields in copies of the 56 representation of E7 and 248 of E8.

In the published version of this paper, we have omitted a number of extremely lengthy
expressions for superpotentials and ring relations from the analyses of E6,7,8 gauge theories,
which are straightforward to derive using the same methods as for G2 and F4 gauge theories.
Those expressions can be found in the online version of this article, at [7].

1 G2, F4, and E8 have no center, but E6 has center Z3 and E7 has center Z2, so for those groups we must
specify the simply-connected cover. See [8][appendix A] for further details on centers.
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2 Brief review of the nonabelian mirror proposal

The nonabelian mirror proposal of [3] is a generalization of the abelian duality described
in [1] (see also [2]). It takes the following form. For an A-twisted two-dimensional (2,2)
supersymmetric gauge theory with connected gauge group G, the mirror is a B-twisted
Landau-Ginzburg orbifold, defined by (twisted) chiral multiplets

• Yi, corresponding to the N matter fields of the original gauge theory,

• Xµ̃, corresponding to nonzero roots µ̃ of the Lie algebra g of G, of dimension n,

• σa = D+D−Va, as many as the rank r of G, corresponding to a choice of Cartan
subalgebra of g, the Lie algebra of G,

with superpotential

W =
r∑

a=1

σa

(
N∑
i=1

ρai Yi −
n−r∑
µ̃=1

αa
µ̃ lnXµ̃ − ta

)

+
N∑
i=1

exp (−Yi) +
n−r∑
µ̃=1

Xµ̃ −
∑
i

m̃iYi, (2.1)

In the expression above, the ρai are components of weight vectors for the matter representa-
tions appearing in the original gauge theory, and αa

µ̃ are components of nonzero roots (here
viewed as defining a sublattice of the weight lattice). (Also, sometimes one uses Z = − lnX
for simplicity.) The ta are constants, corresponding to Fayet-Iliopoulos parameters of the
original gauge theory, and the m̃i are twisted masses in the original gauge theory. One then
orbifolds by the Weyl group, which acts naturally on all the fields above, and leaves the
superpotential invariant. The expression above was written for A-twisted gauge theories
without a superpotential, but can be generalized to mirrors of gauge theories with superpo-
tentials by assigning suitable R-charges and changing the fundamental fields accordingly, as
explained in [3].

In the analysis of this theory, it was argued that some loci are dynamically excluded –
specifically, loci where any Xµ̃ vanishes. These loci turn out to reproduce excluded loci on
Coulomb branches of the original gauge theories. Furthermore, critical loci of the superpo-
tential above obey relations which correspond to relations in the OPE ring of the original
A-twisted gauge theory. For gauge theories with U(1) factors in G, one has continuous Fayet-
Iliopoulos parameters, so one can speak of weak coupling limits, and those OPE relations are
known as quantum cohomology relations. In cases in which G has no U(1) factors, so that
there are no continuous Fayet-Iliopoulos parameters, there is no weak coupling limit, and so
referring to such relations as ‘quantum cohomology’ relations is somewhat misleading. In
such cases, we refer to the relations as defining the Coulomb ring or Coulomb branch ring.
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The work [3] checked the predictions of this proposal for excluded loci and Coulomb
branch and quantum cohomology relations against known results for two-dimensional gauge
theories in e.g. [9–12], and gave general arguments for why correlation functions in this
B-twisted theory should match correlation functions in corresponding A-twisted gauge the-
ories, such as in e.g. [13–15]. It also studied mirrors to pure gauge theories, to test and
refine predictions for IR behavior described in [4]. In this paper, we will apply this mirror
construction to make predictions for two-dimensional (2,2) supersymmetric gauge theories
with exceptional gauge groups. To make all of these comparisons, the paper [3] utilized the
following operator mirror map:

exp(−Yi) = −m̃i +
r∑

a=1

σaρ
a
i , (2.2)

Xµ̃ =
r∑

a=1

σaα
a
µ̃, (2.3)

which we shall also use in this paper.

3 G2

In this section we will consider the mirror Landau-Ginzburg orbifold of G2 gauge theory with
matter fields in copies of the 7 representation, and then we compute quantum cohomology
ring.

3.1 Mirror Landau-Ginzburg orbifold

The mirror Landau-Ginzburg model has fields

• Yiβ, i ∈ {1, · · · , n}, β ∈ {0, · · · , 6}, corresponding to the matter fields in n copies of
the 7 of G2,

• Xm, X̃m, m ∈ {1, · · · , 6}, corresponding to the short, respectively long roots of G2,

• σa, a ∈ {1, 2}.

We associate the roots and weights to fields as listed in table 1 and figures 1, 2.
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Field Short root Field Long root Field Weight

X1 (1, 0) X̃1 (−3/2,
√
3/2) Yi1 (1, 0)

X2 (−1, 0) X̃2 (3/2,−
√
3/2) Yi2 (−1, 0)

X3 (1/2,
√
3/2) X̃3 (3/2,

√
3/2) Yi3 (1/2,

√
3/2)

X4 (−1/2,−
√
3/2) X̃4 (−3/2,−

√
3/2) Yi4 (−1/2,−

√
3/2)

X5 (−1/2,
√
3/2) X̃5 (0,

√
3) Yi5 (−1/2,

√
3/2)

X6 (1/2,−
√
3/2) X̃6 (0,−

√
3) Yi6 (1/2,−

√
3/2)

Yi0 (0, 0)

Table 1: Roots and weights for G2 and associated fields.

X1X2

X̃5

X̃6

X̃3X3X5X̃1

X̃4 X4 X6 X̃2

Figure 1: Roots of G2.

The mirror superpotential takes the form

W = σ1

(∑
i

(Yi1 − Yi2 + (1/2)Yi3 − (1/2)Yi4 − (1/2)Yi5 + (1/2)Yi6)

+ (Z1 − Z2 + (1/2)Z3 − (1/2)Z4 − (1/2)Z5 + (1/2)Z6)

+
(
−(3/2)Z̃1 + (3/2)Z̃2 + (3/2)Z̃3 − (3/2)Z̃4

))

+ σ2

(
(
√
3/2)

∑
i

(Yi3 − Yi4 + Yi5 − Yi6) + (
√
3/2) (Z3 − Z4 + Z5 − Z6)

+ (
√
3/2)

(
Z̃1 − Z̃2 + Z̃3 − Z̃4 + 2Z̃5 − 2Z̃6

))

+
∑
i

6∑
α=0

exp (−Yiα) +
6∑

m=1

Xm +
6∑

m=1

X̃m −
∑
i,α

m̃iYiα, (3.1)
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Yi1Yi2

Yi3Yi5

Yi4 Yi6

Yi0

Figure 2: Weights of 7 of G2.

where Xm = exp(−Zm), X̃m = exp(−Z̃m), with Xm, X̃m the fundamental fields and m̃i are
the twisted masses.

The logic of the assignments above is that Xodd, X̃odd correspond to positive roots, Xeven,
X̃even correspond to their opposites, and the weight vectors are associated to matter fields
similarly. We follow the conventions of [16][chapter 22]: short roots are given by

(±1, 0), ±(+1/2,
√
3/2), ±(−1/2,

√
3/2),

long roots are given by

±(−3/2,
√
3/2), ±(+3/2,

√
3/2), ±(0,

√
3),

and the weights of the 7 are given by

±(1, 0), ±(1/2,
√
3/2),±(−1/2,

√
3/2), (0, 0).

Before moving on, there is an important subtlety in the expression for the mirror su-
perpotential above, involving the theta angle periodicities. As described in [3], the factors
multiplied by σs are not single-valued, reflecting the fact that the σ terms encode theta
angles in the abelian subgroup determined by the choice of Cartan subgroup of the original
gauge group. The periodicities2 of these theta angles are determined by 2π times the weight
lattice, or at least the sublattice generated by the matter representations. However, the

2 On a noncompact worldsheet, the theta angles generate electric fields with periodicities determined by
the matter representations – as theta increases, the electric field density eventually becomes strong enough
to allow pair creation of matter fields.
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weight lattice need not be normalized in the same way as a charge lattice. For example,
in our conventions for the weight lattice of G2 above, the σ1 terms determine a theta angle
periodicity of 2π/2 = π rather than 2π, and the σ2 terms determine a theta angle periodicity
of (

√
3/2)(2π) =

√
3π rather than 2π.

Now, on the one hand, the normalization of the charge lattice is ultimately a convention,
and so long as one is consistent, one can work with alternative conventions. On the other
hand, it is also often helpful to work with standard conventions.

For the case of G2, we shall use the normalization above, hence a nonstandard charge
lattice normalization. However, it is always possible to rotate to a conventional charge lattice
normalization by writing the weights in a basis of fundamental weights, for which any other
weight is an integer linear combination. In terms of that mathematical basis, the theta angle
periodicities determined by σs are all 2π, reflecting a standard charge lattice normalization.
We will discuss this alternative basis in more detail for F4, and in fact will use that alternative
basis (and standard charge normalization) to study all the other gauge theories in this paper,
after G2. We study G2 in nonstandard conventions for illustrative purposes.

3.2 Weyl group

Now, let us explicitly describe the action of the Weyl group on the fields of this theory
and outline explicitly why the superpotential is invariant in this case. (General arguments
appeared in [3], but as the Weyl group action is more complicated here than in the examples
in that paper, a more detailed verification seems in order.)

For any root α, recall that the Weyl group reflection generated by α acts on a weight µ
as follows:

µ ↦→ µ − 2(α · µ)
α2

α. (3.2)

For example, for the Weyl reflection generated by α = (1, 0), it is straightforward to compute
that the group action on fields corresponding to roots is given by

X1 ↔ X2, X3 ↔ X5, X4 ↔ X6, (3.3)

X̃1 ↔ X̃3, X̃2 ↔ X̃4, (3.4)

and X̃5,6 are invariant. The action on matter fields is

Yi1 ↔ Yi2, Yi3 ↔ Yi5, Yi4 ↔ Yi6, (3.5)

with Yi7 invariant. This is just a reflection about the y axis, which multiplies the first
coordinate by −1 but leaves the second invariant. It is straightforward to check that the
superpotential will be invariant under this reflection so long as

σ1 ↔ −σ1, (3.6)
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and σ2 is invariant.

For another example, for Weyl reflections generated by α = (3/2,
√
3/2), it is straight-

forward to compute that the group action on fields corresponding to roots is given by

X1 ↔ X4, X2 ↔ X3, (3.7)

with X5,6 invariant, and
X̃1 ↔ X̃5, X̃2 ↔ X̃6, X̃3 ↔ X̃4. (3.8)

The action on matter fields is the same as on the mirrors to the short roots:

Yi1 ↔ Yi4, Yi2 ↔ Yi3, (3.9)

with Yi5, Yi6 invariant. The σa fields are similarly rotated:

σ1 ↦→ −1

2
σ1 −

√
3

2
σ2,

σ2 ↦→ −
√
3

2
σ1 +

1

2
σ2.

(Note that if we describe the action above as mapping σ⃗ ↦→ Aσ⃗ for a 2×2 matrix A, then for
the choice of A implicit above, it is straightforward to check A = A−1.) It is straightforward
to check that the superpotential is invariant under the action above. For example, the terms

σ1 (Z1 − Z2 + (1/2)Z3 − (1/2)Z4 − (1/2)Z5 + (1/2)Z6)

+ σ2(
√
3/2) (Z3 − Z4 + Z5 − Z6)

↦→
(
−(1/2)σ1 − (

√
3/2)σ2

)
(Z4 − Z3 + (1/2)Z2 − (1/2)Z1 − (1/2)Z5 + (1/2)Z6)

+
(
−(

√
3/2)σ1 + (1/2)σ2

)
(
√
3/2) (Z2 − Z1 + Z5 − Z6) ,

which is easily checked to be the same as the starting point,

σ1 (Z1 − Z2 + (1/2)Z3 − (1/2)Z4 − (1/2)Z5 + (1/2)Z6) + σ2(
√
3/2) (Z3 − Z4 + Z5 − Z6) .

Similar statements are true of other terms, and so the superpotential is preserved.

To be thorough, we will consider one more example of a Weyl group action, this time
a reflection defined by a short root, specifically α = (1/2,

√
3/2). It is straightforward to

compute that the group action on fields corresponding to roots is given by

X1 ↔ X6, X2 ↔ X5, X3 ↔ X4, (3.10)

and
X̃3 ↔ X̃6, X̃4 ↔ X̃5, (3.11)
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with X̃1,2 invariant. The action on the matter fields is the same as on the mirrors to the
short roots:

Yi1 ↔ Yi6, Yi2 ↔ Yi5, Yi3 ↔ Yi4. (3.12)

This is another reflection about the axis pass through X5 and X6. The σa fields are similarly
rotated:

σ1 ↦→ 1

2
σ1 −

√
3

2
σ2,

σ2 ↦→ −
√
3

2
σ1 − 1

2
σ2.

It is straightforward to check that the superpotential is invariant.

3.3 Coulomb ring relations

Integrating out the sigma fields in the superpotential (3.1), we obtain two constraints:∑
i

(2Yi1 − 2Yi2 + Yi3 − Yi4 − Yi5 + Yi6) + (2Z1 − 2Z2 + Z3 − Z4 − Z5 + Z6)+

+
(
−3Z̃1 + 3Z̃2 + 3Z̃3 − 3Z̃4

)
= 0,∑

i

(Yi3 − Yi4 + Yi5 − Yi6) + (Z3 − Z4 + Z5 − Z6)+

+
(
Z̃1 − Z̃2 + Z̃3 − Z̃4 + 2Z̃5 − 2Z̃6

)
= 0.

With the two constraints above, we are free to eliminant two fundamental fields, which
we will take to be Yn3 and Yn6:

−Yn3 =
n∑

i=1

(Yi1 − Yi2 − Yi4) +
n−1∑
i=1

Yi3 + (Z1 − Z2 + Z3 − Z4)

+
(
−Z̃1 + Z̃2 + 2Z̃3 − 2Z̃4 + Z̃5 − Z̃6

)
,

−Yn3 =
n∑

i=1

(Yi1 − Yi2 − Yi5) +
n−1∑
i=1

Yi6 + (Z1 − Z2 − Z5 + Z6)

+
(
−2Z̃1 + 2Z̃2 + Z̃3 − Z̃4 − Z̃5 + Z̃6

)
.
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For convenience, let’s define:

Π3 ≡ exp (−Yn3) ,

=
n∏

i=1

exp (Yi1 − Yi2 − Yi4)
n−1∏
i=1

exp (Yi3)
X2X4

X1X3

X̃1X̃
2
4X̃6

X̃2X̃2
3X̃5

, (3.13)

Π6 ≡ exp (−Yn6) ,

=
n∏

i=1

exp (Yi1 − Yi2 − Yi5)
n−1∏
i=1

exp (Yi6)
X2X5

X1X6

X̃2
1X̃4X̃5

X̃2
2X̃3X̃6

. (3.14)

Then, the superpotential (3.1) reduces to

W =
n∑

i=1

[
exp (−Yi0) + exp (−Yi1) + exp (−Yi2) + exp (−Yi4) + exp (−Yi5)

]
+

n−1∑
i=1

[
exp (−Yi3) + exp (−Yi6)

]
+Π3 +Π6 +

6∑
m=1

(
Xm + X̃m

)
−

n∑
i=1

m̃i (Yi0 + Yi1 + Yi2 + Yi4 + Yi5)−
n−1∑
i=1

m̃i (Yi3 + Yi6) + m̃n(lnΠ3 + lnΠ6).

Notice that the superpotential has poles at X1 ̸= 0, X3 ̸= 0, X6 ̸= 0, X̃2 ̸= 0, X̃3 ̸= 0,
X̃5 ̸= 0 and X̃6 ̸= 0. With the mirror maps,

exp(−Yiβ) = −m̃i +
∑
a=1,2

σaρ
a
iβ, Xm =

∑
a=1,2

σaα
a
m, X̃m =

∑
a=1,2

σaα̃
a
m, (3.15)

one can get the excluded loci:

σ1σ2(σ
2
1 − 3σ2

2)(3σ
2
1 − σ2

2) ̸= 0, (3.16)∏
i

(−mi + σ1)(−mi − σ1)

(
−mi +

1

2
σ1 +

√
3

2
σ2

)(
−mi −

1

2
σ1 −

√
3

2
σ2

)
·

·

(
−mi −

1

2
σ1 +

√
3

2
σ2

)(
−mi +

1

2
σ1 −

√
3

2
σ2

)
̸= 0. (3.17)
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The critical locus is given by

∂W

∂Yi0

: exp (−Yi0) = −m̃i, for i = 1, · · · , n,

∂W

∂Yi1

: exp (−Yi1) = Π3 +Π6 − m̃i + 2m̃n, for i = 1, · · · , n,

∂W

∂Yi2

: exp (−Yi2) = −Π3 − Π6 − m̃i − 2m̃n, for i = 1, · · · , n,

∂W

∂Yi3

: exp (−Yi3) = Π3 − m̃i + m̃n, for i = 1, · · · , n− 1,

∂W

∂Yi4

: exp (−Yi4) = −Π3 − m̃i − m̃n, for i = 1, · · · , n,

∂W

∂Yi5

: exp (−Yi5) = −Π6 − m̃i − m̃n, for i = 1, · · · , n,

∂W

∂Yi6

: exp (−Yi6) = Π6 − m̃i + m̃n, for i = 1, · · · , n− 1,

∂W

∂X1

: X1 = Π3 +Π6 + 2m̃n,

∂W

∂X2

: X2 = −Π3 − Π6 − 2m̃n,

∂W

∂X3

: X3 = Π3 + m̃n,

∂W

∂X4

: X4 = −Π3 − m̃n,

∂W

∂X5

: X5 = −Π6 − m̃n,

∂W

∂X6

: X6 = Π6 + m̃n,

14



∂W

∂X̃1

: X̃1 = −Π3 − 2Π6 − 3m̃n,

∂W

∂X̃2

: X̃2 = Π3 + 2Π6 + 3m̃n,

∂W

∂X̃3

: X̃3 = 2Π3 +Π6 + 3m̃n,

∂W

∂X̃4

: X̃4 = −2Π3 − Π6 − 3m̃n,

∂W

∂X̃5

: X̃5 = Π3 − Π6,

∂W

∂X̃6

: X̃6 = −Π3 +Π6,

Plug the above equations back to (3.13), (3.14), one obtains the Coulomb branch rela-
tions:

Π3 =
n−1∏
i=1

(Π3 − m̃i + m̃n)
−1·

·
n∏

i=1

(Π3 +Π6 − m̃i + 2m̃n)
−1 (−Π3 − Π6 − m̃i − 2m̃n)(−Π3 − m̃i − m̃n), (3.18)

Π6 =
n−1∏
i=1

(Π6 − m̃i + m̃n)
−1·

·
n∏

i=1

(Π3 +Π6 − m̃i + 2m̃n)
−1 (−Π3 − Π6 − m̃i − 2m̃n)(−Π6 − m̃i − m̃n). (3.19)

With the mirror map (3.15), on the critical locus relations, one finds

Π3 =
1

2
σ1 +

√
3

2
σ2 − m̃n, Π6 =

1

2
σ1 −

√
3

2
σ2 − m̃n.

Plugging them back in, one obtains the Coulomb (quantum cohomology) ring relations for
G2,

n∏
i=1

(−σ1 − m̃i)

(
−1

2
σ1 −

√
3

2
σ2 − m̃i

)
=

n∏
i=1

(σ1 − m̃i)

(
1

2
σ1 +

√
3

2
σ2 − m̃i

)
, (3.20)

n∏
i=1

(−σ1 − m̃i)

(
−1

2
σ1 +

√
3

2
σ2 − m̃i

)
=

n∏
i=1

(σ1 − m̃i)

(
1

2
σ1 −

√
3

2
σ2 − m̃i

)
. (3.21)
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Combining the above two relations, one gets

n∏
i=1

(−σ1 − m̃i)
2

(
−1

2
σ1 −

√
3

2
σ2 − m̃i

)(
−1

2
σ1 +

√
3

2
σ2 − m̃i

)

=
n∏

i=1

(σ1 − m̃i)
2

(
1

2
σ1 +

√
3

2
σ2 − m̃i

)(
1

2
σ1 −

√
3

2
σ2 − m̃i

)
, (3.22)

n∏
i=1

(
1

2
σ1 +

√
3

2
σ2 − m̃i

)(
−1

2
σ1 +

√
3

2
σ2 − m̃i

)

=
n∏

i=1

(
−1

2
σ1 −

√
3

2
σ2 − m̃i

)(
1

2
σ1 −

√
3

2
σ2 − m̃i

)
. (3.23)

3.4 Vacua

In this section, we will count the number of vacua in cases with small numbers n of funda-
mental fields. To solve the Coulomb branch (quantum cohomology) relations (3.20), (3.21)
in general is not easy. However, since the superpotential is invariant under the Weyl group,
the Coulomb ring relations (3.20), (3.21) will be covariant under the Weyl group action,
which we check explicitly.

The Weyl group of G2 is the dihedral group D12 of degree 6 and order 12, which can be
described as [17][section 7]

D12 =
{
aixj | a6 = 1 = x2, xax = a−1

}
.

(See e.g. [17][section 47] for a discussion of representations of the dihedral groups.) Among
the twelve elements of the Weyl group, there are six reflections, and below we list group
elements and the field corresponding to the root about which the reflection takes place:

X1 ↔ a3x, X3 ↔ a5x, X5 ↔ ax,

X̃1 ↔ a2x, X̃3 ↔ a4x, X̃5 ↔ x.

Notice that the reflections are also generated by the Weyl group reflection (3.2) and we
denote the reflection matrices by the fields correspond to the positive simple roots. There
are also five nontrivial rotations, corresponding to ⟨a⟩ ⊂ D12.

Now we can start to solve for the vacua (solutions of the Coulomb ring relations (3.20),
(3.21)) begining with the case of small number of fundamental matter fields.

• n = 1, the only solution is σ1 = σ2 = 0 and it is excluded by the constraints (3.16),
(3.17),
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• n = 2, there are seven solutions but all of them are excluded by the constraints (3.16),
(3.17),

• n = 3, there are ninteen solutions but all of them are excluded by the constraints
(3.16), (3.17).

Starting with the case n = 4, we begin to obtain non-trivial solutions. First, let us analyze
the case of n = 4 in detail. For simplicity, from now on, we will take mi = mj = m, ∀i ̸= j
and will rescale the σi fields to σi = σi/m. There are thirty-seven solutions in total and
twelve of them are true vacua (meaning, not on the excluded locus):

i = 1, · · · , 4, si =

{
σ1 = ±i

√
5, σ2 = ±i

√
3

}
,

i = 5, · · · , 8, si =

{
σ1 = ±i

√
7

2
− 3

√
5

2
, σ2 = ±i

√
3

2
(3 +

√
5)

}
,

i = 9, · · · , 12, si =

{
σ1 = ±i

√
7

2
+

3
√
5

2
, σ2 = ±i

√
3

2
(3−

√
5)

}
.

Signs are assigned in each group of four solutions in the order {−,−}, {−,+}, {+,−},
{+,+}. For example,

X1 = {σ1 = −i
√
5, σ2 = −i

√
3}, X2 = {σ1 = −i

√
5, σ2 = +i

√
3},

X3 = {σ1 = +i
√
5, σ2 = −i

√
3}, X4 = {σ1 = +i

√
5, σ2 = +i

√
3}.

Under the Weyl group actions, the solutions transform as in table 2.3 One can see that the
twelve vacua are covariant and form one Weyl orbit under the Weyl group action.

When there are five fundamental matter multiplets, there are sixty-one solutions and
twenty-four of them are non-trivial. Following the same conventions, those non-trivial vacua
are

i = 1, · · · , 4, si =

{
σ1 = ±i

√
5− 6√

5
, σ2 = ±i

√
3− 6√

5

}
,

i = 5, · · · , 8, si =

{
σ1 = ±i

√
5 +

6√
5
, σ2 = ±i

√
3 +

6√
5

}
,

3Note that the Weyl group acts on σs by the inverse of the group elements. In the table, we denote
the action by the original group elements instead of the inverse of the elements. Table 3 adopts the same
notation.

17



e X1 X3 X5 X̃1 X̃3 X̃5 a5 a4 a3 a2 a1

1 1 3 8 9 5 12 2 7 11 4 6 10
2 2 4 10 7 11 6 1 9 5 3 12 8
3 3 1 11 6 10 7 4 12 8 2 9 5
4 4 2 5 12 8 9 3 6 10 1 7 11
5 5 7 4 10 1 11 6 3 12 8 2 9
6 6 8 9 3 12 2 5 10 1 7 11 4
7 7 5 12 2 9 3 8 11 4 6 10 1
8 8 6 1 11 4 10 7 2 9 5 3 12
9 9 11 6 1 7 4 10 5 3 12 8 2
10 10 12 2 5 3 8 9 1 7 11 4 6
11 11 9 3 8 2 5 12 4 6 10 1 7
12 12 10 7 4 6 1 11 8 2 9 5 3

Table 2: Weyl group actions on the vacua of the case n = 4

i = 9, · · · , 12, si =

{
σ1 = ±i

√
(1/10)(35 + 12

√
5 + 3(185 + 80

√
5)1/2,

σ2 = ±i

√
(3/10)(15 + 4

√
5− (185 + 80

√
5)1/2

}
,

i = 13, · · · , 16, si =

{
σ1 = ±i

√
(1/10)(35 + 12

√
5− 3(185 + 80

√
5)1/2,

σ2 = ±i

√
(3/10)(15 + 4

√
5 + (185 + 80

√
5)1/2

}
,

i = 17, · · · , 20, si =

{
σ1 = ±i

√
(1/10)(35− 12

√
5 + 3(185 + 80

√
5)1/2,

σ2 = ±i

√
(3/10)(15− 4

√
5− (185 + 80

√
5)1/2

}
,

i = 21, · · · , 24, si =

{
σ1 = ±i

√
(1/10)(−35 + 12

√
5 + 3(185 + 80

√
5)1/2,

σ2 = ±i

√
(3/10)(15− 4

√
5 + (185 + 80

√
5)1/2

}
.

The vacua form two Weyl orbits, each of which contains twelve elements. The first orbit
consists of the first through fourth solutions, the seventeenth through twentieth solutions,
and the twenty-first through twenty-fourth solutions. The rest of the solutions form the
second Weyl orbit. We summarize the results for the Weyl group actions in table 3.

We checked one more case, n = 6. In this case, there are ninety-one solutions in total,
of which forty-eight solutions are not on the excluded locus. As expected, these vacua form
four Weyl orbits under the Weyl group action and each orbit contain twelve vacua. The
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e X1 X3 X5 X̃1 X̃3 X̃5 a5 a4 a3 a2 a1
1 1 3 22 17 23 20 2 21 19 4 24 18
2 2 4 18 21 19 24 1 17 23 3 20 22
3 3 1 19 24 18 21 4 20 22 2 17 23
4 4 2 23 20 22 17 3 24 18 1 21 19
17 17 19 24 1 21 4 18 23 3 20 22 2
18 18 20 2 23 3 22 17 1 21 19 4 24
19 19 17 3 22 2 23 20 4 24 18 1 21
20 20 18 21 4 24 1 19 22 2 17 23 3
21 21 23 20 2 17 3 22 19 4 24 18 1
22 22 24 1 19 4 18 21 2 17 23 3 20
23 23 21 4 18 1 19 24 3 20 22 2 17
24 24 22 17 3 20 2 23 18 1 21 19 4
5 5 7 16 9 13 12 6 15 11 8 14 10
6 6 8 10 15 11 14 5 9 13 7 12 16
7 7 5 11 14 10 15 8 12 16 6 9 13
8 8 6 13 12 16 9 7 14 10 5 15 11
9 9 11 14 5 15 8 10 13 7 12 16 6
10 10 12 6 13 7 16 9 5 15 11 8 14
11 11 9 7 16 6 13 12 8 14 10 5 15
12 12 10 15 8 14 5 11 16 6 9 13 7
13 13 15 8 10 5 11 14 7 12 16 6 9
14 14 16 9 7 12 6 13 10 5 15 11 8
15 15 13 12 6 9 7 16 11 8 14 10 5
16 16 14 5 11 8 10 15 6 9 13 7 12

Table 3: Weyl group actions on the vacua of five fundamental matter multiplets

solutions in this case are much more complicated, and so we do not list them explicitly.

3.5 Pure gauge theory

In this section, we will check (at the level of topological field theory computations) that the
pure G2 theory flows in the IR to a free theory of two chiral multiplets. The superpotential
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of the pure gauge theory is

W =
2∑

a=1

σa

(
αa
mZm + α̃a

mZ̃m

)
+
∑
m

(Xm + X̃m),

=σ1

[(
Z1 − Z2 + (1/2)Z3 − (1/2)Z4 − (1/2)Z5 + (1/2)Z6

)
+
(
− (3/2)Z̃1 + (3/2)Z̃2 + (3/2)Z̃3 − (3/2)Z̃4

)]
+ σ2(

√
3/2)

(
Z3 − Z4 + Z5 − Z6 + Z̃1 − Z̃2 + Z̃3 − Z̃4 + 2Z̃5 − 2Z̃6

)
+

6∑
m=1

(Xm + X̃m).

Integrating out Xm and X̃m, one obtains the constraints,

Xm =
∑
a

σaα
a
m,

X̃m =
∑
a

σα̃a
m.

The point is that all the Xm fields and X̃m fields correspond to the nonzero roots of G2 which
come in pairs, positive roots and their negatives. As a result, pluging the constraints above
back into the superpoential, one gets W = 0. Therefore, the pure gauge theory indeed flows
to a free theory of two twisted chiral multiplies in the IR limit.

On the other hand, integrating out σ1 and σ2, one obtains the constraints,

− lnX1 + lnX2 − (1/2) lnX3 + (1/2) lnX4 + (1/2) lnX5 − (1/2) lnX6

+ (3/2) ln X̃1 − (3/2) ln X̃2 − (3/2)X̃4 + (3/2)X̃4 = 0,

−
√
3

2
(lnX3 − lnX4 + lnX5 − lnX6)−

√
3

2
(X̃1 − X̃2 + X̃3 − X̃4 + 2X̃5 − 2X̃6) = 0

With those two constraints, one can eliminate two fields in the superpotential,

X4 = a
X1X3X̃2X̃

2
3X̃5

X2X̃1X̃2
4X̃6

, X5 = b
X1X6X̃

2
2X̃3X̃6

X2X̃2
1X̃4X̃5

,

with a = ±1 and b = ±1. Plugging this back into the superpotential, we get

W =X1 +X2 +X3 +X6 + X̃1 + X̃2 + X̃3 + X̃4 + X̃5 + X̃6

+ a
X1X3X̃2X̃

2
3X̃5

X2X̃1X̃2
4X̃6

+ b
X1X6X̃

2
2X̃3X̃6

X2X̃2
1X̃4X̃5

. (3.24)
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The critical loci are given by

a = b = 1,

X1 = −X2 = X3 +X6,

X̃1 = −X̃2 = −X3 − 2X6,

X̃3 = −X̃4 = 2X3 +X6,

X̃5 = −X̃6 = X3 −X6.

One can easily see that, on the critical locus, the above superpotential (3.24) vanishes with
two free fields X3 and X6. Therefore, the pure gauge theory again flows to free theories of
two chiral multiplies in the IR.

3.6 Comparison with A model results

In this section, we will discuss the A-twisted gauge theory with gauge group G2 and n chiral
superfields in the 7, and compare it to results from our proposed mirror, as a check of our
methods. In principle, this should necessarily work, for reasons discussed in [3][section 3];
however, we will check for the special case of G2 that indeed everything works as it should,
which will also give us the opportunity to discuss the role of theta angle periodicities and
charge lattice normalizations.

The one-loop effective twisted superpotential W̃eff of the A-twisted gauge theory is given
by [13][equ’ns (2.17), (2.19)], [14][equ’ns (3.16), (3.17)]

W̃eff =−
∑
i,α

(σ1ρ
′1
i,α + σ2ρ

′2
i,α − m̃i)

(
ln(σ1ρ

′1
i,α + σ2ρ

′2
i,α − m̃i)− 1

)
+
∑
m

(σ1α
′1
m + σ2α

′2
m)
(
ln(σ1α

′1
m + σ2α

′2
m)− 1

)
+
∑
m

(σ1α̃
′1
m + σ2α̃

′2
m)
(
ln(σ1α̃

′1
m + σ2α̃

′2
m)− 1

)
.

Since the logarithm branch cuts in the expressions above are supposed to reflect (standard)
theta angle periodicities of 2π, we have rescaled ρ and α to ρ′ and α′. Specifically, we have
rescaled all the charges under σ1 by a factor of 2 and all the charges under σ2 by a factor of
2/
√
3.

Since the roots and weights of G2 come in positive/negative pairs, we can further simplify
the effective superpotential:

W̃eff =−
∑
i,α

(σ1ρ
′1
i,α + σ2ρ

′2
i,α − m̃i) ln(σ1ρ

′1
i,α + σ2ρ

′2
i,α − m̃i)− 7

∑
i

m̃i + 6πi(σ1 + σ2).
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The vacua are given by ∏
i,α

(σ1ρ
′1
i,α + σ2ρ

′2
i,α − m̃i)

ρ
′1
i,α = 1,

∏
i,α

(σ1ρ
′1
i,α + σ2ρ

′2
i,α − m̃i)

ρ
′2
i,α = 1.

Plugging in the charges, we get∏
i

(2σ1 − m̃i)
2(σ1 + σ2 − m̃i)(σ1 − σ2 − m̃i)

=
∏
i

(−2σ1 − m̃i)
2(−σ1 − σ2 − m̃i)(−σ1 + σ2 − m̃i),∏

i

(σ1 + σ2 − m̃i)(−σ1 + σ2 − m̃i)

=
∏
i

(−σ1 − σ2 − m̃i)(σ1 − σ2 − m̃i).

The relations above are the same as the Coulomb ring relations (3.22), (3.23) we derived
from the B model with a suitable rescaling of the σ fields,

σ1 →
1

2
σ1, σ2 →

√
3

2
σ2.

Thus, we see that A model results match those of the B model mirror, as expected, after
correctly taking into account subtleties in theta angle periodicities.

3.7 Comparison to other bases for weight lattice

So far in this section, we have used a particular basis for the weight lattice forG2. In principle,
other bases are related by field redefinitions. To make this more explicit, in this section we
will outline corresponding results in a different basis for the weight lattice, specifically a
basis of fundamental weights. We will describe this basis in greater detail in the section on
F4, as it will be used for the rest of the exceptional gauge groups in this paper, but for the
moment, will content ourselves to briefly outline results.

In terms of that basis of fundamental weights, it can be shown that the roots and pertinent
weights of G2 are expanded as given in table 4.

Repeating the same mirror analysis as described earlier in this section, we derive the
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Field Short root Field Long root Field Weight

X1 (1, 0) X̃1 (0, 1) Yi1 (1, 0)

X2 (− 1, 1) X̃2 (3,−1) Yi2 (− 1, 1)

X3 (2,−1) X̃3 (− 3, 2) Yi3 (2,−1)

X4 (− 1, 0) X̃4 (0,−1) Yi4 (− 1, 0)

X5 (1,−1) X̃5 (− 3, 1) Yi5 (1,−1)

X6 (− 2, 1) X̃6 (3,−2) Yi6 (− 2, 1)
Yi0 (0, 0)

Table 4: Roots and weights for G2 and associated fields.

Coulomb branch relations

n∏
i=1

(σ′
1 − m̃i)(2σ

′
1 − σ′

2 − m̃i) =
n∏

i=1

(−σ′
1 − m̃i)(−2σ′

1 + σ′
2 − m̃i), (3.25)

n∏
i=1

(σ′
1 − σ′

2 − m̃i)(2σ
′
1 − σ′

2 − m̃i) =
n∏

i=1

(−σ′
1 + σ′

2 − m̃i)(−2σ′
1 + σ′

2 − m̃i), (3.26)

and excluded loci

σ′
1σ

′
2(σ

′
1 − σ′

2)(2σ
′
1 − σ′

2)(3σ
′
1 − σ′

2)(3σ
′
1 − 2σ′

2) ̸= 0, (3.27)

n∏
i=1

(σ′
1 − m̃i)(−σ′

1 + σ′
2 − m̃i)(2σ

′
1 − σ′

2 − m̃i)

·(−σ′
1 − m̃i)(σ

′
1 − σ′

2 − m̃i)(−2σ′
1 + σ′

2 − m̃i) ̸= 0. (3.28)

Comparing with earlier reuslts for the critical locus (3.20), (3.21) and excluded loci (3.16),
(3.17), computed in the earlier basis, we find that the results above are related by the
following linear field redefinitions

σ′
1 =

1

2
σ1 +

√
3

2
σ2, (3.29)

σ′
2 =

√
3σ2, (3.30)

or equivalently

σ1 = 2σ′
1 − σ′

2, (3.31)

σ2 =
1√
3
σ′
2. (3.32)
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4 F4

In this section we will consider the mirror Landau-Ginzburg orbifold of an F4 gauge theory
with matter fields in the 26 fundamental representation, and then compute Coulomb branch
relations. We also consider the pure gauge theory without matter fields.

4.1 Mirror Landau-Ginzburg orbifold

The mirror Landau-Ginzburg model has fields

• Yi,β, i ∈ {1, · · · , n}, β ∈ {1, · · · , 26}, corresponding to the matter fields in n copies of
the fundamental 26 dimensional representation of F4,

• Xm, m ∈ {1, · · · , 48}, corresponding to the roots of F4,

• σa, a ∈ {1, 2, 3, 4}.

We associate the roots, αa
m, to Xm fields and the weights, ρai,β, of the fundamental 26

representation to Yi,β.

Now, previously for G2, we worked with a basis in which the θ-angle periodicities were
unusual: θ1 ∼ θ1+πi, θ2 ∼ θ2+4πi/

√
3. This essentially just corresponded to a nonstandard

charge lattice normalization. This was convenient for relating to Lie algebras, but, is rather
unusual for physics.

Here, for F4 and all the later examples we will discuss in this paper, we would like
instead to work with a basis for the roots and weights that corresponds to an integer charge
lattice, so that the θ-angle periodicities take a more nearly standard form. In particular, the
superpotential is invariant under such basis changes, since its terms are tensor contractions
such as ∑

a

σaρ
a
i Y

i.

We can pick any basis we like, so long as we consistently change coordinates in the tensors
above. In particular, the superpotential (for this B-twisted Landau-Ginzburg model) does
not depend explicitly upon e.g. the Cartan matrix, so the metric on the Lie algebra is not
directly relevant in the presentation above. Thus, we have the flexibility to pick a basis such
that the weights have integer coordinates, which yields standard θ-angle periodicities.

To be specific, we will write the weights and roots in terms of a basis of fundamental
weights. Recall the fundamental weights are defined as follows. First, let {αµ} be a basis of
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simple roots, normalized so that the Cartan matrix Cµν is given as

Cµν = 2
αµ · αν

α2
ν

. (4.1)

The fundamental weights {ωµ} are then defined by the property that [18][section 13.1]

2
αµ · ων

α2
µ

= δµν . (4.2)

Furthermore, the fundamental weights form an integer basis for the weight lattice – every
element of the weight lattice is a linear combination of fundamental weights with integer
coefficients [18][section 13.1]. This is perfect for our purposes, as this basis yields standard
θ-angle periodicities, and we will use this basis for all computations in this and later sections.
To compute root and weight vectors as linear combinations of the fundamental weights, as
displayed in tables in this and later sections, we used the Mathematica package LieART [19].

The long roots and associated fields are listed in table 5. The short roots and associated
fields are listed in table 6. The weights of the 26 and associated fields are listed in table 7.

Field Positive root Field Negative root
X1 (1, 0, 0, 0) X25 (− 1, 0, 0, 0)
X2 (− 1, 1, 0, 0) X26 (1,−1, 0, 0)
X3 (0,−1, 2, 0) X27 (0, 1,−2, 0)
X4 (0, 1,−2, 2) X28 (0,−1, 2,−2)
X5 (1,−1, 0, 2) X29 (− 1, 1, 0,−2)
X6 (− 1, 0, 0, 2) X30 (1, 0, 0,−2)
X7 (0, 1, 0,−2) X31 (0,−1, 0, 2)
X8 (1,−1, 2,−2) X32 (− 1, 1,−2, 2)
X9 (− 1, 0, 2,−2) X33 (1, 0,−2, 2)
X10 (1, 1,−2, 0) X34 (− 1,−1, 2, 0)
X11 (− 1, 2,−2, 0) X35 (1,−2, 2, 0)
X12 (2,−1, 0, 0) X36 (− 2, 1, 0, 0)

Table 5: Long roots of F4 and associated fields.

Now, plugging the information above into the mirror superpotential with twisted masses

W =
4∑

a=1

σa

( n∑
i=1

26∑
β=1

ρai,βYi,β +
48∑

m=1

αa
mZm

)
−

n∑
i=1

m̃i

26∑
β=1

Yi,β +
n∑

i=1

26∑
β=1

exp(−Yi,β) +
48∑

m=1

Xm, (4.3)
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Field Positive root Field Negative root
X13 (0, 0, 0, 1) X37 (0, 0, 0,−1)
X14 (0, 0, 1,−1) X38 (0, 0,−1, 1)
X15 (0, 1,−1, 0) X39 (0,−1, 1, 0)
X16 (1,−1, 1, 0) X40 (− 1, 1,−1, 0)
X17 (− 1, 0, 1, 0) X41 (1, 0,−1, 0)
X18 (1, 0,−1, 1) X42 (− 1, 0, 1,−1)
X19 (− 1, 1,−1, 1) X43 (1,−1, 1,−1)
X20 (1, 0, 0,−1) X44 (− 1, 0, 0, 1)
X21 (− 1, 1, 0,−1) X45 (1,−1, 0, 1)
X22 (0,−1, 1, 1) X46 (0, 1,−1,−1)
X23 (0,−1, 2,−1) X47 (0, 1,−2, 1)
X24 (0, 0,−1, 2) X48 (0, 0, 1,−2)

Table 6: Short roots of F4 and associated fields.

where Xm = exp(−Zm) and Xm are the fundamental fields, we get

W =
4∑

a=1

σaCa −
n∑

i=1

m̃i

26∑
β=1

Yi,β +
n∑

i=1

26∑
β=1

exp(−Yi,β) +
48∑

m=1

Xm. (4.4)

where the Ca are given as follows:

C1 =
n∑

i=1

(
Yi,4 − Yi,5 + Yi,6 − Yi,7 + Yi,8 − Yi,9 + Yi,19 − Yi,20 + Yi,21 − Yi,16 + Yi,17

− Yi,18

)
+ Z1 − Z2 + Z5 − Z6 + Z16 − Z17 + Z8 + Z18 − Z9 − Z19 + Z20 − Z21

+ Z10 − Z11 + 2Z12 − Z25 + Z26 − Z29 + Z30 − Z40 + Z41 − Z32 − Z42

+ Z33 + Z43 − Z44 + Z45 − Z34 + Z35 − 2Z36,

C2 =
n∑

i=1

(
Yi,3 − Yi,4 + Yi,7 + Yi,9 − Yi,10 − Yi,11 − Yi,19 − Yi,21 + Yi,22 + Yi,23 − Yi,15

+ Yi,16

)
+ Z2 − Z3 + Z4 + Z15 − Z5 + Z7 − Z16 − Z8 + Z19 + Z21 − Z22 + Z10

+ 2Z11 − Z23 − Z12 − Z26 + Z27 − Z28 − Z39 + Z29 − Z31 + Z40 + Z32

− Z43 − Z45 + Z46 − Z34 − 2Z35 + Z47 + Z36,
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Field Weight Field Weight
Yi,1 (0, 0, 0, 1) Yi,13 (0, 0, 0,−1)
Yi,2 (0, 0, 1,−1) Yi,14 (0, 0,−1, 1)
Yi,3 (0, 1,−1, 0) Yi,15 (0,−1, 1, 0)
Yi,4 (1,−1, 1, 0) Yi,16 (− 1, 1,−1, 0)
Yi,5 (− 1, 0, 1, 0) Yi,17 (1, 0,−1, 0)
Yi,6 (1, 0,−1, 1) Yi,18 (− 1, 0, 1,−1)
Yi,7 (− 1, 1,−1, 1) Yi,19 (1,−1, 1,−1)
Yi,8 (1, 0, 0,−1) Yi,20 (− 1, 0, 0, 1)
Yi,9 (− 1, 1, 0,−1) Yi,21 (1,−1, 0, 1)
Yi,10 (0,−1, 1, 1) Yi,22 (0, 1,−1,−1)
Yi,11 (0,−1, 2,−1) Yi,23 (0, 1,−2, 1)
Yi,12 (0, 0,−1, 2) Yi,24 (0, 0, 1,−2)
Yi,25 (0, 0, 0, 0) Yi,26 (0, 0, 0, 0)

Table 7: Weights of 26 of F4 and associated fields.

C3 =
n∑

i=1

(
Yi,2 − Yi,3 + Yi,4 + Yi,5 − Yi,6 − Yi,7 + Yi,10 + 2Yi,11 − Yi,12 + Yi,19 − Yi,22

− 2Yi,23 + Yi,24 − Yi,14 + Yi,15 − Yi,16 − Yi,17 + Yi,18

)
+ 2Z3 + Z14 − 2Z4 − Z15 + Z16 + Z17 + 2Z8 − Z18 + 2Z9 − Z19 + Z22

− 2Z10 − 2Z11 + 2Z23 − Z24 − 2Z27 − Z38 + 2Z28 + Z39 − Z40 − Z41

− 2Z32 + Z42 − 2Z33 + Z43 − Z46 + 2Z34 + 2Z35 − 2Z47 + Z48,

C4 =
n∑

i=1

(
Yi,1 − Yi,2 + Yi,6 + Yi,7 − Yi,8 − Yi,9 + Yi,10 − Yi,11 + 2Yi,12 − Yi,19 + Yi,20

+ Yi,21 − Yi,22 + Yi,23 − 2Yi,24 − Yi,13 + Yi,14 − Yi,18

)
+ Z13 − Z14 + 2Z4 + 2Z5 + 2Z6 − 2Z7 − 2Z8 + Z18 − 2Z9 + Z19 − Z20

− Z21 + Z22 − Z23 + 2Z24 − Z37 + Z38 − 2Z28 − 2Z29 − 2Z30 + 2Z31

+ 2Z32 − Z42 + 2Z33 − Z43 + Z44 + Z45 − Z46 + Z47 − 2Z48.

Integrating out σa fields, we get four constraints Ca = 0. So we are free to eliminate four
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fundamental fields. Our choice here will be Yn,1, Yn,2, Yn,3 and Yn,4.

−Yn,1 =
n−1∑
i=1

Yi,1 +
n∑

i=1

(
Yi,5 + Yi,7 − Yi,8 + Yi,10 + Yi,12 − Yi,19 + Yi,20 − Yi,22 − Yi,24 − Yi,13

− Yi,17

)
+ Z2 + Z3 + Z13 + Z4 + Z5 + 2Z6 − Z7 + Z17 − Z8 + Z19 − Z20 + Z22 − Z10

+ Z24 − Z12 − Z26 − Z27 − Z37 − Z28 − Z29 − 2Z30 + Z31 − Z41 + Z32 − Z43

+ Z44 − Z46 + Z34 − Z48 + Z36,

−Yn,2 =
n−1∑
i=1

Yi,2 +
n∑

i=1

(
Yi,5 − Yi,6 + Yi,9 + Yi,11 − Yi,12 − Yi,21 − Yi,23 + Yi,24 − Yi,14 − Yi,17

+ Yi,18

)
+ Z2 + Z3 + Z14 − Z4 − Z5 + Z7 + Z17 + Z8 − Z18 + 2Z9 + Z21 − Z10 + Z23

− Z24 − Z12 − Z26 − Z27 − Z38 + Z28 + Z29 − Z31 − Z41 − Z32 + Z42 − 2Z33

− Z45 + Z34 − Z47 + Z48 + Z36,

−Yn,3 =
n−1∑
i=1

+
n∑

i=1

(
− Yi,5 + Yi,6 + Yi,8 − Yi,10 − Yi,11 − Yi,20 + Yi,22 + Yi,23 − Yi,15 + Yi,17

− Yi,18

)
+ Z1 − Z3 + Z4 + Z15 − Z6 + Z7 − Z17 + Z18 − Z9 + Z20 − Z22 + 2Z10 + Z11

− Z23 + Z12 − Z25 + Z27 − Z28 − Z39 + Z30 − Z31 + Z41 − Z42 + Z33 − Z44

+ Z46 − 2Z34 − Z35 + Z47 − Z36,

−Yn,4 =
n−1∑
i=1

Yi,4 +
n∑

i=1

(
− Yi,5 + Yi,6 − Yi,7 + Yi,8 − Yi,9 + Yi,19 − Yi,20 + Yi,21 − Yi,16 + Yi,17

− Yi,18

)
+ Z1 − Z2 + Z5 − Z6 + Z16 − Z17 + Z8 + Z18 − Z9 − Z19 + Z20 − Z21 + Z10

− Z11 + 2Z12 − Z25 + Z26 − Z29 + Z30 − Z40 + Z41 − Z32 − Z42 + Z33 + Z43

− Z44 + Z45 − Z34 + Z35 − 2Z36.

For convenience, we define:

Π1 ≡ exp(−Yn,1),

=
n∏

i=1

exp(Yi,5 + Yi,7 − Yi,8 + Yi,10 + Yi,12 − Yi,19 + Yi,20 − Yi,22 − Yi,24 − Yi,13 − Yi,17)

·
n−1∏
i=1

exp(Yi,1) ·
X7X8X20X10X12X26X27X37X28X29X

2
30X41X43X46X48

X2X3X13X4X5X2
6X17X19X22X24X31X32X44X34X36

, (4.5)
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Π2 ≡ exp(−Yn,2),

=
n∏

i=1

exp(Yi,5 − Yi,6 + Yi,9 + Yi,11 − Yi,12 − Yi,21 − Yi,23 + Yi,24 − Yi,14 − Yi,17 + Yi,18)

·
n−1∏
i=1

exp(Yi,2) ·
X4X5X18X10X24X12X26X27X38X31X41X32X

2
33X45X47

X2X3X14X7X17X8X2
9X21X23X28X29X42X34X48X36

, (4.6)

Π3 ≡ exp(−Yn,3),

=
n∏

i=1

exp(−Yi,5 + Yi,6 + Yi,8 − Yi,10 − Yi,11 − Yi,20 + Yi,22 + Yi,23 − Yi,15 + Yi,17 − Yi,18)

·
n−1∏
i=1

exp(Yi,3) ·
X3X6X17X9X22X23X25X28X39X31X42X44X

2
34X35X36

X1X4X15X7X18X20X2
10X11X12X27X30X41X33X46X47

, (4.7)

Π4 ≡ exp(−Yn,4),

=
n∏

i=1

exp(−Yi,5 + Yi,6 − Yi,7 + Yi,8 − Yi,9 + Yi,19 − Yi,20 + Yi,21 − Yi,16 + Yi,17 − Yi,18)

·
n−1∏
i=1

exp(Yi,4) ·
X2X6X17X9X19X21X11X25X29X40X32X42X44X34X

2
36

X1X5X16X8X18X20X10X2
12X26X30X41X33X43X45X35

. (4.8)

Integrating out the sigma fields and eliminating the fields, Yn,1, Yn,2, Yn,3 and Yn,4, the
superpotential reduces to

W =
n−1∑
i=1

26∑
b=1

(
exp(−Yi,b)− m̃iYi,b

)
+
(
Π1 + m̃n lnΠ1

)
+
(
Π2 + m̃n lnΠ2

)
+
(
Π3 + m̃n lnΠ3

)
+
(
Π4 + m̃n lnΠ4

)
+

26∑
a=5

(
exp(−Yn,a)− m̃nYn,a

)
+

48∑
m=1

Xm

The superpotential is only well defined when the Xm fields in the denominator of Πa’s are
non-zero.

The critical locus is given as follows:
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For i < n:

∂W

∂Yi,1

: exp (−Yi,1) = Π1 + m̃n − m̃i, (4.9)

∂W

∂Yi,2

: exp (−Yi,2) = Π2 + m̃n − m̃i, (4.10)

∂W

∂Yi,3

: exp (−Yi,3) = Π3 + m̃n − m̃i, (4.11)

∂W

∂Yi,4

: exp (−Yi,4) = Π4 + m̃n − m̃i, (4.12)

For i ≤ n:

∂W

∂Yi,5

: exp (−Yi,5) = Π1 +Π2 − Π3 − Π4 − m̃i, (4.13)

∂W

∂Yi,6

: exp (−Yi,6) = −Π2 +Π3 +Π4 + m̃n − m̃i, (4.14)

∂W

∂Yi,7

: exp (−Yi,7) = Π1 − Π4 − m̃i, (4.15)

∂W

∂Yi,8

: exp (−Yi,8) = −Π1 +Π3 +Π4 + m̃n − m̃i, (4.16)

∂W

∂Yi,9

: exp (−Yi,9) = Π2 − Π4 − m̃i, (4.17)

∂W

∂Yi,10

: exp (−Yi,10) = Π1 − Π3 − m̃i, (4.18)

∂W

∂Yi,11

: exp (−Yi,11) = Π2 − Π3 − m̃i, (4.19)

∂W

∂Yi,12

: exp (−Yi,12) = Π1 − Π2 − m̃i, (4.20)

∂W

∂Yi,13

: exp (−Yi,13) = −Π1 − m̃n − m̃i, (4.21)

∂W

∂Yi,14

: exp (−Yi,14) = −Π2 − m̃n − m̃i, (4.22)
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∂W

∂Yi,15

: exp (−Yi,15) = −Π3 − m̃n − m̃i, (4.23)

∂W

∂Yi,16

: exp (−Yi,16) = −Π4 − m̃n − m̃i, (4.24)

∂W

∂Yi,17

: exp (−Yi,17) = −Π1 − Π2 +Π3 +Π4 − m̃i, (4.25)

∂W

∂Yi,18

: exp (−Yi,18) = Π2 − Π3 − Π4 − m̃n − m̃i, (4.26)

∂W

∂Yi,19

: exp (−Yi,19) = −Π1 +Π4 − m̃i, (4.27)

∂W

∂Yi,20

: exp (−Yi,20) = Π1 − Π3 − Π4 − m̃n − m̃i, (4.28)

∂W

∂Yi,21

: exp (−Yi,21) = −Π2 +Π4 − m̃i, (4.29)

∂W

∂Yi,22

: exp (−Yi,22) = −Π1 +Π3 − m̃i, (4.30)

∂W

∂Yi,23

: exp (−Yi,23) = −Π2 +Π3 − m̃i, (4.31)

∂W

∂Yi,24

: exp (−Yi,24) = −Π1 +Π2 − m̃i, (4.32)

∂W

∂Yi,25

: exp (−Yi,25) = −m̃i, (4.33)

∂W

∂Yi,26

: exp (−Yi,26) = −m̃i, (4.34)

In the same way, ∂W/∂Xm gives:

X1 = Π3 +Π4, X25 = −Π3 − Π4, (4.35)

X2 = Π1 +Π2 − Π4, X26 = −Π1 − Π2 +Π4, (4.36)

X3 = Π1 +Π2 − Π3, X27 = −Π1 − Π2 +Π3, (4.37)

X4 = Π1 +Π3, X28 = −Π1 − Π3, (4.38)

X5 = Π1 − Π2 +Π4, X29 = −Π1 +Π2 − Π4, (4.39)

X6 = 2Π1 − Π4, X30 = −2Π1 +Π4, (4.40)

X7 = −Π1 +Π2 +Π3, X31 = Π1 − Π2 − Π3, (4.41)

X8 = −Π1 +Π2 +Π4, X32 = Π1 − Π2 − Π4, (4.42)

X9 = 2Π2 − Π3 − Π4, X33 = −2Π2 +Π3 +Π4, (4.43)

X10 = −Π1 − Π2 + 2Π3 +Π4, X34 = Π1 +Π2 − 2Π3 − Π4, (4.44)
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X11 = Π3 − Π4, X35 = −Π3 +Π4, (4.45)

X12 = −Π1 − Π2 +Π3 + 2Π4, X36 = Π1 +Π2 − Π3 − 2Π4, (4.46)

X13 = Π1, X37 = −Π1, (4.47)

X14 = Π2, X38 = −Π2, (4.48)

X15 = Π3, X39 = −Π3, (4.49)

X16 = Π4, X40 = −Π4, (4.50)

X17 = Π1 +Π2 − Π3 − Π4, X41 = −Π1 − Π2 +Π3 +Π4, (4.51)

X18 = −Π2 +Π3 +Π4, X42 = Π2 − Π3 − Π4, (4.52)

X19 = Π1 − Π4, X43 = −Π1 +Π4, (4.53)

X20 = −Π1 +Π3 +Π4, X44 = Π1 − Π3 − Π4, (4.54)

X21 = Π2 − Π4, X45 = −Π2 +Π4, (4.55)

X22 = Π1 − Π3, X46 = −Π1 +Π3, (4.56)

X23 = Π2 − Π3, X47 = −Π2 +Π3, (4.57)

X24 = Π1 − Π2, X48 = −Π1 +Π2. (4.58)

Now, plug these constraints back into (4.5)-(4.8) to get:

Π1 =
n−1∏
i=1

(Π1 + m̃n − m̃i)
−1

n∏
i=1

(Π1 +Π2 − Π3 − Π4 − m̃i)
−1(Π1 − Π4 − m̃i)

−1

· (−Π1 +Π3 +Π4 + m̃n − m̃i)(Π1 − Π3 − m̃i)
−1(Π1 − Π2 − m̃i)

−1

· (−Π1 +Π2 − m̃i)(Π1 − Π3 − Π4 − m̃n − m̃i)
−1(−Π1 +Π3 − m̃i)

· (−Π1 +Π2 − m̃i)(−Π1 − m̃n − m̃i)(−Π1 − Π2 +Π3 +Π4 − m̃i),

Π2 =
n−1∏
i=1

(Π2 + m̃n − m̃i)
−1

n∏
i=1

(Π1 +Π2 − Π3 − Π4 − m̃i)
−1(−Π2 +Π3 +Π4 + m̃n − m̃i)

· (Π2 − Π4 − m̃i)
−1(Π2 − Π3 − m̃i)

−1(Π1 − Π2 − m̃i)

· (−Π2 +Π4 − m̃i)(−Π2 +Π3 − m̃i)(−Π1 +Π2 − m̃i)
−1

· (−Π2 − m̃n − m̃i)(−Π1 − Π2 +Π3 +Π4 − m̃i)(Π2 − Π3 − Π4 − m̃n − m̃i)
−1,

Π3 =
n−1∏
i=1

(Π3 + m̃n − m̃i)
−1

n∏
i=1

(Π1 +Π2 − Π3 − Π4 − m̃i)(−Π2 +Π3 +Π4 + m̃n − m̃i)
−1

· (−Π1 +Π3 +Π4 + m̃n − m̃i)
−1(Π1 − Π3 − m̃i)(Π2 − Π3 − m̃i)

· (Π1 − Π3 − Π4 − m̃n − m̃i)(−Π1 +Π3 − m̃i)
−1(−Π2 +Π3 − m̃i)

−1

· (−Π3 − m̃n − m̃i)(−Π1 − Π2 +Π3 +Π4 − m̃i)
−1(Π2 − Π3 − Π4 − m̃n − m̃i),
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Π4 =
n−1∏
i=1

(Π4 + m̃n − m̃i)
−1

n∏
1

(Π1 +Π2 − Π3 − Π4 − m̃i)(−Π2 +Π3 +Π4 + m̃n − m̃i)
−1

· (Π1 − Π4 − m̃i)(−Π1 +Π3 +Π4 + m̃n − m̃i)
−1(Π2 − Π4 − m̃i)

· (−Π1 +Π2 − m̃i)
−1(Π1 − Π3 − Π4 − m̃n − m̃i)(−Π2 +Π4 − m̃i)

−1

· (−Π4 − m̃n − m̃i)(−Π1 − Π2 +Π3 +Π4 − m̃i)
−1(Π2 − Π3 − Π4 − m̃n − m̃i).

The mirror maps are given by,

exp(−Yi,β) ↦→ −m̃i +
4∑

a=1

σaρ
a
i,β, Xm ↦→

4∑
a=1

σaα
a
m.

on the critical locus relations, one finds

Π1 = exp(−Yn,1) = σ4 − m̃n, Π2 = exp(−Yn,2) = σ3 − σ4 − m̃n,

Π3 = exp(−Yn,3) = σ2 − σ3 − m̃n, Π4 = exp(−Yn,4) = σ1 − σ2 + σ3 − m̃n.

Plugging them back in, one obtains the Coulomb branch (quantum cohomology) ring rela-
tions for F4:

n∏
i=1

(−σ1 + σ3 − m̃i)(−σ1 + σ2 − σ3 + σ4 − m̃i)(−σ2 + σ3 + σ4 − m̃i)

· (−σ3 + 2σ4 − m̃i)(−σ1 + σ4 − m̃i)(σ4 − m̃i)

=
n∏

i=1

(σ1 − σ4 − m̃i)(σ1 − σ2 + σ3 − σ4 − m̃i)(σ2 − σ3 − σ4 − m̃i)

· (σ3 − 2σ4 − m̃i)(−σ4 − m̃i)(σ1 − σ3 − m̃i), (4.59)

n∏
i=1

(−σ1 + σ3 − m̃i)(−σ1 + σ2 − σ4 − m̃i)(−σ2 + 2σ3 − σ4 − m̃i)

· (σ3 − 2σ4 − m̃i)(−σ1 + σ3 − σ4 − m̃i)(σ3 − σ4 − m̃i)

=
n∏

i=1

(σ1 − σ3 + σ4 − m̃i)(−σ3 + 2σ4 − m̃i)(σ1 − σ2 + σ4 − m̃i)

· (σ2 − 2σ3 + σ4 − m̃i)(−σ3 + σ4 − m̃i)(σ1 − σ3 − m̃i), (4.60)

n∏
i=1

(σ1 − σ3 + σ4 − m̃i)(σ1 − σ4 − m̃i)(σ2 − σ3 − σ4 − m̃i)

· (σ2 − 2σ3 + σ4 − m̃i)(σ1 − σ3 − m̃i)(σ2 − σ3 − m̃i)

=
n∏

i=1

(−σ1 + σ3 − m̃i)(−σ2 + σ3 + σ4 − m̃i)(−σ2 + 2σ3 − σ4 − m̃i)

· (−σ1 + σ4 − m̃i)(−σ2 + σ3 − m̃i)(−σ1 + σ3 − σ4 − m̃i), (4.61)

33



n∏
i=1

(σ1 − σ3 + σ4 − m̃i)(σ1 − σ4 − m̃i)(σ1 − σ2 + σ3 − σ4 − m̃i)

· (σ1 − σ2 + σ4 − m̃i)(σ1 − σ3 − m̃i)(σ1 − σ2 + σ3 − m̃i)

=
n∏

i=1

(−σ1 + σ3 − m̃i)(−σ1 + σ2 − σ3 + σ4 − m̃i)(−σ1 + σ2 − σ4 − m̃i)

· (−σ1 + σ4 − m̃i)(−σ1 + σ2 − σ3 − m̃i)(−σ1 + σ3 − σ4 − m̃i). (4.62)

Next, let us described the excluded locus on the Coulomb branch. As discussed previously
and in [3], part of the excluded locus is defined by the condition Xm ̸= 0 for all m. This
gives

σ1(2σ1 − σ2)(−σ1 + σ2)(σ1 + σ2 − 2σ3)(−σ1 + 2σ2 − 2σ3)(σ2 − σ3)(−σ1 + σ3)

· (σ1 − σ2 + σ3)(−σ2 + 2σ3)(σ2 − 2σ4)(−σ1 + 2σ3 − 2σ4)(σ1 − σ2 + 2σ3 − 2σ4)

· (σ1 − σ4)(−σ1 + σ2 − σ4)(σ3 − σ4)(−σ2 + σ3 − σ4)σ4(σ1 − σ3 + σ4)(−σ1 + 2σ4)

· (−σ1 + σ2 − σ3 + σ4)(−σ2 + σ3 + σ4)(σ1 − σ2 + 2σ4)(σ2 − 2σ3 + 2σ4)(−σ3 + 2σ4) ̸= 0.
(4.63)

The second part of the excluded locus is determined by the condition that exp(−Y ) ̸= 0.
From the mirror map

exp(−Yi,β) = −m̃i +
4∑

a=1

σaρ
a
i,β,

the excluded locus constraint becomes

−m̃i +
4∑

a=1

σaρ
a
i,β ̸= 0

which is encoded in the expression below:

n∏
i=1

(σ1 − σ3 − m̃i) (σ2 − σ3 − m̃i) (−σ1 + σ2 − σ3 − m̃i) (−σ1 + σ3 − m̃i) (−σ2 + σ3 − m̃i)

· (σ1 − σ2 + σ3 − m̃i) (σ3 − 2σ4 − m̃i) (−σ4 − m̃i) (σ1 − σ4 − m̃i) (−σ1 + σ2 − σ4 − m̃i)

· (σ2 − σ3 − σ4 − m̃i) (σ3 − σ4 − m̃i) (−σ1 + σ3 − σ4 − m̃i) (σ1 − σ2 + σ3 − σ4 − m̃i)

· (−σ2 + 2σ3 − σ4 − m̃i) (σ4 − m̃i) (−σ1 + σ4 − m̃i) (σ1 − σ2 + σ4 − m̃i) (−σ3 + 2σ4 − m̃i)

· (−σ3 + σ4 − m̃i) (σ1 − σ3 + σ4 − m̃i) (−σ1 + σ2 − σ3 + σ4 − m̃i) (−σ2 + σ3 + σ4 − m̃i)

· (σ2 − 2σ3 + σ4 − m̃i) ̸= 0. (4.64)

34



4.2 Transformation under the Weyl group of F4

The Weyl group of F4 has 1152 = 27 · 32 elements4 [20][table 2.2], so explicitly listing orbits
of vacua, for example, is not feasible, unlike the case of G2. (Similarly [20][table 2.2], the
order of the Weyl group of E6 is 2

7 · 34 · 5, the order of the Weyl group of E7 is 2
10 · 34 · 5 · 7,

and the order of the Weyl group of E8 is 214 · 35 · 52 · 7, so we will not be tracking orbits of
vacua under the Weyl group in those cases either.) In this section, we will instead merely
check that the critical locus equations transform into one another under Weyl reflections, a
nontrivial check of our computations.

As reviewed earlier, the Weyl transformation acts on vectors, roots and weights:

Sα(v
a) = va − 2

(α, v)

(α, α)
αa. (4.65)

The Euclidean inner product takes the following metric matrix in this coordinate

[gab] =

⎛⎜⎜⎝
2 3 2 1
3 6 4 2
2 4 3 3/2
1 2 3/2 1

⎞⎟⎟⎠ . (4.66)

The σa transform as covectors under the same Weyl transformation. F4 has four simple
roots, which can be taken to be

A = (2,−1, 0, 0), B = (− 1, 2,−2, 0),

C = (0,−1, 2,−1), D = (0, 0,−1, 2).

so the Weyl group of F4 has four distinguished elements, SA, · · · , SD, whose actions are given
by

SA(v
1, v2, v3, v4) = (− v1, v1 + v2, v3, v4),

SA(σ1, σ2, σ3, σ4) = (σ2 − σ1, σ2, σ3, σ4), (4.67)

SB(v
1, v2, v3, v4) = (v1 + v2,−v2, 2v2 + v3, v4),

SB(σ1, σ2, σ3, σ4) = (σ1, σ1 − σ2 + 2σ3, σ3, σ4), (4.68)

SC(v
1, v2, v3, v4) = (v1, v2 + v3,−v3, v3 + v4),

SC(σ1, σ2, σ3, σ4) = (σ1, σ2, σ2 − σ3 + σ4, σ4), (4.69)

SD(v
1, v2, v3, v4) = (v1, v2, v3 + v4,−v4),

SD(σ1, σ2, σ3, σ4) = (σ1, σ2, σ3, σ3 − σ4). (4.70)

4 For the curious, information on the representation theory of the Weyl group of F4 can be found in [21].

35



The superpotential is, by construction, invariant under Weyl reflections, hence to be con-
sistent, the critical locus equations should transform into one another under these reflections.
We check this below. For example, under the action of SD, equation (4.59)

n∏
i=1

(−σ1 + σ3 − m̃i)(−σ1 + σ2 − σ3 + σ4 − m̃i)(−σ2 + σ3 + σ4 − m̃i)

· (−σ3 + 2σ4 − m̃i)(−σ1 + σ4 − m̃i)(σ4 − m̃i)

=
n∏

i=1

(σ1 − σ4 − m̃i)(σ1 − σ2 + σ3 − σ4 − m̃i)(σ2 − σ3 − σ4 − m̃i)

· (σ3 − 2σ4 − m̃i)(−σ4 − m̃i)(σ1 − σ3 − m̃i),

transforms into

n∏
i=1

(−σ1 + σ3 − m̃i)(−σ1 + σ2 − σ4 − m̃i)(−σ2 + 2σ3 − σ4 − m̃i)

· (σ3 − 2σ4 − m̃i)(−σ1 + σ3 − σ4 − m̃i)(σ3 − σ4 − m̃i)

=
n∏

i=1

(σ1 − σ3 + σ4 − m̃i)(σ1 − σ2 + σ4 − m̃i)(σ2 − 2σ3 + σ4 − m̃i)

· (−σ3 + 2σ4 − m̃i)(−σ3 + σ4 − m̃i)(σ1 − σ3 − m̃i),

which is equation (4.60).

Table 8 schematically describes how other critical locus equations transform under these
Weyl reflections.

The fact that the critical locus equations are closed under Weyl reflections associated to
a set of simple roots provides a nontrivial consistency check on our results.

4.3 Pure gauge theory

In this section, we will consider the mirror to the pure supersymmetric F4 gauge theory. The
mirror superpotential is

W =σ1

(
Z1 − Z2 + Z5 − Z6 + Z16 − Z17 + Z8 + Z18 − Z9 − Z19 + Z20 − Z21 + Z10

− Z11 + 2Z12 − Z25 + Z26 − Z29 + Z30 − Z40 + Z41 − Z32 − Z42 + Z33 + Z43

− Z44 + Z45 − Z34 + Z35 − 2Z36

)
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Initial equ’n Final equ’n
A (4.59) (4.59) × (4.62)
A (4.60) (4.60) × (4.62)
A (4.61) (4.61) × (4.62)
A (4.62) (4.62)
B (4.59) (4.59)
B (4.60) (4.60)
B (4.61) (4.62)
B (4.62) (4.61)
C (4.59) (4.59)
C (4.60) (4.61) × (4.62)
C (4.61) (4.60) × (4.62)
C (4.62) (4.62)
D (4.59) (4.60)
D (4.60) (4.59)
D (4.61) (4.61)
D (4.62) (4.62)

Table 8: Transformation of critical locus equations under four Weyl reflections.

+ σ2

(
Z2 − Z3 + Z4 + Z15 − Z5 + Z7 − Z16 − Z8 + Z19 + Z21 − Z22 + Z10 + 2Z11

− Z23 − Z12 − Z26 + Z27 − Z28 − Z39 + Z29 − Z31 + Z40 + Z32 − Z43 − Z45

+ Z46 − Z34 − 2Z35 + Z47 + Z36

)

+ σ3

(
2Z3 + Z14 − 2Z4 − Z15 + Z16 + Z17 + 2Z8 − Z18 + 2Z9 − Z19 + Z22 − 2Z10

− 2Z11 + 2Z23 − Z24 − 2Z27 − Z38 + 2Z28 + Z39 − Z40 − Z41 − 2Z32 + Z42

− 2Z33 + Z43 − Z46 + 2Z34 + 2Z35 − 2Z47 + Z48

)

+ σ4

(
Z13 − Z14 + 2Z4 + 2Z5 + 2Z6 − 2Z7 − 2Z8 + Z18 − 2Z9 + Z19 − Z20 − Z21

+ Z22 − Z23 + 2Z24 − Z37 + Z38 − 2Z28 − 2Z29 − 2Z30 + 2Z31 + 2Z32 − Z42

+ 2Z33 − Z43 + Z44 + Z45 − Z46 + Z47 − 2Z48

)
+

48∑
m=1

Xm. (4.71)

Now, let us consider the critical locus of the superpotential above. For each root µ, the
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fields Xµ and X−µ appear paired with opoosite signs coupling to each σ. Therefore, one
impliciation of the derivatives

∂W

∂Xµ

= 0

is that, on the critical locus,
Xµ = −X−µ. (4.72)

(Furthermore, on the critical locus, each Xµ is determined by σs.) Next, each derivative

∂W

∂σa

is a product of ratios of the form
Xµ

X−µ

= −1.

It is straightforward to check in the superpotential above that each σa is multiplied by an
even number of such ratios (i.e. the number of Z’s is a multiple of four). For example, the
sum of the absolute values of the coefficients of the Z’s multiplying σ1 and σ2 is 32 = 4 · 8,
and the sum of the absolute values of the coefficients of the Z’s multiplying σ3 and σ4 is
44 = 4 · 11. Thus, the constraint implied by the σ’s is automatically satisfied.

As a result, following the same analysis in [3], we see in this case, that the critical
locus is nonempty, and in fact is determined by four σs. In other words, at the level of
these topological field theory computations, we have evidence that the pure supersymmetric
F4 gauge theory in two dimensions flows in the IR to a theory of four free twisted chiral
superfields.

5 E6

In this section we will consider the mirror Landau-Ginzburg orbifold superpotential of E6

gauge theory when matter fields are in 27 fundamental representation of it and then we
compute quantum cohomology ring of it. Also we will consider the pure theory without
matter field.

5.1 Mirror Landau-Ginzburg orbifold

The mirror Landau-Ginzburg model has fields

• Yi,β, i ∈ {1, · · · , n}, β ∈ {1, · · · , 27}, corresponding to the matter fields in n copies of
the 27 representation 27,
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• Xm, m ∈ {1, · · · , 72}, corresponding to the roots of E6,

• σa, a ∈ {1, 2, 3, 4, 5, 6}.

We associate the roots, αa
m, to Xm fields and the wights, ρai,β, of fundamental 27 repre-

sentation of E6 to Yi,β.

The roots of E6 and associated fields are listed in tables 9, 10. The weights associated
to the 27 of E6 and their associated fields are listed in table 11.

Field Positive root Field Negative root
X1 (0, 0, 0, 0, 0, 1) X37 (0, 0, 0, 0, 0,−1)
X2 (0, 0, 1, 0, 0,−1) X38 (0, 0,−1, 0, 0, 1)
X3 (0, 1,−1, 1, 0, 0) X39 (0,−1, 1,−1, 0, 0)
X4 (0, 1, 0,−1, 1, 0) X40 (0,−1, 0, 1,−1, 0)
X5 (1,−1, 0, 1, 0, 0) X41 (− 1, 1, 0,−1, 0, 0)
X6 (− 1, 0, 0, 1, 0, 0) X42 (1, 0, 0,−1, 0, 0)
X7 (0, 1, 0, 0,−1, 0) X43 (0,−1, 0, 0, 1, 0)
X8 (1,−1, 1,−1, 1, 0) X44 (− 1, 1,−1, 1,−1, 0)
X9 (− 1, 0, 1,−1, 1, 0) X45 (1, 0,−1, 1,−1, 0)
X10 (1,−1, 1, 0,−1, 0) X46 (− 1, 1,−1, 0, 1, 0)
X11 (1, 0,−1, 0, 1, 1) X47 (− 1, 0, 1, 0,−1,−1)
X12 (− 1, 0, 1, 0,−1, 0) X48 (1, 0,−1, 0, 1, 0)
X13 (− 1, 1,−1, 0, 1, 1) X49 (1,−1, 1, 0,−1,−1)
X14 (1, 0,−1, 1,−1, 1) X50 (− 1, 0, 1,−1, 1,−1)
X15 (1, 0, 0, 0, 1,−1) X51 (− 1, 0, 0, 0,−1, 1)
X16 (− 1, 1,−1, 1,−1, 1) X52 (1,−1, 1,−1, 1,−1)
X17 (− 1, 1, 0, 0, 1,−1) X53 (1,−1, 0, 0,−1, 1)
X18 (0,−1, 0, 0, 1, 1) X54 (0, 1, 0, 0,−1,−1)

Table 9: First set of roots of E6 and associated fields.

The weights in the tables in this section are written as linear combinations of the funda-
mental weights, computed with LieART [19], as discussed earlier, so as to get conventional
θ-angle periodicities.
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Field Positive root Field Negative root
X19 (1, 0, 0,−1, 0, 1) X55 (− 1, 0, 0, 1, 0,−1)
X20 (1, 0, 0, 1,−1,−1) X56 (− 1, 0, 0,−1, 1, 1)
X21 (− 1, 1, 0,−1, 0, 1) X57 (1,−1, 0, 1, 0,−1)
X22 (− 1, 1, 0, 1,−1,−1) X58 (1,−1, 0,−1, 1, 1)
X23 (0,−1, 0, 1,−1, 1) X59 (0, 1, 0,−1, 1,−1)
X24 (0,−1, 1, 0, 1,−1) X60 (0, 1,−1, 0,−1, 1)
X25 (1, 0, 1,−1, 0,−1) X61 (− 1, 0,−1, 1, 0, 1)
X26 (− 1, 1, 1,−1, 0,−1) X62 (1,−1,−1, 1, 0, 1)
X27 (0,−1, 1,−1, 0, 1) X63 (0, 1,−1, 1, 0,−1)
X28 (0,−1, 1, 1,−1,−1) X64 (0, 1,−1,−1, 1, 1)
X29 (0, 0,−1, 1, 1, 0) X65 (0, 0, 1,−1,−1, 0)
X30 (1, 1,−1, 0, 0, 0) X66 (− 1,−1, 1, 0, 0, 0)
X31 (− 1, 2,−1, 0, 0, 0) X67 (1,−2, 1, 0, 0, 0)
X32 (0,−1, 2,−1, 0,−1) X68 (0, 1,−2, 1, 0, 1)
X33 (0, 0,−1, 0, 0, 2) X69 (0, 0, 1, 0, 0,−2)
X34 (0, 0,−1, 2,−1, 0) X70 (0, 0, 1,−2, 1, 0)
X35 (0, 0, 0,−1, 2, 0) X71 (0, 0, 0, 1,−2, 0)
X36 (2,−1, 0, 0, 0, 0) X72 (− 2, 1, 0, 0, 0, 0)

Table 10: Second set of roots of E6 and associated fields.

Field Weight Field Weight Field Weight
Yi,1 (1, 0, 0, 0, 0, 0) Yi,2 (− 1, 1, 0, 0, 0, 0) Yi,3 (0,−1, 1, 0, 0, 0)
Yi,4 (0, 0,−1, 1, 0, 1) Yi,5 (0, 0, 0,−1, 1, 1) Yi,6 (0, 0, 0, 1, 0,−1)
Yi,7 (0, 0, 0, 0,−1, 1) Yi,8 (0, 0, 1,−1, 1,−1) Yi,9 (0, 0, 1, 0,−1,−1)
Yi,10 (0, 1,−1, 0, 1, 0) Yi,11 (0, 1,−1, 1,−1, 0) Yi,12 (1,−1, 0, 0, 1, 0)
Yi,13 (− 1, 0, 0, 0, 1, 0) Yi,14 (0, 1, 0,−1, 0, 0) Yi,15 (1,−1, 0, 1,−1, 0)
Yi,16 (− 1, 0, 0, 1,−1, 0) Yi,17 (1,−1, 1,−1, 0, 0) Yi,18 (− 1, 0, 1,−1, 0, 0)
Yi,19 (1, 0,−1, 0, 0, 1) Yi,20 (− 1, 1,−1, 0, 0, 1) Yi,21 (1, 0, 0, 0, 0,−1)
Yi,22 (− 1, 1, 0, 0, 0,−1) Yi,23 (0,−1, 0, 0, 0, 1) Yi,24 (0,−1, 1, 0, 0,−1)
Yi,25 (0, 0,−1, 1, 0, 0) Yi,26 (0, 0, 0,−1, 1, 0) Yi,27 (0, 0, 0, 0,−1, 0)

Table 11: Weights of 27 of E6 and associated fields.

5.2 Superpotential

In this section, we describe the superpotential of the mirror Landau-Ginzburg orbifold. It is
given by

W =
6∑

a=1

σa

( n∑
i=1

27∑
β=1

ρai,βYi,β +
72∑

m=1

αa
mZm

)
−

n∑
i=1

m̃i

27∑
b=1

Yi,β +
n∑

i=1

27∑
β=1

exp(−Yi,β) +
72∑

m=1

Xm.
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where Xm = exp(−Zm) and Xm are the fundamental fields. Using the results of the previous
section we get

W =
6∑

a=1

σaCa −
n∑

i=1

m̃i

27∑
β=1

Yi,β +
n∑

i=1

27∑
β=1

exp(−Yi,β) +
72∑

m=1

Xm. (5.1)

where Ca are listed in [7].

5.3 Coulomb ring relations

Integrating out the σa fields, we obtain six constraints Ca = 0. Exponentiating these con-
straints, we obtain a series of equations from which the Coulomb ring relations will be
derived. For reasons of notational sanity, we will also slightly simplify these expressions,
as follows. To make predictions for the A model, we will evaluate the ring relations on the
critical locus, where

Xm

Xm+63

= −1.

It is straightforward to see that each of the constraints Ca contains 22 differences of cor-
responding Z’s, so that the exponential of the constraints contains 22 factors of the form
Xm/Xm+63 – an even number of factors of −1, which will cancel out. Therefore, since on
the critical locus those factors will cancel out, we will omit them, and solely relate the
exponentiated constraints in terms of Y s.

The exponentiated constraints are listed in [7].

The mirror maps are given by

exp(−Yi,β) ↦→ −m̃i +
6∑

a=1

σaρ
a
i,β, Xm ↦→

6∑
a=1

σaα
a
m.

Applying the operator mirror maps, the Coulomb ring relations are straightforward to derive
and are listed in [7].
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Part of the excluded locus is defined by the vanishing locus of the Xm, and is given by

(2σ1 − σ2) (σ1 + σ2 − σ3) (−σ1 + 2σ2 − σ3) (σ4 − σ1) (σ1 − σ2 + σ4) (σ2 − σ3 + σ4)

· (σ2 − σ5) (−σ1 + σ3 − σ5) (σ1 − σ2 + σ3 − σ5) (−σ3 + 2σ4 − σ5) (σ2 − σ4 + σ5)

· (−σ1 + σ3 − σ4 + σ5) (σ1 − σ2 + σ3 − σ4 + σ5) (−σ3 + σ4 + σ5) (2σ5 − σ4) (σ3 − σ6)

· (σ1 + σ3 − σ4 − σ6) (−σ1 + σ2 + σ3 − σ4 − σ6) (−σ2 + 2σ3 − σ4 − σ6) (σ1 + σ4 − σ5 − σ6)

· (−σ1 + σ2 + σ4 − σ5 − σ6) (−σ2 + σ3 + σ4 − σ5 − σ6) (σ1 + σ5 − σ6) (−σ1 + σ2 + σ5 − σ6)

· (−σ2 + σ3 + σ5 − σ6)σ6 (σ1 − σ4 + σ6) (−σ1 + σ2 − σ4 + σ6) (−σ2 + σ3 − σ4 + σ6)

· (−σ2 + σ4 − σ5 + σ6) (σ1 − σ3 + σ4 − σ5 + σ6) (−σ1 + σ2 − σ3 + σ4 − σ5 + σ6)

· (−σ2 + σ5 + σ6) (σ1 − σ3 + σ5 + σ6) (−σ1 + σ2 − σ3 + σ5 + σ6) (2σ6 − σ3) ̸= 0. (5.2)

Similarly,

exp(−Yi,β) = −m̃i +
6∑

a=1

σaρ
a
i,β

on the critical locus, so

−m̃i +
6∑

a=1

σaρ
a
i,β ̸= 0

which determines the remainder of the excluded locus:

(σ1 − m̃i) (−σ1 + σ2 − m̃i) (−σ2 + σ3 − m̃i) (σ2 − σ4 − m̃i) (−σ1 + σ3 − σ4 − m̃i)

· (σ1 − σ2 + σ3 − σ4 − m̃i) (−σ3 + σ4 − m̃i) (−σ5 − m̃i) (−σ1 + σ4 − σ5 − m̃i)

· (σ1 − σ2 + σ4 − σ5 − m̃i) (σ2 − σ3 + σ4 − σ5 − m̃i) (−σ1 + σ5 − m̃i) (σ1 − σ2 + σ5 − m̃i)

· (σ2 − σ3 + σ5 − m̃i) (−σ4 + σ5 − m̃i) (σ1 − σ6 − m̃i) (−σ1 + σ2 − σ6 − m̃i)

· (−σ2 + σ3 − σ6 − m̃i) (σ4 − σ6 − m̃i) (σ3 − σ5 − σ6 − m̃i) (σ3 − σ4 + σ5 − σ6 − m̃i)

· (−σ2 + σ6 − m̃i) (σ1 − σ3 + σ6 − m̃i) (−σ1 + σ2 − σ3 + σ6 − m̃i) (−σ3 + σ4 + σ6 − m̃i)

· (−σ5 + σ6 − m̃i) (−σ4 + σ5 + σ6 − m̃i) ̸= 0. (5.3)

5.4 Pure gauge theory

In this part we will consider the mirror to the pure supersymmetric E6 gauge theory. The
mirror Landau-Ginzburg superpotential is given in [7].

We can analyze this mirror in the same way as previous pure gauge theory mirrors. As
discussed previously, for each root µ, the fields Xµ and X−µ appear paired with opoosite
signs coupling to each σ. Therefore, one impliciation of the derivatives

∂W

∂Xµ

= 0
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is that, on the critical locus,
Xµ = −X−µ. (5.4)

(Furthermore, on the critical locus, each Xµ is determined by σs.) Next, each derivative

∂W

∂σa

is a product of ratios of the form
Xµ

X−µ

= −1.

It is straightforward to check that, just as in the previous examples, in the superpotential
above each σ multiplies a number of Zs that is divisible by four, i.e. an even number of
ratios Xµ/X−µ. Specifically, the sum of the absolute values of the coefficients of the Z’s
multiplying each σ is 44 = 4 · 11. Thus, the constraint implied by integrating out the σ’s is
automatically satisfied.

As a result, following the same analysis as earlier and [3], the critical locus is nonempty,
and is determined by the six σs. Thus, at the level of these topological field theory compu-
tations, we have evidence that the pure supersymmetric E6 gauge theory in two dimensions
flows in the IR to a theory of six free twisted chiral superfields.

6 E7

In this section we will consider the mirror Landau-Ginzburg orbifold to an E7 gauge theory
with matter fields in the 56 fundamental representation. As before, we will compute Coulomb
branch (quantum cohomology) ring relations and excluded loci. We will also study the pure
E7 gauge theory without matter.

6.1 Mirror Landau-Ginzburg orbifold

The mirror Landau-Ginzburg model has superfields

• Yi,β, i ∈ {1, · · · , n}, β ∈ {1, · · · , 56}, corresponding to the matter fields in n copies of
the fundamental 56 representation of E7,

• Xm, m ∈ {1, · · · , 126}, corresponding to the nonzero roots of E7,

• σa, a ∈ {1, · · · , 7}.
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We associate the roots, αa
m, to Xm fields and the weights, ρai,β to the Yi,β.

The nonzero roots of E7 are listed in tables 12, 13, and 14. The weights of the 56 of E7

are listed in table 15. All weights are given as linear combinations of fundamental weights,
as discussed earlier, and computed with LieART [19], so as to have conventional θ-angle
periodicites.

Field Positive root Field Negative root
X1 (1, 0, 0, 0, 0, 0, 0) X64 (− 1, 0, 0, 0, 0, 0, 0)
X2 (− 1, 1, 0, 0, 0, 0, 0) X65 (1,−1, 0, 0, 0, 0, 0)
X3 (0,−1, 1, 0, 0, 0, 0) X66 (0, 1,−1, 0, 0, 0, 0)
X4 (0, 0,−1, 1, 0, 0, 1) X67 (0, 0, 1,−1, 0, 0,−1)
X5 (0, 0, 0,−1, 1, 0, 1) X68 (0, 0, 0, 1,−1, 0,−1)
X6 (0, 0, 0, 1, 0, 0,−1) X69 (0, 0, 0,−1, 0, 0, 1)
X7 (0, 0, 0, 0,−1, 1, 1) X70 (0, 0, 0, 0, 1,−1,−1)
X8 (0, 0, 1,−1, 1, 0,−1) X71 (0, 0,−1, 1,−1, 0, 1)
X9 (0, 0, 0, 0, 0,−1, 1) X72 (0, 0, 0, 0, 0, 1,−1)
X10 (0, 0, 1, 0,−1, 1,−1) X73 (0, 0,−1, 0, 1,−1, 1)
X11 (0, 1,−1, 0, 1, 0, 0) X74 (0,−1, 1, 0,−1, 0, 0)
X12 (0, 0, 1, 0, 0,−1,−1) X75 (0, 0,−1, 0, 0, 1, 1)
X13 (0, 1,−1, 1,−1, 1, 0) X76 (0,−1, 1,−1, 1,−1, 0)
X14 (1,−1, 0, 0, 1, 0, 0) X77 (− 1, 1, 0, 0,−1, 0, 0)
X15 (− 1, 0, 0, 0, 1, 0, 0) X78 (1, 0, 0, 0,−1, 0, 0)
X16 (0, 1,−1, 1, 0,−1, 0) X79 (0,−1, 1,−1, 0, 1, 0)
X17 (0, 1, 0,−1, 0, 1, 0) X80 (0,−1, 0, 1, 0,−1, 0)
X18 (1,−1, 0, 1,−1, 1, 0) X81 (− 1, 1, 0,−1, 1,−1, 0)
X19 (− 1, 0, 0, 1,−1, 1, 0) X82 (1, 0, 0,−1, 1,−1, 0)
X20 (0, 1, 0,−1, 1,−1, 0) X83 (0,−1, 0, 1,−1, 1, 0)
X21 (1,−1, 0, 1, 0,−1, 0) X84 (− 1, 1, 0,−1, 0, 1, 0)
X22 (1,−1, 1,−1, 0, 1, 0) X85 (− 1, 1,−1, 1, 0,−1, 0)
X23 (− 1, 0, 0, 1, 0,−1, 0) X86 (1, 0, 0,−1, 0, 1, 0)
X24 (− 1, 0, 1,−1, 0, 1, 0) X87 (1, 0,−1, 1, 0,−1, 0)
X25 (0, 1, 0, 0,−1, 0, 0) X88 (0,−1, 0, 0, 1, 0, 0)
X26 (1,−1, 1,−1, 1,−1, 0) X89 (− 1, 1,−1, 1,−1, 1, 0)

Table 12: First set of roots of E7 and assocaited fields.
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Field Positive root Field Negative root
X27 (1, 0,−1, 0, 0, 1, 1) X90 (− 1, 0, 1, 0, 0,−1,−1)
X28 (− 1, 0, 1,−1, 1,−1, 0) X91 (1, 0,−1, 1,−1, 1, 0)
X29 (− 1, 1,−1, 0, 0, 1, 1) X92 (1,−1, 1, 0, 0,−1,−1)
X30 (1,−1, 1, 0,−1, 0, 0) X93 (− 1, 1,−1, 0, 1, 0, 0)
X31 (1, 0,−1, 0, 1,−1, 1) X94 (− 1, 0, 1, 0,−1, 1,−1)
X32 (1, 0, 0, 0, 0, 1,−1) X95 (− 1, 0, 0, 0, 0,−1, 1)
X33 (− 1, 0, 1, 0,−1, 0, 0) X96 (1, 0,−1, 0, 1, 0, 0)
X34 (− 1, 1,−1, 0, 1,−1, 1) X97 (1,−1, 1, 0,−1, 1,−1)
X35 (− 1, 1, 0, 0, 0, 1,−1) X98 (1,−1, 0, 0, 0,−1, 1)
X36 (0,−1, 0, 0, 0, 1, 1) X99 (0, 1, 0, 0, 0,−1,−1)
X37 (1, 0,−1, 1,−1, 0, 1) X100 (− 1, 0, 1,−1, 1, 0,−1)
X38 (1, 0, 0, 0, 1,−1,−1) X101 (− 1, 0, 0, 0,−1, 1, 1)
X39 (− 1, 1,−1, 1,−1, 0, 1) X102 (1,−1, 1,−1, 1, 0,−1)
X40 (− 1, 1, 0, 0, 1,−1,−1) X103 (1,−1, 0, 0,−1, 1, 1)
X41 (0,−1, 0, 0, 1,−1, 1) X104 (0, 1, 0, 0,−1, 1,−1)
X42 (0,−1, 1, 0, 0, 1,−1) X105 (0, 1,−1, 0, 0,−1, 1)
X43 (1, 0, 0,−1, 0, 0, 1) X106 (− 1, 0, 0, 1, 0, 0,−1)
X44 (1, 0, 0, 1,−1, 0,−1) X107 (− 1, 0, 0,−1, 1, 0, 1)
X45 (− 1, 1, 0,−1, 0, 0, 1) X108 (1,−1, 0, 1, 0, 0,−1)
X46 (− 1, 1, 0, 1,−1, 0,−1) X109 (1,−1, 0,−1, 1, 0, 1)
X47 (0,−1, 0, 1,−1, 0, 1) X110 (0, 1, 0,−1, 1, 0,−1)
X48 (0,−1, 1, 0, 1,−1,−1) X111 (0, 1,−1, 0,−1, 1, 1)
X49 (0, 0,−1, 1, 0, 1, 0) X112 (0, 0, 1,−1, 0,−1, 0)
X50 (1, 0, 1,−1, 0, 0,−1) X113 (− 1, 0,−1, 1, 0, 0, 1)
X51 (− 1, 1, 1,−1, 0, 0,−1) X114 (1,−1,−1, 1, 0, 0, 1)
X52 (0,−1, 1,−1, 0, 0, 1) X115 (0, 1,−1, 1, 0, 0,−1)

Table 13: Second set of roots of E7 and associated fields.

6.2 Superpotential

Plugging into the general expression for the mirror superpotential, we find for this case that
the mirror superpotential is given by

W =
7∑

a=1

σa

( n∑
i=1

56∑
β=1

ρai,βYi,β +
126∑
m=1

αa
mZm

)
−

n∑
i=1

m̃i

56∑
β=1

Yi,β +
n∑

i=1

56∑
β=1

exp(−Yi,β) +
126∑
m=1

Xm.

where Xm = exp(−Zm) and Xm are the fundamental fields, we get:

W =
7∑

a=1

σaCa −
n∑

i=1

m̃i

56∑
β=1

Yi,β +
n∑

i=1

56∑
β=1

exp(−Yi,β) +
126∑
m=1

Xm. (6.1)
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Field Positive root Field Negative root
X53 (0,−1, 1, 1,−1, 0,−1) X116 (0, 1,−1,−1, 1, 0, 1)
X54 (0, 0,−1, 1, 1,−1, 0) X117 (0, 0, 1,−1,−1, 1, 0)
X55 (0, 0, 0,−1, 1, 1, 0) X118 (0, 0, 0, 1,−1,−1, 0)
X56 (1, 1,−1, 0, 0, 0, 0) X119 (− 1,−1, 1, 0, 0, 0, 0)
X57 (− 1, 2,−1, 0, 0, 0, 0) X120 (1,−2, 1, 0, 0, 0, 0)
X58 (0,−1, 2,−1, 0, 0,−1) X121 (0, 1,−2, 1, 0, 0, 1)
X59 (0, 0,−1, 0, 0, 0, 2) X122 (0, 0, 1, 0, 0, 0,−2)
X60 (0, 0,−1, 2,−1, 0, 0) X123 (0, 0, 1,−2, 1, 0, 0)
X61 (0, 0, 0,−1, 2,−1, 0) X124 (0, 0, 0, 1,−2, 1, 0)
X62 (0, 0, 0, 0,−1, 2, 0) X125 (0, 0, 0, 0, 1,−2, 0)
X63 (2,−1, 0, 0, 0, 0, 0) X126 (− 2, 1, 0, 0, 0, 0, 0)

Table 14: Third set of roots of E7 and associated fields.

where Ca are given in [7].

6.3 Coulomb ring relations

Integrating out the σa fields, we obtain seven constraints Ca = 0. Exponentiating these
constraints, we obtain a series of equations from which the Coulomb ring relations will be
derived. For reasons of notational sanity, we will also slightly simplify these expressions,
as follows. To make predictions for the A model, we will evaluate the ring relations on the
critical locus, where

Xm

Xm+63

= −1.

It is straightforward to see that each of the constraints Ca contains 34 differences of cor-
responding Z’s, so that the exponential of the constraints contains 34 factors of the form
Xm/Xm+63 – an even number of factors of −1, which will cancel out. Therefore, since on
the critical locus those factors will cancel out, we will omit them, and solely relate the
exponentiated constraints in terms of Y s.

The exponentiated constraints are listed in [7].

The mirror map is given by,

exp(−Yi,β) ↦→ −m̃i +
7∑

a=1

σaρ
a
i,β, Xm ↦→

7∑
a=1

σaα
a
m.

After applying the mirror map, the constraints adopt the form listed in [7].

Part of the excluded locus is defined by the condition that the Xm ̸= 0. This part of the
excluded locus is encoded by a relation listed in [7]. The other part of the excluded locus is

46



Field Weight Field Weight
Yi,1 (0, 0, 0, 0, 0, 1, 0) Yi,29 (0, 0, 0, 0, 0,−1, 0)
Yi,2 (0, 0, 0, 0, 1,−1, 0) Yi,30 (0, 0, 0, 0,−1, 1, 0)
Yi,3 (0, 0, 0, 1,−1, 0, 0) Yi,31 (0, 0, 0,−1, 1, 0, 0)
Yi,4 (0, 0, 1,−1, 0, 0, 0) Yi,32 (0, 0,−1, 1, 0, 0, 0)
Yi,5 (0, 1,−1, 0, 0, 0, 1) Yi,33 (0,−1, 1, 0, 0, 0,−1)
Yi,6 (0, 1, 0, 0, 0, 0,−1) Yi,34 (0,−1, 0, 0, 0, 0, 1)
Yi,7 (1,−1, 0, 0, 0, 0, 1) Yi,35 (− 1, 1, 0, 0, 0, 0,−1)
Yi,8 (− 1, 0, 0, 0, 0, 0, 1) Yi,36 (1, 0, 0, 0, 0, 0,−1)
Yi,9 (1,−1, 1, 0, 0, 0,−1) Yi,37 (− 1, 1,−1, 0, 0, 0, 1)
Yi,10 (− 1, 0, 1, 0, 0, 0,−1) Yi,38 (1, 0,−1, 0, 0, 0, 1)
Yi,11 (1, 0,−1, 1, 0, 0, 0) Yi,39 (− 1, 0, 1,−1, 0, 0, 0)
Yi,12 (− 1, 1,−1, 1, 0, 0, 0) Yi,40 (1,−1, 1,−1, 0, 0, 0)
Yi,13 (1, 0, 0,−1, 1, 0, 0) Yi,41 (− 1, 0, 0, 1,−1, 0, 0)
Yi,14 (− 1, 1, 0,−1, 1, 0, 0) Yi,42 (1,−1, 0, 1,−1, 0, 0)
Yi,15 (0,−1, 0, 1, 0, 0, 0) Yi,43 (0, 1, 0,−1, 0, 0, 0)
Yi,16 (1, 0, 0, 0,−1, 1, 0) Yi,44 (− 1, 0, 0, 0, 1,−1, 0)
Yi,17 (− 1, 1, 0, 0,−1, 1, 0) Yi,45 (1,−1, 0, 0, 1,−1, 0)
Yi,18 (0,−1, 1,−1, 1, 0, 0) Yi,46 (0, 1,−1, 1,−1, 0, 0)
Yi,19 (1, 0, 0, 0, 0,−1, 0) Yi,47 (− 1, 0, 0, 0, 0, 1, 0)
Yi,20 (− 1, 1, 0, 0, 0,−1, 0) Yi,48 (1,−1, 0, 0, 0, 1, 0)
Yi,21 (0,−1, 1, 0,−1, 1, 0) Yi,49 (0, 1,−1, 0, 1,−1, 0)
Yi,22 (0, 0,−1, 0, 1, 0, 1) Yi,50 (0, 0, 1, 0,−1, 0,−1)
Yi,23 (0,−1, 1, 0, 0,−1, 0) Yi,51 (0, 1,−1, 0, 0, 1, 0)
Yi,24 (0, 0,−1, 1,−1, 1, 1) Yi,52 (0, 0, 1,−1, 1,−1,−1)
Yi,25 (0, 0, 0, 0, 1, 0,−1) Yi,53 (0, 0, 0, 0,−1, 0, 1)
Yi,26 (0, 0,−1, 1, 0,−1, 1) Yi,54 (0, 0, 1,−1, 0, 1,−1)
Yi,27 (0, 0, 0,−1, 0, 1, 1) Yi,55 (0, 0, 0, 1, 0,−1,−1)
Yi,28 (0, 0, 0, 1,−1, 1,−1) Yi,56 (0, 0, 0,−1, 1,−1, 1)

Table 15: Weights of 56 of E7 and associated fields.

determined by the fact that exp(−Y ) ̸= 0. Since on the critical locus,

exp(−Yi,β) = −m̃i +
7∑

a=1

σaρ
a
i,β,

so

−m̃i +
7∑

a=1

σaρ
a
i,β ̸= 0,

which is given more explicitly in [7].
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6.4 Pure gauge theory

In this part we will consider the mirror to the pure E7 gauge theory. The mirror superpo-
tential is given in [7].

Now, we can proceed as in previous sections. For the reasons discussed there, since each
σ is multiplied by both Zµ and Z−µ with opposite signs, the critical locus equations

∂W

∂Xµ

= 0

imply that on the critical locus,
Xµ = −X−µ. (6.2)

(Furthermore, on the critical locus, eachXµ is determined by σs.) In addition, each derivative

∂W

∂σa

is a product of ratios of the form
Xµ

X−µ

= −1.

It is straightforward to check in the superpotential above that each σa is multiplied by an
even number of such ratios (i.e. the number of Z’s is a multiple of four). Specifically, the
sum of the absolute values of the Z’s multiplying each σ is 68 = 4 · 17. Thus, the constraint
implied by the σ’s is automatically satisfied.

As a result, following the same analysis in [3], we see in this case, that the critical locus
is nonempty, and in fact is determined by the seven σs. In other words, at the level of
these topological field theory computations, we have evidence that the pure supersymmetric
E7 gauge theory in two dimensions flows in the IR to a theory of seven free twisted chiral
superfields.

7 E8

In this section, we will discuss the mirror theory to a two-dimensional 8 gauge theory. The
group E8 and its algebra are the largest and most complicated exceptional groups, we shall
only list results.

7.1 Mirror Landau-Ginzburg orbifold

We will consider an E8 gauge theory with n matter fields in the 248, the lowest-dimensional
representation, which also happens to be the adjoint representation. The mirror Landau-
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Ginzburg model has fields

• Yiα, i ∈ {1, · · · , n}, α ∈ {1, · · · , 248}

• Xm, m ∈ {1, 2, · · · , 120}, correponding to positive roots, and X120+m, associated with
the negative roots of those associated to Xm,

• σa, a ∈ {1, 2, · · · , 8}.

As before, we work with an integer-lattice-basis for the roots and weights, corresponding to
standard theta angle periodicities. We associate the roots and weights to fields as listed in
the tables 16, 17, and 18.

Field Positive root/weight Field Positive root/weight
X1, Yi,1, (0, 0, 0, 0, 0, 0, 1, 0) X2, Yi,2 (0, 0, 0, 0, 0, 1,−1, 0)
X3, Yi,3 (0, 0, 0, 0, 1,−1, 0, 0) X4, Yi,4 (0, 0, 0, 1,−1, 0, 0, 0)
X5, Yi,5 (0, 0, 1,−1, 0, 0, 0, 0) X6, Yi,6 (0, 1,−1, 0, 0, 0, 0, 1)
X7, Yi,7 (0, 1, 0, 0, 0, 0, 0,−1) X8, Yi,8 (1,−1, 0, 0, 0, 0, 0, 1)
X9, Yi,9 (−1, 0, 0, 0, 0, 0, 0, 1) X10, Yi,10 (1,−1, 1, 0, 0, 0, 0,−1)
X11, Yi,11 (−1, 0, 1, 0, 0, 0, 0,−1) X12, Yi,12 (1, 0,−1, 1, 0, 0, 0, 0)
X13, Yi,13 (−1, 1,−1, 1, 0, 0, 0, 0) X14, Yi,14 (1, 0, 0,−1, 1, 0, 0, 0)
X15, Yi,15 (−1, 1, 0,−1, 1, 0, 0, 0) X16, Yi,16 (0,−1, 0, 1, 0, 0, 0, 0)
X17, Yi,17 (1, 0, 0, 0,−1, 1, 0, 0) X18, Yi,18 (−1, 1, 0, 0,−1, 1, 0, 0),
X19, Yi,19 (0,−1, 1,−1, 1, 0, 0, 0) X20, Yi,20 (1, 0, 0, 0, 0,−1, 1, 0)
X21, Yi,21 (−1, 1, 0, 0, 0,−1, 1, 0) X22, Yi,22 (0,−1, 1, 0,−1, 1, 0, 0)
X23, Yi,23 (0, 0,−1, 0, 1, 0, 0, 1) X24, Yi,24 (1, 0, 0, 0, 0, 0,−1, 0)
X25, Yi,25 (−1, 1, 0, 0, 0, 0,−1, 0) X26, Yi,26 (0,−1, 1, 0, 0,−1, 1, 0)
X27, Yi,27 (0, 0,−1, 1,−1, 1, 0, 1) X28, Yi,28 (0, 0, 0, 0, 1, 0, 0,−1)
X29, Yi,29 (0,−1, 1, 0, 0, 0,−1, 0) X30, Yi,30 (0, 0,−1, 1, 0,−1, 1, 1)
X31, Yi,31 (0, 0, 0,−1, 0, 1, 0, 1) X32, Yi,32 (0, 0, 0, 1,−1, 1, 0,−1)
X33, Yi,33 (0, 0,−1, 1, 0, 0,−1, 1) X34, Yi,34 (0, 0, 0,−1, 1,−1, 1, 1)
X35, Yi,35 (0, 0, 0, 1, 0,−1, 1,−1) X36, Yi,36 (0, 0, 1,−1, 0, 1, 0,−1)
X37, Yi,37 (0, 0, 0,−1, 1, 0,−1, 1) X38, Yi,38 (0, 0, 0, 0,−1, 0, 1, 1)
X39, Yi,39 (0, 0, 0, 1, 0, 0,−1,−1) X40, Yi,40 (0, 0, 1,−1, 1,−1, 1,−1)
X41, Yi,41 (0, 1,−1, 0, 0, 1, 0, 0) X42, Yi,42 (0, 0, 0, 0,−1, 1,−1, 1)
X43, Yi,43 (0, 0, 1,−1, 1, 0,−1,−1) X44, Yi,44 (0, 0, 1, 0,−1, 0, 1,−1)
X45, Yi,45 (0, 1,−1, 0, 1,−1, 1, 0) X46, Yi,46 (1,−1, 0, 0, 0, 1, 0, 0)
X47, Yi,47 (−1, 0, 0, 0, 0, 1, 0, 0) X48, Yi,48 (0, 0, 0, 0, 0,−1, 0, 1)

Table 16: First set of roots of E8 and associated fields.
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Field Positive root/weight Field Positive root/weight
X49, Yi,49 (0, 0, 1, 0,−1, 1,−1,−1) X50, Yi,50 (0, 1,−1, 0, 1, 0,−1, 0)
X51, Yi,51 (0, 1,−1, 1,−1, 0, 1, 0) X52, Yi,52 (1,−1, 0, 0, 1,−1, 1, 0)
X53, Yi,53 (−1, 0, 0, 0, 1,−1, 1, 0) X54, Yi,54 (0, 0, 1, 0, 0,−1, 0,−1)
X55, Yi,55 (0, 1,−1, 1,−1, 1,−1, 0) X56, Yi,56 (0, 1, 0,−1, 0, 0, 1, 0)
X57, Yi,57 (1,−1, 0, 0, 1, 0,−1, 0) X58, Yi,58 (1,−1, 0, 1,−1, 0, 1, 0)
X59, Yi,59 (−1, 0, 0, 0, 1, 0,−1, 0) X60, Yi,60 (−1, 0, 0, 1,−1, 0, 1, 0)
X61, Yi,61 (0, 1,−1, 1, 0,−1, 0, 0) X62, Yi,62 (0, 1, 0,−1, 0, 1,−1, 0)
X63, Yi,63 (1,−1, 0, 1,−1, 1,−1, 0) X64, Yi,64 (1,−1, 1,−1, 0, 0, 1, 0)
X65, Yi,65 (−1, 0, 0, 1,−1, 1,−1, 0) X66, Yi,66 (−1, 0, 1,−1, 0, 0, 1, 0)
X67, Yi,67 (0, 1, 0,−1, 1,−1, 0, 0) X68, Yi,68 (1,−1, 0, 1, 0,−1, 0, 0)
X69, Yi,69 (1,−1, 1,−1, 0, 1,−1, 0) X70, Yi,70 (1, 0,−1, 0, 0, 0, 1, 1)
X71, Yi,71 (−1, 0, 0, 1, 0,−1, 0, 0) X72, Yi,72 (−1, 0, 1,−1, 0, 1,−1, 0)
X73, Yi,73 (−1, 1,−1, 0, 0, 0, 1, 1) X74, Yi,74 (0, 1, 0, 0,−1, 0, 0, 0)
X75, Yi,75 (1,−1, 1,−1, 1,−1, 0, 0) X76, Yi,76 (1, 0,−1, 0, 0, 1,−1, 1)
X77, Yi,77 (1, 0, 0, 0, 0, 0, 1,−1) X78, Yi,78 (−1, 0, 1,−1, 1,−1, 0, 0)
X79, Yi,79 (−1, 1,−1, 0, 0, 1,−1, 1) X80, Yi,80 (−1, 1, 0, 0, 0, 0, 1,−1)
X81, Yi,81 (0,−1, 0, 0, 0, 0, 1, 1) X82, Yi,82 (1,−1, 1, 0,−1, 0, 0, 0)
X83, Yi,83 (1, 0,−1, 0, 1,−1, 0, 1) X84, Yi,84 (1, 0, 0, 0, 0, 1,−1,−1)
X85, Yi,85 (−1, 0, 1, 0,−1, 0, 0, 0) X86, Yi,86 (−1, 1,−1, 0, 1,−1, 0, 1)
X87, Yi,87 (−1, 1, 0, 0, 0, 1,−1,−1) X88, Yi,88 (0,−1, 0, 0, 0, 1,−1, 1)
X89, Yi,89 (0,−1, 1, 0, 0, 0, 1,−1) X90, Yi,90 (1, 0,−1, 1,−1, 0, 0, 1)
X91, Yi,91 (1, 0, 0, 0, 1,−1, 0,−1) X92, Yi,92 (−1, 1,−1, 1,−1, 0, 0, 1)
X93, Yi,93 (−1, 1, 0, 0, 1,−1, 0,−1) X94, Yi,94 (0,−1, 0, 0, 1,−1, 0, 1)

Table 17: Second set of roots of E8 and associated fields.

For the rest of the fields, the roots and weights are given by

Xa+120 = −Xa, a = 1, · · · , 120,
Yi,a+120 = −Yi,120, a = 1, · · · , 120.

7.2 Superpotential

In this section, we give the superpotential for the Landau-Ginzburg orbifold mirror to the
theory above.

W =
8∑

a=1

σaCa −
n∑

i=1

m̃i

248∑
α=1

Yi,α +
n∑

i=1

248∑
α=1

exp(−Yi,α) +
240∑
m=1

Xm, (7.1)

where the Ca are given in [7].

50



Field Positive root/weight Field Positive root/weight
X95, Yi,95 (0,−1, 1, 0, 0, 1,−1,−1) X96, Yi,96 (0, 0,−1, 1, 0, 0, 1, 0)
X97, Yi,97 (1, 0, 0,−1, 0, 0, 0, 1) X98, Yi,98 (1, 0, 0, 1,−1, 0, 0,−1)
X99, Yi,99 (−1, 1, 0,−1, 0, 0, 0, 1) X100, Yi,100 (−1, 1, 0, 1,−1, 0, 0,−1)
X101, Yi,101 (0,−1, 0, 1,−1, 0, 0, 1) X102, Yi,102 (0,−1, 1, 0, 1,−1, 0,−1)
X103, Yi,103 (0, 0,−1, 1, 0, 1,−1, 0) X104, Yi,104 (0, 0, 0,−1, 1, 0, 1, 0)
X105, Yi,105 (1, 0, 1,−1, 0, 0, 0,−1) X106, Yi,106 (−1, 1, 1,−1, 0, 0, 0,−1)
X107, Yi,107 (0,−1, 1,−1, 0, 0, 0, 1) X108, Yi,108 (0,−1, 1, 1,−1, 0, 0,−1)
X109, Yi,109 (0, 0,−1, 1, 1,−1, 0, 0) X110, Yi,110 (0, 0, 0,−1, 1, 1,−1, 0)
X111, Yi,111 (0, 0, 0, 0,−1, 1, 1, 0) X112, Yi,112 (1, 1,−1, 0, 0, 0, 0, 0)
X113, Yi,113 (−1, 2,−1, 0, 0, 0, 0, 0) X114, Yi,114 (0,−1, 2,−1, 0, 0, 0,−1)
X115, Yi,115 (0, 0,−1, 0, 0, 0, 0, 2) X116, Yi,116 (0, 0,−1, 2,−1, 0, 0, 0)
X117, Yi,117 (0, 0, 0,−1, 2,−1, 0, 0) X118, Yi,118 (0, 0, 0, 0,−1, 2,−1, 0)
X119, Yi,119 (0, 0, 0, 0, 0,−1, 2, 0) X120, Yi,120 (2,−1, 0, 0, 0, 0, 0, 0)
Yi,241,Yi,242 (0, 0, 0, 0, 0, 0, 0, 0) Yi,243,Yi,244 (0, 0, 0, 0, 0, 0, 0, 0)
Yi,245,Yi,246 (0, 0, 0, 0, 0, 0, 0, 0) Yi,247,Yi,248 (0, 0, 0, 0, 0, 0, 0, 0)

Table 18: Third set of roots of E8 and associated fields.

7.3 Coulomb ring relations

For the group E8, we obtain eight Coulomb ring relations, using the same methods as before.
The results for these ring relations are listed in [7].

7.4 Pure gauge theory

In this part we will consider the mirror to the pure E8 gauge theory. For brevity, we will not
rewrite the superpotential here, explicitly omitting Y fields, but instead merely refer to the
expression (7.1) given earlier, leaving the reader to omit Y fields.

Now, let us consider the critical locus of the superpotential above. For each root µ, the
fields Xµ and X−µ appear paired with opoosite signs coupling to each σ. Therefore, one
impliciation of the derivatives

∂W

∂Xµ

= 0

is that, on the critical locus,
Xµ = −X−µ. (7.2)

(Furthermore, on the critical locus, each Xµ is determined by σs.) Next, each derivative

∂W

∂σa
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is a product of ratios of the form
Xµ

X−µ

= −1.

It is straightforward to check that in the superpotential above that each σa is multiplied by
an even number of such ratios (i.e. the number of Z’s is a multiple of four). Specifically,
for each σ, the sum of the absolute values of the coefficients of the Z’s multiplying it is
116 = 4 · 29. Thus, the constraint implied by the σ’s is automatically satisfied.

As a result, following the same analysis as in [3] and previous sections, we see that the
critical locus is nonempty, and in fact is determined by eight σs. In other words, at the level of
these topological field theory computations, we have evidence that the pure supersymmetric
E8 gauge theory in two dimensions flows in the IR to a theory of eight free twisted chiral
superfields.

8 Conclusions

In this paper we applied the recent nonabelian mirrors proposal [3] to examples of two-
dimensional A-twisted gauge theories with exceptional gauge groups G2, F4, E6,7,8. In each
case, we explicitly compute the proposed mirror Landau-Ginzburg orbifold and derived the
Coulomb ring relations (the analogue of quantum cohomology ring relations). In the cases of
the G2 and F4 gauge theories, we studied the action of the Weyl group on the critical locus
equations, which allowed us to perform consistency checks on the results here, and in the
case of G2, performed a detailed analysis of Weyl group orbits of the critical locis (vacua).

We also studied pure gauge theories with each gauge group, and provided evidence (at
the level of these topological-field-theory-type computations) that each pure gauge theory
(with simply-connected gauge group) flows in the IR to a free theory of as many twisted
chiral multiplets as the rank of the gauge group.
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